Merge pull request #256 from airgradienthq/restructure-agvalue

Restructure Measurements class
This commit is contained in:
Samuel Siburian
2024-10-22 13:40:50 +07:00
committed by GitHub
22 changed files with 1421 additions and 1010 deletions

View File

@ -49,9 +49,8 @@ CC BY-SA 4.0 Attribution-ShareAlike 4.0 International License
#define SENSOR_TVOC_UPDATE_INTERVAL 1000 /** ms */ #define SENSOR_TVOC_UPDATE_INTERVAL 1000 /** ms */
#define SENSOR_CO2_UPDATE_INTERVAL 4000 /** ms */ #define SENSOR_CO2_UPDATE_INTERVAL 4000 /** ms */
#define SENSOR_PM_UPDATE_INTERVAL 2000 /** ms */ #define SENSOR_PM_UPDATE_INTERVAL 2000 /** ms */
#define SENSOR_TEMP_HUM_UPDATE_INTERVAL 2000 /** ms */ #define SENSOR_TEMP_HUM_UPDATE_INTERVAL 6000 /** ms */
#define DISPLAY_DELAY_SHOW_CONTENT_MS 2000 /** ms */ #define DISPLAY_DELAY_SHOW_CONTENT_MS 2000 /** ms */
#define FIRMWARE_CHECK_FOR_UPDATE_MS (60 * 60 * 1000) /** ms */
static AirGradient ag(DIY_BASIC); static AirGradient ag(DIY_BASIC);
static Configuration configuration(Serial); static Configuration configuration(Serial);
@ -68,7 +67,6 @@ static LocalServer localServer(Serial, openMetrics, measurements, configuration,
wifiConnector); wifiConnector);
static MqttClient mqttClient(Serial); static MqttClient mqttClient(Serial);
static int getCO2FailCount = 0;
static AgFirmwareMode fwMode = FW_MODE_I_BASIC_40PS; static AgFirmwareMode fwMode = FW_MODE_I_BASIC_40PS;
static String fwNewVersion; static String fwNewVersion;
@ -90,6 +88,8 @@ static void wdgFeedUpdate(void);
static bool sgp41Init(void); static bool sgp41Init(void);
static void wifiFactoryConfigure(void); static void wifiFactoryConfigure(void);
static void mqttHandle(void); static void mqttHandle(void);
static int calculateMaxPeriod(int updateInterval);
static void setMeasurementMaxPeriod();
AgSchedule dispLedSchedule(DISP_UPDATE_INTERVAL, oledDisplaySchedule); AgSchedule dispLedSchedule(DISP_UPDATE_INTERVAL, oledDisplaySchedule);
AgSchedule configSchedule(SERVER_CONFIG_SYNC_INTERVAL, AgSchedule configSchedule(SERVER_CONFIG_SYNC_INTERVAL,
@ -130,6 +130,10 @@ void setup() {
/** Init sensor */ /** Init sensor */
boardInit(); boardInit();
setMeasurementMaxPeriod();
// Uncomment below line to print every measurements reading update
// measurements.setDebug(true);
/** Connecting wifi */ /** Connecting wifi */
bool connectToWifi = false; bool connectToWifi = false;
@ -230,17 +234,16 @@ void loop() {
} }
static void co2Update(void) { static void co2Update(void) {
if (!configuration.hasSensorS8) {
// Device don't have S8 sensor
return;
}
int value = ag.s8.getCo2(); int value = ag.s8.getCo2();
if (utils::isValidCO2(value)) { if (utils::isValidCO2(value)) {
measurements.CO2 = value; measurements.update(Measurements::CO2, value);
getCO2FailCount = 0;
Serial.printf("CO2 (ppm): %d\r\n", measurements.CO2);
} else { } else {
getCO2FailCount++; measurements.update(Measurements::CO2, utils::getInvalidCO2());
Serial.printf("Get CO2 failed: %d\r\n", getCO2FailCount);
if (getCO2FailCount >= 3) {
measurements.CO2 = utils::getInvalidCO2();
}
} }
} }
@ -313,8 +316,7 @@ static void mqttHandle(void) {
} }
if (mqttClient.isConnected()) { if (mqttClient.isConnected()) {
String payload = measurements.toString(true, fwMode, wifiConnector.RSSI(), String payload = measurements.toString(true, fwMode, wifiConnector.RSSI(), ag, configuration);
&ag, &configuration);
String topic = "airgradient/readings/" + ag.deviceId(); String topic = "airgradient/readings/" + ag.deviceId();
if (mqttClient.publish(topic.c_str(), payload.c_str(), payload.length())) { if (mqttClient.publish(topic.c_str(), payload.c_str(), payload.length())) {
Serial.println("MQTT sync success"); Serial.println("MQTT sync success");
@ -490,46 +492,27 @@ static void oledDisplaySchedule(void) {
} }
static void updateTvoc(void) { static void updateTvoc(void) {
measurements.TVOC = ag.sgp41.getTvocIndex(); if (!configuration.hasSensorSGP) {
measurements.TVOCRaw = ag.sgp41.getTvocRaw(); return;
measurements.NOx = ag.sgp41.getNoxIndex(); }
measurements.NOxRaw = ag.sgp41.getNoxRaw();
Serial.println(); measurements.update(Measurements::TVOC, ag.sgp41.getTvocIndex());
Serial.printf("TVOC index: %d\r\n", measurements.TVOC); measurements.update(Measurements::TVOCRaw, ag.sgp41.getTvocRaw());
Serial.printf("TVOC raw: %d\r\n", measurements.TVOCRaw); measurements.update(Measurements::NOx, ag.sgp41.getNoxIndex());
Serial.printf("NOx index: %d\r\n", measurements.NOx); measurements.update(Measurements::NOxRaw, ag.sgp41.getNoxRaw());
Serial.printf("NOx raw: %d\r\n", measurements.NOxRaw);
} }
static void updatePm(void) { static void updatePm(void) {
if (ag.pms5003.connected()) { if (ag.pms5003.connected()) {
measurements.pm01_1 = ag.pms5003.getPm01Ae(); measurements.update(Measurements::PM01, ag.pms5003.getPm01Ae());
measurements.pm25_1 = ag.pms5003.getPm25Ae(); measurements.update(Measurements::PM25, ag.pms5003.getPm25Ae());
measurements.pm10_1 = ag.pms5003.getPm10Ae(); measurements.update(Measurements::PM10, ag.pms5003.getPm10Ae());
measurements.pm03PCount_1 = ag.pms5003.getPm03ParticleCount(); measurements.update(Measurements::PM03_PC, ag.pms5003.getPm03ParticleCount());
Serial.println();
Serial.printf("PM1 ug/m3: %d\r\n", measurements.pm01_1);
Serial.printf("PM2.5 ug/m3: %d\r\n", measurements.pm25_1);
Serial.printf("PM10 ug/m3: %d\r\n", measurements.pm10_1);
Serial.printf("PM0.3 Count: %d\r\n", measurements.pm03PCount_1);
Serial.printf("PM firmware version: %d\r\n", ag.pms5003.getFirmwareVersion());
ag.pms5003.resetFailCount();
} else { } else {
ag.pms5003.updateFailCount(); measurements.update(Measurements::PM01, utils::getInvalidPmValue());
Serial.printf("PMS read failed %d times\r\n", ag.pms5003.getFailCount()); measurements.update(Measurements::PM25, utils::getInvalidPmValue());
if (ag.pms5003.getFailCount() >= PMS_FAIL_COUNT_SET_INVALID) { measurements.update(Measurements::PM10, utils::getInvalidPmValue());
measurements.pm01_1 = utils::getInvalidPmValue(); measurements.update(Measurements::PM03_PC, utils::getInvalidPmValue());
measurements.pm25_1 = utils::getInvalidPmValue();
measurements.pm10_1 = utils::getInvalidPmValue();
measurements.pm03PCount_1 = utils::getInvalidPmValue();
}
if(ag.pms5003.getFailCount() >= ag.pms5003.getFailCountMax()) {
Serial.printf("PMS failure count reach to max set %d, restarting...", ag.pms5003.getFailCountMax());
ESP.restart();
}
} }
} }
@ -543,8 +526,7 @@ static void sendDataToServer(void) {
return; return;
} }
String syncData = measurements.toString(false, fwMode, wifiConnector.RSSI(), String syncData = measurements.toString(false, fwMode, wifiConnector.RSSI(), ag, configuration);
&ag, &configuration);
if (apiClient.postToServer(syncData)) { if (apiClient.postToServer(syncData)) {
Serial.println(); Serial.println();
Serial.println( Serial.println(
@ -554,26 +536,54 @@ static void sendDataToServer(void) {
} }
static void tempHumUpdate(void) { static void tempHumUpdate(void) {
delay(100);
if (ag.sht.measure()) { if (ag.sht.measure()) {
measurements.Temperature = ag.sht.getTemperature(); float temp = ag.sht.getTemperature();
measurements.Humidity = ag.sht.getRelativeHumidity(); float rhum = ag.sht.getRelativeHumidity();
Serial.printf("Temperature in C: %0.2f\r\n", measurements.Temperature); measurements.update(Measurements::Temperature, temp);
Serial.printf("Relative Humidity: %d\r\n", measurements.Humidity); measurements.update(Measurements::Humidity, rhum);
Serial.printf("Temperature compensated in C: %0.2f\r\n",
measurements.Temperature);
Serial.printf("Relative Humidity compensated: %d\r\n",
measurements.Humidity);
// Update compensation temperature and humidity for SGP41 // Update compensation temperature and humidity for SGP41
if (configuration.hasSensorSGP) { if (configuration.hasSensorSGP) {
ag.sgp41.setCompensationTemperatureHumidity(measurements.Temperature, ag.sgp41.setCompensationTemperatureHumidity(temp, rhum);
measurements.Humidity);
} }
} else { } else {
measurements.update(Measurements::Temperature, utils::getInvalidTemperature());
measurements.update(Measurements::Humidity, utils::getInvalidHumidity());
Serial.println("SHT read failed"); Serial.println("SHT read failed");
measurements.Temperature = utils::getInvalidTemperature();
measurements.Humidity = utils::getInvalidHumidity();
} }
} }
/* Set max period for each measurement type based on sensor update interval*/
void setMeasurementMaxPeriod() {
/// Max period for S8 sensors measurements
measurements.maxPeriod(Measurements::CO2, calculateMaxPeriod(SENSOR_CO2_UPDATE_INTERVAL));
/// Max period for SGP sensors measurements
measurements.maxPeriod(Measurements::TVOC, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::TVOCRaw, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::NOx, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::NOxRaw, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
/// Max period for PMS sensors measurements
measurements.maxPeriod(Measurements::PM25, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::PM01, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::PM10, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::PM03_PC, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
// Temperature and Humidity
if (configuration.hasSensorSHT) {
/// Max period for SHT sensors measurements
measurements.maxPeriod(Measurements::Temperature,
calculateMaxPeriod(SENSOR_TEMP_HUM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::Humidity,
calculateMaxPeriod(SENSOR_TEMP_HUM_UPDATE_INTERVAL));
} else {
/// Temp and hum data retrieved from PMS5003T sensor
measurements.maxPeriod(Measurements::Temperature,
calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::Humidity, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
}
}
int calculateMaxPeriod(int updateInterval) {
// 0.5 is 50% reduced interval for max period
return (SERVER_SYNC_INTERVAL - (SERVER_SYNC_INTERVAL * 0.5)) / updateInterval;
}

View File

@ -53,9 +53,8 @@ void LocalServer::_GET_metrics(void) {
} }
void LocalServer::_GET_measure(void) { void LocalServer::_GET_measure(void) {
server.send( String toSend = measure.toString(true, fwMode, wifiConnector.RSSI(), *ag, config);
200, "application/json", server.send(200, "application/json", toSend);
measure.toString(true, fwMode, wifiConnector.RSSI(), ag, &config));
} }
void LocalServer::setFwMode(AgFirmwareMode fwMode) { this->fwMode = fwMode; } void LocalServer::setFwMode(AgFirmwareMode fwMode) { this->fwMode = fwMode; }

