Compare commits

...

240 Commits

Author SHA1 Message Date
6a83743e2a Prepared to release 3.1.16 2024-12-05 15:06:10 +07:00
faaf051e39 Prepared to release 3.1.15 2024-12-05 15:00:25 +07:00
280ea5e997 Prepared to release 3.1.14 2024-12-04 10:38:13 +07:00
566f8a63b4 Prepare 3.1.13 release 2024-11-27 13:35:26 +07:00
9e4d52454b Merge pull request #266 from airgradienthq/fix/openmetrics
Fix measurements value in prometheus metrics endpoints
2024-11-27 03:38:57 +07:00
5f5e985309 Fix openmetrics esp8266 based 2024-11-27 00:43:03 +07:00
d638573ca7 Fix open metrics for OneOpenAir 2024-11-27 00:15:32 +07:00
79fbd901bd Merge branch 'develop' 2024-11-19 18:45:31 +07:00
3644dc43fe Prepared to release 3.1.12 2024-11-19 18:44:23 +07:00
03fa62d8f0 Merge pull request #263 from airgradienthq/fix/correction
Fix EPA compensated on top of SLR correction
2024-11-19 02:20:51 +07:00
902a768f28 Handle parsing invalid json string 2024-11-19 01:45:50 +07:00
1de9344f43 Fix typo on docs 2024-11-18 22:50:36 +07:00
46f6309b77 Fix use the right function 2024-11-18 22:42:43 +07:00
a6b48acb41 CO2 led bar indicator sync fix 2024-11-18 21:24:47 +07:00
1b4d89e1a1 fix correction on top of compensation 2024-11-18 19:53:28 +07:00
0d2b0fb657 Fix typo on local-server.md
Fix curl correction command example typos
2024-11-17 11:18:39 +07:00
9f08af44b0 Prepared to release 3.1.11 2024-11-11 20:04:47 +07:00
6b661cdeb7 Merge pull request #261 from airgradienthq/feat/allavg
Values on display and led bar using measurement average values
2024-11-11 12:40:48 +07:00
dc299c4b54 Fix pm2.5 not using getAverage for ledbar 2024-11-10 19:20:09 +07:00
2f595b4e41 Update local server docs correction examples 2024-11-10 04:26:54 +07:00
a30535f75f Use avg value for display and led bar 2024-11-10 04:13:58 +07:00
a513943cba New agvalue member to get avg values 2024-11-09 23:27:29 +07:00
96bb6952fb correction function return raw if algorithm is none 2024-11-09 21:28:33 +07:00
10653bfe26 Fix pms5003 correction default value 2024-11-09 20:55:41 +07:00
c7f89fa7b7 Decrease period length moving average to 80% 2024-11-09 20:53:52 +07:00
b11c461b60 Merge pull request #260 from airgradienthq/fix/led-flicker
Fix flicker on led bar led state change
2024-11-09 20:42:01 +07:00
404c14aad2 Fix typo and comment 2024-11-07 22:08:36 +07:00
bfbae680fd Fix led bar flicker when state change
clear only neccessary led
2024-11-07 22:03:01 +07:00
3ae5982380 Merge remote-tracking branch 'origin/develop' into develop 2024-11-04 13:21:46 +07:00
db2c2ef052 Prepared to release 3.1.10 2024-11-04 13:21:20 +07:00
593547cdbe Updated version number for 3.1.10 and enabled debug mode for verbose log messages 2024-11-03 14:38:37 +07:00
673c46950d Merge pull request #251 from airgradienthq/feat/ledbar-sensor-indicator
Update led bar indicator for CO2 and PM2 sensor level
2024-11-03 14:13:56 +07:00
ae0b4038d4 Merge branch 'develop' into feat/ledbar-sensor-indicator 2024-11-03 14:12:57 +07:00
cac0bd5355 Merge pull request #259 from airgradienthq/feat/pm-correction
Low Readings correction for Plantower PMS5003
2024-11-03 14:08:51 +07:00
3d6203dabf Fix some grammar on docs 2024-11-03 14:06:32 +07:00
1db8fbefe9 Corrections from local server
Tidy some things
2024-11-02 18:44:44 +07:00
d850d27dc1 Clear slr when not avail 2024-11-02 17:31:05 +07:00
f49e4a4b37 Fix casting enum issue
Previously if algo is slr, it's always consider new update
2024-11-02 17:23:15 +07:00
75f88b0009 Remove slr correction for pms5003t 2024-11-02 16:15:46 +07:00
c6961b3ca8 Validate raw pm before correction 2024-11-02 16:11:47 +07:00
ade72ff3b8 Apply correction to transmission payload
Only for indoor
2024-11-02 16:11:00 +07:00
9fbbea22ff Fix typo 2024-11-02 14:52:58 +07:00
7b0381dea3 Apply pm correction to display and led bar 2024-11-02 14:44:32 +07:00
5867d0f1d5 Fix pmcorrection member datatype
Log using printlog
Function to check if correction is not none
2024-11-02 14:40:35 +07:00
a98d77e0c3 slr pm2.5 correction implementation 2024-11-02 11:02:36 +07:00
641003f9d1 Get pm config function 2024-11-02 10:41:01 +07:00
0275aee370 Copy correction object to jconfig 2024-11-02 10:34:35 +07:00
ea46b812c1 Handle saving back to eeprom
rename the function
2024-11-02 00:53:33 +07:00
16c932962a Handle pm correction algorithm from ag server config 2024-11-02 00:10:08 +07:00
f90b2e1a07 Merge pull request #258 from airgradienthq/feat/particle-count
Include PMS particle count 0.5 and 5.0
2024-11-01 18:46:19 +07:00
3a9bb16c09 Change json key name for particle count 2.5 and 5.0 2024-11-01 17:46:58 +07:00
bb754edc51 Add other sensor json key field as const 2024-11-01 17:44:11 +07:00
1d991b1004 json key field from constants 2024-11-01 17:26:18 +07:00
3ebcc584a4 Update localserver docs 2024-10-31 21:19:46 +07:00
4d40ae421c Comment data to post
Payload already print out on toString() measurement
2024-10-31 21:17:28 +07:00
3004a82e7e pms disconnected log 2024-10-31 21:16:29 +07:00
4af5ca2665 Update local server docs 2024-10-31 21:12:29 +07:00
e6696f3d41 New particle count 0.5 and 5.0 2024-10-29 23:51:19 +07:00
2b33823162 Merge pull request #257 from airgradienthq/feat/pms-data
Send all particle counts and standard particle values provided by the PMS sensor
2024-10-23 20:57:58 +07:00
bf0768c7da Comment description to invalidValue variable 2024-10-23 20:55:45 +07:00
33e2977eb4 Fix comments 2024-10-23 11:18:18 +07:00
85e779cfc2 Use camel case for transmission payload 2024-10-23 11:05:16 +07:00
4783684443 Update local server payloads 2024-10-22 18:37:56 +07:00
3b0c77ca4d New measurements add to transmission payload 2024-10-22 18:28:56 +07:00
eeba41f497 Include other PMS data to measurements 2024-10-22 17:13:15 +07:00
fd1f35f6d8 Getter to get other PMS sensor data 2024-10-22 15:28:58 +07:00
eb76eff403 Merge pull request #256 from airgradienthq/restructure-agvalue
Restructure Measurements class
2024-10-22 13:40:50 +07:00
4673999dda Fix var type 2024-10-22 12:50:43 +07:00
83aa6a4502 Apply for other monitor series 2024-10-22 00:11:58 +07:00
8a87b865e6 Handle consecutive invalid value update
Set measurements type average value to invalid when invalidCounter reached max period
2024-10-21 22:37:44 +07:00
c3068be6e9 Fix calculation PPT compensated PM2.5 2024-10-21 22:00:47 +07:00
63bb5f8ddb Compensate function use float data type 2024-10-21 01:49:01 +07:00
8548d3e9f4 Optional to debug every measurement update value 2024-10-21 00:43:04 +07:00
f7e1363da9 Rename function 2024-10-21 00:22:50 +07:00
2ffe0a62aa Reduce update interval for max period to 50% 2024-10-21 00:15:59 +07:00
2cda36ed0d set measurement max period as function 2024-10-20 23:27:27 +07:00
7de2d0cc30 Set proper max period for moving average based on update interval
SHT read set to 6s
2024-10-20 23:20:16 +07:00
f478dd16c8 get value function consume 2024-10-20 22:30:49 +07:00
43ca0a2c2e get and getFloat function specific for latest value
Update functions comments
2024-10-20 20:04:07 +07:00
84884d0c15 Move average member value to update struct 2024-10-20 19:20:17 +07:00
f36f860c2e Switch to moving average for sensor data
average value to floating points
2024-10-20 19:01:41 +07:00
e47a9057ea Update AQI breakpoints to 2024 values (#208)
* Update breakpoints to 2024 standard

* Update formula to match Wikipedia
https://en.wikipedia.org/wiki/Air_quality_index#Computing_the_AQI

---------

Co-authored-by: Samuel Siburian <samuelbles07@gmail.com>
2024-10-19 14:55:08 +07:00
399b4ca1dc Other related class use new AgValue structure 2024-10-19 01:35:36 +07:00
2e4f4643fa maxUpdate 2024-10-19 01:33:00 +07:00
0ccf46c219 Rename AgValueType to MeasurementType
Just use plain enum instead of enum class
Remove unecessary legacy variables and function
2024-10-19 01:32:41 +07:00
76a2f332d7 Fix rhum precission on buildIndoor measurements 2024-10-17 12:08:00 +07:00
ed344d3e1a measurement toString
Tested on I-9PSL monitor
Update OneOpenAir post and mqtt to use new measurement toString
2024-10-17 00:53:49 +07:00
2082a2fa93 Fix missing line when commit 2024-10-14 02:14:10 +07:00
e145d32714 First test, console
Working average from main only
2024-10-14 02:05:30 +07:00
a2c19438c0 validateChannel implementation 2024-10-14 01:54:55 +07:00
ac838efdb5 validate measurement type channel 2024-10-14 01:25:35 +07:00
751d4e8380 Get value from each data type 2024-10-14 01:22:44 +07:00
6925b1ac9a Provide channel for neccessary ValueType
To support OA that have 2 PMS sensor
2024-10-13 23:30:03 +07:00
77a23b4202 Always increment bootcount when send measurements data is scheduled (#255) 2024-10-13 15:46:41 +07:00
ea91cf9b6c New function to set max update before averaging
Rename enum member
2024-10-11 22:47:43 +07:00
467b3e8637 Tidy up 2024-10-11 22:11:26 +07:00
2a5cf78b68 updateValue return bool to indicate max average is set or not
Add more comments
Update naming
2024-10-11 22:05:03 +07:00
9c09b82efd The data structure and update value function 2024-10-11 20:54:05 +07:00
60d01c0d94 First init the data structure 2024-10-10 22:51:37 +07:00
e7a91c53bc Update PM ledbar threshold 2024-10-08 00:34:29 +07:00
4e41fd5d71 Fix default for ledBarMode (#252) 2024-10-07 21:31:24 +07:00
fe4389bff4 Fix color under <4000 for co2 2024-09-30 22:43:08 +07:00
9325830fad Replace orange to yellow for ledbar co2 indicator 2024-09-30 22:38:52 +07:00
b86f0d45e3 Update PM2 level ledbar indicator 2024-09-30 22:33:52 +07:00
210f0a5ff9 Update CO2 level ledbar indicator 2024-09-30 22:27:45 +07:00
c841476ca4 Merge pull request #247 from airgradienthq/fix/pms-read-data
Fix: PMS sensor read failed in case PM value is low
2024-09-24 20:45:04 +07:00
359394af53 fix: compile failed for esp32-c3 2024-09-24 20:13:01 +07:00
b8e10f473e update API change on example 2024-09-24 20:07:31 +07:00
cb511903ef Update the API use Stream instead of Hardware/Software serial 2024-09-24 20:07:14 +07:00
ebb3f01dcd set active mode on init 2024-09-24 10:39:17 +07:00
2e0ba26c97 Merge commit '0370a8aa15ffaf776f9055f84b5d7c221046b9be' into fix/pms-read-data 2024-09-24 10:39:04 +07:00
c1a4758c6c update timeout handle 2024-09-24 10:28:41 +07:00
0370a8aa15 Update AirGradient.h to 3.1.9 2024-09-24 10:05:04 +07:00
863a37132a Update library.properties to 3.1.9 2024-09-24 10:04:28 +07:00
612317d976 Update local-server config example 2024-09-24 09:46:18 +07:00
8873bacf55 Merge pull request #243 from airgradienthq/feature/add-pm-configuratin-for-display
Add configuration: monitorDisplayCompensatedValues
2024-09-24 09:42:50 +07:00
bf2388b121 Merge pull request #241 from DmitryPustovit/support-display-disable-for-diy-board
Added support clearing display at 0 brightness for DIY Boards
2024-09-24 09:41:01 +07:00
b3918bd1fb Merge pull request #242 from airgradienthq/hw-watchdog-feed
Update hardware watchdog reset
2024-09-24 09:40:11 +07:00
2a6fce674e add variable comment 2024-09-23 06:51:01 +07:00
2f0663ced0 Merge pull request #246 from airgradienthq/fix/display-msg
Fix showing "Server N/A" when postDataToAirGradient is false
2024-09-22 14:26:17 +07:00
3adf58537a Changed error message 2024-09-22 14:13:24 +07:00
e10c9ff854 Update status notification in 1 function call 2024-09-22 13:18:15 +07:00
12c6ec9910 format code 2024-09-21 17:48:18 +07:00
d108b63a57 Update read proccess 2024-09-21 17:47:59 +07:00
6e212714fc Fix/mqtt-log (#235)
Ignore init mqtt when it's not configured
2024-09-21 14:57:05 +07:00
866684eb30 fix load configuration value changed 2024-09-21 14:26:06 +07:00
9d01479406 Update show PM compensate value on display and documents 2024-09-21 14:08:42 +07:00
20245f2110 Saving work 2024-09-21 13:06:01 +07:00
3890919f54 Update log message 2024-09-21 08:46:05 +07:00
76e40fea8c let hw watchdog run independently of POST success 2024-09-21 08:09:58 +07:00
c4024f49fb Added support clearing display at 0 brightness for DIY Boards to AgOledDisplay.
Currently, the only affect the brightness setting has with the DIY boards is an attempt to set the contrast. 

