Clang format, support cohabitation with tl::expected

This commit is contained in:
Simon Brand
2017-11-16 11:17:26 +00:00
parent a1d27b2aba
commit b9486ce776

View File

@ -72,112 +72,115 @@
#define TL_OPTIONAL_11_CONSTEXPR constexpr
#endif
namespace tl {
/// \brief Used to represent an optional with no data; essentially a bool
class monostate {};
namespace tl {
#ifndef TL_OPTIONAL_EXPECTED_MUTEX
/// \brief Used to represent an optional with no data; essentially a bool
class monostate {};
/// \brief A tag type to tell optional to construct its value in-place
struct in_place_t {
/// \brief A tag type to tell optional to construct its value in-place
struct in_place_t {
explicit in_place_t() = default;
};
/// \brief A tag to tell optional to construct its value in-place
static constexpr in_place_t in_place{};
};
/// \brief A tag to tell optional to construct its value in-place
static constexpr in_place_t in_place{};
#endif
template <class T> class optional;
template <class T> class optional;
/// \exclude
namespace detail {
/// \exclude
namespace detail {
#ifndef TL_OPTIONAL_EXPECTED_MUTEX
// C++14-style aliases for brevity
template <class T> using remove_const_t = typename std::remove_const<T>::type;
template <class T>
using remove_reference_t = typename std::remove_reference<T>::type;
template <class T> using decay_t = typename std::decay<T>::type;
template <bool E, class T = void>
using enable_if_t = typename std::enable_if<E, T>::type;
template <bool B, class T, class F>
using conditional_t = typename std::conditional<B, T, F>::type;
// C++14-style aliases for brevity
template <class T> using remove_const_t = typename std::remove_const<T>::type;
template <class T>
using remove_reference_t = typename std::remove_reference<T>::type;
template <class T> using decay_t = typename std::decay<T>::type;
template <bool E, class T = void>
using enable_if_t = typename std::enable_if<E, T>::type;
template <bool B, class T, class F>
using conditional_t = typename std::conditional<B, T, F>::type;
// std::conjunction from C++17
template <class...> struct conjunction : std::true_type {};
template <class B> struct conjunction<B> : B {};
template <class B, class... Bs>
struct conjunction<B, Bs...>
// std::conjunction from C++17
template <class...> struct conjunction : std::true_type {};
template <class B> struct conjunction<B> : B {};
template <class B, class... Bs>
struct conjunction<B, Bs...>
: std::conditional<bool(B::value), conjunction<Bs...>, B>::type {};
// std::void_t from C++17
template <class...> struct voider { using type = void; };
template <class... Ts> using void_t = typename voider<Ts...>::type;
// Trait for checking if a type is a tl::optional
template <class T> struct is_optional_impl : std::false_type {};
template <class T> struct is_optional_impl<optional<T>> : std::true_type {};
template <class T> using is_optional = is_optional_impl<decay_t<T>>;
// std::invoke from C++17
// https://stackoverflow.com/questions/38288042/c11-14-invoke-workaround
template <typename Fn, typename... Args,
// std::invoke from C++17
// https://stackoverflow.com/questions/38288042/c11-14-invoke-workaround
template <typename Fn, typename... Args,
typename = enable_if_t<std::is_member_pointer<decay_t<Fn>>{}>,
int = 0>
constexpr auto invoke(Fn &&f, Args &&... args) noexcept(
constexpr auto invoke(Fn &&f, Args &&... args) noexcept(
noexcept(std::mem_fn(f)(std::forward<Args>(args)...)))
-> decltype(std::mem_fn(f)(std::forward<Args>(args)...)) {
return std::mem_fn(f)(std::forward<Args>(args)...);
}
}
template <typename Fn, typename... Args,
template <typename Fn, typename... Args,
typename = enable_if_t<!std::is_member_pointer<decay_t<Fn>>{}>>
constexpr auto invoke(Fn &&f, Args &&... args) noexcept(
constexpr auto invoke(Fn &&f, Args &&... args) noexcept(
noexcept(std::forward<Fn>(f)(std::forward<Args>(args)...)))