View File

@ -73,19 +73,30 @@ String OpenMetrics::getPayload(void) {
int pm03PCount = utils::getInvalidPmValue(); int pm03PCount = utils::getInvalidPmValue();
int atmpCompensated = utils::getInvalidTemperature(); int atmpCompensated = utils::getInvalidTemperature();
int ahumCompensated = utils::getInvalidHumidity(); int ahumCompensated = utils::getInvalidHumidity();
int tvoc = utils::getInvalidVOC();
int tvoc_raw = utils::getInvalidVOC();
int nox = utils::getInvalidNOx();
int nox_raw = utils::getInvalidNOx();
if (config.hasSensorSHT) { if (config.hasSensorSHT) {
_temp = measure.Temperature; _temp = measure.getFloat(Measurements::Temperature);
_hum = measure.Humidity; _hum = measure.getFloat(Measurements::Humidity);
atmpCompensated = _temp; atmpCompensated = _temp;
ahumCompensated = _hum; ahumCompensated = _hum;
} }
if (config.hasSensorPMS1) { if (config.hasSensorPMS1) {
pm01 = measure.pm01_1; pm01 = measure.get(Measurements::PM01);
pm25 = measure.pm25_1; pm25 = measure.get(Measurements::PM25);
pm10 = measure.pm10_1; pm10 = measure.get(Measurements::PM10);
pm03PCount = measure.pm03PCount_1; pm03PCount = measure.get(Measurements::PM03_PC);
}
if (config.hasSensorSGP) {
tvoc = measure.get(Measurements::TVOC);
tvoc_raw = measure.get(Measurements::TVOCRaw);
nox = measure.get(Measurements::NOx);
nox_raw = measure.get(Measurements::NOxRaw);
} }
if (config.hasSensorPMS1) { if (config.hasSensorPMS1) {
@ -120,33 +131,33 @@ String OpenMetrics::getPayload(void) {
} }
if (config.hasSensorSGP) { if (config.hasSensorSGP) {
if (utils::isValidVOC(measure.TVOC)) { if (utils::isValidVOC(tvoc)) {
add_metric("tvoc_index", add_metric("tvoc_index",
"The processed Total Volatile Organic Compounds (TVOC) index " "The processed Total Volatile Organic Compounds (TVOC) index "
"as measured by the AirGradient SGP sensor", "as measured by the AirGradient SGP sensor",
"gauge"); "gauge");
add_metric_point("", String(measure.TVOC)); add_metric_point("", String(tvoc));
} }
if (utils::isValidVOC(measure.TVOCRaw)) { if (utils::isValidVOC(tvoc_raw)) {
add_metric("tvoc_raw", add_metric("tvoc_raw",
"The raw input value to the Total Volatile Organic Compounds " "The raw input value to the Total Volatile Organic Compounds "
"(TVOC) index as measured by the AirGradient SGP sensor", "(TVOC) index as measured by the AirGradient SGP sensor",
"gauge"); "gauge");
add_metric_point("", String(measure.TVOCRaw)); add_metric_point("", String(tvoc_raw));
} }
if (utils::isValidNOx(measure.NOx)) { if (utils::isValidNOx(nox)) {
add_metric("nox_index", add_metric("nox_index",
"The processed Nitrous Oxide (NOx) index as measured by the " "The processed Nitrous Oxide (NOx) index as measured by the "
"AirGradient SGP sensor", "AirGradient SGP sensor",
"gauge"); "gauge");
add_metric_point("", String(measure.NOx)); add_metric_point("", String(nox));
} }
if (utils::isValidNOx(measure.NOxRaw)) { if (utils::isValidNOx(nox_raw)) {
add_metric("nox_raw", add_metric("nox_raw",
"The raw input value to the Nitrous Oxide (NOx) index as " "The raw input value to the Nitrous Oxide (NOx) index as "
"measured by the AirGradient SGP sensor", "measured by the AirGradient SGP sensor",
"gauge"); "gauge");
add_metric_point("", String(measure.NOxRaw)); add_metric_point("", String(nox_raw));
} }
} }

View File

@ -49,9 +49,8 @@ CC BY-SA 4.0 Attribution-ShareAlike 4.0 International License
#define SENSOR_TVOC_UPDATE_INTERVAL 1000 /** ms */ #define SENSOR_TVOC_UPDATE_INTERVAL 1000 /** ms */
#define SENSOR_CO2_UPDATE_INTERVAL 4000 /** ms */ #define SENSOR_CO2_UPDATE_INTERVAL 4000 /** ms */
#define SENSOR_PM_UPDATE_INTERVAL 2000 /** ms */ #define SENSOR_PM_UPDATE_INTERVAL 2000 /** ms */
#define SENSOR_TEMP_HUM_UPDATE_INTERVAL 2000 /** ms */ #define SENSOR_TEMP_HUM_UPDATE_INTERVAL 6000 /** ms */
#define DISPLAY_DELAY_SHOW_CONTENT_MS 2000 /** ms */ #define DISPLAY_DELAY_SHOW_CONTENT_MS 2000 /** ms */
#define FIRMWARE_CHECK_FOR_UPDATE_MS (60 * 60 * 1000) /** ms */
static AirGradient ag(DIY_PRO_INDOOR_V3_3); static AirGradient ag(DIY_PRO_INDOOR_V3_3);
static Configuration configuration(Serial); static Configuration configuration(Serial);
@ -68,7 +67,6 @@ static LocalServer localServer(Serial, openMetrics, measurements, configuration,
wifiConnector); wifiConnector);
static MqttClient mqttClient(Serial); static MqttClient mqttClient(Serial);
static int getCO2FailCount = 0;
static AgFirmwareMode fwMode = FW_MODE_I_33PS; static AgFirmwareMode fwMode = FW_MODE_I_33PS;
static String fwNewVersion; static String fwNewVersion;
@ -90,6 +88,8 @@ static void wdgFeedUpdate(void);
static bool sgp41Init(void); static bool sgp41Init(void);
static void wifiFactoryConfigure(void); static void wifiFactoryConfigure(void);
static void mqttHandle(void); static void mqttHandle(void);
static int calculateMaxPeriod(int updateInterval);
static void setMeasurementMaxPeriod();
AgSchedule dispLedSchedule(DISP_UPDATE_INTERVAL, oledDisplaySchedule); AgSchedule dispLedSchedule(DISP_UPDATE_INTERVAL, oledDisplaySchedule);
AgSchedule configSchedule(SERVER_CONFIG_SYNC_INTERVAL, AgSchedule configSchedule(SERVER_CONFIG_SYNC_INTERVAL,
@ -130,6 +130,10 @@ void setup() {
/** Init sensor */ /** Init sensor */
boardInit(); boardInit();
setMeasurementMaxPeriod();
// Uncomment below line to print every measurements reading update
// measurements.setDebug(true);
/** Connecting wifi */ /** Connecting wifi */
bool connectToWifi = false; bool connectToWifi = false;
@ -228,17 +232,16 @@ void loop() {
} }
static void co2Update(void) { static void co2Update(void) {
if (!configuration.hasSensorS8) {
// Device don't have S8 sensor
return;
}
int value = ag.s8.getCo2(); int value = ag.s8.getCo2();
if (utils::isValidCO2(value)) { if (utils::isValidCO2(value)) {
measurements.CO2 = value; measurements.update(Measurements::CO2, value);
getCO2FailCount = 0;
Serial.printf("CO2 (ppm): %d\r\n", measurements.CO2);
} else { } else {
getCO2FailCount++; measurements.update(Measurements::CO2, utils::getInvalidCO2());
Serial.printf("Get CO2 failed: %d\r\n", getCO2FailCount);
if (getCO2FailCount >= 3) {
measurements.CO2 = utils::getInvalidCO2();
}
} }
} }
@ -370,8 +373,7 @@ static void mqttHandle(void) {
} }
if (mqttClient.isConnected()) { if (mqttClient.isConnected()) {
String payload = measurements.toString(true, fwMode, wifiConnector.RSSI(), String payload = measurements.toString(true, fwMode, wifiConnector.RSSI(), ag, configuration);
&ag, &configuration);
String topic = "airgradient/readings/" + ag.deviceId(); String topic = "airgradient/readings/" + ag.deviceId();
if (mqttClient.publish(topic.c_str(), payload.c_str(), payload.length())) { if (mqttClient.publish(topic.c_str(), payload.c_str(), payload.length())) {
Serial.println("MQTT sync success"); Serial.println("MQTT sync success");
@ -542,46 +544,27 @@ static void oledDisplaySchedule(void) {
} }
static void updateTvoc(void) { static void updateTvoc(void) {
measurements.TVOC = ag.sgp41.getTvocIndex(); if (!configuration.hasSensorSGP) {
measurements.TVOCRaw = ag.sgp41.getTvocRaw(); return;
measurements.NOx = ag.sgp41.getNoxIndex(); }
measurements.NOxRaw = ag.sgp41.getNoxRaw();
Serial.println(); measurements.update(Measurements::TVOC, ag.sgp41.getTvocIndex());
Serial.printf("TVOC index: %d\r\n", measurements.TVOC); measurements.update(Measurements::TVOCRaw, ag.sgp41.getTvocRaw());
Serial.printf("TVOC raw: %d\r\n", measurements.TVOCRaw); measurements.update(Measurements::NOx, ag.sgp41.getNoxIndex());
Serial.printf("NOx index: %d\r\n", measurements.NOx); measurements.update(Measurements::NOxRaw, ag.sgp41.getNoxRaw());
Serial.printf("NOx raw: %d\r\n", measurements.NOxRaw);
} }
static void updatePm(void) { static void updatePm(void) {
if (ag.pms5003.connected()) { if (ag.pms5003.connected()) {
measurements.pm01_1 = ag.pms5003.getPm01Ae(); measurements.update(Measurements::PM01, ag.pms5003.getPm01Ae());
measurements.pm25_1 = ag.pms5003.getPm25Ae(); measurements.update(Measurements::PM25, ag.pms5003.getPm25Ae());
measurements.pm10_1 = ag.pms5003.getPm10Ae(); measurements.update(Measurements::PM10, ag.pms5003.getPm10Ae());
measurements.pm03PCount_1 = ag.pms5003.getPm03ParticleCount(); measurements.update(Measurements::PM03_PC, ag.pms5003.getPm03ParticleCount());
Serial.println();
Serial.printf("PM1 ug/m3: %d\r\n", measurements.pm01_1);
Serial.printf("PM2.5 ug/m3: %d\r\n", measurements.pm25_1);
Serial.printf("PM10 ug/m3: %d\r\n", measurements.pm10_1);
Serial.printf("PM0.3 Count: %d\r\n", measurements.pm03PCount_1);
Serial.printf("PM firmware version: %d\r\n", ag.pms5003.getFirmwareVersion());
ag.pms5003.resetFailCount();
} else { } else {
ag.pms5003.updateFailCount(); measurements.update(Measurements::PM01, utils::getInvalidPmValue());
Serial.printf("PMS read failed %d times\r\n", ag.pms5003.getFailCount()); measurements.update(Measurements::PM25, utils::getInvalidPmValue());
if (ag.pms5003.getFailCount() >= PMS_FAIL_COUNT_SET_INVALID) { measurements.update(Measurements::PM10, utils::getInvalidPmValue());
measurements.pm01_1 = utils::getInvalidPmValue(); measurements.update(Measurements::PM03_PC, utils::getInvalidPmValue());
measurements.pm25_1 = utils::getInvalidPmValue();
measurements.pm10_1 = utils::getInvalidPmValue();
measurements.pm03PCount_1 = utils::getInvalidPmValue();
}
if(ag.pms5003.getFailCount() >= ag.pms5003.getFailCountMax()) {
Serial.printf("PMS failure count reach to max set %d, restarting...", ag.pms5003.getFailCountMax());
ESP.restart();
}
} }
} }
@ -595,8 +578,7 @@ static void sendDataToServer(void) {
return; return;
} }
String syncData = measurements.toString(false, fwMode, wifiConnector.RSSI(), String syncData = measurements.toString(false, fwMode, wifiConnector.RSSI(), ag, configuration);
&ag, &configuration);
if (apiClient.postToServer(syncData)) { if (apiClient.postToServer(syncData)) {
Serial.println(); Serial.println();
Serial.println( Serial.println(
@ -606,26 +588,54 @@ static void sendDataToServer(void) {
} }
static void tempHumUpdate(void) { static void tempHumUpdate(void) {
delay(100);
if (ag.sht.measure()) { if (ag.sht.measure()) {
measurements.Temperature = ag.sht.getTemperature(); float temp = ag.sht.getTemperature();
measurements.Humidity = ag.sht.getRelativeHumidity(); float rhum = ag.sht.getRelativeHumidity();
Serial.printf("Temperature in C: %0.2f\r\n", measurements.Temperature); measurements.update(Measurements::Temperature, temp);
Serial.printf("Relative Humidity: %d\r\n", measurements.Humidity); measurements.update(Measurements::Humidity, rhum);
Serial.printf("Temperature compensated in C: %0.2f\r\n",
measurements.Temperature);
Serial.printf("Relative Humidity compensated: %d\r\n",
measurements.Humidity);
// Update compensation temperature and humidity for SGP41 // Update compensation temperature and humidity for SGP41
if (configuration.hasSensorSGP) { if (configuration.hasSensorSGP) {
ag.sgp41.setCompensationTemperatureHumidity(measurements.Temperature, ag.sgp41.setCompensationTemperatureHumidity(temp, rhum);
measurements.Humidity);
} }
} else { } else {
measurements.update(Measurements::Temperature, utils::getInvalidTemperature());
measurements.update(Measurements::Humidity, utils::getInvalidHumidity());
Serial.println("SHT read failed"); Serial.println("SHT read failed");
measurements.Temperature = utils::getInvalidTemperature();
measurements.Humidity = utils::getInvalidHumidity();
} }
} }
/* Set max period for each measurement type based on sensor update interval*/
void setMeasurementMaxPeriod() {
/// Max period for S8 sensors measurements
measurements.maxPeriod(Measurements::CO2, calculateMaxPeriod(SENSOR_CO2_UPDATE_INTERVAL));
/// Max period for SGP sensors measurements
measurements.maxPeriod(Measurements::TVOC, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::TVOCRaw, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::NOx, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::NOxRaw, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
/// Max period for PMS sensors measurements
measurements.maxPeriod(Measurements::PM25, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::PM01, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::PM10, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::PM03_PC, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
// Temperature and Humidity
if (configuration.hasSensorSHT) {
/// Max period for SHT sensors measurements
measurements.maxPeriod(Measurements::Temperature,
calculateMaxPeriod(SENSOR_TEMP_HUM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::Humidity,
calculateMaxPeriod(SENSOR_TEMP_HUM_UPDATE_INTERVAL));
} else {
/// Temp and hum data retrieved from PMS5003T sensor
measurements.maxPeriod(Measurements::Temperature,
calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::Humidity, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
}
}
int calculateMaxPeriod(int updateInterval) {
// 0.5 is 50% reduced interval for max period
return (SERVER_SYNC_INTERVAL - (SERVER_SYNC_INTERVAL * 0.5)) / updateInterval;
}