Setting the contrast to 0 does not have any effect. 
This appears to be a know limitation for these display boards.
2024-09-20 00:36:34 -07:00
ca5fc8d65b fix WiFi reset 2024-09-18 12:10:23 +07:00
fd2cef153e Merge pull request #239 from airgradienthq/hotfix/led-bar-show-pm-status
Fix: Correct LED bar show PM status
2024-09-17 10:25:42 +07:00
507b958fdf Correct LED bar show PM value use compensate 2024-09-17 10:15:47 +07:00
335c29ebb1 Merge remote-tracking branch 'origin/develop' into hotfix/led-bar-show-pm-status 2024-09-17 10:01:58 +07:00
2907d6f14e Merge pull request #238 from airgradienthq/hotfix/PM-compensation-receiving-temperature-instead-of-RH
Fix pm compensation: receiving temperature instead of humidity
2024-09-17 09:44:50 +07:00
c8d5b546ed correct PM compensate the input argument value humidity instead of temperature, fix #234 2024-09-16 14:52:04 +07:00
b7cfdc4c4d Update AirGradient.h to v 3.1.8 2024-09-16 12:47:50 +07:00
994d281e02 Update Version to 3.1.8 2024-09-16 12:47:08 +07:00
39470384e4 Merge pull request #233 from airgradienthq/cubic-PM2009X
Changed PM initialization to also support the Cubic PM2009X
2024-09-16 12:08:18 +07:00
c25ba764bf Merge pull request #236 from airgradienthq/add-log-pms-version-code
Add log: PMS5003x sensor print log firmware version
2024-09-16 11:02:32 +07:00
826ff00f42 add log message PM sensor firmware version 2024-09-16 10:36:45 +07:00
520550037d Explicitly set active mode for PM sensor upon initialization 2024-09-15 08:26:38 +07:00
90f336dee7 Revert "Explicitly set active mode for PM sensor upon initialization"
This reverts commit 0d39643e76.
2024-09-15 08:23:32 +07:00
0d39643e76 Explicitly set active mode for PM sensor upon initialization 2024-09-15 08:22:50 +07:00
21232ec49d Optimize PMS sensor read data on active mode send each second 2024-09-14 14:05:35 +07:00
b7339de31f Merge pull request #232 from samuelbles07/feat/ag-client-timeout
Feat/ag-client-timeout
2024-09-12 15:06:23 +07:00
013fb94307 Only for tcp timeout
Ignoring connect to server timeout
2024-09-11 16:37:50 +07:00
e16373a64d Add new public member to set http client timeout by caller 2024-09-11 16:02:13 +07:00
f929623443 Fix uri formatting postToServer to use apiRoot 2024-09-11 16:01:16 +07:00
59587ce2b7 Add http request timeout number for ApiClient 2024-09-11 15:48:44 +07:00
9ec74450a5 Merge branch 'master' into develop 2024-09-02 19:56:46 +07:00
28096e9faf Update version to 3.1.7 2024-09-02 19:55:16 +07:00
682378a47c Merge pull request #231 from airgradienthq/develop
Add WiFi feature
2024-09-02 19:53:33 +07:00
a1861be7b7 Merge pull request #230 from airgradienthq/feature/wifi-connect-to-default
Add default WiFi connect
2024-09-02 19:50:47 +07:00
99ddd24432 Merge branch 'develop' into feature/wifi-connect-to-default 2024-09-02 19:44:53 +07:00
29491e4cbe Merge pull request #229 from airgradienthq/develop
Merge to Master to Release 3.1.6
2024-09-02 12:19:46 +07:00
87cc3fc45f Update library.properties to v 3.1.6 2024-09-02 12:18:04 +07:00
7471d8079a Update AirGradient.h to v 3.1.6 2024-09-02 12:17:08 +07:00
8b0fe967f1 Merge pull request #223 from airgradienthq/hotfix/print-log-wrong-format
Fix print log message number format
2024-09-02 12:11:43 +07:00
6f1cef4e67 Merge pull request #224 from airgradienthq/hotfix/pms25-compensated-show-on-display
[Fix] PM2.5 compensated show on display
2024-09-02 12:09:51 +07:00
02b63ff816 Merge pull request #226 from airgradienthq/fix/pm2.5-compensated-formula
Fix pm2.5 compensation formula
2024-09-02 12:06:39 +07:00
228bf83e92 Merge pull request #228 from airgradienthq/feature/support-led-test-on-openair
`OpenAir` handle `ledBarTestRequested`
2024-09-02 12:05:20 +07:00
d3534cda52 handle ledBarTestRequested on OpenAir 2024-09-01 20:19:18 +07:00
aafaa42a68 Update formula link 2024-09-01 19:56:11 +07:00
2e9ff0d7dd add link to formula document 2024-08-30 19:21:54 +07:00
244b7814a6 add link to formula documents 2024-08-30 19:20:08 +07:00
28d27ee8fd Rename temperatureCompensated to compensateTemp and humidityCompensated to compensateHum 2024-08-30 19:17:58 +07:00
753f22923c rename isValidPMS to isValidPm 2024-08-30 19:07:31 +07:00
c45901706f Merge branch 'develop' into hotfix/pms25-compensated-show-on-display 2024-08-30 19:02:50 +07:00
663836e277 Merge pull request #205 from airgradienthq/feature/send-pms-sensor-fw-version-to-ag-cloud
Send PMS5003T firmware version to Ag Cloud
2024-08-30 10:54:36 +07:00
d39e10908d Merge branch 'develop' into hotfix/print-log-wrong-format 2024-08-28 09:57:45 +07:00
c52962d628 Update float constant 2024-08-26 20:47:48 +07:00
6b65efd3d6 fix pm2.5 compensated formula, #225 2024-08-26 20:43:48 +07:00
8bb87a75ef Merge pull request #222 from airgradienthq/hotfix/pms-fail-count-restart
Hotfix/pms fail count restart
2024-08-26 20:17:20 +07:00
1afcca25a1 Fix compile failed. 2024-08-26 15:54:41 +07:00
17238cff86 fix compile failed. 2024-08-26 15:52:31 +07:00
03e2afbf54 WiFi Connect to default airgradient if WiFi connected is empty 2024-08-26 15:47:49 +07:00
104d58a8c0 resolve review #222 2024-08-26 14:14:42 +07:00
7a988ea6c1 rename compensated to compensate 2024-08-26 11:56:01 +07:00
54ed83cb89 Revert las misstake commit changed. 2024-08-25 20:56:30 +07:00
e461b92c9f Fix build failed 2024-08-25 20:51:07 +07:00
db21648e91 Merge branch 'develop' into feature/send-pms-sensor-fw-version-to-ag-cloud 2024-08-25 20:46:28 +07:00
a9654506f5 Update log format, #218 2024-08-25 20:40:45 +07:00
63f653d5cd fix PM2.5 compensated on display, #221 2024-08-25 20:37:38 +07:00
b049a23657 Restart device after PMS sensor read failed 10 times 2024-08-25 20:21:26 +07:00
d6766ef68b Correct print log number format, fix #218 2024-08-25 08:37:25 +07:00
6c3259b94b Merge branch 'master' into develop 2024-08-23 09:16:10 +07:00
b1aaa04421 update GIT_BUILD version 2024-08-23 09:12:43 +07:00
2df78e9066 Merge branch 'master' into develop 2024-08-23 08:59:49 +07:00
186f0d27ab Update version 2024-08-23 08:59:28 +07:00
e25aa87ecc Merge pull request #215 from airgradienthq/develop
Develop
2024-08-23 08:50:04 +07:00
1cc8941a5c csv alignment format 2024-08-22 11:27:25 +07:00
9bf1495be7 Merge branch 'hotfix/firmware-version' into develop 2024-08-22 11:24:26 +07:00
73089b51f5 add firmware version for arduino build 2024-08-22 11:23:53 +07:00
625e60a5bf Merge branch 'hotfix/local-configuration-return-result' into develop 2024-08-21 12:54:47 +07:00
88e3d0bd3f Ignore and return failed if configurationControl is cloud 2024-08-21 12:54:06 +07:00
171821cfcf Merge pull request #214 from airgradienthq/hotfix/api-client-log
API client log post data
2024-08-21 12:28:50 +07:00
900a2da2ac Log POST data 2024-08-21 12:27:56 +07:00
fb57a112c9 Merge pull request #201 from McJoppy/feature/root-api
Reintroduce 'ROOTAPI' so domain and protocol can be configured
2024-08-20 09:25:48 +07:00
ab69b686ec Merge branch 'develop' into feature/root-api 2024-08-20 09:22:36 +07:00
6746d25dc2 Add comment to all example scripts showing how to change APIROOT 2024-08-18 16:46:56 +12:00
be150e105a Merge pull request #204 from airgradienthq/feature/add-http-request-to-ag-log
Add log message HTTP request and response to AG server
2024-08-18 11:37:42 +07:00
ecadeeb156 Merge pull request #209 from airgradienthq/hotfix/json-round-2-decimal-place-support-negative-value
`round2` support negative value
2024-08-18 11:33:39 +07:00
219ff73132 Merge pull request #212 from airgradienthq/feature/correct-pm2.5-formula
correct pm2.5 formula to show value on display
2024-08-18 11:32:50 +07:00
0a9142204d Merge pull request #213 from airgradienthq/hotfix/sensor-value-out-of-range
sensor value out of range
2024-08-18 11:30:27 +07:00
81b13134d2 update PM2.5 firmware prefix to PMS5003x 2024-08-16 06:42:43 +07:00
f3a9c722b2 Change pm25Compensated to compensated 2024-08-16 06:39:52 +07:00
3be3218115 Update invalid value and optimize code operator. 2024-08-15 09:11:38 +07:00
5edb21cfe9 Fix: PMS5003T only return positive temperature value 2024-08-15 09:10:48 +07:00
6cd587b008 Merge remote-tracking branch 'origin/develop' into feature/correct-pm2.5-formula 2024-08-15 08:19:10 +07:00
6d01366887 change pmsFirmare to firmware 2024-08-15 08:04:30 +07:00
1a347e9cfe Merge pull request #206 from airgradienthq/hotfix/display-show-nox-incorrect-position
`NOx` show incorrect position on display
2024-08-12 09:20:21 +07:00
6432e4451e Merge pull request #210 from airgradienthq/hotfix/set-connect-to-default-wifi-on-factory-reset
Set WiFi connect to default WiFi on factory reset
2024-08-10 07:45:06 +07:00
97f0696002 set default wifi on factory reset. 2024-08-09 13:19:28 +07:00
e46e11c030 round2 support negative value 2024-08-08 05:53:24 +07:00
dc261f668d Update local-server.md II 2024-08-07 11:08:48 +07:00
b5cced40d2 Update local-server.md 2024-08-07 11:05:39 +07:00
040bd28038 Add report PMS5003 and PMS5003T firmware version 2024-08-07 08:50:43 +07:00
b0ae851427 Fix nox position 2024-07-30 20:26:19 +07:00
01943f594d Send PMS5003T firmware version to cloud 2024-07-29 13:20:07 +07:00
01a69668cc Merge branch 'develop' into feature/send-pms-sensor-fw-version-to-ag-cloud 2024-07-29 12:56:45 +07:00
ed7b8df6fe log URLs of all HTTP requests to AG backend / log status codes of responses 2024-07-29 06:00:54 +07:00
6c1c914716 Merge pull request #196 from airgradienthq/hotfix/led-bar-show-sensor-data-incorrect
Correct LED bar show sensor value level color
2024-07-26 06:16:33 +07:00
6a0d88ff10 Merge pull request #197 from airgradienthq/hotfix/ignore-parameter-out-of-range
Ignore parameter values out of range
2024-07-26 06:12:04 +07:00
9097eed137 [fix] typo comment 2024-07-24 20:31:43 +07:00
c9b5e5f0d7 Merge branch 'develop' into hotfix/ignore-parameter-out-of-range 2024-07-24 20:24:27 +07:00
c12bac4ce3 Update invalid temperature value 2024-07-24 20:19:06 +07:00
9ae9b2ac9c display float value on display with 1 digit 2024-07-24 20:18:48 +07:00
7fb3e68b6d Merge pull request #195 from airgradienthq/hotfix/change-tvoc-to-VOC
Change `tvoc` to `VOC` on display
2024-07-24 09:19:03 +02:00
cf65a1f901 Merge pull request #200 from airgradienthq/feature/doc-quote-properties-name
Update local-server.md
2024-07-24 09:16:09 +02:00
5fb27b6d1e Check value sensor value 2024-07-24 09:05:57 +07:00
7b9dac756b Reintroduce 'ROOTAPI' so domain and protocol can be configured
eg. setter for api root added as comment in examples/BASIC/BASIC.ino
2024-07-21 19:38:50 +12:00
4b2a5f5540 Add PM2.5 correction formula, #182 2024-07-21 07:13:34 +07:00
4af77d532e Update local-server.md
Quote properties name
2024-07-20 09:39:29 +07:00
812c2ab803 add PMS5003T get module firmware version code 2024-07-20 08:53:19 +07:00
0ece16f434 Update screen layout, #139 2024-07-18 11:28:12 +07:00
df6cca3714 Ignore parameter values out of range #190 2024-07-11 06:25:31 +07:00
c8aa07ae20 Correct LED bar show sensor value level color, #161 2024-07-09 06:44:04 +07:00
a1d216ac77 Change tvoc to VOC, #139 2024-07-09 06:10:07 +07:00
45 changed files with 3638 additions and 1366 deletions

