Files
optional/optional.hpp
2017-09-29 19:45:17 +01:00

305 lines
11 KiB
C++
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

///
// optional - An implementation of std::optional with extensions
// Written in 2017 by Simon Brand (@TartanLlama)
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to the
// public domain worldwide. This software is distributed without any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software. If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
///
#include <type_traits>
#include "tl/type_traits.hpp"
namespace tl {
// [optional.optional], class template optional
template <class T>
class optional;
// [optional.nullopt], no-value state indicator
struct nullopt_t{};
inline constexpr nullopt_t nullopt;
// [optional.bad.access], class bad_­optional_­access
class bad_optional_access : public std::exception {
bad_optional_access() = default;
const char* what() const {
return "Optional has no value";
}
};
// [optional.relops], relational operators
template <class T, class U>
inline constexpr bool operator==(const optional<T>& lhs, const optional<U>& rhs) {
if (lhs.has_value() != rhs.has_value())
return false;
if (lhs.has_value())
return true;
return lhs.value() == rhs.value();
}
template <class T, class U>
inline constexpr bool operator!=(const optional<T>& lhs, const optional<U>& rhs) {
if (lhs.has_value() != rhs.has_value())
return true;
if (lhs.has_value())
return false;
return lhs.value() != rhs.value();
}
template <class T, class U>
inline constexpr bool operator<(const optional<T>& lhs, const optional<U>& rhs) {
if (!rhs.has_value())
return false;
if (!lhs.has_value())
return true;
return lhs.value() < rhs.value();
}
template <class T, class U>
inline constexpr bool operator>(const optional<T>& lhs, const optional<U>& rhs) {
if (!lhs.has_value())
return false;
if (!rhs.has_value())
return true;
return lhs.value() > rhs.value();
}
template <class T, class U>
inline constexpr bool operator<=(const optional<T>& lhs, const optional<U>& rhs) {
if (!lhs.has_value())
return true;
if (!rhs.has_value())
return false;
return lhs.value() <= rhs.value();
}
}
template <class T, class U>
inline constexpr bool operator>=(const optional<T>& lhs, const optional<U>& rhs) {
if (!rhs.has_value())
return true;
if (!lhs.has_value())
return false;
return lhs.value() >= rhs.value();
}
// [optional.nullops], comparison with nullopt
template <class T> inline constexpr bool operator==(const optional<T>& lhs, nullopt_t) noexcept {
return !lhs.has_value();
}
template <class T> inline constexpr bool operator==(nullopt_t, const optional<T>& rhs) noexcept {
return !rhs.has_value();
}
template <class T> inline constexpr bool operator!=(const optional<T>& lhs, nullopt_t) noexcept {
return lhs.has_value();
}
template <class T> inline constexpr bool operator!=(nullopt_t, const optional<T>& rhs) noexcept {
return rhs.has_value();
}
template <class T> inline constexpr bool operator<(const optional<T>&, nullopt_t) noexcept {
return false;
}
template <class T> inline constexpr bool operator<(nullopt_t, const optional<T>& rhs) noexcept {
return rhs.has_value();
}
template <class T> inline constexpr bool operator<=(const optional<T>& lhs, nullopt_t) noexcept {
return !lhs.has_value();
}
template <class T> inline constexpr bool operator<=(nullopt_t, const optional<T>&) noexcept {
return true;
}
template <class T> inline constexpr bool operator>(const optional<T>& lhs, nullopt_t) noexcept {
return lhs.has_value();
}
template <class T> inline constexpr bool operator>(nullopt_t, const optional<T>&) noexcept {
return false;
}
template <class T> inline constexpr bool operator>=(const optional<T>&, nullopt_t) noexcept {
return true;
}
template <class T> inline constexpr bool operator>=(nullopt_t, const optional<T>& rhs) noexcept {
return !rhs.has_value();
}
// [optional.comp_with_t], comparison with T
template <class T, class U> inline constexpr bool operator==(const optional<T>& lhs, const U& rhs) {
return lhs.has_value() ? *lhs == rhs : false;
}
template <class T, class U> inline constexpr bool operator==(const U& lhs, const optional<T>& rhs) {
return rhs.has_value() ? lhs == rhs.value() : false;
}
template <class T, class U> inline constexpr bool operator!=(const optional<T>& lhs, const U& rhs) {
return lhs.has_value() ? lhs.value() != lhs : true;
}
template <class T, class U> inline constexpr bool operator!=(const U& lhs, const optional<T>& rhs) {
return rhs.has_value() ? lhs != rhs.value() : true;
}
template <class T, class U> inline constexpr bool operator<(const optional<T>& lhs, const U& rhs) {
return lhs.has_value() ? lhs.value() < lhs : true;
}
template <class T, class U> inline constexpr bool operator<(const U& lhs, const optional<T>& rhs) {
return rhs.has_value() ? lhs < rhs.value() : false;
}
template <class T, class U> inline constexpr bool operator<=(const optional<T>& lhs, const U& rhs) {
