4 Commits

Author SHA1 Message Date
fb8ebc8ea4 Added define wrap for UART
- to completely disable UART init functions in case is not used
2020-06-26 11:33:33 +02:00
a4155f80a0 UART update
- disabled the Rx errors to avoid DMA stop and additional need to manage the UART error handler
2020-06-25 20:19:43 +02:00
f441588f68 Improved UART error recovery
- In case of an Rx error instead of stopping the complete UART, only the Rx DMA is aborted and restarted.
2020-06-23 20:02:17 +02:00
2f8b11449c Major UART communication improvement
- the UART communication is improved based on UART Idle line detection interrupt
- an Rx ring buffer is used to manage the UART incoming data
- both Tx and Rx are efficiently handled using DMA
- added posibility for User commnds via UART in DEBUG mode
2020-06-22 08:37:59 +02:00
12 changed files with 651 additions and 204 deletions

3
.gitignore vendored
View File

@ -1,2 +1,5 @@
build/*
!build/hover.hex
.pio/
.pioenvs/
.vscode/

View File

@ -9,7 +9,9 @@
#define DELAY_IN_MAIN_LOOP 5 // in ms. default 5. it is independent of all the timing critical stuff. do not touch if you do not know what you are doing.
#define TIMEOUT 5 // number of wrong / missing input commands before emergency off
#define START_FRAME 0xAAAA // serial command start-of-frame magic word
#define SERIAL_START_FRAME 0xABCD // [-] Start frame definition for serial commands
#define SERIAL_TIMEOUT 160 // [-] Serial timeout duration for the received data. 160 ~= 0.8 sec. Calculation: 0.8 sec / 0.005 sec
#define SERIAL_BUFFER_SIZE 64 // [bytes] Size of Serial Rx buffer. Make sure it is always larger than the structure size
// ############################### GENERAL ###############################
@ -47,7 +49,11 @@
// ############################### SERIAL DEBUG ###############################
#define DEBUG_SERIAL_USART3 // right sensor board cable, disable if I2C (nunchuck or lcd) is used!
#define DEBUG_BAUD 115200 // UART baud rate
#if defined(DEBUG_SERIAL_USART2)
#define USART2_BAUD 115200 // UART baud rate
#elif defined(DEBUG_SERIAL_USART3)
#define USART3_BAUD 115200 // UART baud rate
#endif
//#define DEBUG_SERIAL_SERVOTERM // Software for plotting graphs: https://github.com/STMBL/Servoterm-app
#define DEBUG_SERIAL_ASCII // "1:345 2:1337 3:0 4:0 5:0 6:0 7:0 8:0\r\n"
@ -55,7 +61,11 @@
// ###### CONTROL VIA UART (serial) ######
//#define CONTROL_SERIAL_USART2 // left sensor board cable, disable if ADC or PPM is used!
#define CONTROL_BAUD 19200 // control via usart from eg an Arduino or raspberry
#if defined(CONTROL_SERIAL_USART2)
#define USART2_BAUD 19200 // UART baud rate
#elif defined(CONTROL_SERIAL_USART3)
#define USART3_BAUD 19200 // UART baud rate
#endif
// for Arduino, use void loop(void){ Serial.write((uint8_t *) &steer, sizeof(steer)); Serial.write((uint8_t *) &speed, sizeof(speed));delay(20); }
// ###### CONTROL VIA RC REMOTE ######
@ -155,6 +165,14 @@ else {\
#error DEBUG_I2C_LCD and DEBUG_SERIAL_USART3 not allowed. it is on the same cable.
#endif
#if defined(CONTROL_SERIAL_USART2) && defined(CONTROL_SERIAL_USART3)
#error CONTROL_SERIAL_USART2 and CONTROL_SERIAL_USART3 not allowed, choose one.
#endif
#if defined(DEBUG_SERIAL_USART2) && defined(DEBUG_SERIAL_USART3)
#error DEBUG_SERIAL_USART2 and DEBUG_SERIAL_USART3 not allowed, choose one.
#endif
#ifdef CONTROL_SERIAL_USART2
#if defined CONTROL_DEFINED
#error select exactly 1 input method in config.h!
@ -162,6 +180,13 @@ else {\
#define CONTROL_DEFINED
#endif
#ifdef CONTROL_SERIAL_USART3
#if defined CONTROL_DEFINED
#error select exactly 1 input method in config.h!
#endif
#define CONTROL_DEFINED
#endif
#ifdef CONTROL_PPM
#if defined CONTROL_DEFINED
#error select exactly 1 input method in config.h!

View File

@ -21,6 +21,7 @@
#pragma once
#include "stm32f1xx_hal.h"
#include "config.h"
#define LEFT_HALL_U_PIN GPIO_PIN_5
#define LEFT_HALL_V_PIN GPIO_PIN_6
@ -141,10 +142,12 @@
#define SIGN(a) (((a) < 0.0) ? (-1.0) : (((a) > 0.0) ? (1.0) : (0.0)))
#define CLAMP(x, low, high) (((x) > (high)) ? (high) : (((x) < (low)) ? (low) : (x)))
#define SCALE(value, high, max) MIN(MAX(((max) - (value)) / ((max) - (high)), 0.0), 1.0)
#define IN_RANGE(x, low, up) (((x) >= (low)) && ((x) <= (up)))
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#define MIN3(a, b, c) MIN(a, MIN(b, c))
#define MAX3(a, b, c) MAX(a, MAX(b, c))
#define ARRAY_LEN(x) (uint32_t)(sizeof(x) / sizeof(*(x)))
typedef struct {
uint16_t rr1;
@ -158,3 +161,20 @@ typedef struct {
uint16_t temp;
uint16_t l_rx2;
} adc_buf_t;
typedef struct{
uint16_t start;
int16_t steer;
int16_t speed;
uint16_t checksum;
} SerialCommand;
void usart2_rx_check(void);
void usart3_rx_check(void);
#if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3)
void usart_process_debug(uint8_t *userCommand, uint32_t len);
#endif
#if defined(CONTROL_SERIAL_USART2) || defined(CONTROL_SERIAL_USART3)
void usart_process_command(SerialCommand *command_in, SerialCommand *command_out, uint8_t usart_idx);
#endif
void UART_DisableRxErrors(UART_HandleTypeDef *huart);