-> decltype(std::forward<Fn>(f)(std::forward<Args>(args)...)) {
return std::forward<Fn>(f)(std::forward<Args>(args)...);
}
}
// std::invoke_result from C++17
template <class F, class, class... Us> struct invoke_result_impl;
// std::invoke_result from C++17
template <class F, class, class... Us> struct invoke_result_impl;
template <class F, class... Us>
struct invoke_result_impl<
template <class F, class... Us>
struct invoke_result_impl<
F, decltype(invoke(std::declval<F>(), std::declval<Us>()...), void()),
Us...> {
using type = decltype(invoke(std::declval<F>(), std::declval<Us>()...));
};
};
template <class F, class... Us>
using invoke_result = invoke_result_impl<F, void, Us...>;
template <class F, class... Us>
using invoke_result = invoke_result_impl<F, void, Us...>;
template <class F, class... Us>
using invoke_result_t = typename invoke_result<F, Us...>::type;
template <class F, class... Us>
using invoke_result_t = typename invoke_result<F, Us...>::type;
#endif
// Change void to tl::monostate
template <class U>
using fixup_void = conditional_t<std::is_void<U>::value, monostate, U>;
// std::void_t from C++17
template <class...> struct voider { using type = void; };
template <class... Ts> using void_t = typename voider<Ts...>::type;
template <class F, class U, class = invoke_result_t<F, U>>
using get_map_return = optional<fixup_void<invoke_result_t<F, U>>>;
// Trait for checking if a type is a tl::optional
template <class T> struct is_optional_impl : std::false_type {};
template <class T> struct is_optional_impl<optional<T>> : std::true_type {};
template <class T> using is_optional = is_optional_impl<decay_t<T>>;
// Check if invoking F for some Us returns void
template <class F, class = void, class... U> struct returns_void_impl;
template <class F, class... U>
struct returns_void_impl<F, void_t<invoke_result_t<F, U...>>, U...>
// Change void to tl::monostate
template <class U>
using fixup_void = conditional_t<std::is_void<U>::value, monostate, U>;
template <class F, class U, class = invoke_result_t<F, U>>
using get_map_return = optional<fixup_void<invoke_result_t<F, U>>>;
// Check if invoking F for some Us returns void
template <class F, class = void, class... U> struct returns_void_impl;
template <class F, class... U>
struct returns_void_impl<F, void_t<invoke_result_t<F, U...>>, U...>
: std::is_void<invoke_result_t<F, U...>> {};
template <class F, class... U>
using returns_void = returns_void_impl<F, void, U...>;
template <class F, class... U>
using returns_void = returns_void_impl<F, void, U...>;
template <class T, class... U>
using enable_if_ret_void = enable_if_t<returns_void<T &&, U...>::value>;
template <class T, class... U>
using enable_if_ret_void = enable_if_t<returns_void<T &&, U...>::value>;
template <class T, class... U>
using disable_if_ret_void = enable_if_t<!returns_void<T &&, U...>::value>;
template <class T, class... U>
using disable_if_ret_void = enable_if_t<!returns_void<T &&, U...>::value>;
template <class T, class U>
using enable_forward_value = detail::enable_if_t<
std::is_constructible<T, U &&>::value &&
template <class T, class U>
using enable_forward_value =
detail::enable_if_t<std::is_constructible<T, U &&>::value &&
!std::is_same<detail::decay_t<U>, in_place_t>::value &&
!std::is_same<optional<T>, detail::decay_t<U>>::value>;
template <class T, class U, class Other>
using enable_from_other = detail::enable_if_t<
template <class T, class U, class Other>
using enable_from_other = detail::enable_if_t<
std::is_constructible<T, Other>::value &&
!std::is_constructible<T, optional<U> &>::value &&
!std::is_constructible<T, optional<U> &&>::value &&
@ -188,15 +191,15 @@
!std::is_convertible<const optional<U> &, T>::value &&
!std::is_convertible<const optional<U> &&, T>::value>;
template <class T, class U>
using enable_assign_forward = detail::enable_if_t<
template <class T, class U>
using enable_assign_forward = detail::enable_if_t<
!std::is_same<optional<T>, detail::decay_t<U>>::value &&
!detail::conjunction<std::is_scalar<T>,
std::is_same<T, detail::decay_t<U>>>::value &&
std::is_constructible<T, U>::value && std::is_assignable<T &, U>::value>;
template <class T, class U, class Other>
using enable_assign_from_other = detail::enable_if_t<
template <class T, class U, class Other>
using enable_assign_from_other = detail::enable_if_t<
std::is_constructible<T, Other>::value &&
std::is_assignable<T &, Other>::value &&
!std::is_constructible<T, optional<U> &>::value &&
@ -213,11 +216,10 @@
!std::is_assignable<T &, const optional<U> &&>::value>;
#ifdef _MSC_VER
// TODO make a version which works with MSVC
template <class T, class U = T> struct is_swappable : std::true_type {};