View File

@ -41,86 +41,176 @@ You get the following response:
"bootCount": 6,
"ledMode": "pm",
"firmware": "3.1.3",
"model": "I-9PSL"
"model": "I-9PSL",
"monitorDisplayCompensatedValues": true
}
```
| Properties | Type | Explanation |
|------------------|--------|--------------------------------------------------------------------|
| serialno | String | Serial Number of the monitor |
| wifi | Number | WiFi signal strength |
| pm01 | Number | PM1 in ug/m3 |
| pm02 | Number | PM2.5 in ug/m3 |
| pm10 | Number | PM10 in ug/m3 |
| pm02Compensated | Number | PM2.5 in ug/m3 with correction applied (from fw version 3.1.4 onwards) |
| rco2 | Number | CO2 in ppm |
| pm003Count | Number | Particle count per dL |
| atmp | Number | Temperature in Degrees Celsius |
| atmpCompensated | Number | Temperature in Degrees Celsius with correction applied |
| rhum | Number | Relative Humidity |
| rhumCompensated | Number | Relative Humidity with correction applied |
| tvocIndex | Number | Senisiron VOC Index |
| tvocRaw | Number | VOC raw value |
| noxIndex | Number | Senisirion NOx Index |
| noxRaw | Number | NOx raw value |
| boot | Number | Counts every measurement cycle. Low boot counts indicate restarts. |
| bootCount | Number | Same as boot property. Required for Home Assistant compatability. Will be depreciated. |
| ledMode | String | Current configuration of the LED mode |
| firmware | String | Current firmware version |
| model | String | Current model name |
| Properties | Type | Explanation |
|-----------------------------------|---------|----------------------------------------------------------------------------------------|
| `serialno` | String | Serial Number of the monitor |
| `wifi` | Number | WiFi signal strength |
| `pm01` | Number | PM1.0 in ug/m3 (atmospheric environment) |
| `pm02` | Number | PM2.5 in ug/m3 (atmospheric environment) |
| `pm10` | Number | PM10 in ug/m3 (atmospheric environment) |
| `pm02Compensated` | Number | PM2.5 in ug/m3 with correction applied (from fw version 3.1.4 onwards) |
| `pm01Standard` | Number | PM1.0 in ug/m3 (standard particle) |
| `pm02Standard` | Number | PM2.5 in ug/m3 (standard particle) |
| `pm10Standard` | Number | PM10 in ug/m3 (standard particle) |
| `rco2` | Number | CO2 in ppm |
| `pm003Count` | Number | Particle count 0.3um per dL |
| `pm005Count` | Number | Particle count 0.5um per dL |
| `pm01Count` | Number | Particle count 1.0um per dL |
| `pm02Count` | Number | Particle count 2.5um per dL |
| `pm50Count` | Number | Particle count 5.0um per dL (only for indoor monitor) |
| `pm10Count` | Number | Particle count 10um per dL (only for indoor monitor) |
| `atmp` | Number | Temperature in Degrees Celsius |
| `atmpCompensated` | Number | Temperature in Degrees Celsius with correction applied |
| `rhum` | Number | Relative Humidity |
| `rhumCompensated` | Number | Relative Humidity with correction applied |
| `tvocIndex` | Number | Senisiron VOC Index |
| `tvocRaw` | Number | VOC raw value |
| `noxIndex` | Number | Senisirion NOx Index |
| `noxRaw` | Number | NOx raw value |
| `boot` | Number | Counts every measurement cycle. Low boot counts indicate restarts. |
| `bootCount` | Number | Same as boot property. Required for Home Assistant compatability. (deprecated soon!) |
| `ledMode` | String | Current configuration of the LED mode |
| `firmware` | String | Current firmware version |
| `model` | String | Current model name |
Compensated values apply correction algorithms to make the sensor values more accurate. Temperature and relative humidity correction is only applied on the outdoor monitor Open Air but the properties _compensated will still be send also for the indoor monitor AirGradient ONE.
#### Get Configuration Parameters (GET)
With the path "/config" you can get the current configuration.
"/config" path returns the current configuration of the monitor.
```json
{
"country": "US",
"country": "TH",
"pmStandard": "ugm3",
"ledBarMode": "pm",
"displayMode": "on",
"abcDays": 30,
"abcDays": 7,
"tvocLearningOffset": 12,
"noxLearningOffset": 12,
"mqttBrokerUrl": "",
"temperatureUnit": "f",
"configurationControl": "both",
"postDataToAirGradient": true
"temperatureUnit": "c",
"configurationControl": "local",
"postDataToAirGradient": true,
"ledBarBrightness": 100,
"displayBrightness": 100,
"offlineMode": false,
"model": "I-9PSL",
"monitorDisplayCompensatedValues": true,
"corrections": {
"pm02": {
"correctionAlgorithm": "epa_2021",
"slr": {}
}
}
}
}
```
#### Set Configuration Parameters (PUT)
Configuration parameters can be changed with a put request to the monitor, e.g.
Configuration parameters can be changed with a PUT request to the monitor, e.g.
Example to force CO2 calibration
```curl -X PUT -H "Content-Type: application/json" -d '{"co2CalibrationRequested":true}' http://airgradient_84fce612eff4.local/config ```
```bash
curl -X PUT -H "Content-Type: application/json" -d '{"co2CalibrationRequested":true}' http://airgradient_84fce612eff4.local/config
```
Example to set monitor to Celsius
```curl -X PUT -H "Content-Type: application/json" -d '{"temperatureUnit":"c"}' http://airgradient_84fce612eff4.local/config ```
```bash
curl -X PUT -H "Content-Type: application/json" -d '{"temperatureUnit":"c"}' http://airgradient_84fce612eff4.local/config
```
If you use command prompt on Windows, you need to escape the quotes:
``` -d "{\"param\":\"value\"}" ```
#### Avoiding Conflicts with Configuration on AirGradient Server
If the monitor is set up on the AirGradient dashboard, it will also receive configurations from there. In case you do not want this, please set `configurationControl` to `local`. In case you set it to `cloud` and want to change it to `local`, you need to make a factory reset.
If the monitor is set up on the AirGradient dashboard, it will also receive the configuration parameters from there. In case you do not want this, please set `configurationControl` to `local`. In case you set it to `cloud` and want to change it to `local`, you need to make a factory reset.
#### Configuration Parameters (GET/PUT)
| Properties | Description | Type | Accepted Values | Example |
|-------------------------|:-------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| country | Country where the device is. | String | Country code as [ALPHA-2 notation](https://www.iban.com/country-codes) | {"country": "TH"} |
| model | Hardware identifier (only GET). | String | I-9PSL-DE | {"model": "I-9PSL-DE"} |
| pmStandard | Particle matter standard used on the display. | String | `ugm3`: ug/m3 <br> `us-aqi`: USAQI | {"pmStandard": "ugm3"} |
| ledBarMode | Mode in which the led bar can be set. | String | `co2`: LED bar displays CO2 <br>`pm`: LED bar displays PM <br>`off`: Turn off LED bar | {"ledBarMode": "off"} |
| displayBrightness | Brightness of the Display. | Number | 0-100 | {"displayBrightness": 50} |
| ledBarBrightness | Brightness of the LEDBar. | Number | 0-100 | {"ledBarBrightness": 40} |
| abcDays | Number of days for CO2 automatic baseline calibration. | Number | Maximum 200 days. Default 8 days. | {"abcDays": 8} |
| mqttBrokerUrl | MQTT broker URL. | String | | {"mqttBrokerUrl": "mqtt://192.168.0.18:1883"} |
| temperatureUnit | Temperature unit shown on the display. | String | `c` or `C`: Degree Celsius °C <br>`f` or `F`: Degree Fahrenheit °F | {"temperatureUnit": "c"} |
| configurationControl | The configuration source of the device. | String | `both`: Accept local and cloud configuration <br>`local`: Accept only local configuration <br>`cloud`: Accept only cloud configuration | {"configurationControl": "both"} |
| postDataToAirGradient | Send data to AirGradient cloud. | Boolean | `true`: Enabled <br>`false`: Disabled | {"postDataToAirGradient": true} |
| co2CalibrationRequested | Can be set to trigger a calibration. | Boolean | `true`: CO2 calibration (400ppm) will be triggered | {"co2CalibrationRequested": true} |
| ledBarTestRequested | Can be set to trigger a test. | Boolean | `true` : LEDs will run test sequence | {"ledBarTestRequested": true} |
| noxLearningOffset | Set NOx learning gain offset. | Number | 0-720 (default 12) | {"noxLearningOffset": 12} |
| tvocLearningOffset | Set VOC learning gain offset. | Number | 0-720 (default 12) | {"tvocLearningOffset": 12} |
| offlineMode | Set monitor to run without WiFi. | Boolean | `false`: Disabled (default) <br> `true`: Enabled | {"offlineMode": true} |
| Properties | Description | Type | Accepted Values | Example |
|-----------------------------------|:-----------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| `country` | Country where the device is. | String | Country code as [ALPHA-2 notation](https://www.iban.com/country-codes) | `{"country": "TH"}` |
| `model` | Hardware identifier (only GET). | String | I-9PSL-DE | `{"model": "I-9PSL-DE"}` |
| `pmStandard` | Particle matter standard used on the display. | String | `ugm3`: ug/m3 <br> `us-aqi`: USAQI | `{"pmStandard": "ugm3"}` |
| `ledBarMode` | Mode in which the led bar can be set. | String | `co2`: LED bar displays CO2 <br>`pm`: LED bar displays PM <br>`off`: Turn off LED bar | `{"ledBarMode": "off"}` |
| `displayBrightness` | Brightness of the Display. | Number | 0-100 | `{"displayBrightness": 50}` |
| `ledBarBrightness` | Brightness of the LEDBar. | Number | 0-100 | `{"ledBarBrightness": 40}` |
| `abcDays` | Number of days for CO2 automatic baseline calibration. | Number | Maximum 200 days. Default 8 days. | `{"abcDays": 8}` |
| `mqttBrokerUrl` | MQTT broker URL. | String | | `{"mqttBrokerUrl": "mqtt://192.168.0.18:1883"}` |
| `temperatureUnit` | Temperature unit shown on the display. | String | `c` or `C`: Degree Celsius °C <br>`f` or `F`: Degree Fahrenheit °F | `{"temperatureUnit": "c"}` |
| `configurationControl` | The configuration source of the device. | String | `both`: Accept local and cloud configuration <br>`local`: Accept only local configuration <br>`cloud`: Accept only cloud configuration | `{"configurationControl": "both"}` |
| `postDataToAirGradient` | Send data to AirGradient cloud. | Boolean | `true`: Enabled <br>`false`: Disabled | `{"postDataToAirGradient": true}` |
| `co2CalibrationRequested` | Can be set to trigger a calibration. | Boolean | `true`: CO2 calibration (400ppm) will be triggered | `{"co2CalibrationRequested": true}` |
| `ledBarTestRequested` | Can be set to trigger a test. | Boolean | `true` : LEDs will run test sequence | `{"ledBarTestRequested": true}` |
| `noxLearningOffset` | Set NOx learning gain offset. | Number | 0-720 (default 12) | `{"noxLearningOffset": 12}` |
| `tvocLearningOffset` | Set VOC learning gain offset. | Number | 0-720 (default 12) | `{"tvocLearningOffset": 12}` |
| `offlineMode` | Set monitor to run without WiFi. | Boolean | `false`: Disabled (default) <br> `true`: Enabled | `{"offlineMode": true}` |
| `monitorDisplayCompensatedValues` | Set the display show the PM value with/without compensate value (only on [3.1.9]()) | Boolean | `false`: Without compensate (default) <br> `true`: with compensate | `{"monitorDisplayCompensatedValues": false }` |
| `corrections` | Sets correction options to display and measurement values on local server response. (version >= [3.1.11]()) | Object | _see corrections section_ | _see corrections section_ |
#### Corrections
The `corrections` object allows configuring PM2.5 correction algorithms and parameters locally. This affects both the display and local server response values.
Example correction configuration:
```json
{
"corrections": {
"pm02": {
"correctionAlgorithm": "<Option In String>",
"slr": {
"intercept": 0,
"scalingFactor": 0,
"useEpa2021": false
}
}
}
}
```
| Algorithm | Value | Description | SLR required |
|------------|-------------|------|---------|
| Raw | `"none"` | No correction (default) | No |
| EPA 2021 | `"epa_2021"` | Use EPA 2021 correction factors on top of raw value | No |
| PMS5003_20240104 | `"slr_PMS5003_20240104"` | Correction for PMS5003 sensor batch 20240104| Yes |
| PMS5003_20231218 | `"slr_PMS5003_20231218"` | Correction for PMS5003 sensor batch 20231218| Yes |
| PMS5003_20231030 | `"slr_PMS5003_20231030"` | Correction for PMS5003 sensor batch 20231030| Yes |
**NOTES**:
- Set `useEpa2021` to `true` if want to apply EPA 2021 correction factors on top of SLR correction value, otherwise `false`
- `intercept` and `scalingFactor` values can be obtained from [this article](https://www.airgradient.com/blog/low-readings-from-pms5003/)
- If `configurationControl` is set to `local` (eg. when using Home Assistant), correction need to be set manually, see examples below
**Examples**:
- PMS5003_20231030
```bash
curl --location -X PUT 'http://airgradient_84fce612eff4.local/config' --header 'Content-Type: application/json' --data '{"corrections":{"pm02":{"correctionAlgorithm":"slr_PMS5003_20231030","slr":{"intercept":0,"scalingFactor":0.02838,"useEpa2021":true}}}}'
```
- PMS5003_20231218
```bash
curl --location -X PUT 'http://airgradient_84fce612eff4.local/config' --header 'Content-Type: application/json' --data '{"corrections":{"pm02":{"correctionAlgorithm":"slr_PMS5003_20231218","slr":{"intercept":0,"scalingFactor":0.03525,"useEpa2021":true}}}}'
```
- PMS5003_20240104
```bash
curl --location -X PUT 'http://airgradient_84fce612eff4.local/config' --header 'Content-Type: application/json' --data '{"corrections":{"pm02":{"correctionAlgorithm":"slr_PMS5003_20240104","slr":{"intercept":0,"scalingFactor":0.02896,"useEpa2021":true}}}}'
```