View File

@ -27,4 +27,5 @@ void MX_GPIO_Init(void);
void MX_TIM_Init(void);
void MX_ADC1_Init(void);
void MX_ADC2_Init(void);
void UART_Init(void);
void UART2_Init(void);
void UART3_Init(void);

View File

@ -56,7 +56,13 @@ void DebugMon_Handler(void);
void PendSV_Handler(void);
void SysTick_Handler(void);
void DMA1_Channel1_IRQHandler(void);
void DMA1_Channel2_IRQHandler(void);
void DMA1_Channel3_IRQHandler(void);
void DMA1_Channel6_IRQHandler(void);
void DMA1_Channel7_IRQHandler(void);
void DMA2_Channel4_5_IRQHandler(void);
void USART2_IRQHandler(void);
void USART3_IRQHandler(void);
#ifdef __cplusplus
}

View File

@ -36,7 +36,7 @@ const uint8_t hall_to_pos[8] = {
0,
};
inline void blockPWM(int pwm, int pos, int *u, int *v, int *w) {
void blockPWM(int pwm, int pos, int *u, int *v, int *w) {
switch(pos) {
case 0:
*u = 0;
@ -75,7 +75,7 @@ inline void blockPWM(int pwm, int pos, int *u, int *v, int *w) {
}
}
inline void blockPhaseCurrent(int pos, int u, int v, int *q) {
void blockPhaseCurrent(int pos, int u, int v, int *q) {
switch(pos) {
case 0:
*q = u - v;

View File

@ -5,16 +5,8 @@
#include "stdio.h"
#include "string.h"
UART_HandleTypeDef huart2;
#ifdef DEBUG_SERIAL_USART3
#define UART_DMA_CHANNEL DMA1_Channel2
#endif
#ifdef DEBUG_SERIAL_USART2
#define UART_DMA_CHANNEL DMA1_Channel7
#endif
extern UART_HandleTypeDef huart2;
extern UART_HandleTypeDef huart3;
volatile uint8_t uart_buf[100];
volatile int16_t ch_buf[8];
@ -37,28 +29,49 @@ void consoleScope() {
uart_buf[8] = CLAMP(ch_buf[7]+127, 0, 255);
uart_buf[9] = '\n';
if(UART_DMA_CHANNEL->CNDTR == 0) {
UART_DMA_CHANNEL->CCR &= ~DMA_CCR_EN;
UART_DMA_CHANNEL->CNDTR = 10;
UART_DMA_CHANNEL->CMAR = (uint32_t)uart_buf;
UART_DMA_CHANNEL->CCR |= DMA_CCR_EN;
#ifdef DEBUG_SERIAL_USART2
if(__HAL_DMA_GET_COUNTER(huart2.hdmatx) == 0) {
HAL_UART_Transmit_DMA(&huart2, (uint8_t *)uart_buf, strLength);
}
#endif
#ifdef DEBUG_SERIAL_USART3
if(__HAL_DMA_GET_COUNTER(huart3.hdmatx) == 0) {
HAL_UART_Transmit_DMA(&huart3, (uint8_t *)uart_buf, strLength);
}
#endif
#endif
#if defined DEBUG_SERIAL_ASCII && (defined DEBUG_SERIAL_USART2 || defined DEBUG_SERIAL_USART3)
memset(uart_buf, 0, sizeof(uart_buf));
sprintf(uart_buf, "1:%i 2:%i 3:%i 4:%i 5:%i 6:%i 7:%i 8:%i\r\n", ch_buf[0], ch_buf[1], ch_buf[2], ch_buf[3], ch_buf[4], ch_buf[5], ch_buf[6], ch_buf[7]);
int strLength;
strLength = sprintf((char *)(uintptr_t)uart_buf,
"1:%i 2:%i 3:%i 4:%i 5:%i 6:%i 7:%i 8:%i\r\n",
ch_buf[0], ch_buf[1], ch_buf[2], ch_buf[3], ch_buf[4], ch_buf[5], ch_buf[6], ch_buf[7]);
if(UART_DMA_CHANNEL->CNDTR == 0) {
UART_DMA_CHANNEL->CCR &= ~DMA_CCR_EN;
UART_DMA_CHANNEL->CNDTR = strlen(uart_buf);
UART_DMA_CHANNEL->CMAR = (uint32_t)uart_buf;
UART_DMA_CHANNEL->CCR |= DMA_CCR_EN;
#ifdef DEBUG_SERIAL_USART2
if(__HAL_DMA_GET_COUNTER(huart2.hdmatx) == 0) {
HAL_UART_Transmit_DMA(&huart2, (uint8_t *)uart_buf, strLength);
}
#endif
#ifdef DEBUG_SERIAL_USART3
if(__HAL_DMA_GET_COUNTER(huart3.hdmatx) == 0) {
HAL_UART_Transmit_DMA(&huart3, (uint8_t *)uart_buf, strLength);
}
#endif
#endif
}
void consoleLog(char *message)
{
HAL_UART_Transmit_DMA(&huart2, (uint8_t *)message, strlen(message));
#if defined DEBUG_SERIAL_ASCII && (defined DEBUG_SERIAL_USART2 || defined DEBUG_SERIAL_USART3)
#ifdef DEBUG_SERIAL_USART2
if(__HAL_DMA_GET_COUNTER(huart2.hdmatx) == 0) {
HAL_UART_Transmit_DMA(&huart2, (uint8_t *)message, strlen((char *)(uintptr_t)message));
}
#endif
#ifdef DEBUG_SERIAL_USART3
if(__HAL_DMA_GET_COUNTER(huart3.hdmatx) == 0) {
HAL_UART_Transmit_DMA(&huart3, (uint8_t *)message, strlen((char *)(uintptr_t)message));
}
#endif
#endif
}