// TODO make a version which works with MSVC
template <class T, class U = T> struct is_swappable : std::true_type {};
template <class T, class U = T>
struct is_nothrow_swappable : std::true_type {};
template <class T, class U = T> struct is_nothrow_swappable : std::true_type {};
#else
// https://stackoverflow.com/questions/26744589/what-is-a-proper-way-to-implement-is-swappable-to-test-for-the-swappable-concept
namespace swap_adl_tests {
@ -286,11 +288,11 @@ struct is_nothrow_swappable
};
#endif
// The storage base manages the actual storage, and correctly propagates
// trivial destruction from T This case is for when T is trivially
// destructible
template <class T, bool = ::std::is_trivially_destructible<T>::value>
struct optional_storage_base {
// The storage base manages the actual storage, and correctly propagates
// trivial destruction from T This case is for when T is trivially
// destructible
template <class T, bool = ::std::is_trivially_destructible<T>::value>
struct optional_storage_base {
TL_OPTIONAL_11_CONSTEXPR optional_storage_base() noexcept
: m_dummy(), m_has_value(false) {}
@ -312,10 +314,10 @@ struct is_nothrow_swappable
};
bool m_has_value;
};
};
// This case is for when T is not trivially destructible
template <class T> struct optional_storage_base<T, true> {
// This case is for when T is not trivially destructible
template <class T> struct optional_storage_base<T, true> {
TL_OPTIONAL_11_CONSTEXPR optional_storage_base() noexcept
: m_dummy(), m_has_value(false) {}
@ -332,12 +334,11 @@ struct is_nothrow_swappable
};
bool m_has_value = false;
};
};
// This base class provides some handy member functions which can be used in
// further derived classes
template <class T>
struct optional_operations_base : optional_storage_base<T> {
// This base class provides some handy member functions which can be used in
// further derived classes
template <class T> struct optional_operations_base : optional_storage_base<T> {
using optional_storage_base<T>::optional_storage_base;
void hard_reset() noexcept {
@ -373,18 +374,18 @@ struct is_nothrow_swappable
#ifndef TL_OPTIONAL_NO_CONSTRR
constexpr const T &&get() const && { return std::move(this->m_value); }
#endif
};
};
// This class manages conditionally having a trivial copy constructor
// This specialization is for when T is trivially copy constructible
template <class T, bool = IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T)>
struct optional_copy_base : optional_operations_base<T> {
// This class manages conditionally having a trivial copy constructor
// This specialization is for when T is trivially copy constructible
template <class T, bool = IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T)>
struct optional_copy_base : optional_operations_base<T> {
using optional_operations_base<T>::optional_operations_base;
};
};
// This specialization is for when T is not trivially copy constructible
template <class T>
struct optional_copy_base<T, false> : optional_operations_base<T> {
// This specialization is for when T is not trivially copy constructible
template <class T>
struct optional_copy_base<T, false> : optional_operations_base<T> {
using optional_operations_base<T>::optional_operations_base;
optional_copy_base() = default;
@ -399,7 +400,7 @@ struct is_nothrow_swappable
optional_copy_base(optional_copy_base &&rhs) = default;
optional_copy_base &operator=(const optional_copy_base &rhs) = default;
optional_copy_base &operator=(optional_copy_base &&rhs) = default;
};
};
// This class manages conditionally having a trivial move constructor
// Unfortunately there's no way to achieve this in GCC < 5 AFAIK, since it
@ -407,15 +408,14 @@ struct is_nothrow_swappable
// have to make do with a non-trivial move constructor even if T is trivially
// move constructible
#ifndef TL_OPTIONAL_GCC49
template <class T, bool = std::is_trivially_move_constructible<T>::value>
struct optional_move_base : optional_copy_base<T> {
template <class T, bool = std::is_trivially_move_constructible<T>::value>
struct optional_move_base : optional_copy_base<T> {
using optional_copy_base<T>::optional_copy_base;
};
};
#else
template <class T, bool = false> struct optional_move_base;
#endif
template <class T>
struct optional_move_base<T, false> : optional_copy_base<T> {
template <class T> struct optional_move_base<T, false> : optional_copy_base<T> {
using optional_copy_base<T>::optional_copy_base;
optional_move_base() = default;
@ -431,18 +431,18 @@ template <class T, bool = false> struct optional_move_base;
}
optional_move_base &operator=(const optional_move_base &rhs) = default;