View File

@ -49,9 +49,8 @@ CC BY-SA 4.0 Attribution-ShareAlike 4.0 International License
#define SENSOR_TVOC_UPDATE_INTERVAL 1000 /** ms */
#define SENSOR_CO2_UPDATE_INTERVAL 4000 /** ms */
#define SENSOR_PM_UPDATE_INTERVAL 2000 /** ms */
#define SENSOR_TEMP_HUM_UPDATE_INTERVAL 2000 /** ms */
#define SENSOR_TEMP_HUM_UPDATE_INTERVAL 6000 /** ms */
#define DISPLAY_DELAY_SHOW_CONTENT_MS 2000 /** ms */
#define FIRMWARE_CHECK_FOR_UPDATE_MS (60 * 60 * 1000) /** ms */
static AirGradient ag(DIY_BASIC);
static Configuration configuration(Serial);
@ -68,8 +67,6 @@ static LocalServer localServer(Serial, openMetrics, measurements, configuration,
wifiConnector);
static MqttClient mqttClient(Serial);
static int pmFailCount = 0;
static int getCO2FailCount = 0;
static AgFirmwareMode fwMode = FW_MODE_I_BASIC_40PS;
static String fwNewVersion;
@ -91,6 +88,8 @@ static void wdgFeedUpdate(void);
static bool sgp41Init(void);
static void wifiFactoryConfigure(void);
static void mqttHandle(void);
static int calculateMaxPeriod(int updateInterval);
static void setMeasurementMaxPeriod();
AgSchedule dispLedSchedule(DISP_UPDATE_INTERVAL, oledDisplaySchedule);
AgSchedule configSchedule(SERVER_CONFIG_SYNC_INTERVAL,
@ -126,8 +125,15 @@ void setup() {
openMetrics.setAirGradient(&ag);
localServer.setAirGraident(&ag);
/** Example set custom API root URL */
// apiClient.setApiRoot("https://example.custom.api");
/** Init sensor */
boardInit();
setMeasurementMaxPeriod();
// Uncomment below line to print every measurements reading update
// measurements.setDebug(true);
/** Connecting wifi */
bool connectToWifi = false;
@ -204,11 +210,7 @@ void loop() {
tvocSchedule.run();
}
/** Auto reset watchdog timer if offline mode or postDataToAirGradient */
if (configuration.isOfflineMode() ||
(configuration.isPostDataToAirGradient() == false)) {
watchdogFeedSchedule.run();
}
watchdogFeedSchedule.run();
/** Check for handle WiFi reconnect */
wifiConnector.handle();
@ -232,17 +234,16 @@ void loop() {
}
static void co2Update(void) {
if (!configuration.hasSensorS8) {
// Device don't have S8 sensor
return;
}
int value = ag.s8.getCo2();
if (value >= 0) {
measurements.CO2 = value;
getCO2FailCount = 0;
Serial.printf("CO2 (ppm): %d\r\n", measurements.CO2);
if (utils::isValidCO2(value)) {
measurements.update(Measurements::CO2, value);
} else {
getCO2FailCount++;
Serial.printf("Get CO2 failed: %d\r\n", getCO2FailCount);
if (getCO2FailCount >= 3) {
measurements.CO2 = -1;
}
measurements.update(Measurements::CO2, utils::getInvalidCO2());
}
}
@ -264,18 +265,23 @@ static void mdnsInit(void) {
}
static void initMqtt(void) {
if (mqttClient.begin(configuration.getMqttBrokerUri())) {
Serial.println("Setup connect to MQTT broker successful");
String mqttUri = configuration.getMqttBrokerUri();
if (mqttUri.isEmpty()) {
Serial.println(
"MQTT is not configured, skipping initialization of MQTT client");
return;
}
if (mqttClient.begin(mqttUri)) {
Serial.println("Successfully connected to MQTT broker");
} else {
Serial.println("setup Connect to MQTT broker failed");
Serial.println("Connection to MQTT broker failed");
}
}
static void wdgFeedUpdate(void) {
ag.watchdog.reset();
Serial.println();
Serial.println("Offline mode or isPostToAirGradient = false: watchdog reset");
Serial.println();
Serial.println("External watchdog feed!");
}
static bool sgp41Init(void) {
@ -310,8 +316,7 @@ static void mqttHandle(void) {
}
if (mqttClient.isConnected()) {
String payload = measurements.toString(true, fwMode, wifiConnector.RSSI(),
&ag, &configuration);
String payload = measurements.toString(true, fwMode, wifiConnector.RSSI(), ag, configuration);
String topic = "airgradient/readings/" + ag.deviceId();
if (mqttClient.publish(topic.c_str(), payload.c_str(), payload.length())) {
Serial.println("MQTT sync success");
@ -487,82 +492,98 @@ static void oledDisplaySchedule(void) {
}
static void updateTvoc(void) {
measurements.TVOC = ag.sgp41.getTvocIndex();
measurements.TVOCRaw = ag.sgp41.getTvocRaw();
measurements.NOx = ag.sgp41.getNoxIndex();
measurements.NOxRaw = ag.sgp41.getNoxRaw();
if (!configuration.hasSensorSGP) {
return;
}
Serial.println();
Serial.printf("TVOC index: %d\r\n", measurements.TVOC);
Serial.printf("TVOC raw: %d\r\n", measurements.TVOCRaw);
Serial.printf("NOx index: %d\r\n", measurements.NOx);
Serial.printf("NOx raw: %d\r\n", measurements.NOxRaw);
measurements.update(Measurements::TVOC, ag.sgp41.getTvocIndex());
measurements.update(Measurements::TVOCRaw, ag.sgp41.getTvocRaw());
measurements.update(Measurements::NOx, ag.sgp41.getNoxIndex());
measurements.update(Measurements::NOxRaw, ag.sgp41.getNoxRaw());
}
static void updatePm(void) {
if (ag.pms5003.isFailed() == false) {
measurements.pm01_1 = ag.pms5003.getPm01Ae();
measurements.pm25_1 = ag.pms5003.getPm25Ae();
measurements.pm10_1 = ag.pms5003.getPm10Ae();
measurements.pm03PCount_1 = ag.pms5003.getPm03ParticleCount();
Serial.println();
Serial.printf("PM1 ug/m3: %d\r\n", measurements.pm01_1);
Serial.printf("PM2.5 ug/m3: %d\r\n", measurements.pm25_1);
Serial.printf("PM10 ug/m3: %d\r\n", measurements.pm10_1);
Serial.printf("PM0.3 Count: %d\r\n", measurements.pm03PCount_1);
pmFailCount = 0;
if (ag.pms5003.connected()) {
measurements.update(Measurements::PM01, ag.pms5003.getPm01Ae());
measurements.update(Measurements::PM25, ag.pms5003.getPm25Ae());
measurements.update(Measurements::PM10, ag.pms5003.getPm10Ae());
measurements.update(Measurements::PM03_PC, ag.pms5003.getPm03ParticleCount());
} else {
pmFailCount++;
Serial.printf("PMS read failed: %d\r\n", pmFailCount);
if (pmFailCount >= 3) {
measurements.pm01_1 = -1;
measurements.pm25_1 = -1;
measurements.pm10_1 = -1;
measurements.pm03PCount_1 = -1;
}
measurements.update(Measurements::PM01, utils::getInvalidPmValue());
measurements.update(Measurements::PM25, utils::getInvalidPmValue());
measurements.update(Measurements::PM10, utils::getInvalidPmValue());
measurements.update(Measurements::PM03_PC, utils::getInvalidPmValue());
}
}
static void sendDataToServer(void) {
/** Increment bootcount when send measurements data is scheduled */
measurements.bootCount++;
/** Ignore send data to server if postToAirGradient disabled */
if (configuration.isPostDataToAirGradient() == false ||
configuration.isOfflineMode()) {
return;
}
String syncData = measurements.toString(false, fwMode, wifiConnector.RSSI(),
&ag, &configuration);
String syncData = measurements.toString(false, fwMode, wifiConnector.RSSI(), ag, configuration);
if (apiClient.postToServer(syncData)) {
ag.watchdog.reset();
Serial.println();
Serial.println(
"Online mode and isPostToAirGradient = true: watchdog reset");
Serial.println();
}
measurements.bootCount++;
}
static void tempHumUpdate(void) {
delay(100);
if (ag.sht.measure()) {
measurements.Temperature = ag.sht.getTemperature();
measurements.Humidity = ag.sht.getRelativeHumidity();
float temp = ag.sht.getTemperature();
float rhum = ag.sht.getRelativeHumidity();
Serial.printf("Temperature in C: %0.2f\r\n", measurements.Temperature);
Serial.printf("Relative Humidity: %d\r\n", measurements.Humidity);
Serial.printf("Temperature compensated in C: %0.2f\r\n",
measurements.Temperature);
Serial.printf("Relative Humidity compensated: %d\r\n",
measurements.Humidity);
measurements.update(Measurements::Temperature, temp);
measurements.update(Measurements::Humidity, rhum);
// Update compensation temperature and humidity for SGP41
if (configuration.hasSensorSGP) {
ag.sgp41.setCompensationTemperatureHumidity(measurements.Temperature,
measurements.Humidity);
ag.sgp41.setCompensationTemperatureHumidity(temp, rhum);
}
} else {
measurements.update(Measurements::Temperature, utils::getInvalidTemperature());
measurements.update(Measurements::Humidity, utils::getInvalidHumidity());
Serial.println("SHT read failed");
}
}
/* Set max period for each measurement type based on sensor update interval*/
void setMeasurementMaxPeriod() {
/// Max period for S8 sensors measurements
measurements.maxPeriod(Measurements::CO2, calculateMaxPeriod(SENSOR_CO2_UPDATE_INTERVAL));
/// Max period for SGP sensors measurements
measurements.maxPeriod(Measurements::TVOC, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::TVOCRaw, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::NOx, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::NOxRaw, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
/// Max period for PMS sensors measurements
measurements.maxPeriod(Measurements::PM25, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::PM01, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::PM10, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::PM03_PC, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
// Temperature and Humidity
if (configuration.hasSensorSHT) {
/// Max period for SHT sensors measurements
measurements.maxPeriod(Measurements::Temperature,
calculateMaxPeriod(SENSOR_TEMP_HUM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::Humidity,
calculateMaxPeriod(SENSOR_TEMP_HUM_UPDATE_INTERVAL));
} else {
/// Temp and hum data retrieved from PMS5003T sensor
measurements.maxPeriod(Measurements::Temperature,
calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::Humidity, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
}
}
int calculateMaxPeriod(int updateInterval) {
// 0.5 is 50% reduced interval for max period
return (SERVER_SYNC_INTERVAL - (SERVER_SYNC_INTERVAL * 0.5)) / updateInterval;
}

View File

@ -53,9 +53,8 @@ void LocalServer::_GET_metrics(void) {
}
void LocalServer::_GET_measure(void) {
server.send(
200, "application/json",
measure.toString(true, fwMode, wifiConnector.RSSI(), ag, &config));
String toSend = measure.toString(true, fwMode, wifiConnector.RSSI(), *ag, config);
server.send(200, "application/json", toSend);
}
void LocalServer::setFwMode(AgFirmwareMode fwMode) { this->fwMode = fwMode; }