View File

@ -53,9 +53,8 @@ void LocalServer::_GET_metrics(void) {
} }
void LocalServer::_GET_measure(void) { void LocalServer::_GET_measure(void) {
server.send( String toSend = measure.toString(true, fwMode, wifiConnector.RSSI(), *ag, config);
200, "application/json", server.send(200, "application/json", toSend);
measure.toString(true, fwMode, wifiConnector.RSSI(), ag, &config));
} }
void LocalServer::setFwMode(AgFirmwareMode fwMode) { this->fwMode = fwMode; } void LocalServer::setFwMode(AgFirmwareMode fwMode) { this->fwMode = fwMode; }

View File

@ -73,19 +73,30 @@ String OpenMetrics::getPayload(void) {
int pm03PCount = utils::getInvalidPmValue(); int pm03PCount = utils::getInvalidPmValue();
int atmpCompensated = utils::getInvalidTemperature(); int atmpCompensated = utils::getInvalidTemperature();
int ahumCompensated = utils::getInvalidHumidity(); int ahumCompensated = utils::getInvalidHumidity();
int tvoc = utils::getInvalidVOC();
int tvoc_raw = utils::getInvalidVOC();
int nox = utils::getInvalidNOx();
int nox_raw = utils::getInvalidNOx();
if (config.hasSensorSHT) { if (config.hasSensorSHT) {
_temp = measure.Temperature; _temp = measure.getFloat(Measurements::Temperature);
_hum = measure.Humidity; _hum = measure.getFloat(Measurements::Humidity);
atmpCompensated = _temp; atmpCompensated = _temp;
ahumCompensated = _hum; ahumCompensated = _hum;
} }
if (config.hasSensorPMS1) { if (config.hasSensorPMS1) {
pm01 = measure.pm01_1; pm01 = measure.get(Measurements::PM01);
pm25 = measure.pm25_1; pm25 = measure.get(Measurements::PM25);
pm10 = measure.pm10_1; pm10 = measure.get(Measurements::PM10);
pm03PCount = measure.pm03PCount_1; pm03PCount = measure.get(Measurements::PM03_PC);
}
if (config.hasSensorSGP) {
tvoc = measure.get(Measurements::TVOC);
tvoc_raw = measure.get(Measurements::TVOCRaw);
nox = measure.get(Measurements::NOx);
nox_raw = measure.get(Measurements::NOxRaw);
} }
if (config.hasSensorPMS1) { if (config.hasSensorPMS1) {
@ -120,33 +131,33 @@ String OpenMetrics::getPayload(void) {
} }
if (config.hasSensorSGP) { if (config.hasSensorSGP) {
if (utils::isValidVOC(measure.TVOC)) { if (utils::isValidVOC(tvoc)) {
add_metric("tvoc_index", add_metric("tvoc_index",
"The processed Total Volatile Organic Compounds (TVOC) index " "The processed Total Volatile Organic Compounds (TVOC) index "
"as measured by the AirGradient SGP sensor", "as measured by the AirGradient SGP sensor",
"gauge"); "gauge");
add_metric_point("", String(measure.TVOC)); add_metric_point("", String(tvoc));
} }
if (utils::isValidVOC(measure.TVOCRaw)) { if (utils::isValidVOC(tvoc_raw)) {
add_metric("tvoc_raw", add_metric("tvoc_raw",
"The raw input value to the Total Volatile Organic Compounds " "The raw input value to the Total Volatile Organic Compounds "
"(TVOC) index as measured by the AirGradient SGP sensor", "(TVOC) index as measured by the AirGradient SGP sensor",
"gauge"); "gauge");
add_metric_point("", String(measure.TVOCRaw)); add_metric_point("", String(tvoc_raw));
} }
if (utils::isValidNOx(measure.NOx)) { if (utils::isValidNOx(nox)) {
add_metric("nox_index", add_metric("nox_index",
"The processed Nitrous Oxide (NOx) index as measured by the " "The processed Nitrous Oxide (NOx) index as measured by the "
"AirGradient SGP sensor", "AirGradient SGP sensor",
"gauge"); "gauge");
add_metric_point("", String(measure.NOx)); add_metric_point("", String(nox));
} }
if (utils::isValidNOx(measure.NOxRaw)) { if (utils::isValidNOx(nox_raw)) {
add_metric("nox_raw", add_metric("nox_raw",
"The raw input value to the Nitrous Oxide (NOx) index as " "The raw input value to the Nitrous Oxide (NOx) index as "
"measured by the AirGradient SGP sensor", "measured by the AirGradient SGP sensor",
"gauge"); "gauge");
add_metric_point("", String(measure.NOxRaw)); add_metric_point("", String(nox_raw));
} }
} }