optional_move_base &operator=(optional_move_base &&rhs) = default;
};
};
// This class manages conditionally having a trivial copy assignment operator
template <class T, bool = IS_TRIVIALLY_COPY_ASSIGNABLE(T) &&
// This class manages conditionally having a trivial copy assignment operator
template <class T, bool = IS_TRIVIALLY_COPY_ASSIGNABLE(T) &&
IS_TRIVIALLY_COPY_CONSTRUCTIBLE(T) &&
IS_TRIVIALLY_DESTRUCTIBLE(T)>
struct optional_copy_assign_base : optional_move_base<T> {
struct optional_copy_assign_base : optional_move_base<T> {
using optional_move_base<T>::optional_move_base;
};
};
template <class T>
struct optional_copy_assign_base<T, false> : optional_move_base<T> {
template <class T>
struct optional_copy_assign_base<T, false> : optional_move_base<T> {
using optional_move_base<T>::optional_move_base;
optional_copy_assign_base() = default;
@ -455,7 +455,7 @@ template <class T, bool = false> struct optional_move_base;
}
optional_copy_assign_base &
operator=(optional_copy_assign_base &&rhs) = default;
};
};
// This class manages conditionally having a trivial move assignment operator
// Unfortunately there's no way to achieve this in GCC < 5 AFAIK, since it
@ -463,18 +463,18 @@ template <class T, bool = false> struct optional_move_base;
// to make do with a non-trivial move assignment operator even if T is trivially
// move assignable
#ifndef TL_OPTIONAL_GCC49
template <class T, bool = std::is_trivially_destructible<T>::value
template <class T, bool = std::is_trivially_destructible<T>::value
&&std::is_trivially_move_constructible<T>::value
&&std::is_trivially_move_assignable<T>::value>
struct optional_move_assign_base : optional_copy_assign_base<T> {
struct optional_move_assign_base : optional_copy_assign_base<T> {
using optional_copy_assign_base<T>::optional_copy_assign_base;
};
};
#else
template <class T, bool = false> struct optional_move_assign_base;
#endif
template <class T>
struct optional_move_assign_base<T, false> : optional_copy_assign_base<T> {
template <class T>
struct optional_move_assign_base<T, false> : optional_copy_assign_base<T> {
using optional_copy_assign_base<T>::optional_copy_assign_base;
optional_move_assign_base() = default;
@ -490,13 +490,13 @@ template <class T, bool = false> struct optional_move_assign_base;
}
optional_move_assign_base &
operator=(optional_move_assign_base &&rhs) = default;
};
};
// optional_delete_ctor_base will conditionally delete copy and move
// constructors depending on whether T is copy/move constructible
template <class T, bool EnableCopy = std::is_copy_constructible<T>::value,
// optional_delete_ctor_base will conditionally delete copy and move
// constructors depending on whether T is copy/move constructible
template <class T, bool EnableCopy = std::is_copy_constructible<T>::value,
bool EnableMove = std::is_move_constructible<T>::value>
struct optional_delete_ctor_base {
struct optional_delete_ctor_base {
optional_delete_ctor_base() = default;
optional_delete_ctor_base(const optional_delete_ctor_base &) = default;
optional_delete_ctor_base(optional_delete_ctor_base &&) noexcept = default;
@ -504,9 +504,9 @@ template <class T, bool = false> struct optional_move_assign_base;
operator=(const optional_delete_ctor_base &) = default;
optional_delete_ctor_base &
operator=(optional_delete_ctor_base &&) noexcept = default;
};
};
template <class T> struct optional_delete_ctor_base<T, true, false> {
template <class T> struct optional_delete_ctor_base<T, true, false> {
optional_delete_ctor_base() = default;
optional_delete_ctor_base(const optional_delete_ctor_base &) = default;
optional_delete_ctor_base(optional_delete_ctor_base &&) noexcept = delete;
@ -514,9 +514,9 @@ template <class T, bool = false> struct optional_move_assign_base;
operator=(const optional_delete_ctor_base &) = default;
optional_delete_ctor_base &
operator=(optional_delete_ctor_base &&) noexcept = default;
};
};
template <class T> struct optional_delete_ctor_base<T, false, true> {
template <class T> struct optional_delete_ctor_base<T, false, true> {
optional_delete_ctor_base() = default;
optional_delete_ctor_base(const optional_delete_ctor_base &) = delete;
optional_delete_ctor_base(optional_delete_ctor_base &&) noexcept = default;
@ -524,9 +524,9 @@ template <class T, bool = false> struct optional_move_assign_base;
operator=(const optional_delete_ctor_base &) = default;
optional_delete_ctor_base &
operator=(optional_delete_ctor_base &&) noexcept = default;
};
};
template <class T> struct optional_delete_ctor_base<T, false, false> {
template <class T> struct optional_delete_ctor_base<T, false, false> {
optional_delete_ctor_base() = default;
optional_delete_ctor_base(const optional_delete_ctor_base &) = delete;