View File

@ -17,6 +17,33 @@ extern I2C_HandleTypeDef hi2c2;
DMA_HandleTypeDef hdma_i2c2_rx;
DMA_HandleTypeDef hdma_i2c2_tx;
extern UART_HandleTypeDef huart2;
extern UART_HandleTypeDef huart3;
#if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2)
extern uint8_t rx_buffer_L[SERIAL_BUFFER_SIZE]; // USART Rx DMA circular buffer
static uint32_t rx_buffer_L_len = ARRAY_LEN(rx_buffer_L);
#endif
#if defined(CONTROL_SERIAL_USART2)
extern uint16_t timeoutCntSerial_L; // Timeout counter for Rx Serial command
#endif
#if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3)
extern uint8_t rx_buffer_R[SERIAL_BUFFER_SIZE]; // USART Rx DMA circular buffer
static uint32_t rx_buffer_R_len = ARRAY_LEN(rx_buffer_R);
#endif
#if defined(CONTROL_SERIAL_USART3)
extern uint16_t timeoutCntSerial_R; // Timeout counter for Rx Serial command
#endif
#if defined(CONTROL_SERIAL_USART2) || defined(CONTROL_SERIAL_USART3)
extern SerialCommand command;
static SerialCommand command_raw;
static uint32_t command_len = sizeof(command);
extern uint8_t timeoutFlagSerial; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data)
#endif
#ifdef CONTROL_PPM
uint16_t ppm_captured_value[PPM_NUM_CHANNELS + 1] = {500, 500};
uint16_t ppm_captured_value_buffer[PPM_NUM_CHANNELS+1] = {500, 500};
@ -24,8 +51,6 @@ uint32_t ppm_timeout = 0;
bool ppm_valid = true;
#define IN_RANGE(x, low, up) (((x) >= (low)) && ((x) <= (up)))
void PPM_ISR_Callback() {
// Dummy loop with 16 bit count wrap around
uint16_t rc_delay = TIM2->CNT;
@ -117,3 +142,169 @@ void Nunchuck_Read() {
//setScopeChannel(2, (int)nunchuck_data[5] & 1);
//setScopeChannel(3, ((int)nunchuck_data[5] >> 1) & 1);
}
/*
* Check for new data received on USART2 with DMA: refactored function from https://github.com/MaJerle/stm32-usart-uart-dma-rx-tx
* - this function is called for every USART IDLE line detection, in the USART interrupt handler
*/
void usart2_rx_check(void)
{
#if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2)
static uint32_t old_pos;
uint32_t pos;
pos = rx_buffer_L_len - __HAL_DMA_GET_COUNTER(huart2.hdmarx); // Calculate current position in buffer
#endif
#if defined(DEBUG_SERIAL_USART2)
if (pos != old_pos) { // Check change in received data
if (pos > old_pos) { // "Linear" buffer mode: check if current position is over previous one
usart_process_debug(&rx_buffer_L[old_pos], pos - old_pos); // Process data
} else { // "Overflow" buffer mode
usart_process_debug(&rx_buffer_L[old_pos], rx_buffer_L_len - old_pos); // First Process data from the end of buffer
if (pos > 0) { // Check and continue with beginning of buffer
usart_process_debug(&rx_buffer_L[0], pos); // Process remaining data
}
}
}
#endif // DEBUG_SERIAL_USART2
#ifdef CONTROL_SERIAL_USART2
uint8_t *ptr;
if (pos != old_pos) { // Check change in received data
ptr = (uint8_t *)&command_raw; // Initialize the pointer with command_raw address
if (pos > old_pos && (pos - old_pos) == command_len) { // "Linear" buffer mode: check if current position is over previous one AND data length equals expected length
memcpy(ptr, &rx_buffer_L[old_pos], command_len); // Copy data. This is possible only if command_raw is contiguous! (meaning all the structure members have the same size)
usart_process_command(&command_raw, &command, 2); // Process data
} else if ((rx_buffer_L_len - old_pos + pos) == command_len) { // "Overflow" buffer mode: check if data length equals expected length
memcpy(ptr, &rx_buffer_L[old_pos], rx_buffer_L_len - old_pos); // First copy data from the end of buffer
if (pos > 0) { // Check and continue with beginning of buffer
ptr += rx_buffer_L_len - old_pos; // Move to correct position in command_raw
memcpy(ptr, &rx_buffer_L[0], pos); // Copy remaining data
}
usart_process_command(&command_raw, &command, 2); // Process data
}
}
#endif // CONTROL_SERIAL_USART2
#if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2)
old_pos = pos; // Update old position
if (old_pos == rx_buffer_L_len) { // Check and manually update if we reached end of buffer
old_pos = 0;
}
#endif
}
/*
* Check for new data received on USART3 with DMA: refactored function from https://github.com/MaJerle/stm32-usart-uart-dma-rx-tx