View File

@ -49,9 +49,8 @@ CC BY-SA 4.0 Attribution-ShareAlike 4.0 International License
#define SENSOR_TVOC_UPDATE_INTERVAL 1000 /** ms */ #define SENSOR_TVOC_UPDATE_INTERVAL 1000 /** ms */
#define SENSOR_CO2_UPDATE_INTERVAL 4000 /** ms */ #define SENSOR_CO2_UPDATE_INTERVAL 4000 /** ms */
#define SENSOR_PM_UPDATE_INTERVAL 2000 /** ms */ #define SENSOR_PM_UPDATE_INTERVAL 2000 /** ms */
#define SENSOR_TEMP_HUM_UPDATE_INTERVAL 2000 /** ms */ #define SENSOR_TEMP_HUM_UPDATE_INTERVAL 6000 /** ms */
#define DISPLAY_DELAY_SHOW_CONTENT_MS 2000 /** ms */ #define DISPLAY_DELAY_SHOW_CONTENT_MS 2000 /** ms */
#define FIRMWARE_CHECK_FOR_UPDATE_MS (60 * 60 * 1000) /** ms */
static AirGradient ag(DIY_PRO_INDOOR_V4_2); static AirGradient ag(DIY_PRO_INDOOR_V4_2);
static Configuration configuration(Serial); static Configuration configuration(Serial);
@ -69,7 +68,6 @@ static LocalServer localServer(Serial, openMetrics, measurements, configuration,
static MqttClient mqttClient(Serial); static MqttClient mqttClient(Serial);
static uint32_t factoryBtnPressTime = 0; static uint32_t factoryBtnPressTime = 0;
static int getCO2FailCount = 0;
static AgFirmwareMode fwMode = FW_MODE_I_42PS; static AgFirmwareMode fwMode = FW_MODE_I_42PS;
static String fwNewVersion; static String fwNewVersion;
@ -91,6 +89,8 @@ static void wdgFeedUpdate(void);
static bool sgp41Init(void); static bool sgp41Init(void);
static void wifiFactoryConfigure(void); static void wifiFactoryConfigure(void);
static void mqttHandle(void); static void mqttHandle(void);
static int calculateMaxPeriod(int updateInterval);
static void setMeasurementMaxPeriod();
AgSchedule dispLedSchedule(DISP_UPDATE_INTERVAL, oledDisplaySchedule); AgSchedule dispLedSchedule(DISP_UPDATE_INTERVAL, oledDisplaySchedule);
AgSchedule configSchedule(SERVER_CONFIG_SYNC_INTERVAL, AgSchedule configSchedule(SERVER_CONFIG_SYNC_INTERVAL,
@ -131,6 +131,10 @@ void setup() {
/** Init sensor */ /** Init sensor */
boardInit(); boardInit();
setMeasurementMaxPeriod();
// Uncomment below line to print every measurements reading update
// measurements.setDebug(true);
/** Connecting wifi */ /** Connecting wifi */
bool connectToWifi = false; bool connectToWifi = false;
@ -255,17 +259,16 @@ void loop() {
} }
static void co2Update(void) { static void co2Update(void) {
if (!configuration.hasSensorS8) {
// Device don't have S8 sensor
return;
}
int value = ag.s8.getCo2(); int value = ag.s8.getCo2();
if (utils::isValidCO2(value)) { if (utils::isValidCO2(value)) {
measurements.CO2 = value; measurements.update(Measurements::CO2, value);
getCO2FailCount = 0;
Serial.printf("CO2 (ppm): %d\r\n", measurements.CO2);
} else { } else {
getCO2FailCount++; measurements.update(Measurements::CO2, utils::getInvalidCO2());
Serial.printf("Get CO2 failed: %d\r\n", getCO2FailCount);
if (getCO2FailCount >= 3) {
measurements.CO2 = utils::getInvalidCO2();
}
} }
} }
@ -393,8 +396,7 @@ static void mqttHandle(void) {
} }
if (mqttClient.isConnected()) { if (mqttClient.isConnected()) {
String payload = measurements.toString(true, fwMode, wifiConnector.RSSI(), String payload = measurements.toString(true, fwMode, wifiConnector.RSSI(), ag, configuration);
&ag, &configuration);
String topic = "airgradient/readings/" + ag.deviceId(); String topic = "airgradient/readings/" + ag.deviceId();
if (mqttClient.publish(topic.c_str(), payload.c_str(), payload.length())) { if (mqttClient.publish(topic.c_str(), payload.c_str(), payload.length())) {
Serial.println("MQTT sync success"); Serial.println("MQTT sync success");
@ -583,46 +585,27 @@ static void oledDisplaySchedule(void) {
} }
static void updateTvoc(void) { static void updateTvoc(void) {
measurements.TVOC = ag.sgp41.getTvocIndex(); if (!configuration.hasSensorSGP) {
measurements.TVOCRaw = ag.sgp41.getTvocRaw(); return;
measurements.NOx = ag.sgp41.getNoxIndex(); }
measurements.NOxRaw = ag.sgp41.getNoxRaw();
Serial.println(); measurements.update(Measurements::TVOC, ag.sgp41.getTvocIndex());
Serial.printf("TVOC index: %d\r\n", measurements.TVOC); measurements.update(Measurements::TVOCRaw, ag.sgp41.getTvocRaw());
Serial.printf("TVOC raw: %d\r\n", measurements.TVOCRaw); measurements.update(Measurements::NOx, ag.sgp41.getNoxIndex());
Serial.printf("NOx index: %d\r\n", measurements.NOx); measurements.update(Measurements::NOxRaw, ag.sgp41.getNoxRaw());
Serial.printf("NOx raw: %d\r\n", measurements.NOxRaw);
} }
static void updatePm(void) { static void updatePm(void) {
if (ag.pms5003.connected()) { if (ag.pms5003.connected()) {
measurements.pm01_1 = ag.pms5003.getPm01Ae(); measurements.update(Measurements::PM01, ag.pms5003.getPm01Ae());
measurements.pm25_1 = ag.pms5003.getPm25Ae(); measurements.update(Measurements::PM25, ag.pms5003.getPm25Ae());
measurements.pm10_1 = ag.pms5003.getPm10Ae(); measurements.update(Measurements::PM10, ag.pms5003.getPm10Ae());
measurements.pm03PCount_1 = ag.pms5003.getPm03ParticleCount(); measurements.update(Measurements::PM03_PC, ag.pms5003.getPm03ParticleCount());
Serial.println();
Serial.printf("PM1 ug/m3: %d\r\n", measurements.pm01_1);
Serial.printf("PM2.5 ug/m3: %d\r\n", measurements.pm25_1);
Serial.printf("PM10 ug/m3: %d\r\n", measurements.pm10_1);
Serial.printf("PM0.3 Count: %d\r\n", measurements.pm03PCount_1);
Serial.printf("PM firmware version: %d\r\n", ag.pms5003.getFirmwareVersion());
ag.pms5003.resetFailCount();
} else { } else {
ag.pms5003.updateFailCount(); measurements.update(Measurements::PM01, utils::getInvalidPmValue());
Serial.printf("PMS read failed %d times\r\n", ag.pms5003.getFailCount()); measurements.update(Measurements::PM25, utils::getInvalidPmValue());
if (ag.pms5003.getFailCount() >= PMS_FAIL_COUNT_SET_INVALID) { measurements.update(Measurements::PM10, utils::getInvalidPmValue());
measurements.pm01_1 = utils::getInvalidPmValue(); measurements.update(Measurements::PM03_PC, utils::getInvalidPmValue());
measurements.pm25_1 = utils::getInvalidPmValue();
measurements.pm10_1 = utils::getInvalidPmValue();
measurements.pm03PCount_1 = utils::getInvalidPmValue();
}
if(ag.pms5003.getFailCount() >= ag.pms5003.getFailCountMax()) {
Serial.printf("PMS failure count reach to max set %d, restarting...", ag.pms5003.getFailCountMax());
ESP.restart();
}
} }
} }
@ -636,8 +619,7 @@ static void sendDataToServer(void) {
return; return;
} }
String syncData = measurements.toString(false, fwMode, wifiConnector.RSSI(), String syncData = measurements.toString(false, fwMode, wifiConnector.RSSI(), ag, configuration);
&ag, &configuration);
if (apiClient.postToServer(syncData)) { if (apiClient.postToServer(syncData)) {
Serial.println(); Serial.println();
Serial.println( Serial.println(
@ -647,26 +629,54 @@ static void sendDataToServer(void) {
} }
static void tempHumUpdate(void) { static void tempHumUpdate(void) {
delay(100);
if (ag.sht.measure()) { if (ag.sht.measure()) {
measurements.Temperature = ag.sht.getTemperature(); float temp = ag.sht.getTemperature();
measurements.Humidity = ag.sht.getRelativeHumidity(); float rhum = ag.sht.getRelativeHumidity();
Serial.printf("Temperature in C: %0.2f\r\n", measurements.Temperature); measurements.update(Measurements::Temperature, temp);
Serial.printf("Relative Humidity: %d\r\n", measurements.Humidity); measurements.update(Measurements::Humidity, rhum);
Serial.printf("Temperature compensated in C: %0.2f\r\n",
measurements.Temperature);
Serial.printf("Relative Humidity compensated: %d\r\n",
measurements.Humidity);
// Update compensation temperature and humidity for SGP41 // Update compensation temperature and humidity for SGP41
if (configuration.hasSensorSGP) { if (configuration.hasSensorSGP) {
ag.sgp41.setCompensationTemperatureHumidity(measurements.Temperature, ag.sgp41.setCompensationTemperatureHumidity(temp, rhum);
measurements.Humidity);
} }
} else { } else {
measurements.update(Measurements::Temperature, utils::getInvalidTemperature());
measurements.update(Measurements::Humidity, utils::getInvalidHumidity());
Serial.println("SHT read failed"); Serial.println("SHT read failed");
measurements.Temperature = utils::getInvalidTemperature();
measurements.Humidity = utils::getInvalidHumidity();
} }
} }
/* Set max period for each measurement type based on sensor update interval*/
void setMeasurementMaxPeriod() {
/// Max period for S8 sensors measurements
measurements.maxPeriod(Measurements::CO2, calculateMaxPeriod(SENSOR_CO2_UPDATE_INTERVAL));
/// Max period for SGP sensors measurements
measurements.maxPeriod(Measurements::TVOC, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::TVOCRaw, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::NOx, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::NOxRaw, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
/// Max period for PMS sensors measurements
measurements.maxPeriod(Measurements::PM25, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::PM01, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::PM10, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::PM03_PC, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
// Temperature and Humidity
if (configuration.hasSensorSHT) {
/// Max period for SHT sensors measurements
measurements.maxPeriod(Measurements::Temperature,
calculateMaxPeriod(SENSOR_TEMP_HUM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::Humidity,
calculateMaxPeriod(SENSOR_TEMP_HUM_UPDATE_INTERVAL));
} else {
/// Temp and hum data retrieved from PMS5003T sensor
measurements.maxPeriod(Measurements::Temperature,
calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::Humidity, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
}
}
int calculateMaxPeriod(int updateInterval) {
// 0.5 is 50% reduced interval for max period
return (SERVER_SYNC_INTERVAL - (SERVER_SYNC_INTERVAL * 0.5)) / updateInterval;
}

View File

@ -53,9 +53,8 @@ void LocalServer::_GET_metrics(void) {
} }
void LocalServer::_GET_measure(void) { void LocalServer::_GET_measure(void) {
server.send( String toSend = measure.toString(true, fwMode, wifiConnector.RSSI(), *ag, config);
200, "application/json", server.send(200, "application/json", toSend);
measure.toString(true, fwMode, wifiConnector.RSSI(), ag, &config));
} }
void LocalServer::setFwMode(AgFirmwareMode fwMode) { this->fwMode = fwMode; } void LocalServer::setFwMode(AgFirmwareMode fwMode) { this->fwMode = fwMode; }

View File

@ -73,19 +73,30 @@ String OpenMetrics::getPayload(void) {
int pm03PCount = utils::getInvalidPmValue(); int pm03PCount = utils::getInvalidPmValue();
int atmpCompensated = utils::getInvalidTemperature(); int atmpCompensated = utils::getInvalidTemperature();
int ahumCompensated = utils::getInvalidHumidity(); int ahumCompensated = utils::getInvalidHumidity();
int tvoc = utils::getInvalidVOC();
int tvoc_raw = utils::getInvalidVOC();
int nox = utils::getInvalidNOx();
int nox_raw = utils::getInvalidNOx();
if (config.hasSensorSHT) { if (config.hasSensorSHT) {
_temp = measure.Temperature; _temp = measure.getFloat(Measurements::Temperature);
_hum = measure.Humidity; _hum = measure.getFloat(Measurements::Humidity);
atmpCompensated = _temp; atmpCompensated = _temp;
ahumCompensated = _hum; ahumCompensated = _hum;
} }
if (config.hasSensorPMS1) { if (config.hasSensorPMS1) {
pm01 = measure.pm01_1; pm01 = measure.get(Measurements::PM01);
pm25 = measure.pm25_1; pm25 = measure.get(Measurements::PM25);
pm10 = measure.pm10_1; pm10 = measure.get(Measurements::PM10);
pm03PCount = measure.pm03PCount_1; pm03PCount = measure.get(Measurements::PM03_PC);
}
if (config.hasSensorSGP) {
tvoc = measure.get(Measurements::TVOC);
tvoc_raw = measure.get(Measurements::TVOCRaw);
nox = measure.get(Measurements::NOx);
nox_raw = measure.get(Measurements::NOxRaw);
} }
if (config.hasSensorPMS1) { if (config.hasSensorPMS1) {
@ -120,33 +131,33 @@ String OpenMetrics::getPayload(void) {
} }
if (config.hasSensorSGP) { if (config.hasSensorSGP) {
if (utils::isValidVOC(measure.TVOC)) { if (utils::isValidVOC(tvoc)) {
add_metric("tvoc_index", add_metric("tvoc_index",
"The processed Total Volatile Organic Compounds (TVOC) index " "The processed Total Volatile Organic Compounds (TVOC) index "
"as measured by the AirGradient SGP sensor", "as measured by the AirGradient SGP sensor",
"gauge"); "gauge");
add_metric_point("", String(measure.TVOC)); add_metric_point("", String(tvoc));
} }
if (utils::isValidVOC(measure.TVOCRaw)) { if (utils::isValidVOC(tvoc_raw)) {
add_metric("tvoc_raw", add_metric("tvoc_raw",
"The raw input value to the Total Volatile Organic Compounds " "The raw input value to the Total Volatile Organic Compounds "
"(TVOC) index as measured by the AirGradient SGP sensor", "(TVOC) index as measured by the AirGradient SGP sensor",
"gauge"); "gauge");
add_metric_point("", String(measure.TVOCRaw)); add_metric_point("", String(tvoc_raw));
} }
if (utils::isValidNOx(measure.NOx)) { if (utils::isValidNOx(nox)) {
add_metric("nox_index", add_metric("nox_index",
"The processed Nitrous Oxide (NOx) index as measured by the " "The processed Nitrous Oxide (NOx) index as measured by the "
"AirGradient SGP sensor", "AirGradient SGP sensor",
"gauge"); "gauge");
add_metric_point("", String(measure.NOx)); add_metric_point("", String(nox));
} }
if (utils::isValidNOx(measure.NOxRaw)) { if (utils::isValidNOx(nox_raw)) {
add_metric("nox_raw", add_metric("nox_raw",
"The raw input value to the Nitrous Oxide (NOx) index as " "The raw input value to the Nitrous Oxide (NOx) index as "
"measured by the AirGradient SGP sensor", "measured by the AirGradient SGP sensor",
"gauge"); "gauge");
add_metric_point("", String(measure.NOxRaw)); add_metric_point("", String(nox_raw));
} }
} }

View File

@ -64,9 +64,8 @@ void LocalServer::_GET_metrics(void) {
} }
void LocalServer::_GET_measure(void) { void LocalServer::_GET_measure(void) {
server.send( String toSend = measure.toString(true, fwMode, wifiConnector.RSSI(), *ag, config);
200, "application/json", server.send(200, "application/json", toSend);
measure.toString(true, fwMode, wifiConnector.RSSI(), ag, &config));
} }
void LocalServer::setFwMode(AgFirmwareMode fwMode) { this->fwMode = fwMode; } void LocalServer::setFwMode(AgFirmwareMode fwMode) { this->fwMode = fwMode; }