View File

@ -57,60 +57,69 @@ String OpenMetrics::getPayload(void) {
"gauge", "dbm");
add_metric_point("", String(wifiConnector.RSSI()));
if (config.hasSensorS8 && measure.CO2 >= 0) {
add_metric("co2",
"Carbon dioxide concentration as measured by the AirGradient S8 "
"sensor, in parts per million",
"gauge", "ppm");
add_metric_point("", String(measure.CO2));
}
float _temp = -1001;
float _hum = -1;
int pm01 = -1;
int pm25 = -1;
int pm10 = -1;
int pm03PCount = -1;
int atmpCompensated = -1;
int ahumCompensated = -1;
// Initialize default invalid value for each measurements
float _temp = utils::getInvalidTemperature();
float _hum = utils::getInvalidHumidity();
int pm01 = utils::getInvalidPmValue();
int pm25 = utils::getInvalidPmValue();
int pm10 = utils::getInvalidPmValue();
int pm03PCount = utils::getInvalidPmValue();
int co2 = utils::getInvalidCO2();
int atmpCompensated = utils::getInvalidTemperature();
int ahumCompensated = utils::getInvalidHumidity();
int tvoc = utils::getInvalidVOC();
int tvocRaw = utils::getInvalidVOC();
int nox = utils::getInvalidNOx();
int noxRaw = utils::getInvalidNOx();
if (config.hasSensorSHT) {
_temp = measure.Temperature;
_hum = measure.Humidity;
_temp = measure.getFloat(Measurements::Temperature);
_hum = measure.getFloat(Measurements::Humidity);
atmpCompensated = _temp;
ahumCompensated = _hum;
}
if (config.hasSensorPMS1) {
pm01 = measure.pm01_1;
pm25 = measure.pm25_1;
pm10 = measure.pm10_1;
pm03PCount = measure.pm03PCount_1;
pm01 = measure.get(Measurements::PM01);
pm25 = measure.get(Measurements::PM25);
pm10 = measure.get(Measurements::PM10);
pm03PCount = measure.get(Measurements::PM03_PC);
}
if (config.hasSensorSGP) {
tvoc = measure.get(Measurements::TVOC);
tvocRaw = measure.get(Measurements::TVOCRaw);
nox = measure.get(Measurements::NOx);
noxRaw = measure.get(Measurements::NOxRaw);
}
if (config.hasSensorS8) {
co2 = measure.get(Measurements::CO2);
}
if (config.hasSensorPMS1) {
if (pm01 >= 0) {
if (utils::isValidPm(pm01)) {
add_metric("pm1",
"PM1.0 concentration as measured by the AirGradient PMS "
"sensor, in micrograms per cubic meter",
"gauge", "ugm3");
add_metric_point("", String(pm01));
}
if (pm25 >= 0) {
if (utils::isValidPm(pm25)) {
add_metric("pm2d5",
"PM2.5 concentration as measured by the AirGradient PMS "
"sensor, in micrograms per cubic meter",
"gauge", "ugm3");
add_metric_point("", String(pm25));
}
if (pm10 >= 0) {
if (utils::isValidPm(pm10)) {
add_metric("pm10",
"PM10 concentration as measured by the AirGradient PMS "
"sensor, in micrograms per cubic meter",
"gauge", "ugm3");
add_metric_point("", String(pm10));
}
if (pm03PCount >= 0) {
if (utils::isValidPm03Count(pm03PCount)) {
add_metric("pm0d3",
"PM0.3 concentration as measured by the AirGradient PMS "
"sensor, in number of particules per 100 milliliters",
@ -120,37 +129,45 @@ String OpenMetrics::getPayload(void) {
}
if (config.hasSensorSGP) {
if (measure.TVOC >= 0) {
if (utils::isValidVOC(tvoc)) {
add_metric("tvoc_index",
"The processed Total Volatile Organic Compounds (TVOC) index "
"as measured by the AirGradient SGP sensor",
"gauge");
add_metric_point("", String(measure.TVOC));
add_metric_point("", String(tvoc));
}
if (measure.TVOCRaw >= 0) {
if (utils::isValidVOC(tvocRaw)) {
add_metric("tvoc_raw",
"The raw input value to the Total Volatile Organic Compounds "
"(TVOC) index as measured by the AirGradient SGP sensor",
"gauge");
add_metric_point("", String(measure.TVOCRaw));
add_metric_point("", String(tvocRaw));
}
if (measure.NOx >= 0) {
if (utils::isValidNOx(nox)) {
add_metric("nox_index",
"The processed Nitrous Oxide (NOx) index as measured by the "
"AirGradient SGP sensor",
"gauge");
add_metric_point("", String(measure.NOx));
add_metric_point("", String(nox));
}
if (measure.NOxRaw >= 0) {
if (utils::isValidNOx(noxRaw)) {
add_metric("nox_raw",
"The raw input value to the Nitrous Oxide (NOx) index as "
"measured by the AirGradient SGP sensor",
"gauge");
add_metric_point("", String(measure.NOxRaw));
add_metric_point("", String(noxRaw));
}
}
if (_temp > -1001) {
if (utils::isValidCO2(co2)) {
add_metric("co2",
"Carbon dioxide concentration as measured by the AirGradient S8 "
"sensor, in parts per million",
"gauge", "ppm");
add_metric_point("", String(co2));
}
if (utils::isValidTemperature(_temp)) {
add_metric(
"temperature",
"The ambient temperature as measured by the AirGradient SHT / PMS "
@ -158,7 +175,7 @@ String OpenMetrics::getPayload(void) {
"gauge", "celsius");
add_metric_point("", String(_temp));
}
if (atmpCompensated > -1001) {
if (utils::isValidTemperature(atmpCompensated)) {
add_metric("temperature_compensated",
"The compensated ambient temperature as measured by the "
"AirGradient SHT / PMS "
@ -166,14 +183,14 @@ String OpenMetrics::getPayload(void) {
"gauge", "celsius");
add_metric_point("", String(atmpCompensated));
}
if (_hum >= 0) {
if (utils::isValidHumidity(_hum)) {
add_metric(
"humidity",
"The relative humidity as measured by the AirGradient SHT sensor",
"gauge", "percent");
add_metric_point("", String(_hum));
}
if (ahumCompensated >= 0) {
if (utils::isValidHumidity(ahumCompensated)) {
add_metric("humidity_compensated",
"The compensated relative humidity as measured by the "
"AirGradient SHT / PMS sensor",

View File

@ -49,9 +49,8 @@ CC BY-SA 4.0 Attribution-ShareAlike 4.0 International License
#define SENSOR_TVOC_UPDATE_INTERVAL 1000 /** ms */
#define SENSOR_CO2_UPDATE_INTERVAL 4000 /** ms */
#define SENSOR_PM_UPDATE_INTERVAL 2000 /** ms */
#define SENSOR_TEMP_HUM_UPDATE_INTERVAL 2000 /** ms */
#define SENSOR_TEMP_HUM_UPDATE_INTERVAL 6000 /** ms */
#define DISPLAY_DELAY_SHOW_CONTENT_MS 2000 /** ms */
#define FIRMWARE_CHECK_FOR_UPDATE_MS (60 * 60 * 1000) /** ms */
static AirGradient ag(DIY_PRO_INDOOR_V3_3);
static Configuration configuration(Serial);
@ -68,8 +67,6 @@ static LocalServer localServer(Serial, openMetrics, measurements, configuration,
wifiConnector);
static MqttClient mqttClient(Serial);
static int pmFailCount = 0;
static int getCO2FailCount = 0;
static AgFirmwareMode fwMode = FW_MODE_I_33PS;
static String fwNewVersion;
@ -91,6 +88,8 @@ static void wdgFeedUpdate(void);
static bool sgp41Init(void);
static void wifiFactoryConfigure(void);
static void mqttHandle(void);
static int calculateMaxPeriod(int updateInterval);
static void setMeasurementMaxPeriod();
AgSchedule dispLedSchedule(DISP_UPDATE_INTERVAL, oledDisplaySchedule);
AgSchedule configSchedule(SERVER_CONFIG_SYNC_INTERVAL,
@ -126,8 +125,15 @@ void setup() {
openMetrics.setAirGradient(&ag);
localServer.setAirGraident(&ag);
/** Example set custom API root URL */
// apiClient.setApiRoot("https://example.custom.api");
/** Init sensor */
boardInit();
setMeasurementMaxPeriod();
// Uncomment below line to print every measurements reading update
// measurements.setDebug(true);
/** Connecting wifi */
bool connectToWifi = false;
@ -202,11 +208,7 @@ void loop() {
tvocSchedule.run();
}
/** Auto reset watchdog timer if offline mode or postDataToAirGradient */
if (configuration.isOfflineMode() ||
(configuration.isPostDataToAirGradient() == false)) {
watchdogFeedSchedule.run();
}
watchdogFeedSchedule.run();
/** Check for handle WiFi reconnect */
wifiConnector.handle();
@ -230,17 +232,16 @@ void loop() {
}
static void co2Update(void) {
if (!configuration.hasSensorS8) {
// Device don't have S8 sensor
return;
}
int value = ag.s8.getCo2();
if (value >= 0) {
measurements.CO2 = value;
getCO2FailCount = 0;
Serial.printf("CO2 (ppm): %d\r\n", measurements.CO2);
if (utils::isValidCO2(value)) {
measurements.update(Measurements::CO2, value);
} else {
getCO2FailCount++;
Serial.printf("Get CO2 failed: %d\r\n", getCO2FailCount);
if (getCO2FailCount >= 3) {
measurements.CO2 = -1;
}
measurements.update(Measurements::CO2, utils::getInvalidCO2());
}
}
@ -262,10 +263,17 @@ static void mdnsInit(void) {
}
static void initMqtt(void) {
if (mqttClient.begin(configuration.getMqttBrokerUri())) {
Serial.println("Setup connect to MQTT broker successful");
String mqttUri = configuration.getMqttBrokerUri();
if (mqttUri.isEmpty()) {
Serial.println(
"MQTT is not configured, skipping initialization of MQTT client");
return;
}
if (mqttClient.begin(mqttUri)) {
Serial.println("Successfully connected to MQTT broker");
} else {
Serial.println("setup Connect to MQTT broker failed");
Serial.println("Connection to MQTT broker failed");
}
}
@ -330,9 +338,7 @@ static void factoryConfigReset(void) {
static void wdgFeedUpdate(void) {
ag.watchdog.reset();
Serial.println();
Serial.println("Offline mode or isPostToAirGradient = false: watchdog reset");
Serial.println();
Serial.println("External watchdog feed!");
}
static bool sgp41Init(void) {
@ -367,8 +373,7 @@ static void mqttHandle(void) {
}
if (mqttClient.isConnected()) {
String payload = measurements.toString(true, fwMode, wifiConnector.RSSI(),
&ag, &configuration);
String payload = measurements.toString(true, fwMode, wifiConnector.RSSI(), ag, configuration);
String topic = "airgradient/readings/" + ag.deviceId();
if (mqttClient.publish(topic.c_str(), payload.c_str(), payload.length())) {
Serial.println("MQTT sync success");
@ -539,82 +544,98 @@ static void oledDisplaySchedule(void) {
}
static void updateTvoc(void) {
measurements.TVOC = ag.sgp41.getTvocIndex();
measurements.TVOCRaw = ag.sgp41.getTvocRaw();
measurements.NOx = ag.sgp41.getNoxIndex();
measurements.NOxRaw = ag.sgp41.getNoxRaw();
if (!configuration.hasSensorSGP) {
return;
}
Serial.println();
Serial.printf("TVOC index: %d\r\n", measurements.TVOC);
Serial.printf("TVOC raw: %d\r\n", measurements.TVOCRaw);
Serial.printf("NOx index: %d\r\n", measurements.NOx);
Serial.printf("NOx raw: %d\r\n", measurements.NOxRaw);
measurements.update(Measurements::TVOC, ag.sgp41.getTvocIndex());
measurements.update(Measurements::TVOCRaw, ag.sgp41.getTvocRaw());
measurements.update(Measurements::NOx, ag.sgp41.getNoxIndex());
measurements.update(Measurements::NOxRaw, ag.sgp41.getNoxRaw());
}
static void updatePm(void) {
if (ag.pms5003.isFailed() == false) {
measurements.pm01_1 = ag.pms5003.getPm01Ae();
measurements.pm25_1 = ag.pms5003.getPm25Ae();
measurements.pm10_1 = ag.pms5003.getPm10Ae();
measurements.pm03PCount_1 = ag.pms5003.getPm03ParticleCount();
Serial.println();
Serial.printf("PM1 ug/m3: %d\r\n", measurements.pm01_1);
Serial.printf("PM2.5 ug/m3: %d\r\n", measurements.pm25_1);
Serial.printf("PM10 ug/m3: %d\r\n", measurements.pm10_1);
Serial.printf("PM0.3 Count: %d\r\n", measurements.pm03PCount_1);
pmFailCount = 0;
if (ag.pms5003.connected()) {
measurements.update(Measurements::PM01, ag.pms5003.getPm01Ae());
measurements.update(Measurements::PM25, ag.pms5003.getPm25Ae());
measurements.update(Measurements::PM10, ag.pms5003.getPm10Ae());
measurements.update(Measurements::PM03_PC, ag.pms5003.getPm03ParticleCount());
} else {
pmFailCount++;
Serial.printf("PMS read failed: %d\r\n", pmFailCount);
if (pmFailCount >= 3) {
measurements.pm01_1 = -1;
measurements.pm25_1 = -1;
measurements.pm10_1 = -1;
measurements.pm03PCount_1 = -1;
}
measurements.update(Measurements::PM01, utils::getInvalidPmValue());
measurements.update(Measurements::PM25, utils::getInvalidPmValue());
measurements.update(Measurements::PM10, utils::getInvalidPmValue());
measurements.update(Measurements::PM03_PC, utils::getInvalidPmValue());
}
}
static void sendDataToServer(void) {
/** Increment bootcount when send measurements data is scheduled */
measurements.bootCount++;
/** Ignore send data to server if postToAirGradient disabled */
if (configuration.isPostDataToAirGradient() == false ||
configuration.isOfflineMode()) {
return;
}
String syncData = measurements.toString(false, fwMode, wifiConnector.RSSI(),
&ag, &configuration);
String syncData = measurements.toString(false, fwMode, wifiConnector.RSSI(), ag, configuration);
if (apiClient.postToServer(syncData)) {
ag.watchdog.reset();
Serial.println();
Serial.println(
"Online mode and isPostToAirGradient = true: watchdog reset");
Serial.println();
}
measurements.bootCount++;
}
static void tempHumUpdate(void) {
delay(100);
if (ag.sht.measure()) {
measurements.Temperature = ag.sht.getTemperature();
measurements.Humidity = ag.sht.getRelativeHumidity();
float temp = ag.sht.getTemperature();
float rhum = ag.sht.getRelativeHumidity();
Serial.printf("Temperature in C: %0.2f\r\n", measurements.Temperature);
Serial.printf("Relative Humidity: %d\r\n", measurements.Humidity);
Serial.printf("Temperature compensated in C: %0.2f\r\n",
measurements.Temperature);
Serial.printf("Relative Humidity compensated: %d\r\n",
measurements.Humidity);
measurements.update(Measurements::Temperature, temp);
measurements.update(Measurements::Humidity, rhum);
// Update compensation temperature and humidity for SGP41
if (configuration.hasSensorSGP) {
ag.sgp41.setCompensationTemperatureHumidity(measurements.Temperature,
measurements.Humidity);
ag.sgp41.setCompensationTemperatureHumidity(temp, rhum);
}
} else {
measurements.update(Measurements::Temperature, utils::getInvalidTemperature());
measurements.update(Measurements::Humidity, utils::getInvalidHumidity());
Serial.println("SHT read failed");
}
}
/* Set max period for each measurement type based on sensor update interval*/
void setMeasurementMaxPeriod() {
/// Max period for S8 sensors measurements
measurements.maxPeriod(Measurements::CO2, calculateMaxPeriod(SENSOR_CO2_UPDATE_INTERVAL));
/// Max period for SGP sensors measurements
measurements.maxPeriod(Measurements::TVOC, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::TVOCRaw, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::NOx, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::NOxRaw, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
/// Max period for PMS sensors measurements
measurements.maxPeriod(Measurements::PM25, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::PM01, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::PM10, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::PM03_PC, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
// Temperature and Humidity
if (configuration.hasSensorSHT) {
/// Max period for SHT sensors measurements
measurements.maxPeriod(Measurements::Temperature,
calculateMaxPeriod(SENSOR_TEMP_HUM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::Humidity,
calculateMaxPeriod(SENSOR_TEMP_HUM_UPDATE_INTERVAL));
} else {
/// Temp and hum data retrieved from PMS5003T sensor
measurements.maxPeriod(Measurements::Temperature,
calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::Humidity, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
}
}
int calculateMaxPeriod(int updateInterval) {
// 0.5 is 50% reduced interval for max period
return (SERVER_SYNC_INTERVAL - (SERVER_SYNC_INTERVAL * 0.5)) / updateInterval;
}