optional_delete_ctor_base(optional_delete_ctor_base &&) noexcept = delete;
@ -534,16 +534,16 @@ template <class T, bool = false> struct optional_move_assign_base;
operator=(const optional_delete_ctor_base &) = default;
optional_delete_ctor_base &
operator=(optional_delete_ctor_base &&) noexcept = default;
};
};
// optional_delete_assign_base will conditionally delete copy and move
// constructors depending on whether T is copy/move constructible + assignable
template <class T,
// optional_delete_assign_base will conditionally delete copy and move
// constructors depending on whether T is copy/move constructible + assignable
template <class T,
bool EnableCopy = (std::is_copy_constructible<T>::value &&
std::is_copy_assignable<T>::value),
bool EnableMove = (std::is_move_constructible<T>::value &&
std::is_move_assignable<T>::value)>
struct optional_delete_assign_base {
struct optional_delete_assign_base {
optional_delete_assign_base() = default;
optional_delete_assign_base(const optional_delete_assign_base &) = default;
optional_delete_assign_base(optional_delete_assign_base &&) noexcept =
@ -552,9 +552,9 @@ template <class T, bool = false> struct optional_move_assign_base;
operator=(const optional_delete_assign_base &) = default;
optional_delete_assign_base &
operator=(optional_delete_assign_base &&) noexcept = default;
};
};
template <class T> struct optional_delete_assign_base<T, true, false> {
template <class T> struct optional_delete_assign_base<T, true, false> {
optional_delete_assign_base() = default;
optional_delete_assign_base(const optional_delete_assign_base &) = default;
optional_delete_assign_base(optional_delete_assign_base &&) noexcept =
@ -563,9 +563,9 @@ template <class T, bool = false> struct optional_move_assign_base;
operator=(const optional_delete_assign_base &) = default;
optional_delete_assign_base &
operator=(optional_delete_assign_base &&) noexcept = delete;
};
};
template <class T> struct optional_delete_assign_base<T, false, true> {
template <class T> struct optional_delete_assign_base<T, false, true> {
optional_delete_assign_base() = default;
optional_delete_assign_base(const optional_delete_assign_base &) = default;
optional_delete_assign_base(optional_delete_assign_base &&) noexcept =
@ -574,9 +574,9 @@ template <class T, bool = false> struct optional_move_assign_base;
operator=(const optional_delete_assign_base &) = delete;
optional_delete_assign_base &
operator=(optional_delete_assign_base &&) noexcept = default;
};
};
template <class T> struct optional_delete_assign_base<T, false, false> {
template <class T> struct optional_delete_assign_base<T, false, false> {
optional_delete_assign_base() = default;
optional_delete_assign_base(const optional_delete_assign_base &) = default;
optional_delete_assign_base(optional_delete_assign_base &&) noexcept =
@ -585,46 +585,46 @@ template <class T, bool = false> struct optional_move_assign_base;
operator=(const optional_delete_assign_base &) = delete;
optional_delete_assign_base &
operator=(optional_delete_assign_base &&) noexcept = delete;
};
};
} // namespace detail
} // namespace detail
/// \brief A tag type to represent an empty optional
struct nullopt_t {
/// \brief A tag type to represent an empty optional
struct nullopt_t {
struct do_not_use {};
constexpr explicit nullopt_t(do_not_use, do_not_use) noexcept {}
};
/// \brief Represents an empty optional
/// \synopsis static constexpr nullopt_t nullopt;
///
/// *Examples*:
/// ```
/// tl::optional<int> a = tl::nullopt;
/// void foo (tl::optional<int>);
/// foo(tl::nullopt); //pass an empty optional
/// ```
static constexpr nullopt_t nullopt{nullopt_t::do_not_use{},
};
/// \brief Represents an empty optional
/// \synopsis static constexpr nullopt_t nullopt;
///
/// *Examples*:
/// ```
/// tl::optional<int> a = tl::nullopt;
/// void foo (tl::optional<int>);
/// foo(tl::nullopt); //pass an empty optional
/// ```
static constexpr nullopt_t nullopt{nullopt_t::do_not_use{},
nullopt_t::do_not_use{}};
class bad_optional_access : public std::exception {
public:
class bad_optional_access : public std::exception {
public:
bad_optional_access() = default;
const char *what() const noexcept { return "Optional has no value"; }
};
};
/// An optional object is an object that contains the storage for another
/// object and manages the lifetime of this contained object, if any. The
/// contained object may be initialized after the optional object has been
/// initialized, and may be destroyed before the optional object has been
/// destroyed. The initialization state of the contained object is tracked by
/// the optional object.