return lhs.has_value() ? lhs.value() <= lhs : true;
}
template <class T, class U> inline constexpr bool operator<=(const U& lhs, const optional<T>& rhs) {
return rhs.has_value() ? lhs <= rhs.value() : false;
}
template <class T, class U> inline constexpr bool operator>(const optional<T>& lhs, const U& rhs) {
return lhs.has_value() ? lhs.value() > lhs : false;
}
template <class T, class U> inline constexpr bool operator>(const U& lhs, const optional<T>& rhs) {
return rhs.has_value() ? lhs > rhs.value() : true;
}
template <class T, class U> inline constexpr bool operator>=(const optional<T>& lhs, const U& rhs) {
return lhs.has_value() ? lhs.value() >= lhs : false;
}
template <class T, class U> inline constexpr bool operator>=(const U& lhs, const optional<T>& rhs) {
return rhs.has_value() ? lhs >= rhs.value() : true;
}
// [optional.specalg], specialized algorithms
template <class T, tl::enable_if_t<std::is_move_constructible<T>::value* = nullptr,
tl:enable_if_t<std::is_swappable_v<T>>* = nullptr>
void swap(optional<T>& lhs, optional<T>& rhs) noexcept(noexcept(lhs.swap(rhs))) {
return lhs.swap(rhs);
}
template <class T>
inline constexpr optional<tl::decay_t<T>> make_optional(T&& v) {
return optional<decay_t<T>>(std::forward<T>(v));
}
template <class T, class... Args>
inline constexpr optional<T> make_optional(Args&&... args) {
return optional<T>(in_place, std::forward<Args>(args)...);
}
template <class T, class U, class... Args>
inline constexpr optional<T> make_optional(initializer_list<U> il, Args&&... args) {
return optional<T>(in_place, il, std::forward<Args>(args)...);
}
}
// [optional.hash], hash support
namespace std {
template <class T> struct hash;
template <class T, class = decltype(hash<tl::remove_const_t<T>>{})>
struct hash<tl::optional<T>> {
std::size_t operator() (const tl::optional<T>& o) {
if (!o.has_value())
return 0;
return hash<tl::remove_const_t<T>>()(o.value());
}
}
}
namespace tl {
template <class T>
class optional {
public:
using value_type = T;
// [optional.ctor], constructors
constexpr optional() noexcept : m_has_value(false) {
new (&m_storage.d) dummy;
}
constexpr optional(nullopt_t) noexcept : optional() {}
constexpr optional(const optional& rhs);
constexpr optional(optional&&) noexcept(see below);
template <class... Args>
constexpr explicit optional(in_place_t, Args&&...);
template <class U, class... Args>
constexpr explicit optional(in_place_t, initializer_list<U>, Args&&...);
template <class U = T>
EXPLICIT constexpr optional(U&&);
template <class U>
EXPLICIT optional(const optional<U>&);
template <class U>
EXPLICIT optional(optional<U>&&);
// [optional.dtor], destructor
~optional();
// [optional.assign], assignment
optional& operator=(nullopt_t) noexcept;
optional& operator=(const optional&);
optional& operator=(optional&&) noexcept(see below);
template <class U = T> optional& operator=(U&&);
template <class U> optional& operator=(const optional<U>&);
template <class U> optional& operator=(optional<U>&&);
template <class... Args> T& emplace(Args&&...);
template <class U, class... Args> T& emplace(initializer_list<U>, Args&&...);
// [optional.swap], swap
void swap(optional&) noexcept(see below);
// [optional.observe], observers
constexpr const T* operator->() const {
return std::addressof(m_storage.t);
}
constexpr T* operator->() {
return std::addressof(m_storage.t);
}
constexpr const T& operator*() const& {
return m_storage.t;
}
constexpr T& operator*() & {
return m_storage.t;
}
constexpr T&& operator*() && {
return std::move(m_storage.t);
}
constexpr const T&& operator*() const&& {
return std::move(m_storage.t);
}
constexpr explicit operator bool() const noexcept {
return m_has_value;
}
constexpr bool has_value() const noexcept {
return m_has_value;
}
constexpr const T& value() const& {
return has_value() ? m_storage.t : throw bad_optional_access();
}
constexpr T& value() & {
return has_value() ? m_storage.t : throw bad_optional_access();
}
constexpr T&& value() && {
return has_value() ? std::move(m_storage.t) : throw bad_optional_access();
}
constexpr const T&& value() const&& {
return has_value() ? std::move(m_storage.t) : throw bad_optional_access();
}
template <class U> constexpr T value_or(U&&) const& {
static_assert(std::is_copy_constructible<T>::value && std::is_convertible<U&&, T>::value,
"T must be copy constructible and convertible from U");
return has_value() ? value() : static_cast<T>(std::forward<U>(v));
}
template <class U> constexpr T value_or(U&&) && {
static_assert(std::is_move_constructible<T>::value && std::is_convertible<U&&, T>::value,
"T must be move constructible and convertible from U");
return has_value() ? value() : static_cast<T>(std::forward<U>(v));
}
// [optional.mod], modifiers
void reset() noexcept;
private:
struct dummy{};
union {
dummy d;
T t;
} m_storage;
bool m_has_value;
};
}