View File

@ -62,7 +62,7 @@ CC BY-SA 4.0 Attribution-ShareAlike 4.0 International License
#define SENSOR_TVOC_UPDATE_INTERVAL 1000 /** ms */ #define SENSOR_TVOC_UPDATE_INTERVAL 1000 /** ms */
#define SENSOR_CO2_UPDATE_INTERVAL 4000 /** ms */ #define SENSOR_CO2_UPDATE_INTERVAL 4000 /** ms */
#define SENSOR_PM_UPDATE_INTERVAL 2000 /** ms */ #define SENSOR_PM_UPDATE_INTERVAL 2000 /** ms */
#define SENSOR_TEMP_HUM_UPDATE_INTERVAL 2000 /** ms */ #define SENSOR_TEMP_HUM_UPDATE_INTERVAL 6000 /** ms */
#define DISPLAY_DELAY_SHOW_CONTENT_MS 2000 /** ms */ #define DISPLAY_DELAY_SHOW_CONTENT_MS 2000 /** ms */
#define FIRMWARE_CHECK_FOR_UPDATE_MS (60*60*1000) /** ms */ #define FIRMWARE_CHECK_FOR_UPDATE_MS (60*60*1000) /** ms */
@ -89,7 +89,6 @@ static LocalServer localServer(Serial, openMetrics, measurements, configuration,
wifiConnector); wifiConnector);
static uint32_t factoryBtnPressTime = 0; static uint32_t factoryBtnPressTime = 0;
static int getCO2FailCount = 0;
static AgFirmwareMode fwMode = FW_MODE_I_9PSL; static AgFirmwareMode fwMode = FW_MODE_I_9PSL;
static bool ledBarButtonTest = false; static bool ledBarButtonTest = false;
@ -115,6 +114,8 @@ static void firmwareCheckForUpdate(void);
static void otaHandlerCallback(OtaState state, String mesasge); static void otaHandlerCallback(OtaState state, String mesasge);
static void displayExecuteOta(OtaState state, String msg, static void displayExecuteOta(OtaState state, String msg,
int processing); int processing);
static int calculateMaxPeriod(int updateInterval);
static void setMeasurementMaxPeriod();
AgSchedule dispLedSchedule(DISP_UPDATE_INTERVAL, updateDisplayAndLedBar); AgSchedule dispLedSchedule(DISP_UPDATE_INTERVAL, updateDisplayAndLedBar);
AgSchedule configSchedule(SERVER_CONFIG_SYNC_INTERVAL, AgSchedule configSchedule(SERVER_CONFIG_SYNC_INTERVAL,
@ -165,6 +166,10 @@ void setup() {
/** Init sensor */ /** Init sensor */
boardInit(); boardInit();
setMeasurementMaxPeriod();
// Uncomment below line to print every measurements reading update
// measurements.setDebug(true);
/** Connecting wifi */ /** Connecting wifi */
bool connectToWifi = false; bool connectToWifi = false;
@ -317,17 +322,16 @@ void loop() {
} }
static void co2Update(void) { static void co2Update(void) {
if (!configuration.hasSensorS8) {
// Device don't have S8 sensor
return;
}
int value = ag->s8.getCo2(); int value = ag->s8.getCo2();
if (utils::isValidCO2(value)) { if (utils::isValidCO2(value)) {
measurements.CO2 = value; measurements.update(Measurements::CO2, value);
getCO2FailCount = 0;
Serial.printf("CO2 (ppm): %d\r\n", measurements.CO2);
} else { } else {
getCO2FailCount++; measurements.update(Measurements::CO2, utils::getInvalidCO2());
Serial.printf("Get CO2 failed: %d\r\n", getCO2FailCount);
if (getCO2FailCount >= 3) {
measurements.CO2 = utils::getInvalidCO2();
}
} }
} }
@ -360,8 +364,8 @@ static void createMqttTask(void) {
/** Send data */ /** Send data */
if (mqttClient.isConnected()) { if (mqttClient.isConnected()) {
String payload = measurements.toString( String payload =
true, fwMode, wifiConnector.RSSI(), ag, &configuration); measurements.toString(true, fwMode, wifiConnector.RSSI(), *ag, configuration);
String topic = "airgradient/readings/" + ag->deviceId(); String topic = "airgradient/readings/" + ag->deviceId();
if (mqttClient.publish(topic.c_str(), payload.c_str(), if (mqttClient.publish(topic.c_str(), payload.c_str(),
@ -982,240 +986,110 @@ static void updateDisplayAndLedBar(void) {
} }
static void updateTvoc(void) { static void updateTvoc(void) {
measurements.TVOC = ag->sgp41.getTvocIndex(); if (!configuration.hasSensorSGP) {
measurements.TVOCRaw = ag->sgp41.getTvocRaw(); return;
measurements.NOx = ag->sgp41.getNoxIndex(); }
measurements.NOxRaw = ag->sgp41.getNoxRaw();
Serial.println(); measurements.update(Measurements::TVOC, ag->sgp41.getTvocIndex());
Serial.printf("TVOC index: %d\r\n", measurements.TVOC); measurements.update(Measurements::TVOCRaw, ag->sgp41.getTvocRaw());
Serial.printf("TVOC raw: %d\r\n", measurements.TVOCRaw); measurements.update(Measurements::NOx, ag->sgp41.getNoxIndex());
Serial.printf("NOx index: %d\r\n", measurements.NOx); measurements.update(Measurements::NOxRaw, ag->sgp41.getNoxRaw());
Serial.printf("NOx raw: %d\r\n", measurements.NOxRaw); }
static void updatePMS5003() {
if (ag->pms5003.connected()) {
measurements.update(Measurements::PM01, ag->pms5003.getPm01Ae());
measurements.update(Measurements::PM25, ag->pms5003.getPm25Ae());
measurements.update(Measurements::PM10, ag->pms5003.getPm10Ae());
measurements.update(Measurements::PM03_PC, ag->pms5003.getPm03ParticleCount());
} else {
measurements.update(Measurements::PM01, utils::getInvalidPmValue());
measurements.update(Measurements::PM25, utils::getInvalidPmValue());
measurements.update(Measurements::PM10, utils::getInvalidPmValue());
measurements.update(Measurements::PM03_PC, utils::getInvalidPmValue());
}
} }
static void updatePm(void) { static void updatePm(void) {
bool restart = false;
if (ag->isOne()) { if (ag->isOne()) {
if (ag->pms5003.connected()) { updatePMS5003();
measurements.pm01_1 = ag->pms5003.getPm01Ae(); return;
measurements.pm25_1 = ag->pms5003.getPm25Ae(); }
measurements.pm10_1 = ag->pms5003.getPm10Ae();
measurements.pm03PCount_1 = ag->pms5003.getPm03ParticleCount();
Serial.println(); // Open Air Monitor series, can have two PMS5003T sensor
Serial.printf("PM1 ug/m3: %d\r\n", measurements.pm01_1); bool newPMS1Value = false;
Serial.printf("PM2.5 ug/m3: %d\r\n", measurements.pm25_1); bool newPMS2Value = false;
Serial.printf("PM10 ug/m3: %d\r\n", measurements.pm10_1);
Serial.printf("PM0.3 Count: %d\r\n", measurements.pm03PCount_1); // Read PMS channel 1 if available
Serial.printf("PM firmware version: %d\r\n", ag->pms5003.getFirmwareVersion()); int channel = 1;
ag->pms5003.resetFailCount(); if (configuration.hasSensorPMS1) {
if (ag->pms5003t_1.connected()) {
measurements.update(Measurements::PM01, ag->pms5003t_1.getPm01Ae(), channel);
measurements.update(Measurements::PM25, ag->pms5003t_1.getPm25Ae(), channel);
measurements.update(Measurements::PM10, ag->pms5003t_1.getPm10Ae(), channel);
measurements.update(Measurements::PM03_PC, ag->pms5003t_1.getPm03ParticleCount(), channel);
measurements.update(Measurements::Temperature, ag->pms5003t_1.getTemperature(), channel);
measurements.update(Measurements::Humidity, ag->pms5003t_1.getRelativeHumidity(), channel);
// flag that new valid PMS value exists
newPMS2Value = true;
} else { } else {
ag->pms5003.updateFailCount(); // PMS channel 1 now is not connected, update using invalid value
Serial.printf("PMS read failed %d times\r\n", ag->pms5003.getFailCount()); measurements.update(Measurements::PM01, utils::getInvalidPmValue(), channel);
if (ag->pms5003.getFailCount() >= PMS_FAIL_COUNT_SET_INVALID) { measurements.update(Measurements::PM25, utils::getInvalidPmValue(), channel);
measurements.pm01_1 = utils::getInvalidPmValue(); measurements.update(Measurements::PM10, utils::getInvalidPmValue(), channel);
measurements.pm25_1 = utils::getInvalidPmValue(); measurements.update(Measurements::PM03_PC, utils::getInvalidPmValue(), channel);
measurements.pm10_1 = utils::getInvalidPmValue(); measurements.update(Measurements::Temperature, utils::getInvalidTemperature(), channel);
measurements.pm03PCount_1 = utils::getInvalidPmValue(); measurements.update(Measurements::Humidity, utils::getInvalidHumidity(), channel);
}
if (ag->pms5003.getFailCount() >= ag->pms5003.getFailCountMax()) {
restart = true;
}
}
} else {
bool pmsResult_1 = false;
bool pmsResult_2 = false;
if (configuration.hasSensorPMS1 && ag->pms5003t_1.connected()) {
measurements.pm01_1 = ag->pms5003t_1.getPm01Ae();
measurements.pm25_1 = ag->pms5003t_1.getPm25Ae();
measurements.pm10_1 = ag->pms5003t_1.getPm10Ae();
measurements.pm03PCount_1 = ag->pms5003t_1.getPm03ParticleCount();
measurements.temp_1 = ag->pms5003t_1.getTemperature();
measurements.hum_1 = ag->pms5003t_1.getRelativeHumidity();
pmsResult_1 = true;
Serial.println();
Serial.printf("[1] PM1 ug/m3: %d\r\n", measurements.pm01_1);
Serial.printf("[1] PM2.5 ug/m3: %d\r\n", measurements.pm25_1);
Serial.printf("[1] PM10 ug/m3: %d\r\n", measurements.pm10_1);
Serial.printf("[1] PM3.0 Count: %d\r\n", measurements.pm03PCount_1);
Serial.printf("[1] Temperature in C: %0.2f\r\n", measurements.temp_1);
Serial.printf("[1] Relative Humidity: %d\r\n", measurements.hum_1);
Serial.printf("[1] Temperature compensated in C: %0.2f\r\n",
ag->pms5003t_1.compensateTemp(measurements.temp_1));
Serial.printf("[1] Relative Humidity compensated: %0.2f\r\n",
ag->pms5003t_1.compensateHum(measurements.hum_1));
Serial.printf("[1] PM firmware version: %d\r\n", ag->pms5003t_1.getFirmwareVersion());
ag->pms5003t_1.resetFailCount();
} else {
if (configuration.hasSensorPMS1) {
ag->pms5003t_1.updateFailCount();
Serial.printf("[1] PMS read failed %d times\r\n", ag->pms5003t_1.getFailCount());
if (ag->pms5003t_1.getFailCount() >= PMS_FAIL_COUNT_SET_INVALID) {
measurements.pm01_1 = utils::getInvalidPmValue();
measurements.pm25_1 = utils::getInvalidPmValue();
measurements.pm10_1 = utils::getInvalidPmValue();
measurements.pm03PCount_1 = utils::getInvalidPmValue();
measurements.temp_1 = utils::getInvalidTemperature();
measurements.hum_1 = utils::getInvalidHumidity();
}
if (ag->pms5003t_1.getFailCount() >= ag->pms5003t_1.getFailCountMax()) {
restart = true;
}
}
}
if (configuration.hasSensorPMS2 && ag->pms5003t_2.connected()) {
measurements.pm01_2 = ag->pms5003t_2.getPm01Ae();
measurements.pm25_2 = ag->pms5003t_2.getPm25Ae();
measurements.pm10_2 = ag->pms5003t_2.getPm10Ae();
measurements.pm03PCount_2 = ag->pms5003t_2.getPm03ParticleCount();
measurements.temp_2 = ag->pms5003t_2.getTemperature();
measurements.hum_2 = ag->pms5003t_2.getRelativeHumidity();
pmsResult_2 = true;
Serial.println();
Serial.printf("[2] PM1 ug/m3: %d\r\n", measurements.pm01_2);
Serial.printf("[2] PM2.5 ug/m3: %d\r\n", measurements.pm25_2);
Serial.printf("[2] PM10 ug/m3: %d\r\n", measurements.pm10_2);
Serial.printf("[2] PM3.0 Count: %d\r\n", measurements.pm03PCount_2);