template <class T>
class optional : private detail::optional_move_assign_base<T>,
/// An optional object is an object that contains the storage for another
/// object and manages the lifetime of this contained object, if any. The
/// contained object may be initialized after the optional object has been
/// initialized, and may be destroyed before the optional object has been
/// destroyed. The initialization state of the contained object is tracked by
/// the optional object.
template <class T>
class optional : private detail::optional_move_assign_base<T>,
private detail::optional_delete_ctor_base<T>,
private detail::optional_delete_assign_base<T> {
using base = detail::optional_move_assign_base<T>;
public:
public:
// The different versions for C++14 and 11 are needed because deduced return
// types are not SFINAE-safe. This provides better support for things like
// generic lambdas. C.f.
@ -1085,8 +1085,7 @@ template <class T, bool = false> struct optional_move_assign_base;
/// optional(in_place_t, Args&&... args);
template <class... Args>
constexpr explicit optional(
detail::enable_if_t<std::is_constructible<T, Args...>::value,
in_place_t>,
detail::enable_if_t<std::is_constructible<T, Args...>::value, in_place_t>,
Args &&... args)
: base(in_place, std::forward<Args>(args)...) {}
@ -1119,9 +1118,9 @@ template <class T, bool = false> struct optional_move_assign_base;
/// Converting copy constructor.
/// \synopsis template <class U> optional(const optional<U> &rhs);
template <class U, detail::enable_from_other<T, U, const U &> * = nullptr,
detail::enable_if_t<std::is_convertible<const U &, T>::value> * =
nullptr>
template <
class U, detail::enable_from_other<T, U, const U &> * = nullptr,
detail::enable_if_t<std::is_convertible<const U &, T>::value> * = nullptr>
optional(const optional<U> &rhs) {
this->construct(*rhs);
}
@ -1314,9 +1313,7 @@ template <class T, bool = false> struct optional_move_assign_base;
#ifndef TL_OPTIONAL_NO_CONSTRR
/// \exclude
constexpr const T &&operator*() const && {
return std::move(this->m_value);
}
constexpr const T &&operator*() const && { return std::move(this->m_value); }
#endif
/// \returns whether or not the optional has a value
@ -1384,234 +1381,233 @@ template <class T, bool = false> struct optional_move_assign_base;
this->m_has_value = false;
}
}
}; // namespace tl
}; // namespace tl
/// \group relop
/// \brief Compares two optional objects
/// \details If both optionals contain a value, they are compared with `T`s
/// relational operators. Otherwise `lhs` and `rhs` are equal only if they are
/// both empty, and `lhs` is less than `rhs` only if `rhs` is empty and `lhs`
/// is not.
template <class T, class U>
inline constexpr bool operator==(const optional<T> &lhs,
/// \group relop
/// \brief Compares two optional objects
/// \details If both optionals contain a value, they are compared with `T`s
/// relational operators. Otherwise `lhs` and `rhs` are equal only if they are
/// both empty, and `lhs` is less than `rhs` only if `rhs` is empty and `lhs`
/// is not.