View File

@ -53,9 +53,8 @@ void LocalServer::_GET_metrics(void) {
}
void LocalServer::_GET_measure(void) {
server.send(
200, "application/json",
measure.toString(true, fwMode, wifiConnector.RSSI(), ag, &config));
String toSend = measure.toString(true, fwMode, wifiConnector.RSSI(), *ag, config);
server.send(200, "application/json", toSend);
}
void LocalServer::setFwMode(AgFirmwareMode fwMode) { this->fwMode = fwMode; }

View File

@ -57,60 +57,69 @@ String OpenMetrics::getPayload(void) {
"gauge", "dbm");
add_metric_point("", String(wifiConnector.RSSI()));
if (config.hasSensorS8 && measure.CO2 >= 0) {
add_metric("co2",
"Carbon dioxide concentration as measured by the AirGradient S8 "
"sensor, in parts per million",
"gauge", "ppm");
add_metric_point("", String(measure.CO2));
}
float _temp = -1001;
float _hum = -1;
int pm01 = -1;
int pm25 = -1;
int pm10 = -1;
int pm03PCount = -1;
int atmpCompensated = -1;
int ahumCompensated = -1;
// Initialize default invalid value for each measurements
float _temp = utils::getInvalidTemperature();
float _hum = utils::getInvalidHumidity();
int pm01 = utils::getInvalidPmValue();
int pm25 = utils::getInvalidPmValue();
int pm10 = utils::getInvalidPmValue();
int pm03PCount = utils::getInvalidPmValue();
int co2 = utils::getInvalidCO2();
int atmpCompensated = utils::getInvalidTemperature();
int ahumCompensated = utils::getInvalidHumidity();
int tvoc = utils::getInvalidVOC();
int tvocRaw = utils::getInvalidVOC();
int nox = utils::getInvalidNOx();
int noxRaw = utils::getInvalidNOx();
if (config.hasSensorSHT) {
_temp = measure.Temperature;
_hum = measure.Humidity;
_temp = measure.getFloat(Measurements::Temperature);
_hum = measure.getFloat(Measurements::Humidity);
atmpCompensated = _temp;
ahumCompensated = _hum;
}
if (config.hasSensorPMS1) {
pm01 = measure.pm01_1;
pm25 = measure.pm25_1;
pm10 = measure.pm10_1;
pm03PCount = measure.pm03PCount_1;
pm01 = measure.get(Measurements::PM01);
pm25 = measure.get(Measurements::PM25);
pm10 = measure.get(Measurements::PM10);
pm03PCount = measure.get(Measurements::PM03_PC);
}
if (config.hasSensorSGP) {
tvoc = measure.get(Measurements::TVOC);
tvocRaw = measure.get(Measurements::TVOCRaw);
nox = measure.get(Measurements::NOx);
noxRaw = measure.get(Measurements::NOxRaw);
}
if (config.hasSensorS8) {
co2 = measure.get(Measurements::CO2);
}
if (config.hasSensorPMS1) {
if (pm01 >= 0) {
if (utils::isValidPm(pm01)) {
add_metric("pm1",
"PM1.0 concentration as measured by the AirGradient PMS "
"sensor, in micrograms per cubic meter",
"gauge", "ugm3");
add_metric_point("", String(pm01));
}
if (pm25 >= 0) {
if (utils::isValidPm(pm25)) {
add_metric("pm2d5",
"PM2.5 concentration as measured by the AirGradient PMS "
"sensor, in micrograms per cubic meter",
"gauge", "ugm3");
add_metric_point("", String(pm25));
}
if (pm10 >= 0) {
if (utils::isValidPm(pm10)) {
add_metric("pm10",
"PM10 concentration as measured by the AirGradient PMS "
"sensor, in micrograms per cubic meter",
"gauge", "ugm3");
add_metric_point("", String(pm10));
}
if (pm03PCount >= 0) {
if (utils::isValidPm03Count(pm03PCount)) {
add_metric("pm0d3",
"PM0.3 concentration as measured by the AirGradient PMS "
"sensor, in number of particules per 100 milliliters",
@ -120,37 +129,46 @@ String OpenMetrics::getPayload(void) {
}
if (config.hasSensorSGP) {
if (measure.TVOC >= 0) {
if (utils::isValidVOC(tvoc)) {
add_metric("tvoc_index",
"The processed Total Volatile Organic Compounds (TVOC) index "
"as measured by the AirGradient SGP sensor",
"gauge");
add_metric_point("", String(measure.TVOC));
add_metric_point("", String(tvoc));
}
if (measure.TVOCRaw >= 0) {
if (utils::isValidVOC(tvocRaw)) {
add_metric("tvoc_raw",
"The raw input value to the Total Volatile Organic Compounds "
"(TVOC) index as measured by the AirGradient SGP sensor",
"gauge");
add_metric_point("", String(measure.TVOCRaw));
add_metric_point("", String(tvocRaw));
}
if (measure.NOx >= 0) {
if (utils::isValidNOx(nox)) {
add_metric("nox_index",
"The processed Nitrous Oxide (NOx) index as measured by the "
"AirGradient SGP sensor",
"gauge");
add_metric_point("", String(measure.NOx));
add_metric_point("", String(nox));
}
if (measure.NOxRaw >= 0) {
if (utils::isValidNOx(noxRaw)) {
add_metric("nox_raw",
"The raw input value to the Nitrous Oxide (NOx) index as "
"measured by the AirGradient SGP sensor",
"gauge");
add_metric_point("", String(measure.NOxRaw));
add_metric_point("", String(noxRaw));
}
}
if (_temp > -1001) {
if (utils::isValidCO2(co2)) {
add_metric("co2",
"Carbon dioxide concentration as measured by the AirGradient S8 "
"sensor, in parts per million",
"gauge", "ppm");
add_metric_point("", String(co2));
}
if (utils::isValidTemperature(_temp)) {
add_metric(
"temperature",
"The ambient temperature as measured by the AirGradient SHT / PMS "
@ -158,7 +176,7 @@ String OpenMetrics::getPayload(void) {
"gauge", "celsius");
add_metric_point("", String(_temp));
}
if (atmpCompensated > -1001) {
if (utils::isValidTemperature(atmpCompensated)) {
add_metric("temperature_compensated",
"The compensated ambient temperature as measured by the "
"AirGradient SHT / PMS "
@ -166,14 +184,14 @@ String OpenMetrics::getPayload(void) {
"gauge", "celsius");
add_metric_point("", String(atmpCompensated));
}
if (_hum >= 0) {
if (utils::isValidHumidity(_hum)) {
add_metric(
"humidity",
"The relative humidity as measured by the AirGradient SHT sensor",
"gauge", "percent");
add_metric_point("", String(_hum));
}
if (ahumCompensated >= 0) {
if (utils::isValidHumidity(ahumCompensated)) {
add_metric("humidity_compensated",
"The compensated relative humidity as measured by the "
"AirGradient SHT / PMS sensor",