* - this function is called for every USART IDLE line detection, in the USART interrupt handler
*/
void usart3_rx_check(void)
{
#if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3)
static uint32_t old_pos;
uint32_t pos;
pos = rx_buffer_R_len - __HAL_DMA_GET_COUNTER(huart3.hdmarx); // Calculate current position in buffer
#endif
#if defined(DEBUG_SERIAL_USART3)
if (pos != old_pos) { // Check change in received data
if (pos > old_pos) { // "Linear" buffer mode: check if current position is over previous one
usart_process_debug(&rx_buffer_R[old_pos], pos - old_pos); // Process data
} else { // "Overflow" buffer mode
usart_process_debug(&rx_buffer_R[old_pos], rx_buffer_R_len - old_pos); // First Process data from the end of buffer
if (pos > 0) { // Check and continue with beginning of buffer
usart_process_debug(&rx_buffer_R[0], pos); // Process remaining data
}
}
}
#endif // DEBUG_SERIAL_USART3
#ifdef CONTROL_SERIAL_USART3
uint8_t *ptr;
if (pos != old_pos) { // Check change in received data
ptr = (uint8_t *)&command_raw; // Initialize the pointer with command_raw address
if (pos > old_pos && (pos - old_pos) == command_len) { // "Linear" buffer mode: check if current position is over previous one AND data length equals expected length
memcpy(ptr, &rx_buffer_R[old_pos], command_len); // Copy data. This is possible only if command_raw is contiguous! (meaning all the structure members have the same size)
usart_process_command(&command_raw, &command, 3); // Process data
} else if ((rx_buffer_R_len - old_pos + pos) == command_len) { // "Overflow" buffer mode: check if data length equals expected length
memcpy(ptr, &rx_buffer_R[old_pos], rx_buffer_R_len - old_pos); // First copy data from the end of buffer
if (pos > 0) { // Check and continue with beginning of buffer
ptr += rx_buffer_R_len - old_pos; // Move to correct position in command_raw
memcpy(ptr, &rx_buffer_R[0], pos); // Copy remaining data
}
usart_process_command(&command_raw, &command, 3); // Process data
}
}
#endif // CONTROL_SERIAL_USART3
#if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3)
old_pos = pos; // Update old position
if (old_pos == rx_buffer_R_len) { // Check and manually update if we reached end of buffer
old_pos = 0;
}
#endif
}
/*
* Process Rx debug user command input
*/
#if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3)
void usart_process_debug(uint8_t *userCommand, uint32_t len)
{
for (; len > 0; len--, userCommand++) {
if (*userCommand != '\n' && *userCommand != '\r') { // Do not accept 'new line' and 'carriage return' commands
consoleLog("-- Command received --\r\n");
// handle_input(*userCommand); // -> Create this function to handle the user commands
}
}
}
#endif // SERIAL_DEBUG
/*
* Process command Rx data
* - if the command_in data is valid (correct START_FRAME and checksum) copy the command_in to command_out
*/
#if defined(CONTROL_SERIAL_USART2) || defined(CONTROL_SERIAL_USART3)
void usart_process_command(SerialCommand *command_in, SerialCommand *command_out, uint8_t usart_idx)
{
uint16_t checksum;
if (command_in->start == SERIAL_START_FRAME) {
checksum = (uint16_t)(command_in->start ^ command_in->steer ^ command_in->speed);
if (command_in->checksum == checksum) {
*command_out = *command_in;
if (usart_idx == 2) { // Sideboard USART2
#ifdef CONTROL_SERIAL_USART2
timeoutCntSerial_L = 0; // Reset timeout counter
timeoutFlagSerial = 0; // Clear timeout flag
#endif
} else if (usart_idx == 3) { // Sideboard USART3
#ifdef CONTROL_SERIAL_USART3
timeoutCntSerial_R = 0; // Reset timeout counter
timeoutFlagSerial = 0; // Clear timeout flag
#endif
}
}
}
}
#endif
/**
* @brief Disable Rx Errors detection interrupts on UART peripheral (since we do not want DMA to be stopped)
* The incorrect data will be filtered based on the START_FRAME and checksum.
* @param huart: UART handle.
* @retval None
*/
#if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || \
defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3)
void UART_DisableRxErrors(UART_HandleTypeDef *huart)
{
/* Disable PE (Parity Error) interrupts */
CLEAR_BIT(huart->Instance->CR1, USART_CR1_PEIE);
/* Disable EIE (Frame error, noise error, overrun error) interrupts */
CLEAR_BIT(huart->Instance->CR3, USART_CR3_EIE);
}
#endif