Serial.printf("[2] Temperature in C: %0.2f\r\n", measurements.temp_2);
Serial.printf("[2] Relative Humidity: %d\r\n", measurements.hum_2);
Serial.printf("[2] Temperature compensated in C: %0.2f\r\n",
ag->pms5003t_1.compensateTemp(measurements.temp_2));
Serial.printf("[2] Relative Humidity compensated: %0.2f\r\n",
ag->pms5003t_1.compensateHum(measurements.hum_2));
Serial.printf("[2] PM firmware version: %d\r\n", ag->pms5003t_2.getFirmwareVersion());
ag->pms5003t_2.resetFailCount();
} else {
if (configuration.hasSensorPMS2) {
ag->pms5003t_2.updateFailCount();
Serial.printf("[2] PMS read failed %d times\r\n", ag->pms5003t_2.getFailCount());
if (ag->pms5003t_2.getFailCount() >= PMS_FAIL_COUNT_SET_INVALID) {
measurements.pm01_2 = utils::getInvalidPmValue();
measurements.pm25_2 = utils::getInvalidPmValue();
measurements.pm10_2 = utils::getInvalidPmValue();
measurements.pm03PCount_2 = utils::getInvalidPmValue();
measurements.temp_2 = utils::getInvalidTemperature();
measurements.hum_2 = utils::getInvalidHumidity();
}
if (ag->pms5003t_2.getFailCount() >= ag->pms5003t_2.getFailCountMax()) {
restart = true;
}
}
}
if (configuration.hasSensorPMS1 && configuration.hasSensorPMS2 &&
pmsResult_1 && pmsResult_2) {
/** Get total of PMS1*/
measurements.pm1Value01 = measurements.pm1Value01 + measurements.pm01_1;
measurements.pm1Value25 = measurements.pm1Value25 + measurements.pm25_1;
measurements.pm1Value10 = measurements.pm1Value10 + measurements.pm10_1;
measurements.pm1PCount =
measurements.pm1PCount + measurements.pm03PCount_1;
measurements.pm1temp = measurements.pm1temp + measurements.temp_1;
measurements.pm1hum = measurements.pm1hum + measurements.hum_1;
/** Get total of PMS2 */
measurements.pm2Value01 = measurements.pm2Value01 + measurements.pm01_2;
measurements.pm2Value25 = measurements.pm2Value25 + measurements.pm25_2;
measurements.pm2Value10 = measurements.pm2Value10 + measurements.pm10_2;
measurements.pm2PCount =
measurements.pm2PCount + measurements.pm03PCount_2;
measurements.pm2temp = measurements.pm2temp + measurements.temp_2;
measurements.pm2hum = measurements.pm2hum + measurements.hum_2;
measurements.countPosition++;
/** Get average */
if (measurements.countPosition == measurements.targetCount) {
measurements.pm01_1 =
measurements.pm1Value01 / measurements.targetCount;
measurements.pm25_1 =
measurements.pm1Value25 / measurements.targetCount;
measurements.pm10_1 =
measurements.pm1Value10 / measurements.targetCount;
measurements.pm03PCount_1 =
measurements.pm1PCount / measurements.targetCount;
measurements.temp_1 = measurements.pm1temp / measurements.targetCount;
measurements.hum_1 = measurements.pm1hum / measurements.targetCount;
measurements.pm01_2 =
measurements.pm2Value01 / measurements.targetCount;
measurements.pm25_2 =
measurements.pm2Value25 / measurements.targetCount;
measurements.pm10_2 =
measurements.pm2Value10 / measurements.targetCount;
measurements.pm03PCount_2 =
measurements.pm2PCount / measurements.targetCount;
measurements.temp_2 = measurements.pm2temp / measurements.targetCount;
measurements.hum_2 = measurements.pm2hum / measurements.targetCount;
measurements.countPosition = 0;
measurements.pm1Value01 = 0;
measurements.pm1Value25 = 0;
measurements.pm1Value10 = 0;
measurements.pm1PCount = 0;
measurements.pm1temp = 0;
measurements.pm1hum = 0;
measurements.pm2Value01 = 0;
measurements.pm2Value25 = 0;
measurements.pm2Value10 = 0;
measurements.pm2PCount = 0;
measurements.pm2temp = 0;
measurements.pm2hum = 0;
}
}
if (pmsResult_1 && pmsResult_2) {
measurements.Temperature =
(measurements.temp_1 + measurements.temp_2) / 2;
measurements.Humidity = (measurements.hum_1 + measurements.hum_2) / 2;
} else {
if (pmsResult_1) {
measurements.Temperature = measurements.temp_1;
measurements.Humidity = measurements.hum_1;
}
if (pmsResult_2) {
measurements.Temperature = measurements.temp_2;
measurements.Humidity = measurements.hum_2;
}
}
if (configuration.hasSensorSGP) {
float temp;
float hum;
if (pmsResult_1 && pmsResult_2) {
temp = (measurements.temp_1 + measurements.temp_2) / 2.0f;
hum = (measurements.hum_1 + measurements.hum_2) / 2.0f;
} else {
if (pmsResult_1) {
temp = measurements.temp_1;
hum = measurements.hum_1;
}
if (pmsResult_2) {
temp = measurements.temp_2;
hum = measurements.hum_2;
}
}
ag->sgp41.setCompensationTemperatureHumidity(temp, hum);
} }
} }
if (restart) { // Read PMS channel 2 if available
Serial.printf("PMS failure count reach to max set %d, restarting...", ag->pms5003.getFailCountMax()); channel = 2;
ESP.restart(); if (configuration.hasSensorPMS2) {
if (ag->pms5003t_2.connected()) {
measurements.update(Measurements::PM01, ag->pms5003t_2.getPm01Ae(), channel);
measurements.update(Measurements::PM25, ag->pms5003t_2.getPm25Ae(), channel);
measurements.update(Measurements::PM10, ag->pms5003t_2.getPm10Ae(), channel);
measurements.update(Measurements::PM03_PC, ag->pms5003t_2.getPm03ParticleCount(), channel);
measurements.update(Measurements::Temperature, ag->pms5003t_2.getTemperature(), channel);
measurements.update(Measurements::Humidity, ag->pms5003t_2.getRelativeHumidity(), channel);
// flag that new valid PMS value exists
newPMS2Value = true;
} else {
// PMS channel channel now is not connected, update using invalid value
measurements.update(Measurements::PM01, utils::getInvalidPmValue(), channel);
measurements.update(Measurements::PM25, utils::getInvalidPmValue(), channel);
measurements.update(Measurements::PM10, utils::getInvalidPmValue(), channel);
measurements.update(Measurements::PM03_PC, utils::getInvalidPmValue(), channel);
measurements.update(Measurements::Temperature, utils::getInvalidTemperature(), channel);
measurements.update(Measurements::Humidity, utils::getInvalidHumidity(), channel);
}
}
if (configuration.hasSensorSGP) {
float temp, hum;
if (newPMS1Value && newPMS2Value) {
// Both PMS has new valid value
temp = (measurements.getFloat(Measurements::Temperature, 1) +
measurements.getFloat(Measurements::Temperature, 2)) /
2.0f;
hum = (measurements.getFloat(Measurements::Humidity, 1) +
measurements.getFloat(Measurements::Humidity, 2)) /
2.0f;
} else if (newPMS1Value) {
// Only PMS1 has new valid value
temp = measurements.getFloat(Measurements::Temperature, 1);
hum = measurements.getFloat(Measurements::Humidity, 1);
} else {
// Only PMS2 has new valid value
temp = measurements.getFloat(Measurements::Temperature, 2);
hum = measurements.getFloat(Measurements::Humidity, 2);
}
// Update compensation temperature and humidity for SGP41
ag->sgp41.setCompensationTemperatureHumidity(temp, hum);
} }
} }
@ -1228,8 +1102,7 @@ static void sendDataToServer(void) {
return; return;
} }
String syncData = measurements.toString(false, fwMode, wifiConnector.RSSI(), String syncData = measurements.toString(false, fwMode, wifiConnector.RSSI(), *ag, configuration);
ag, &configuration);
if (apiClient.postToServer(syncData)) { if (apiClient.postToServer(syncData)) {
Serial.println(); Serial.println();
Serial.println( Serial.println(
@ -1241,24 +1114,53 @@ static void sendDataToServer(void) {
static void tempHumUpdate(void) { static void tempHumUpdate(void) {
delay(100); delay(100);
if (ag->sht.measure()) { if (ag->sht.measure()) {
measurements.Temperature = ag->sht.getTemperature(); float temp = ag->sht.getTemperature();
measurements.Humidity = ag->sht.getRelativeHumidity(); float rhum = ag->sht.getRelativeHumidity();
Serial.printf("Temperature in C: %0.2f\r\n", measurements.Temperature); measurements.update(Measurements::Temperature, temp);
Serial.printf("Relative Humidity: %d\r\n", measurements.Humidity); measurements.update(Measurements::Humidity, rhum);
Serial.printf("Temperature compensated in C: %0.2f\r\n",
measurements.Temperature);
Serial.printf("Relative Humidity compensated: %d\r\n",
measurements.Humidity);
// Update compensation temperature and humidity for SGP41 // Update compensation temperature and humidity for SGP41
if (configuration.hasSensorSGP) { if (configuration.hasSensorSGP) {
ag->sgp41.setCompensationTemperatureHumidity(measurements.Temperature, ag->sgp41.setCompensationTemperatureHumidity(temp, rhum);
measurements.Humidity);
} }
} else { } else {
measurements.Temperature = utils::getInvalidTemperature(); measurements.update(Measurements::Temperature, utils::getInvalidTemperature());
measurements.Humidity = utils::getInvalidHumidity(); measurements.update(Measurements::Humidity, utils::getInvalidHumidity());
Serial.println("SHT read failed"); Serial.println("SHT read failed");
} }
}
/* Set max period for each measurement type based on sensor update interval*/
void setMeasurementMaxPeriod() {
/// Max period for S8 sensors measurements
measurements.maxPeriod(Measurements::CO2, calculateMaxPeriod(SENSOR_CO2_UPDATE_INTERVAL));
/// Max period for SGP sensors measurements
measurements.maxPeriod(Measurements::TVOC, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::TVOCRaw, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::NOx, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::NOxRaw, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
/// Max period for PMS sensors measurements
measurements.maxPeriod(Measurements::PM25, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::PM01, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::PM10, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::PM03_PC, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
// Temperature and Humidity
if (configuration.hasSensorSHT) {
/// Max period for SHT sensors measurements
measurements.maxPeriod(Measurements::Temperature,
calculateMaxPeriod(SENSOR_TEMP_HUM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::Humidity,
calculateMaxPeriod(SENSOR_TEMP_HUM_UPDATE_INTERVAL));
} else {
/// Temp and hum data retrieved from PMS5003T sensor
measurements.maxPeriod(Measurements::Temperature,
calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::Humidity, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
}
}
int calculateMaxPeriod(int updateInterval) {
// 0.5 is 50% reduced interval for max period
return (SERVER_SYNC_INTERVAL - (SERVER_SYNC_INTERVAL * 0.5)) / updateInterval;
} }