View File

@ -49,9 +49,8 @@ CC BY-SA 4.0 Attribution-ShareAlike 4.0 International License
#define SENSOR_TVOC_UPDATE_INTERVAL 1000 /** ms */
#define SENSOR_CO2_UPDATE_INTERVAL 4000 /** ms */
#define SENSOR_PM_UPDATE_INTERVAL 2000 /** ms */
#define SENSOR_TEMP_HUM_UPDATE_INTERVAL 2000 /** ms */
#define SENSOR_TEMP_HUM_UPDATE_INTERVAL 6000 /** ms */
#define DISPLAY_DELAY_SHOW_CONTENT_MS 2000 /** ms */
#define FIRMWARE_CHECK_FOR_UPDATE_MS (60 * 60 * 1000) /** ms */
static AirGradient ag(DIY_PRO_INDOOR_V4_2);
static Configuration configuration(Serial);
@ -68,9 +67,7 @@ static LocalServer localServer(Serial, openMetrics, measurements, configuration,
wifiConnector);
static MqttClient mqttClient(Serial);
static int pmFailCount = 0;
static uint32_t factoryBtnPressTime = 0;
static int getCO2FailCount = 0;
static AgFirmwareMode fwMode = FW_MODE_I_42PS;
static String fwNewVersion;
@ -92,6 +89,8 @@ static void wdgFeedUpdate(void);
static bool sgp41Init(void);
static void wifiFactoryConfigure(void);
static void mqttHandle(void);
static int calculateMaxPeriod(int updateInterval);
static void setMeasurementMaxPeriod();
AgSchedule dispLedSchedule(DISP_UPDATE_INTERVAL, oledDisplaySchedule);
AgSchedule configSchedule(SERVER_CONFIG_SYNC_INTERVAL,
@ -127,8 +126,15 @@ void setup() {
openMetrics.setAirGradient(&ag);
localServer.setAirGraident(&ag);
/** Example set custom API root URL */
// apiClient.setApiRoot("https://example.custom.api");
/** Init sensor */
boardInit();
setMeasurementMaxPeriod();
// Uncomment below line to print every measurements reading update
// measurements.setDebug(true);
/** Connecting wifi */
bool connectToWifi = false;
@ -229,11 +235,7 @@ void loop() {
tvocSchedule.run();
}
/** Auto reset watchdog timer if offline mode or postDataToAirGradient */
if (configuration.isOfflineMode() ||
(configuration.isPostDataToAirGradient() == false)) {
watchdogFeedSchedule.run();
}
watchdogFeedSchedule.run();
/** Check for handle WiFi reconnect */
wifiConnector.handle();
@ -257,17 +259,16 @@ void loop() {
}
static void co2Update(void) {
if (!configuration.hasSensorS8) {
// Device don't have S8 sensor
return;
}
int value = ag.s8.getCo2();
if (value >= 0) {
measurements.CO2 = value;
getCO2FailCount = 0;
Serial.printf("CO2 (ppm): %d\r\n", measurements.CO2);
if (utils::isValidCO2(value)) {
measurements.update(Measurements::CO2, value);
} else {
getCO2FailCount++;
Serial.printf("Get CO2 failed: %d\r\n", getCO2FailCount);
if (getCO2FailCount >= 3) {
measurements.CO2 = -1;
}
measurements.update(Measurements::CO2, utils::getInvalidCO2());
}
}
@ -289,10 +290,17 @@ static void mdnsInit(void) {
}
static void initMqtt(void) {
if (mqttClient.begin(configuration.getMqttBrokerUri())) {
Serial.println("Setup connect to MQTT broker successful");
String mqttUri = configuration.getMqttBrokerUri();
if (mqttUri.isEmpty()) {
Serial.println(
"MQTT is not configured, skipping initialization of MQTT client");
return;
}
if (mqttClient.begin(mqttUri)) {
Serial.println("Successfully connected to MQTT broker");
} else {
Serial.println("setup Connect to MQTT broker failed");
Serial.println("Connection to MQTT broker failed");
}
}
@ -325,8 +333,6 @@ static void factoryConfigReset(void) {
// }
/** Reset WIFI */
// WiFi.enableSTA(true); // Incase offline mode
// WiFi.disconnect(true, true);
wifiConnector.reset();
/** Reset local config */
@ -355,9 +361,7 @@ static void factoryConfigReset(void) {
static void wdgFeedUpdate(void) {
ag.watchdog.reset();
Serial.println();
Serial.println("Offline mode or isPostToAirGradient = false: watchdog reset");
Serial.println();
Serial.println("External watchdog feed!");
}
static bool sgp41Init(void) {
@ -392,8 +396,7 @@ static void mqttHandle(void) {
}
if (mqttClient.isConnected()) {
String payload = measurements.toString(true, fwMode, wifiConnector.RSSI(),
&ag, &configuration);
String payload = measurements.toString(true, fwMode, wifiConnector.RSSI(), ag, configuration);
String topic = "airgradient/readings/" + ag.deviceId();
if (mqttClient.publish(topic.c_str(), payload.c_str(), payload.length())) {
Serial.println("MQTT sync success");
@ -582,82 +585,98 @@ static void oledDisplaySchedule(void) {
}
static void updateTvoc(void) {
measurements.TVOC = ag.sgp41.getTvocIndex();
measurements.TVOCRaw = ag.sgp41.getTvocRaw();
measurements.NOx = ag.sgp41.getNoxIndex();
measurements.NOxRaw = ag.sgp41.getNoxRaw();
if (!configuration.hasSensorSGP) {
return;
}
Serial.println();
Serial.printf("TVOC index: %d\r\n", measurements.TVOC);
Serial.printf("TVOC raw: %d\r\n", measurements.TVOCRaw);
Serial.printf("NOx index: %d\r\n", measurements.NOx);
Serial.printf("NOx raw: %d\r\n", measurements.NOxRaw);
measurements.update(Measurements::TVOC, ag.sgp41.getTvocIndex());
measurements.update(Measurements::TVOCRaw, ag.sgp41.getTvocRaw());
measurements.update(Measurements::NOx, ag.sgp41.getNoxIndex());
measurements.update(Measurements::NOxRaw, ag.sgp41.getNoxRaw());
}
static void updatePm(void) {
if (ag.pms5003.isFailed() == false) {
measurements.pm01_1 = ag.pms5003.getPm01Ae();
measurements.pm25_1 = ag.pms5003.getPm25Ae();
measurements.pm10_1 = ag.pms5003.getPm10Ae();
measurements.pm03PCount_1 = ag.pms5003.getPm03ParticleCount();
Serial.println();
Serial.printf("PM1 ug/m3: %d\r\n", measurements.pm01_1);
Serial.printf("PM2.5 ug/m3: %d\r\n", measurements.pm25_1);
Serial.printf("PM10 ug/m3: %d\r\n", measurements.pm10_1);
Serial.printf("PM0.3 Count: %d\r\n", measurements.pm03PCount_1);
pmFailCount = 0;
if (ag.pms5003.connected()) {
measurements.update(Measurements::PM01, ag.pms5003.getPm01Ae());
measurements.update(Measurements::PM25, ag.pms5003.getPm25Ae());
measurements.update(Measurements::PM10, ag.pms5003.getPm10Ae());
measurements.update(Measurements::PM03_PC, ag.pms5003.getPm03ParticleCount());
} else {
pmFailCount++;
Serial.printf("PMS read failed: %d\r\n", pmFailCount);
if (pmFailCount >= 3) {
measurements.pm01_1 = -1;
measurements.pm25_1 = -1;
measurements.pm10_1 = -1;
measurements.pm03PCount_1 = -1;
}
measurements.update(Measurements::PM01, utils::getInvalidPmValue());
measurements.update(Measurements::PM25, utils::getInvalidPmValue());
measurements.update(Measurements::PM10, utils::getInvalidPmValue());
measurements.update(Measurements::PM03_PC, utils::getInvalidPmValue());
}
}
static void sendDataToServer(void) {
/** Increment bootcount when send measurements data is scheduled */
measurements.bootCount++;
/** Ignore send data to server if postToAirGradient disabled */
if (configuration.isPostDataToAirGradient() == false ||
configuration.isOfflineMode()) {
return;
}
String syncData = measurements.toString(false, fwMode, wifiConnector.RSSI(),
&ag, &configuration);
String syncData = measurements.toString(false, fwMode, wifiConnector.RSSI(), ag, configuration);
if (apiClient.postToServer(syncData)) {
ag.watchdog.reset();
Serial.println();
Serial.println(
"Online mode and isPostToAirGradient = true: watchdog reset");
Serial.println();
}
measurements.bootCount++;
}
static void tempHumUpdate(void) {
delay(100);
if (ag.sht.measure()) {
measurements.Temperature = ag.sht.getTemperature();
measurements.Humidity = ag.sht.getRelativeHumidity();
float temp = ag.sht.getTemperature();
float rhum = ag.sht.getRelativeHumidity();
Serial.printf("Temperature in C: %0.2f\r\n", measurements.Temperature);
Serial.printf("Relative Humidity: %d\r\n", measurements.Humidity);
Serial.printf("Temperature compensated in C: %0.2f\r\n",
measurements.Temperature);
Serial.printf("Relative Humidity compensated: %d\r\n",
measurements.Humidity);
measurements.update(Measurements::Temperature, temp);
measurements.update(Measurements::Humidity, rhum);
// Update compensation temperature and humidity for SGP41
if (configuration.hasSensorSGP) {
ag.sgp41.setCompensationTemperatureHumidity(measurements.Temperature,
measurements.Humidity);
ag.sgp41.setCompensationTemperatureHumidity(temp, rhum);
}
} else {
measurements.update(Measurements::Temperature, utils::getInvalidTemperature());
measurements.update(Measurements::Humidity, utils::getInvalidHumidity());
Serial.println("SHT read failed");
}
}
/* Set max period for each measurement type based on sensor update interval*/
void setMeasurementMaxPeriod() {
/// Max period for S8 sensors measurements
measurements.maxPeriod(Measurements::CO2, calculateMaxPeriod(SENSOR_CO2_UPDATE_INTERVAL));
/// Max period for SGP sensors measurements
measurements.maxPeriod(Measurements::TVOC, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::TVOCRaw, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::NOx, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::NOxRaw, calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL));
/// Max period for PMS sensors measurements
measurements.maxPeriod(Measurements::PM25, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::PM01, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::PM10, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::PM03_PC, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
// Temperature and Humidity
if (configuration.hasSensorSHT) {
/// Max period for SHT sensors measurements
measurements.maxPeriod(Measurements::Temperature,
calculateMaxPeriod(SENSOR_TEMP_HUM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::Humidity,
calculateMaxPeriod(SENSOR_TEMP_HUM_UPDATE_INTERVAL));
} else {
/// Temp and hum data retrieved from PMS5003T sensor
measurements.maxPeriod(Measurements::Temperature,
calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::Humidity, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
}
}
int calculateMaxPeriod(int updateInterval) {
// 0.5 is 50% reduced interval for max period
return (SERVER_SYNC_INTERVAL - (SERVER_SYNC_INTERVAL * 0.5)) / updateInterval;
}

View File

@ -53,9 +53,8 @@ void LocalServer::_GET_metrics(void) {
}
void LocalServer::_GET_measure(void) {
server.send(
200, "application/json",
measure.toString(true, fwMode, wifiConnector.RSSI(), ag, &config));
String toSend = measure.toString(true, fwMode, wifiConnector.RSSI(), *ag, config);
server.send(200, "application/json", toSend);
}
void LocalServer::setFwMode(AgFirmwareMode fwMode) { this->fwMode = fwMode; }

View File

@ -57,60 +57,69 @@ String OpenMetrics::getPayload(void) {
"gauge", "dbm");
add_metric_point("", String(wifiConnector.RSSI()));
if (config.hasSensorS8 && measure.CO2 >= 0) {
add_metric("co2",
"Carbon dioxide concentration as measured by the AirGradient S8 "
"sensor, in parts per million",
"gauge", "ppm");
add_metric_point("", String(measure.CO2));
}
float _temp = -1001;
float _hum = -1;
int pm01 = -1;
int pm25 = -1;
int pm10 = -1;
int pm03PCount = -1;
int atmpCompensated = -1;
int ahumCompensated = -1;
// Initialize default invalid value for each measurements
float _temp = utils::getInvalidTemperature();
float _hum = utils::getInvalidHumidity();
int pm01 = utils::getInvalidPmValue();
int pm25 = utils::getInvalidPmValue();
int pm10 = utils::getInvalidPmValue();
int pm03PCount = utils::getInvalidPmValue();
int co2 = utils::getInvalidCO2();
int atmpCompensated = utils::getInvalidTemperature();
int ahumCompensated = utils::getInvalidHumidity();
int tvoc = utils::getInvalidVOC();
int tvocRaw = utils::getInvalidVOC();
int nox = utils::getInvalidNOx();
int noxRaw = utils::getInvalidNOx();
if (config.hasSensorSHT) {
_temp = measure.Temperature;
_hum = measure.Humidity;
_temp = measure.getFloat(Measurements::Temperature);
_hum = measure.getFloat(Measurements::Humidity);
atmpCompensated = _temp;
ahumCompensated = _hum;
}
if (config.hasSensorPMS1) {
pm01 = measure.pm01_1;
pm25 = measure.pm25_1;
pm10 = measure.pm10_1;
pm03PCount = measure.pm03PCount_1;
pm01 = measure.get(Measurements::PM01);
pm25 = measure.get(Measurements::PM25);
pm10 = measure.get(Measurements::PM10);
pm03PCount = measure.get(Measurements::PM03_PC);
}
if (config.hasSensorSGP) {
tvoc = measure.get(Measurements::TVOC);
tvocRaw = measure.get(Measurements::TVOCRaw);
nox = measure.get(Measurements::NOx);
noxRaw = measure.get(Measurements::NOxRaw);
}
if (config.hasSensorS8) {
co2 = measure.get(Measurements::CO2);
}
if (config.hasSensorPMS1) {
if (pm01 >= 0) {
if (utils::isValidPm(pm01)) {
add_metric("pm1",
"PM1.0 concentration as measured by the AirGradient PMS "
"sensor, in micrograms per cubic meter",
"gauge", "ugm3");
add_metric_point("", String(pm01));
}
if (pm25 >= 0) {
if (utils::isValidPm(pm25)) {
add_metric("pm2d5",
"PM2.5 concentration as measured by the AirGradient PMS "
"sensor, in micrograms per cubic meter",
"gauge", "ugm3");
add_metric_point("", String(pm25));
}
if (pm10 >= 0) {
if (utils::isValidPm(pm10)) {
add_metric("pm10",
"PM10 concentration as measured by the AirGradient PMS "
"sensor, in micrograms per cubic meter",
"gauge", "ugm3");
add_metric_point("", String(pm10));
}
if (pm03PCount >= 0) {
if (utils::isValidPm03Count(pm03PCount)) {
add_metric("pm0d3",
"PM0.3 concentration as measured by the AirGradient PMS "
"sensor, in number of particules per 100 milliliters",
@ -120,37 +129,45 @@ String OpenMetrics::getPayload(void) {
}
if (config.hasSensorSGP) {
if (measure.TVOC >= 0) {
if (utils::isValidVOC(tvoc)) {
add_metric("tvoc_index",
"The processed Total Volatile Organic Compounds (TVOC) index "
"as measured by the AirGradient SGP sensor",
"gauge");
add_metric_point("", String(measure.TVOC));
add_metric_point("", String(tvoc));
}
if (measure.TVOCRaw >= 0) {
if (utils::isValidVOC(tvocRaw)) {
add_metric("tvoc_raw",
"The raw input value to the Total Volatile Organic Compounds "
"(TVOC) index as measured by the AirGradient SGP sensor",
"gauge");
add_metric_point("", String(measure.TVOCRaw));
add_metric_point("", String(tvocRaw));
}
if (measure.NOx >= 0) {
if (utils::isValidNOx(nox)) {
add_metric("nox_index",
"The processed Nitrous Oxide (NOx) index as measured by the "
"AirGradient SGP sensor",
"gauge");
add_metric_point("", String(measure.NOx));
add_metric_point("", String(nox));
}
if (measure.NOxRaw >= 0) {
if (utils::isValidNOx(noxRaw)) {
add_metric("nox_raw",
"The raw input value to the Nitrous Oxide (NOx) index as "
"measured by the AirGradient SGP sensor",
"gauge");
add_metric_point("", String(measure.NOxRaw));
add_metric_point("", String(noxRaw));
}
}
if (_temp > -1001) {
if (utils::isValidCO2(co2)) {
add_metric("co2",
"Carbon dioxide concentration as measured by the AirGradient S8 "
"sensor, in parts per million",
"gauge", "ppm");
add_metric_point("", String(co2));
}
if (utils::isValidTemperature(_temp)) {
add_metric(
"temperature",
"The ambient temperature as measured by the AirGradient SHT / PMS "
@ -158,7 +175,7 @@ String OpenMetrics::getPayload(void) {
"gauge", "celsius");
add_metric_point("", String(_temp));
}
if (atmpCompensated > -1001) {
if (utils::isValidTemperature(atmpCompensated)) {
add_metric("temperature_compensated",
"The compensated ambient temperature as measured by the "
"AirGradient SHT / PMS "
@ -166,14 +183,14 @@ String OpenMetrics::getPayload(void) {
"gauge", "celsius");
add_metric_point("", String(atmpCompensated));
}
if (_hum >= 0) {
if (utils::isValidHumidity(_hum)) {
add_metric(
"humidity",
"The relative humidity as measured by the AirGradient SHT sensor",
"gauge", "percent");
add_metric_point("", String(_hum));
}
if (ahumCompensated >= 0) {
if (utils::isValidHumidity(ahumCompensated)) {
add_metric("humidity_compensated",
"The compensated relative humidity as measured by the "
"AirGradient SHT / PMS sensor",