View File

@ -19,6 +19,7 @@
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <string.h>
#include "stm32f1xx_hal.h"
#include "defines.h"
#include "setup.h"
@ -35,20 +36,12 @@ extern volatile adc_buf_t adc_buffer;
//LCD_PCF8574_HandleTypeDef lcd;
extern I2C_HandleTypeDef hi2c2;
extern UART_HandleTypeDef huart2;
extern UART_HandleTypeDef huart3;
int cmd1; // normalized input values. -1000 to 1000
int cmd2;
int cmd3;
typedef struct{
uint16_t start_of_frame;
int16_t steer;
int16_t speed;
uint16_t checksum;
} Serialcommand;
volatile Serialcommand command;
uint8_t button1, button2;
int steer; // global variable for steering. -1000 to 1000
@ -77,6 +70,25 @@ extern uint8_t nunchuck_data[6];
extern volatile uint16_t ppm_captured_value[PPM_NUM_CHANNELS+1];
#endif
#if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2)
uint8_t rx_buffer_L[SERIAL_BUFFER_SIZE]; // USART Rx DMA circular buffer
#endif
#if defined(CONTROL_SERIAL_USART2)
uint16_t timeoutCntSerial_L = 0; // Timeout counter for Rx Serial command
#endif
#if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3)
uint8_t rx_buffer_R[SERIAL_BUFFER_SIZE]; // USART Rx DMA circular buffer
#endif
#if defined(CONTROL_SERIAL_USART3)
uint16_t timeoutCntSerial_R = 0; // Timeout counter for Rx Serial command
#endif
#if defined(CONTROL_SERIAL_USART2) || defined(CONTROL_SERIAL_USART3)
SerialCommand command;
uint8_t timeoutFlagSerial = 0; // Timeout Flag for Rx Serial command: 0 = OK, 1 = Problem detected (line disconnected or wrong Rx data)
#endif
int milli_vel_error_sum = 0;
@ -126,8 +138,11 @@ int main(void) {
MX_ADC1_Init();
MX_ADC2_Init();
#if defined(DEBUG_SERIAL_USART2) || defined(DEBUG_SERIAL_USART3)
UART_Init();
#if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2)
UART2_Init();
#endif
#if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3)
UART3_Init();
#endif
HAL_GPIO_WritePin(OFF_PORT, OFF_PIN, 1);
@ -156,9 +171,13 @@ int main(void) {
Nunchuck_Init();
#endif
#ifdef CONTROL_SERIAL_USART2
UART_Control_Init();
HAL_UART_Receive_DMA(&huart2, (uint8_t *)&command, sizeof(command));
#if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2)
HAL_UART_Receive_DMA(&huart2, (uint8_t *)rx_buffer_L, sizeof(rx_buffer_L));
UART_DisableRxErrors(&huart2);
#endif
#if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3)
HAL_UART_Receive_DMA(&huart3, (uint8_t *)rx_buffer_R, sizeof(rx_buffer_R));
UART_DisableRxErrors(&huart3);
#endif
#ifdef DEBUG_I2C_LCD
@ -219,20 +238,30 @@ int main(void) {
timeout = 0;
#endif
#ifdef CONTROL_SERIAL_USART2
if (command.start_of_frame == START_FRAME &&
command.checksum ==(uint16_t)(START_FRAME ^ command.steer ^ command.speed)) {
cmd1 = CLAMP((int16_t)command.steer, -1000, 1000);
cmd2 = CLAMP((int16_t)command.speed, -1000, 1000);
} else { // restart DMA to hopefully get back in sync
// Try a periodic reset
if (main_loop_counter % 25 == 0) {
HAL_UART_DMAStop(&huart2);
HAL_UART_Receive_DMA(&huart2, (uint8_t *)&command, sizeof(command));
}
}
timeout = 0;
#endif
#if defined(CONTROL_SERIAL_USART2) || defined(CONTROL_SERIAL_USART3)
if (IN_RANGE(command.steer, -1000, 1000) && IN_RANGE(command.speed, -1000, 1000)) {
cmd1 = command.steer;
cmd2 = command.speed;
}
#if defined(CONTROL_SERIAL_USART2)
if (timeoutCntSerial_L++ >= SERIAL_TIMEOUT) { // Timeout qualification
timeoutFlagSerial = 1; // Timeout detected
timeoutCntSerial_L = SERIAL_TIMEOUT; // Limit timout counter value
}
#endif
#if defined(CONTROL_SERIAL_USART3)
if (timeoutCntSerial_R++ >= SERIAL_TIMEOUT) { // Timeout qualification
timeoutFlagSerial = 1; // Timeout detected
timeoutCntSerial_R = SERIAL_TIMEOUT; // Limit timout counter value
}
#endif
if (timeoutFlagSerial) { // In case of timeout bring the system to a Safe State
cmd1 = 0;
cmd2 = 0;
}
timeout = 0;
#endif
#ifdef CONTROL_MOTOR_TEST
if (motor_test_direction == 1) cmd2 += 1;