template <class T, class U>
inline constexpr bool operator==(const optional<T> &lhs,
const optional<U> &rhs) {
return lhs.has_value() == rhs.has_value() &&
(!lhs.has_value() || *lhs == *rhs);
}
/// \group relop
template <class T, class U>
inline constexpr bool operator!=(const optional<T> &lhs,
}
/// \group relop
template <class T, class U>
inline constexpr bool operator!=(const optional<T> &lhs,
const optional<U> &rhs) {
return lhs.has_value() != rhs.has_value() ||
(lhs.has_value() && *lhs != *rhs);
}
/// \group relop
template <class T, class U>
inline constexpr bool operator<(const optional<T> &lhs,
}
/// \group relop
template <class T, class U>
inline constexpr bool operator<(const optional<T> &lhs,
const optional<U> &rhs) {
return rhs.has_value() && (!lhs.has_value() || *lhs < *rhs);
}
/// \group relop
template <class T, class U>
inline constexpr bool operator>(const optional<T> &lhs,
}
/// \group relop
template <class T, class U>
inline constexpr bool operator>(const optional<T> &lhs,
const optional<U> &rhs) {
return lhs.has_value() && (!rhs.has_value() || *lhs > *rhs);
}
/// \group relop
template <class T, class U>
inline constexpr bool operator<=(const optional<T> &lhs,
}
/// \group relop
template <class T, class U>
inline constexpr bool operator<=(const optional<T> &lhs,
const optional<U> &rhs) {
return !lhs.has_value() || (rhs.has_value() && *lhs <= *rhs);
}
/// \group relop
template <class T, class U>
inline constexpr bool operator>=(const optional<T> &lhs,
}
/// \group relop
template <class T, class U>
inline constexpr bool operator>=(const optional<T> &lhs,
const optional<U> &rhs) {
return !rhs.has_value() || (lhs.has_value() && *lhs >= *rhs);
}
}
/// \group relop_nullopt
/// \brief Compares an optional to a `nullopt`
/// \details Equivalent to comparing the optional to an empty optional
template <class T>
inline constexpr bool operator==(const optional<T> &lhs, nullopt_t) noexcept {
/// \group relop_nullopt
/// \brief Compares an optional to a `nullopt`
/// \details Equivalent to comparing the optional to an empty optional
template <class T>
inline constexpr bool operator==(const optional<T> &lhs, nullopt_t) noexcept {
return !lhs.has_value();
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator==(nullopt_t, const optional<T> &rhs) noexcept {
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator==(nullopt_t, const optional<T> &rhs) noexcept {
return !rhs.has_value();
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator!=(const optional<T> &lhs, nullopt_t) noexcept {
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator!=(const optional<T> &lhs, nullopt_t) noexcept {
return lhs.has_value();
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator!=(nullopt_t, const optional<T> &rhs) noexcept {
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator!=(nullopt_t, const optional<T> &rhs) noexcept {
return rhs.has_value();
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator<(const optional<T> &, nullopt_t) noexcept {
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator<(const optional<T> &, nullopt_t) noexcept {
return false;
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator<(nullopt_t, const optional<T> &rhs) noexcept {
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator<(nullopt_t, const optional<T> &rhs) noexcept {
return rhs.has_value();
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator<=(const optional<T> &lhs, nullopt_t) noexcept {
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator<=(const optional<T> &lhs, nullopt_t) noexcept {
return !lhs.has_value();
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator<=(nullopt_t, const optional<T> &) noexcept {
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator<=(nullopt_t, const optional<T> &) noexcept {
return true;
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator>(const optional<T> &lhs, nullopt_t) noexcept {
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator>(const optional<T> &lhs, nullopt_t) noexcept {
return lhs.has_value();
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator>(nullopt_t, const optional<T> &) noexcept {
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator>(nullopt_t, const optional<T> &) noexcept {
return false;
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator>=(const optional<T> &, nullopt_t) noexcept {
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator>=(const optional<T> &, nullopt_t) noexcept {
return true;
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator>=(nullopt_t, const optional<T> &rhs) noexcept {
}
/// \group relop_nullopt
template <class T>
inline constexpr bool operator>=(nullopt_t, const optional<T> &rhs) noexcept {
return !rhs.has_value();
}
}
/// \group relop_t
/// \brief Compares the optional with a value.
/// \details If the optional has a value, it is compared with the other value
/// using `T`s relational operators. Otherwise, the optional is considered
/// less than the value.
template <class T, class U>
inline constexpr bool operator==(const optional<T> &lhs, const U &rhs) {
/// \group relop_t
/// \brief Compares the optional with a value.
/// \details If the optional has a value, it is compared with the other value
/// using `T`s relational operators. Otherwise, the optional is considered
/// less than the value.