View File

@ -74,41 +74,46 @@ String OpenMetrics::getPayload(void) {
int atmpCompensated = utils::getInvalidTemperature(); int atmpCompensated = utils::getInvalidTemperature();
int ahumCompensated = utils::getInvalidHumidity(); int ahumCompensated = utils::getInvalidHumidity();
if (config.hasSensorPMS1 && config.hasSensorPMS2) { if (config.hasSensorPMS1 && config.hasSensorPMS2) {
_temp = (measure.temp_1 + measure.temp_2) / 2.0f; _temp = (measure.getFloat(Measurements::Temperature, 1) +
_hum = (measure.hum_1 + measure.hum_2) / 2.0f; measure.getFloat(Measurements::Temperature, 2)) /
pm01 = (measure.pm01_1 + measure.pm01_2) / 2; 2.0f;
pm25 = (measure.pm25_1 + measure.pm25_2) / 2; _hum = (measure.getFloat(Measurements::Humidity, 1) +
pm10 = (measure.pm10_1 + measure.pm10_2) / 2; measure.getFloat(Measurements::Humidity, 2)) /
pm03PCount = (measure.pm03PCount_1 + measure.pm03PCount_2) / 2; 2.0f;
pm01 = (measure.get(Measurements::PM01, 1) + measure.get(Measurements::PM01, 2)) / 2.0f;
pm25 = (measure.get(Measurements::PM25, 1) + measure.get(Measurements::PM25, 2)) / 2.0f;
pm10 = (measure.get(Measurements::PM10, 1) + measure.get(Measurements::PM10, 2)) / 2.0f;
pm03PCount =
(measure.get(Measurements::PM03_PC, 1) + measure.get(Measurements::PM03_PC, 2)) / 2.0f;
} else { } else {
if (ag->isOne()) { if (ag->isOne()) {
if (config.hasSensorSHT) { if (config.hasSensorSHT) {
_temp = measure.Temperature; _temp = measure.getFloat(Measurements::Temperature);
_hum = measure.Humidity; _hum = measure.getFloat(Measurements::Humidity);
} }
if (config.hasSensorPMS1) { if (config.hasSensorPMS1) {
pm01 = measure.pm01_1; pm01 = measure.get(Measurements::PM01);
pm25 = measure.pm25_1; pm25 = measure.get(Measurements::PM25);
pm10 = measure.pm10_1; pm10 = measure.get(Measurements::PM10);
pm03PCount = measure.pm03PCount_1; pm03PCount = measure.get(Measurements::PM03_PC);
} }
} else { } else {
if (config.hasSensorPMS1) { if (config.hasSensorPMS1) {
_temp = measure.temp_1; _temp = measure.getFloat(Measurements::Temperature, 1);
_hum = measure.hum_1; _hum = measure.getFloat(Measurements::Humidity, 1);
pm01 = measure.pm01_1; pm01 = measure.get(Measurements::PM01, 1);
pm25 = measure.pm25_1; pm25 = measure.get(Measurements::PM25, 1);
pm10 = measure.pm10_1; pm10 = measure.get(Measurements::PM10, 1);
pm03PCount = measure.pm03PCount_1; pm03PCount = measure.get(Measurements::PM03_PC, 1);
} }
if (config.hasSensorPMS2) { if (config.hasSensorPMS2) {
_temp = measure.temp_2; _temp = measure.getFloat(Measurements::Temperature, 2);
_hum = measure.hum_2; _hum = measure.getFloat(Measurements::Humidity, 2);
pm01 = measure.pm01_2; pm01 = measure.get(Measurements::PM01, 2);
pm25 = measure.pm25_2; pm25 = measure.get(Measurements::PM25, 2);
pm10 = measure.pm10_2; pm10 = measure.get(Measurements::PM10, 2);
pm03PCount = measure.pm03PCount_2; pm03PCount = measure.get(Measurements::PM03_PC, 2);
} }
} }
} }

View File

@ -12,12 +12,13 @@
*/ */
void OledDisplay::showTempHum(bool hasStatus, char *buf, int buf_size) { void OledDisplay::showTempHum(bool hasStatus, char *buf, int buf_size) {
/** Temperature */ /** Temperature */
if (utils::isValidTemperature(value.Temperature)) { float temp = value.getFloat(Measurements::Temperature);
if (utils::isValidTemperature(temp)) {
float t = 0.0f; float t = 0.0f;
if (config.isTemperatureUnitInF()) { if (config.isTemperatureUnitInF()) {
t = utils::degreeC_To_F(value.Temperature); t = utils::degreeC_To_F(temp);
} else { } else {
t = value.Temperature; t = temp;
} }
if (config.isTemperatureUnitInF()) { if (config.isTemperatureUnitInF()) {
@ -43,13 +44,14 @@ void OledDisplay::showTempHum(bool hasStatus, char *buf, int buf_size) {
DISP()->drawUTF8(1, 10, buf); DISP()->drawUTF8(1, 10, buf);
/** Show humidity */ /** Show humidity */
if (utils::isValidHumidity(value.Humidity)) { int rhum = (int)value.getFloat(Measurements::Humidity);
snprintf(buf, buf_size, "%d%%", value.Humidity); if (utils::isValidHumidity(rhum)) {
snprintf(buf, buf_size, "%d%%", rhum);
} else { } else {
snprintf(buf, buf_size, "-%%"); snprintf(buf, buf_size, "-%%");
} }
if (value.Humidity > 99) { if (rhum > 99.0) {
DISP()->drawStr(97, 10, buf); DISP()->drawStr(97, 10, buf);
} else { } else {
DISP()->drawStr(105, 10, buf); DISP()->drawStr(105, 10, buf);
@ -290,8 +292,9 @@ void OledDisplay::showDashboard(const char *status) {
DISP()->drawUTF8(1, 27, "CO2"); DISP()->drawUTF8(1, 27, "CO2");
DISP()->setFont(u8g2_font_t0_22b_tf); DISP()->setFont(u8g2_font_t0_22b_tf);
if (utils::isValidCO2(value.CO2)) { int co2 = value.get(Measurements::CO2);
sprintf(strBuf, "%d", value.CO2); if (utils::isValidCO2(co2)) {
sprintf(strBuf, "%d", co2);
} else { } else {
sprintf(strBuf, "%s", "-"); sprintf(strBuf, "%s", "-");
} }
@ -310,12 +313,11 @@ void OledDisplay::showDashboard(const char *status) {
DISP()->drawStr(55, 27, "PM2.5"); DISP()->drawStr(55, 27, "PM2.5");
/** Draw PM2.5 value */ /** Draw PM2.5 value */
if (utils::isValidPm(value.pm25_1)) { int pm25 = value.get(Measurements::PM25);
int pm25 = value.pm25_1; if (utils::isValidPm(pm25)) {
/** Compensate PM2.5 value. */ /** Compensate PM2.5 value. */
if (config.hasSensorSHT && config.isMonitorDisplayCompensatedValues()) { if (config.hasSensorSHT && config.isMonitorDisplayCompensatedValues()) {
pm25 = ag->pms5003.compensate(pm25, value.Humidity); pm25 = ag->pms5003.compensate(pm25, value.getFloat(Measurements::Humidity));
logInfo("PM2.5 compensate: " + String(pm25)); logInfo("PM2.5 compensate: " + String(pm25));
} }
@ -343,17 +345,19 @@ void OledDisplay::showDashboard(const char *status) {
DISP()->drawStr(100, 27, "VOC:"); DISP()->drawStr(100, 27, "VOC:");
/** Draw tvocIndexvalue */ /** Draw tvocIndexvalue */
if (utils::isValidVOC(value.TVOC)) { int tvoc = value.get(Measurements::TVOC);
sprintf(strBuf, "%d", value.TVOC); if (utils::isValidVOC(tvoc)) {
sprintf(strBuf, "%d", tvoc);
} else { } else {
sprintf(strBuf, "%s", "-"); sprintf(strBuf, "%s", "-");
} }
DISP()->drawStr(100, 39, strBuf); DISP()->drawStr(100, 39, strBuf);
/** Draw NOx label */ /** Draw NOx label */
int nox = value.get(Measurements::NOx);
DISP()->drawStr(100, 53, "NOx:"); DISP()->drawStr(100, 53, "NOx:");
if (utils::isValidNOx(value.NOx)) { if (utils::isValidNOx(nox)) {
sprintf(strBuf, "%d", value.NOx); sprintf(strBuf, "%d", nox);
} else { } else {
sprintf(strBuf, "%s", "-"); sprintf(strBuf, "%s", "-");
} }
@ -363,8 +367,9 @@ void OledDisplay::showDashboard(const char *status) {
ag->display.clear(); ag->display.clear();
/** Set CO2 */ /** Set CO2 */
if (utils::isValidCO2(value.CO2)) { int co2 = value.get(Measurements::CO2);
snprintf(strBuf, sizeof(strBuf), "CO2:%d", value.CO2); if (utils::isValidCO2(co2)) {
snprintf(strBuf, sizeof(strBuf), "CO2:%d", co2);
} else { } else {
snprintf(strBuf, sizeof(strBuf), "CO2:-"); snprintf(strBuf, sizeof(strBuf), "CO2:-");
} }
@ -373,9 +378,9 @@ void OledDisplay::showDashboard(const char *status) {
ag->display.setText(strBuf); ag->display.setText(strBuf);
/** Set PM */ /** Set PM */
int pm25 = value.pm25_1; int pm25 = value.get(Measurements::PM25);
if (config.hasSensorSHT && config.isMonitorDisplayCompensatedValues()) { if (config.hasSensorSHT && config.isMonitorDisplayCompensatedValues()) {
pm25 = (int)ag->pms5003.compensate(pm25, value.Humidity); pm25 = (int)ag->pms5003.compensate(pm25, value.getFloat(Measurements::Humidity));
} }
ag->display.setCursor(0, 12); ag->display.setCursor(0, 12);
@ -387,12 +392,12 @@ void OledDisplay::showDashboard(const char *status) {
ag->display.setText(strBuf); ag->display.setText(strBuf);
/** Set temperature and humidity */ /** Set temperature and humidity */
if (utils::isValidTemperature(value.Temperature)) { float temp = value.getFloat(Measurements::Temperature);
if (utils::isValidTemperature(temp)) {
if (config.isTemperatureUnitInF()) { if (config.isTemperatureUnitInF()) {
snprintf(strBuf, sizeof(strBuf), "T:%0.1f F", snprintf(strBuf, sizeof(strBuf), "T:%0.1f F", utils::degreeC_To_F(temp));
utils::degreeC_To_F(value.Temperature));
} else { } else {
snprintf(strBuf, sizeof(strBuf), "T:%0.f1 C", value.Temperature); snprintf(strBuf, sizeof(strBuf), "T:%0.f1 C", temp);
} }
} else { } else {
if (config.isTemperatureUnitInF()) { if (config.isTemperatureUnitInF()) {
@ -405,8 +410,9 @@ void OledDisplay::showDashboard(const char *status) {
ag->display.setCursor(0, 24); ag->display.setCursor(0, 24);
ag->display.setText(strBuf); ag->display.setText(strBuf);
if (utils::isValidHumidity(value.Humidity)) { int rhum = (int)value.getFloat(Measurements::Humidity);
snprintf(strBuf, sizeof(strBuf), "H:%d %%", (int)value.Humidity); if (utils::isValidHumidity(rhum)) {
snprintf(strBuf, sizeof(strBuf), "H:%d %%", rhum);
} else { } else {
snprintf(strBuf, sizeof(strBuf), "H:- %%"); snprintf(strBuf, sizeof(strBuf), "H:- %%");
} }

View File

@ -69,7 +69,7 @@ void StateMachine::sensorhandleLeds(void) {
* *
*/ */
void StateMachine::co2handleLeds(void) { void StateMachine::co2handleLeds(void) {
int co2Value = value.CO2; int co2Value = value.get(Measurements::CO2);
if (co2Value <= 600) { if (co2Value <= 600) {
/** G; 1 */ /** G; 1 */
ag->ledBar.setColor(RGB_COLOR_G, ag->ledBar.getNumberOfLeds() - 1); ag->ledBar.setColor(RGB_COLOR_G, ag->ledBar.getNumberOfLeds() - 1);
@ -141,9 +141,9 @@ void StateMachine::co2handleLeds(void) {
* *
*/ */
void StateMachine::pm25handleLeds(void) { void StateMachine::pm25handleLeds(void) {
int pm25Value = value.pm25_1; int pm25Value = value.get(Measurements::PM25);
if (config.isMonitorDisplayCompensatedValues() && config.hasSensorSHT) { if (config.isMonitorDisplayCompensatedValues() && config.hasSensorSHT) {
pm25Value = ag->pms5003.compensate(value.pm25_1, value.Humidity); pm25Value = ag->pms5003.compensate(pm25Value, value.getFloat(Measurements::Humidity));
} }
if (pm25Value < 5) { if (pm25Value < 5) {