View File

@ -44,183 +44,239 @@ ADC_HandleTypeDef hadc1;
ADC_HandleTypeDef hadc2;
I2C_HandleTypeDef hi2c2;
UART_HandleTypeDef huart2;
UART_HandleTypeDef huart3;
DMA_HandleTypeDef hdma_usart2_rx;
DMA_HandleTypeDef hdma_usart2_tx;
DMA_HandleTypeDef hdma_usart3_rx;
DMA_HandleTypeDef hdma_usart3_tx;
volatile adc_buf_t adc_buffer;
#ifdef CONTROL_SERIAL_USART2
void UART_Control_Init() {
GPIO_InitTypeDef GPIO_InitStruct;
__HAL_RCC_USART2_CLK_ENABLE();
#if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2)
/* USART2 init function */
void UART2_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
/* DMA1_Channel6_IRQn interrupt configuration */
//HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 5, 6);
//HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn);
HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 5, 6);
HAL_NVIC_SetPriority(DMA1_Channel6_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel6_IRQn);
/* DMA1_Channel7_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 5, 7);
HAL_NVIC_SetPriority(DMA1_Channel7_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel7_IRQn);
huart2.Instance = USART2;
huart2.Init.BaudRate = CONTROL_BAUD;
huart2.Init.BaudRate = USART2_BAUD;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
// huart2.Init.OverSampling = UART_OVERSAMPLING_16;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
HAL_UART_Init(&huart2);
__HAL_RCC_DMA1_CLK_ENABLE();
/* USER CODE BEGIN USART2_MspInit 0 */
__HAL_RCC_GPIOA_CLK_ENABLE();
/* USER CODE END USART2_MspInit 0 */
/* Peripheral clock enable */
__HAL_RCC_USART2_CLK_ENABLE();
GPIO_InitStruct.Pull = GPIO_PULLUP; //GPIO_NOPULL;
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT; //GPIO_MODE_AF_PP;
// GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* Peripheral DMA init*/
hdma_usart2_rx.Instance = DMA1_Channel6;
hdma_usart2_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_usart2_rx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_usart2_rx.Init.MemInc = DMA_MINC_ENABLE;
hdma_usart2_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_usart2_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_usart2_rx.Init.Mode = DMA_CIRCULAR; //DMA_NORMAL;
hdma_usart2_rx.Init.Priority = DMA_PRIORITY_LOW;
HAL_DMA_Init(&hdma_usart2_rx);
__HAL_LINKDMA(&huart2,hdmarx,hdma_usart2_rx);
hdma_usart2_tx.Instance = DMA1_Channel7;
hdma_usart2_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
hdma_usart2_tx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_usart2_tx.Init.MemInc = DMA_MINC_ENABLE;
hdma_usart2_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_usart2_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_usart2_tx.Init.Mode = DMA_NORMAL;
hdma_usart2_tx.Init.Priority = DMA_PRIORITY_LOW;
HAL_DMA_Init(&hdma_usart2_tx);
__HAL_LINKDMA(&huart2,hdmatx,hdma_usart2_tx);
}
#endif
#ifdef DEBUG_SERIAL_USART3
void UART_Init() {
__HAL_RCC_USART3_CLK_ENABLE();
#if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3)
/* USART3 init function */
void UART3_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA1_CLK_ENABLE();
UART_HandleTypeDef huart3;
huart3.Instance = USART3;
huart3.Init.BaudRate = DEBUG_BAUD;
huart3.Init.WordLength = UART_WORDLENGTH_8B;
huart3.Init.StopBits = UART_STOPBITS_1;
huart3.Init.Parity = UART_PARITY_NONE;
huart3.Init.Mode = UART_MODE_TX;
huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
/* DMA interrupt init */
/* DMA1_Channel2_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel2_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel2_IRQn);
/* DMA1_Channel3_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA1_Channel3_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(DMA1_Channel3_IRQn);
huart3.Instance = USART3;
huart3.Init.BaudRate = USART3_BAUD;
huart3.Init.WordLength = UART_WORDLENGTH_8B;
huart3.Init.StopBits = UART_STOPBITS_1;
huart3.Init.Parity = UART_PARITY_NONE;
huart3.Init.Mode = UART_MODE_TX_RX;
huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart3.Init.OverSampling = UART_OVERSAMPLING_16;
HAL_UART_Init(&huart3);
USART3->CR3 |= USART_CR3_DMAT; // | USART_CR3_DMAR | USART_CR3_OVRDIS;
GPIO_InitTypeDef GPIO_InitStruct;
GPIO_InitStruct.Pin = GPIO_PIN_10;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
DMA1_Channel2->CCR = 0;
DMA1_Channel2->CPAR = (uint32_t) & (USART3->DR);
DMA1_Channel2->CNDTR = 0;
DMA1_Channel2->CCR = DMA_CCR_MINC | DMA_CCR_DIR;
DMA1->IFCR = DMA_IFCR_CTCIF2 | DMA_IFCR_CHTIF2 | DMA_IFCR_CGIF2;
}
#endif
#ifdef DEBUG_SERIAL_USART2
void UART_Init() {
__HAL_RCC_USART2_CLK_ENABLE();
__HAL_RCC_DMA1_CLK_ENABLE();
#if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2) || \
defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3)
void HAL_UART_MspInit(UART_HandleTypeDef* uartHandle)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
if(uartHandle->Instance==USART2)
{
/* USER CODE BEGIN USART2_MspInit 0 */
UART_HandleTypeDef huart2;
huart2.Instance = USART2;
huart2.Init.BaudRate = DEBUG_BAUD;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
HAL_UART_Init(&huart2);
/* USER CODE END USART2_MspInit 0 */
/* USART2 clock enable */
__HAL_RCC_USART2_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/**USART2 GPIO Configuration
PA2 ------> USART2_TX
PA3 ------> USART2_RX
*/
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
USART2->CR3 |= USART_CR3_DMAT; // | USART_CR3_DMAR | USART_CR3_OVRDIS;
GPIO_InitStruct.Pin = GPIO_PIN_3;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