template <class T, class U>
inline constexpr bool operator==(const optional<T> &lhs, const U &rhs) {
return lhs.has_value() ? *lhs == rhs : false;
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator==(const U &lhs, const optional<T> &rhs) {
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator==(const U &lhs, const optional<T> &rhs) {
return rhs.has_value() ? lhs == *rhs : false;
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator!=(const optional<T> &lhs, const U &rhs) {
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator!=(const optional<T> &lhs, const U &rhs) {
return lhs.has_value() ? *lhs != rhs : true;
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator!=(const U &lhs, const optional<T> &rhs) {
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator!=(const U &lhs, const optional<T> &rhs) {
return rhs.has_value() ? lhs != *rhs : true;
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator<(const optional<T> &lhs, const U &rhs) {
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator<(const optional<T> &lhs, const U &rhs) {
return lhs.has_value() ? *lhs < rhs : true;
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator<(const U &lhs, const optional<T> &rhs) {
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator<(const U &lhs, const optional<T> &rhs) {
return rhs.has_value() ? lhs < *rhs : false;
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator<=(const optional<T> &lhs, const U &rhs) {
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator<=(const optional<T> &lhs, const U &rhs) {
return lhs.has_value() ? *lhs <= rhs : true;
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator<=(const U &lhs, const optional<T> &rhs) {
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator<=(const U &lhs, const optional<T> &rhs) {
return rhs.has_value() ? lhs <= *rhs : false;
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator>(const optional<T> &lhs, const U &rhs) {
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator>(const optional<T> &lhs, const U &rhs) {
return lhs.has_value() ? *lhs > rhs : false;
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator>(const U &lhs, const optional<T> &rhs) {
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator>(const U &lhs, const optional<T> &rhs) {
return rhs.has_value() ? lhs > *rhs : true;
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator>=(const optional<T> &lhs, const U &rhs) {
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator>=(const optional<T> &lhs, const U &rhs) {
return lhs.has_value() ? *lhs >= rhs : false;
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator>=(const U &lhs, const optional<T> &rhs) {
}
/// \group relop_t
template <class T, class U>
inline constexpr bool operator>=(const U &lhs, const optional<T> &rhs) {
return rhs.has_value() ? lhs >= *rhs : true;
}
}
/// \synopsis template <class T>\nvoid swap(optional<T> &lhs, optional<T>
/// &rhs);
template <class T,
detail::enable_if_t<std::is_move_constructible<T>::value> * =
nullptr,
/// \synopsis template <class T>\nvoid swap(optional<T> &lhs, optional<T>
/// &rhs);
template <class T,
detail::enable_if_t<std::is_move_constructible<T>::value> * = nullptr,
detail::enable_if_t<detail::is_swappable<T>::value> * = nullptr>
void swap(optional<T> & lhs,
optional<T> & rhs) noexcept(noexcept(lhs.swap(rhs))) {
void swap(optional<T> &lhs,
optional<T> &rhs) noexcept(noexcept(lhs.swap(rhs))) {
return lhs.swap(rhs);
}
}
template <class T>
inline constexpr optional<detail::decay_t<T>> make_optional(T && v) {
template <class T>
inline constexpr optional<detail::decay_t<T>> make_optional(T &&v) {
return optional<detail::decay_t<T>>(std::forward<T>(v));
}
template <class T, class... Args>
inline constexpr optional<T> make_optional(Args && ... args) {
}
template <class T, class... Args>
inline constexpr optional<T> make_optional(Args &&... args) {
return optional<T>(in_place, std::forward<Args>(args)...);
}
template <class T, class U, class... Args>
inline constexpr optional<T> make_optional(std::initializer_list<U> il,
Args && ... args) {
}
template <class T, class U, class... Args>
inline constexpr optional<T> make_optional(std::initializer_list<U> il,
Args &&... args) {
return optional<T>(in_place, il, std::forward<Args>(args)...);
}
}
#if __cplusplus >= 201703L
template <class T> optional(T)->optional<T>;
template <class T> optional(T)->optional<T>;
#endif
/// \exclude
namespace detail {
/// \exclude
namespace detail {
#ifdef TL_OPTIONAL_CX14
template <class Opt, class F,
template <class Opt, class F,
class Ret = decltype(detail::invoke(std::declval<F>(),
*std::declval<Opt>())),
detail::enable_if_t<!std::is_void<Ret>::value> * = nullptr>
constexpr auto map_impl(Opt &&opt, F &&f) {
constexpr auto map_impl(Opt &&opt, F &&f) {
return opt.has_value()
? detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt))
: optional<Ret>(nullopt);
}
}
template <class Opt, class F,
template <class Opt, class F,
class Ret = decltype(detail::invoke(std::declval<F>(),
*std::declval<Opt>())),
detail::enable_if_t<std::is_void<Ret>::value> * = nullptr>
auto map_impl(Opt &&opt, F &&f) {
auto map_impl(Opt &&opt, F &&f) {
if (opt.has_value()) {
detail::invoke(std::forward<F>(f), *std::forward<Opt>(opt));
return monostate{};
}
return optional<Ret>(nullopt);
}
}
#else
template <class Opt, class F,
class Ret = decltype(detail::invoke(std::declval<F>(),
@ -1638,7 +1634,7 @@ auto map_impl(Opt &&opt, F &&f) -> optional<monostate> {
return nullopt;
}
#endif
} // namespace detail
} // namespace detail
} // namespace tl
@ -1654,4 +1650,5 @@ template <class T> struct hash<tl::optional<T>> {
};
} // namespace std
#define TL_OPTIONAL_EXPECTED_MUTEX
#endif