File diff suppressed because it is too large Load Diff

View File

@ -1,79 +1,179 @@
#ifndef _AG_VALUE_H_ #ifndef _AG_VALUE_H_
#define _AG_VALUE_H_ #define _AG_VALUE_H_
#include <Arduino.h> #include "AgConfigure.h"
#include "AirGradient.h"
#include "App/AppDef.h" #include "App/AppDef.h"
#include "Libraries/Arduino_JSON/src/Arduino_JSON.h"
#include "Main/utils.h"
#include <Arduino.h>
#include <vector>
class Measurements { class Measurements {
private: private:
String pms5003FirmwareVersion(int fwCode); // Generic struct for update indication for respective value
String pms5003TFirmwareVersion(int fwCode); struct Update {
String pms5003FirmwareVersionBase(String prefix, int fwCode); int invalidCounter; // Counting on how many invalid value that are passed to update function
int max; // Maximum length of the period of the moving average
float avg; // Moving average value, updated every update function called
};
// Reading type for sensor value that outputs float
struct FloatValue {
float sumValues; // Total value from each update
std::vector<float> listValues; // List of update value that are kept
Update update;
};
// Reading type for sensor value that outputs integer
struct IntegerValue {
unsigned long sumValues; // Total value from each update; unsigned long to accomodate TVOx and
// NOx raw data
std::vector<int> listValues; // List of update value that are kept
Update update;
};
public: public:
Measurements() { Measurements() {}
pm25_1 = -1;
pm01_1 = -1;
pm10_1 = -1;
pm03PCount_1 = -1;
temp_1 = -1001;
hum_1 = -1;
pm25_2 = -1;
pm01_2 = -1;
pm10_2 = -1;
pm03PCount_2 = -1;
temp_2 = -1001;
hum_2 = -1;
Temperature = -1001;
Humidity = -1;
CO2 = -1;
TVOC = -1;
TVOCRaw = -1;
NOx = -1;
NOxRaw = -1;
}
~Measurements() {} ~Measurements() {}
float Temperature; // Enumeration for every AG measurements
int Humidity; enum MeasurementType {
int CO2; Temperature,
int TVOC; Humidity,
int TVOCRaw; CO2,
int NOx; TVOC, // index value
int NOxRaw; TVOCRaw,
NOx, // index value
NOxRaw,
PM25,
PM01,
PM10,
PM03_PC, // Particle count
};
int pm25_1; /**
int pm01_1; * @brief Set each MeasurementType maximum period length for moving average
int pm10_1; *
int pm03PCount_1; * @param type the target measurement type to set
float temp_1; * @param max the maximum period length
int hum_1; */
void maxPeriod(MeasurementType, int max);
int pm25_2; /**
int pm01_2; * @brief update target measurement type with new value.
int pm10_2; * Each MeasurementType has last raw value and moving average value based on max period
int pm03PCount_2; * This function is for MeasurementType that use INT as the data type
float temp_2; *
int hum_2; * @param type measurement type that will be updated
* @param val (int) the new value
* @param ch (int) the MeasurementType channel, not every MeasurementType has more than 1 channel.
* Currently maximum channel is 2. Default: 1 (channel 1)
* @return false if new value invalid consecutively reach threshold (max period)
* @return true otherwise
*/
bool update(MeasurementType type, int val, int ch = 1);
int pm1Value01; /**
int pm1Value25; * @brief update target measurement type with new value.
int pm1Value10; * Each MeasurementType has last raw value and moving average value based on max period
int pm1PCount; * This function is for MeasurementType that use FLOAT as the data type
int pm1temp; *
int pm1hum; * @param type measurement type that will be updated
int pm2Value01; * @param val (float) the new value
int pm2Value25; * @param ch (int) the MeasurementType channel, not every MeasurementType has more than 1 channel.
int pm2Value10; * Currently maximum channel is 2. Default: 1 (channel 1)
int pm2PCount; * @return false if new value invalid consecutively reach threshold (max period)
int pm2temp; * @return true otherwise
int pm2hum; */
int countPosition; bool update(MeasurementType type, float val, int ch = 1);
const int targetCount = 20;
/**
* @brief Get the target measurement latest value
*
* @param type measurement type that will be retrieve
* @param ch target type value channel
* @return int measurement type value
*/
int get(MeasurementType type, int ch = 1);
/**
* @brief Get the target measurement latest value
*
* @param type measurement type that will be retrieve
* @param ch target type value channel
* @return float measurement type value
*/
float getFloat(MeasurementType type, int ch = 1);
/**
* build json payload for every measurements
*/
String toString(bool localServer, AgFirmwareMode fwMode, int rssi, AirGradient &ag,
Configuration &config);
/**
* Set to true if want to debug every update value
*/
void setDebug(bool debug);
// TODO: update this to use setter
int bootCount; int bootCount;
String toString(bool isLocal, AgFirmwareMode fwMode, int rssi, void* _ag, void* _config); private:
// Some declared as an array (channel), because FW_MODE_O_1PPx has two PMS5003T
FloatValue _temperature[2];
FloatValue _humidity[2];
IntegerValue _co2;
IntegerValue _tvoc; // Index value
IntegerValue _tvoc_raw;
IntegerValue _nox; // Index value
IntegerValue _nox_raw;
IntegerValue _pm_25[2];
IntegerValue _pm_01[2];
IntegerValue _pm_10[2];
IntegerValue _pm_03_pc[2]; // particle count 0.3
bool _debug = false;
/**
* @brief Get PMS5003 firmware version string
*
* @param fwCode
* @return String
*/
String pms5003FirmwareVersion(int fwCode);
/**
* @brief Get PMS5003T firmware version string
*
* @param fwCode
* @return String
*/
String pms5003TFirmwareVersion(int fwCode);
/**
* @brief Get firmware version string
*
* @param prefix Prefix firmware string
* @param fwCode Version code
* @return string
*/
String pms5003FirmwareVersionBase(String prefix, int fwCode);
/**
* Convert AgValue Type to string representation of the value
*/
String measurementTypeStr(MeasurementType type);
/**
* @brief check if provided channel is a valid channel or not
* abort program if invalid
*/
void validateChannel(int ch);
JSONVar buildOutdoor(bool localServer, AgFirmwareMode fwMode, AirGradient &ag,
Configuration &config);
JSONVar buildIndoor(bool localServer, AirGradient &ag, Configuration &config);
JSONVar buildPMS(AirGradient &ag, int ch, bool allCh, bool withTempHum, bool compensate);
}; };
#endif /** _AG_VALUE_H_ */ #endif /** _AG_VALUE_H_ */

View File

@ -320,11 +320,12 @@ int PMSBase::pm25ToAQI(int pm02) {
* *
* @param pm25 Raw PM2.5 value * @param pm25 Raw PM2.5 value
* @param humidity Humidity value (%) * @param humidity Humidity value (%)
* @return int * @return compensated pm25 value
*/ */
int PMSBase::compensate(int pm25, float humidity) { float PMSBase::compensate(float pm25, float humidity) {
float value; float value;
float fpm25 = pm25;
// Correct invalid humidity value
if (humidity < 0) { if (humidity < 0) {
humidity = 0; humidity = 0;
} }
@ -332,23 +333,33 @@ int PMSBase::compensate(int pm25, float humidity) {
humidity = 100.0f; humidity = 100.0f;
} }
if(pm25 < 30) { /** pm2.5 < 30 */ // If its already 0, do not proceed
value = (fpm25 * 0.524f) - (humidity * 0.0862f) + 5.75f; if (pm25 == 0) {
} else if(pm25 < 50) { /** 30 <= pm2.5 < 50 */ return 0.0;
value = (0.786f * (fpm25 * 0.05f - 1.5f) + 0.524f * (1.0f - (fpm25 * 0.05f - 1.5f))) * fpm25 - (0.0862f * humidity) + 5.75f; }
} else if(pm25 < 210) { /** 50 <= pm2.5 < 210 */
value = (0.786f * fpm25) - (0.0862f * humidity) + 5.75f; if (pm25 < 30) { /** pm2.5 < 30 */
} else if(pm25 < 260) { /** 210 <= pm2.5 < 260 */ value = (pm25 * 0.524f) - (humidity * 0.0862f) + 5.75f;
value = (0.69f * (fpm25 * 0.02f - 4.2f) + 0.786f * (1.0f - (fpm25 * 0.02f - 4.2f))) * fpm25 - (0.0862f * humidity * (1.0f - (fpm25 * 0.02f - 4.2f))) + (2.966f * (fpm25 * 0.02f - 4.2f)) + (5.75f * (1.0f - (fpm25 * 0.02f - 4.2f))) + (8.84f * (1.e-4) * fpm25 * fpm25 * (fpm25 * 0.02f - 4.2f)); } else if (pm25 < 50) { /** 30 <= pm2.5 < 50 */
value = (0.786f * (pm25 * 0.05f - 1.5f) + 0.524f * (1.0f - (pm25 * 0.05f - 1.5f))) * pm25 -
(0.0862f * humidity) + 5.75f;
} else if (pm25 < 210) { /** 50 <= pm2.5 < 210 */
value = (0.786f * pm25) - (0.0862f * humidity) + 5.75f;
} else if (pm25 < 260) { /** 210 <= pm2.5 < 260 */
value = (0.69f * (pm25 * 0.02f - 4.2f) + 0.786f * (1.0f - (pm25 * 0.02f - 4.2f))) * pm25 -
(0.0862f * humidity * (1.0f - (pm25 * 0.02f - 4.2f))) +
(2.966f * (pm25 * 0.02f - 4.2f)) + (5.75f * (1.0f - (pm25 * 0.02f - 4.2f))) +
(8.84f * (1.e-4) * pm25 * pm25 * (pm25 * 0.02f - 4.2f));
} else { /** 260 <= pm2.5 */ } else { /** 260 <= pm2.5 */
value = 2.966f + (0.69f * fpm25) + (8.84f * (1.e-4) * fpm25 * fpm25); value = 2.966f + (0.69f * pm25) + (8.84f * (1.e-4) * pm25 * pm25);
} }
// No negative value for pm2.5
if (value < 0) { if (value < 0) {
value = 0; return 0.0;
} }
return (int)value; return value;
} }
/** /**

View File

@ -39,7 +39,7 @@ public:
uint8_t getErrorCode(void); uint8_t getErrorCode(void);
int pm25ToAQI(int pm02); int pm25ToAQI(int pm02);
int compensate(int pm25, float humidity); float compensate(float pm25, float humidity);
private: private:
static const uint8_t package_size = 32; static const uint8_t package_size = 32;

View File

@ -118,16 +118,14 @@ int PMS5003::convertPm25ToUsAqi(int pm25) { return pms.pm25ToAQI(pm25); }
/** /**
* @brief Correct PM2.5 * @brief Correct PM2.5
* *
* Reference formula: https://www.airgradient.com/documentation/correction-algorithms/ * Reference formula: https://www.airgradient.com/documentation/correction-algorithms/
* *
* @param pm25 PM2.5 raw value * @param pm25 PM2.5 raw value
* @param humidity Humidity value * @param humidity Humidity value
* @return int * @return compensated value in float
*/ */
int PMS5003::compensate(int pm25, float humidity) { float PMS5003::compensate(float pm25, float humidity) { return pms.compensate(pm25, humidity); }
return pms.compensate(pm25, humidity);
}
/** /**
* @brief Get sensor firmware version * @brief Get sensor firmware version

View File

@ -30,7 +30,7 @@ public:
int getPm10Ae(void); int getPm10Ae(void);
int getPm03ParticleCount(void); int getPm03ParticleCount(void);
int convertPm25ToUsAqi(int pm25); int convertPm25ToUsAqi(int pm25);
int compensate(int pm25, float humidity); float compensate(float pm25, float humidity);
int getFirmwareVersion(void); int getFirmwareVersion(void);
uint8_t getErrorCode(void); uint8_t getErrorCode(void);
bool connected(void); bool connected(void);

View File

@ -165,16 +165,14 @@ float PMS5003T::getRelativeHumidity(void) {
/** /**
* @brief Correct PM2.5 * @brief Correct PM2.5
* *
* Reference formula: https://www.airgradient.com/documentation/correction-algorithms/ * Reference formula: https://www.airgradient.com/documentation/correction-algorithms/
* *
* @param pm25 PM2.5 raw value * @param pm25 PM2.5 raw value
* @param humidity Humidity value * @param humidity Humidity value
* @return int * @return compensated value
*/ */
int PMS5003T::compensate(int pm25, float humidity) { float PMS5003T::compensate(float pm25, float humidity) { return pms.compensate(pm25, humidity); }
return pms.compensate(pm25, humidity);
}
/** /**
* @brief Get module(s) firmware version * @brief Get module(s) firmware version

View File

@ -35,7 +35,7 @@ public:
int convertPm25ToUsAqi(int pm25); int convertPm25ToUsAqi(int pm25);
float getTemperature(void); float getTemperature(void);
float getRelativeHumidity(void); float getRelativeHumidity(void);
int compensate(int pm25, float humidity); float compensate(float pm25, float humidity);
int getFirmwareVersion(void); int getFirmwareVersion(void);
uint8_t getErrorCode(void); uint8_t getErrorCode(void);
bool connected(void); bool connected(void);