GPIO_InitTypeDef GPIO_InitStruct;
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
/* USART2 DMA Init */
/* USART2_RX Init */
hdma_usart2_rx.Instance = DMA1_Channel6;
hdma_usart2_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_usart2_rx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_usart2_rx.Init.MemInc = DMA_MINC_ENABLE;
hdma_usart2_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_usart2_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_usart2_rx.Init.Mode = DMA_CIRCULAR;
hdma_usart2_rx.Init.Priority = DMA_PRIORITY_LOW;
HAL_DMA_Init(&hdma_usart2_rx);
__HAL_LINKDMA(uartHandle,hdmarx,hdma_usart2_rx);
DMA1_Channel7->CCR = 0;
DMA1_Channel7->CPAR = (uint32_t) & (USART2->DR);
DMA1_Channel7->CNDTR = 0;
DMA1_Channel7->CCR = DMA_CCR_MINC | DMA_CCR_DIR;
DMA1->IFCR = DMA_IFCR_CTCIF7 | DMA_IFCR_CHTIF7 | DMA_IFCR_CGIF7;
/* USART2_TX Init */
hdma_usart2_tx.Instance = DMA1_Channel7;
hdma_usart2_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
hdma_usart2_tx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_usart2_tx.Init.MemInc = DMA_MINC_ENABLE;
hdma_usart2_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_usart2_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_usart2_tx.Init.Mode = DMA_NORMAL;
hdma_usart2_tx.Init.Priority = DMA_PRIORITY_LOW;
HAL_DMA_Init(&hdma_usart2_tx);
__HAL_LINKDMA(uartHandle,hdmatx,hdma_usart2_tx);
/* USART2 interrupt Init */
HAL_NVIC_SetPriority(USART2_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(USART2_IRQn);
/* USER CODE BEGIN USART2_MspInit 1 */
__HAL_UART_ENABLE_IT (uartHandle, UART_IT_IDLE); // Enable the USART IDLE line detection interrupt
/* USER CODE END USART2_MspInit 1 */
}
else if(uartHandle->Instance==USART3)
{
/* USER CODE BEGIN USART3_MspInit 0 */
/* USER CODE END USART3_MspInit 0 */
/* USART3 clock enable */
__HAL_RCC_USART3_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/**USART3 GPIO Configuration
PB10 ------> USART3_TX
PB11 ------> USART3_RX
*/
GPIO_InitStruct.Pin = GPIO_PIN_10;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
GPIO_InitStruct.Pin = GPIO_PIN_11;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_PULLUP;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/* USART3 DMA Init */
/* USART3_RX Init */
hdma_usart3_rx.Instance = DMA1_Channel3;
hdma_usart3_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;
hdma_usart3_rx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_usart3_rx.Init.MemInc = DMA_MINC_ENABLE;
hdma_usart3_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_usart3_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_usart3_rx.Init.Mode = DMA_CIRCULAR;
hdma_usart3_rx.Init.Priority = DMA_PRIORITY_LOW;
HAL_DMA_Init(&hdma_usart3_rx);
__HAL_LINKDMA(uartHandle,hdmarx,hdma_usart3_rx);
/* USART3_TX Init */
hdma_usart3_tx.Instance = DMA1_Channel2;
hdma_usart3_tx.Init.Direction = DMA_MEMORY_TO_PERIPH;
hdma_usart3_tx.Init.PeriphInc = DMA_PINC_DISABLE;
hdma_usart3_tx.Init.MemInc = DMA_MINC_ENABLE;
hdma_usart3_tx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;
hdma_usart3_tx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;
hdma_usart3_tx.Init.Mode = DMA_NORMAL;
hdma_usart3_tx.Init.Priority = DMA_PRIORITY_LOW;
HAL_DMA_Init(&hdma_usart3_tx);
__HAL_LINKDMA(uartHandle,hdmatx,hdma_usart3_tx);
/* USART3 interrupt Init */
HAL_NVIC_SetPriority(USART3_IRQn, 0, 0);
HAL_NVIC_EnableIRQ(USART3_IRQn);
/* USER CODE BEGIN USART3_MspInit 1 */
__HAL_UART_ENABLE_IT (uartHandle, UART_IT_IDLE); // Enable the USART IDLE line detection interrupt
/* USER CODE END USART3_MspInit 1 */
}
}
void HAL_UART_MspDeInit(UART_HandleTypeDef* uartHandle)
{
if(uartHandle->Instance==USART2)
{
/* USER CODE BEGIN USART2_MspDeInit 0 */
/* USER CODE END USART2_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_USART2_CLK_DISABLE();
/**USART2 GPIO Configuration
PA2 ------> USART2_TX
PA3 ------> USART2_RX
*/
HAL_GPIO_DeInit(GPIOA, GPIO_PIN_2|GPIO_PIN_3);
/* USART2 DMA DeInit */
HAL_DMA_DeInit(uartHandle->hdmarx);
HAL_DMA_DeInit(uartHandle->hdmatx);
/* USART2 interrupt Deinit */
HAL_NVIC_DisableIRQ(USART2_IRQn);
/* USER CODE BEGIN USART2_MspDeInit 1 */
/* USER CODE END USART2_MspDeInit 1 */
}
else if(uartHandle->Instance==USART3)
{
/* USER CODE BEGIN USART3_MspDeInit 0 */
/* USER CODE END USART3_MspDeInit 0 */
/* Peripheral clock disable */
__HAL_RCC_USART3_CLK_DISABLE();
/**USART3 GPIO Configuration
PB10 ------> USART3_TX
PB11 ------> USART3_RX
*/
HAL_GPIO_DeInit(GPIOB, GPIO_PIN_10|GPIO_PIN_11);
/* USART3 DMA DeInit */
HAL_DMA_DeInit(uartHandle->hdmarx);
HAL_DMA_DeInit(uartHandle->hdmatx);
/* USART3 interrupt Deinit */
HAL_NVIC_DisableIRQ(USART3_IRQn);
/* USER CODE BEGIN USART3_MspDeInit 1 */
/* USER CODE END USART3_MspDeInit 1 */
}
}
#endif
/*
void UART_Init() {
__HAL_RCC_USART2_CLK_ENABLE();
__HAL_RCC_DMA1_CLK_ENABLE();
UART_HandleTypeDef huart2;
huart2.Instance = USART2;
huart2.Init.BaudRate = 115200;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
HAL_UART_Init(&huart2);
USART2->CR3 |= USART_CR3_DMAT; // | USART_CR3_DMAR | USART_CR3_OVRDIS;
GPIO_InitTypeDef GPIO_InitStruct;
GPIO_InitStruct.Pin = GPIO_PIN_2;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
DMA1_Channel7->CCR = 0;
DMA1_Channel7->CPAR = (uint32_t) & (USART3->DR);
DMA1_Channel7->CNDTR = 0;
DMA1_Channel7->CCR = DMA_CCR_MINC | DMA_CCR_DIR;
DMA1->IFCR = DMA_IFCR_CTCIF7 | DMA_IFCR_CHTIF7 | DMA_IFCR_CGIF7;
}
*/
DMA_HandleTypeDef hdma_i2c2_rx;
DMA_HandleTypeDef hdma_i2c2_tx;

View File

@ -35,6 +35,7 @@
#include "stm32f1xx.h"
#include "stm32f1xx_it.h"
#include "config.h"
#include "defines.h"
extern DMA_HandleTypeDef hdma_i2c2_rx;
extern DMA_HandleTypeDef hdma_i2c2_tx;
@ -42,9 +43,12 @@ extern I2C_HandleTypeDef hi2c2;
extern DMA_HandleTypeDef hdma_usart2_rx;
extern DMA_HandleTypeDef hdma_usart2_tx;
extern DMA_HandleTypeDef hdma_usart3_rx;
extern DMA_HandleTypeDef hdma_usart3_tx;
/* USER CODE BEGIN 0 */
extern UART_HandleTypeDef huart2;
extern UART_HandleTypeDef huart3;
/* USER CODE END 0 */
/* External variables --------------------------------------------------------*/
@ -226,7 +230,7 @@ void EXTI3_IRQHandler(void)
}
#endif
#ifdef CONTROL_SERIAL_USART2
#if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2)
void DMA1_Channel6_IRQHandler(void)
{
/* USER CODE BEGIN DMA1_Channel4_IRQn 0 */
@ -253,6 +257,74 @@ void DMA1_Channel7_IRQHandler(void)
}
#endif
#if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3)
/**
* @brief This function handles DMA1 channel2 global interrupt.
*/
void DMA1_Channel2_IRQHandler(void)
{
/* USER CODE BEGIN DMA1_Channel2_IRQn 0 */
/* USER CODE END DMA1_Channel2_IRQn 0 */
HAL_DMA_IRQHandler(&hdma_usart3_tx);
/* USER CODE BEGIN DMA1_Channel2_IRQn 1 */
/* USER CODE END DMA1_Channel2_IRQn 1 */
}
/**
* @brief This function handles DMA1 channel3 global interrupt.
*/
void DMA1_Channel3_IRQHandler(void)
{
/* USER CODE BEGIN DMA1_Channel3_IRQn 0 */
/* USER CODE END DMA1_Channel3_IRQn 0 */
HAL_DMA_IRQHandler(&hdma_usart3_rx);
/* USER CODE BEGIN DMA1_Channel3_IRQn 1 */
/* USER CODE END DMA1_Channel3_IRQn 1 */
}
#endif
#if defined(DEBUG_SERIAL_USART2) || defined(CONTROL_SERIAL_USART2)
/**
* @brief This function handles USART2 global interrupt.
*/
void USART2_IRQHandler(void)
{
/* USER CODE BEGIN USART2_IRQn 0 */
/* USER CODE END USART2_IRQn 0 */
HAL_UART_IRQHandler(&huart2);
/* USER CODE BEGIN USART2_IRQn 1 */
if(RESET != __HAL_UART_GET_IT_SOURCE(&huart2, UART_IT_IDLE)) { // Check for IDLE line interrupt
__HAL_UART_CLEAR_IDLEFLAG(&huart2); // Clear IDLE line flag (otherwise it will continue to enter interrupt)
usart2_rx_check(); // Check for data to process
}
/* USER CODE END USART2_IRQn 1 */
}
#endif
#if defined(DEBUG_SERIAL_USART3) || defined(CONTROL_SERIAL_USART3)
/**
* @brief This function handles USART3 global interrupt.
*/
void USART3_IRQHandler(void)
{
/* USER CODE BEGIN USART2_IRQn 0 */
/* USER CODE END USART2_IRQn 0 */
HAL_UART_IRQHandler(&huart3);
/* USER CODE BEGIN USART2_IRQn 1 */
if(RESET != __HAL_UART_GET_IT_SOURCE(&huart3, UART_IT_IDLE)) { // Check for IDLE line interrupt
__HAL_UART_CLEAR_IDLEFLAG(&huart3); // Clear IDLE line flag (otherwise it will continue to enter interrupt)
usart3_rx_check(); // Check for data to process
}
/* USER CODE END USART2_IRQn 1 */
}
#endif
/******************************************************************************/
/* STM32F1xx Peripheral Interrupt Handlers */
/* Add here the Interrupt Handlers for the used peripherals. */

31
platformio.ini Normal file
View File

@ -0,0 +1,31 @@
; PlatformIO Project Configuration File2
; http://docs.platformio.org/page/projectconf.html
[platformio]
include_dir = Inc
src_dir = Src
;=================== VARIANT SELECTION ==========================
[env:genericSTM32F103RC]
platform = ststm32
framework = stm32cube
board = genericSTM32F103RC
debug_tool = stlink
upload_protocol = stlink
; Serial Port settings (make sure the COM port is correct)
monitor_port = COM5
monitor_speed = 115200
build_flags =
-DUSE_HAL_DRIVER
-DSTM32F103xE
-Wl,-T./STM32F103RCTx_FLASH.ld
-Wl,-lc
-Wl,-lm
-g -ggdb ; to generate correctly the 'firmware.elf' for STM STUDIO vizualization
# -Wl,-lnosys
;================================================================