View File

@ -64,9 +64,8 @@ void LocalServer::_GET_metrics(void) {
}
void LocalServer::_GET_measure(void) {
server.send(
200, "application/json",
measure.toString(true, fwMode, wifiConnector.RSSI(), ag, &config));
String toSend = measure.toString(true, fwMode, wifiConnector.RSSI(), *ag, config);
server.send(200, "application/json", toSend);
}
void LocalServer::setFwMode(AgFirmwareMode fwMode) { this->fwMode = fwMode; }

View File

@ -62,7 +62,7 @@ CC BY-SA 4.0 Attribution-ShareAlike 4.0 International License
#define SENSOR_TVOC_UPDATE_INTERVAL 1000 /** ms */
#define SENSOR_CO2_UPDATE_INTERVAL 4000 /** ms */
#define SENSOR_PM_UPDATE_INTERVAL 2000 /** ms */
#define SENSOR_TEMP_HUM_UPDATE_INTERVAL 2000 /** ms */
#define SENSOR_TEMP_HUM_UPDATE_INTERVAL 6000 /** ms */
#define DISPLAY_DELAY_SHOW_CONTENT_MS 2000 /** ms */
#define FIRMWARE_CHECK_FOR_UPDATE_MS (60*60*1000) /** ms */
@ -88,9 +88,7 @@ static OtaHandler otaHandler;
static LocalServer localServer(Serial, openMetrics, measurements, configuration,
wifiConnector);
static int pmFailCount = 0;
static uint32_t factoryBtnPressTime = 0;
static int getCO2FailCount = 0;
static AgFirmwareMode fwMode = FW_MODE_I_9PSL;
static bool ledBarButtonTest = false;
@ -99,9 +97,7 @@ static String fwNewVersion;
static void boardInit(void);
static void failedHandler(String msg);
static void configurationUpdateSchedule(void);
static void appLedHandler(void);
static void appDispHandler(void);
static void oledDisplayLedBarSchedule(void);
static void updateDisplayAndLedBar(void);
static void updateTvoc(void);
static void updatePm(void);
static void sendDataToServer(void);
@ -118,8 +114,10 @@ static void firmwareCheckForUpdate(void);
static void otaHandlerCallback(OtaState state, String mesasge);
static void displayExecuteOta(OtaState state, String msg,
int processing);
static int calculateMaxPeriod(int updateInterval);
static void setMeasurementMaxPeriod();
AgSchedule dispLedSchedule(DISP_UPDATE_INTERVAL, oledDisplayLedBarSchedule);
AgSchedule dispLedSchedule(DISP_UPDATE_INTERVAL, updateDisplayAndLedBar);
AgSchedule configSchedule(SERVER_CONFIG_SYNC_INTERVAL,
configurationUpdateSchedule);
AgSchedule agApiPostSchedule(SERVER_SYNC_INTERVAL, sendDataToServer);
@ -163,8 +161,15 @@ void setup() {
openMetrics.setAirGradient(ag);
localServer.setAirGraident(ag);
/** Example set custom API root URL */
// apiClient.setApiRoot("https://example.custom.api");
/** Init sensor */
boardInit();
setMeasurementMaxPeriod();
// Comment below line to disable debug measurement readings
measurements.setDebug(true);
/** Connecting wifi */
bool connectToWifi = false;
@ -259,8 +264,8 @@ void setup() {
oledDisplay.setBrightness(configuration.getDisplayBrightness());
}
appLedHandler();
appDispHandler();
// Update display and led bar after finishing setup to show dashboard
updateDisplayAndLedBar();
}
void loop() {
@ -286,6 +291,11 @@ void loop() {
if (ag->isOne()) {
if (configuration.hasSensorPMS1) {
ag->pms5003.handle();
static bool pmsConnected = false;
if (pmsConnected != ag->pms5003.connected()) {
pmsConnected = ag->pms5003.connected();
Serial.printf("PMS sensor %s ", pmsConnected?"connected":"removed");
}
}
} else {
if (configuration.hasSensorPMS1) {
@ -296,11 +306,7 @@ void loop() {
}
}
/** Auto reset watchdog timer if offline mode or postDataToAirGradient */
if (configuration.isOfflineMode() ||
(configuration.isPostDataToAirGradient() == false)) {
watchdogFeedSchedule.run();
}
watchdogFeedSchedule.run();
/** Check for handle WiFi reconnect */
wifiConnector.handle();
@ -316,17 +322,16 @@ void loop() {
}
static void co2Update(void) {
if (!configuration.hasSensorS8) {
// Device don't have S8 sensor
return;
}
int value = ag->s8.getCo2();
if (value >= 0) {
measurements.CO2 = value;
getCO2FailCount = 0;
Serial.printf("CO2 (ppm): %d\r\n", measurements.CO2);
if (utils::isValidCO2(value)) {
measurements.update(Measurements::CO2, value);
} else {
getCO2FailCount++;
Serial.printf("Get CO2 failed: %d\r\n", getCO2FailCount);
if (getCO2FailCount >= 3) {
measurements.CO2 = -1;
}
measurements.update(Measurements::CO2, utils::getInvalidCO2());
}
}
@ -359,8 +364,8 @@ static void createMqttTask(void) {
/** Send data */
if (mqttClient.isConnected()) {
String payload = measurements.toString(
true, fwMode, wifiConnector.RSSI(), ag, &configuration);
String payload =
measurements.toString(true, fwMode, wifiConnector.RSSI(), *ag, configuration);
String topic = "airgradient/readings/" + ag->deviceId();
if (mqttClient.publish(topic.c_str(), payload.c_str(),
@ -380,11 +385,18 @@ static void createMqttTask(void) {
}
static void initMqtt(void) {
if (mqttClient.begin(configuration.getMqttBrokerUri())) {
Serial.println("Connect to MQTT broker successful");
String mqttUri = configuration.getMqttBrokerUri();
if (mqttUri.isEmpty()) {
Serial.println(
"MQTT is not configured, skipping initialization of MQTT client");
return;
}
if (mqttClient.begin(mqttUri)) {
Serial.println("Successfully connected to MQTT broker");
createMqttTask();
} else {
Serial.println("Connect to MQTT broker failed");
Serial.println("Connection to MQTT broker failed");
}
}
@ -421,12 +433,7 @@ static void factoryConfigReset(void) {
}
/** Reset WIFI */
WiFi.enableSTA(true); // Incase offline mode
WiFi.disconnect(true, true);
if (ag->isOne() == false) {
WiFi.begin("airgradient", "cleanair");
Serial.println("Set WiFi connect to \"airgradient\"");
}
/** Reset local config */
configuration.reset();
@ -445,7 +452,7 @@ static void factoryConfigReset(void) {
/** Show current content cause reset ignore */
factoryBtnPressTime = 0;
if (ag->isOne()) {
appDispHandler();
updateDisplayAndLedBar();
}
}
}
@ -453,7 +460,7 @@ static void factoryConfigReset(void) {
if (factoryBtnPressTime != 0) {
if (ag->isOne()) {
/** Restore last display content */
appDispHandler();
updateDisplayAndLedBar();
}
}
factoryBtnPressTime = 0;
@ -462,9 +469,7 @@ static void factoryConfigReset(void) {
static void wdgFeedUpdate(void) {
ag->watchdog.reset();
Serial.println();
Serial.println("Offline mode or isPostToAirGradient = false: watchdog reset");
Serial.println();
Serial.println("External watchdog feed!");
}
static void ledBarEnabledUpdate(void) {
@ -700,7 +705,7 @@ static void oneIndoorInit(void) {
ledBarEnabledUpdate();
/** Show message init sensor */
oledDisplay.setText("Sensor", "initializing...", "");
oledDisplay.setText("Monitor", "initializing...", "");
/** Init sensor SGP41 */
if (sgp41Init() == false) {
@ -781,27 +786,27 @@ static void openAirInit(void) {
}
}
/** Try to find the PMS on other difference port with S8 */
/** Attempt to detect PM sensors */
if (fwMode == FW_MODE_O_1PST) {
bool pmInitSuccess = false;
if (serial0Available) {
if (ag->pms5003t_1.begin(Serial0) == false) {
configuration.hasSensorPMS1 = false;
Serial.println("PMS1 sensor not found");
Serial.println("No PM sensor detected on Serial0");
} else {
serial0Available = false;
pmInitSuccess = true;
Serial.println("Found PMS 1 on Serial0");
Serial.println("Detected PM 1 on Serial0");
}
}
if (pmInitSuccess == false) {
if (serial1Available) {
if (ag->pms5003t_1.begin(Serial1) == false) {
configuration.hasSensorPMS1 = false;
Serial.println("PMS1 sensor not found");
Serial.println("No PM sensor detected on Serial1");
} else {
serial1Available = false;
Serial.println("Found PMS 1 on Serial1");
Serial.println("Detected PM 1 on Serial1");
}
}
}
@ -809,15 +814,15 @@ static void openAirInit(void) {
} else {
if (ag->pms5003t_1.begin(Serial0) == false) {
configuration.hasSensorPMS1 = false;
Serial.println("PMS1 sensor not found");
Serial.println("No PM sensor detected on Serial0");
} else {
Serial.println("Found PMS 1 on Serial0");
Serial.println("Detected PM 1 on Serial0");
}
if (ag->pms5003t_2.begin(Serial1) == false) {
configuration.hasSensorPMS2 = false;
Serial.println("PMS2 sensor not found");
Serial.println("No PM sensor detected on Serial1");
} else {
Serial.println("Found PMS 2 on Serial1");
Serial.println("Detected PM 2 on Serial1");
}
if (fwMode == FW_MODE_O_1PP) {
@ -941,295 +946,276 @@ static void configUpdateHandle() {
stateMachine.executeLedBarTest();
}
appDispHandler();
appLedHandler();
}
static void appLedHandler(void) {
AgStateMachineState state = AgStateMachineNormal;
if (configuration.isOfflineMode() == false) {
if (wifiConnector.isConnected() == false) {
state = AgStateMachineWiFiLost;
} else if (apiClient.isFetchConfigureFailed()) {
state = AgStateMachineSensorConfigFailed;
} else if (apiClient.isPostToServerFailed()) {
state = AgStateMachineServerLost;
}
else if(ag->isOpenAir()) {
stateMachine.executeLedBarTest();
}
// Update display and led bar notification based on updated configuration
updateDisplayAndLedBar();
}
static void updateDisplayAndLedBar(void) {
if (factoryBtnPressTime != 0) {
// Do not distrub factory reset sequence countdown
return;
}
if (configuration.isOfflineMode()) {
// Ignore network related status when in offline mode
stateMachine.displayHandle(AgStateMachineNormal);
stateMachine.handleLeds(AgStateMachineNormal);
return;
}
AgStateMachineState state = AgStateMachineNormal;
if (wifiConnector.isConnected() == false) {
state = AgStateMachineWiFiLost;
} else if (apiClient.isFetchConfigureFailed()) {
state = AgStateMachineSensorConfigFailed;
if (apiClient.isNotAvailableOnDashboard()) {
stateMachine.displaySetAddToDashBoard();
} else {
stateMachine.displayClearAddToDashBoard();
}
} else if (apiClient.isPostToServerFailed() && configuration.isPostDataToAirGradient()) {
state = AgStateMachineServerLost;
}
stateMachine.displayHandle(state);
stateMachine.handleLeds(state);
}
static void appDispHandler(void) {
if (ag->isOne()) {
AgStateMachineState state = AgStateMachineNormal;
/** Only show display status on online mode. */
if (configuration.isOfflineMode() == false) {
if (wifiConnector.isConnected() == false) {
state = AgStateMachineWiFiLost;
} else if (apiClient.isFetchConfigureFailed()) {
state = AgStateMachineSensorConfigFailed;
if (apiClient.isNotAvailableOnDashboard()) {
stateMachine.displaySetAddToDashBoard();
} else {
stateMachine.displayClearAddToDashBoard();
}
} else if (apiClient.isPostToServerFailed()) {
state = AgStateMachineServerLost;
}
}
stateMachine.displayHandle(state);
}
}
static void oledDisplayLedBarSchedule(void) {
if (ag->isOne()) {
if (factoryBtnPressTime == 0) {
appDispHandler();
}
}
appLedHandler();
}
static void updateTvoc(void) {
measurements.TVOC = ag->sgp41.getTvocIndex();
measurements.TVOCRaw = ag->sgp41.getTvocRaw();
measurements.NOx = ag->sgp41.getNoxIndex();
measurements.NOxRaw = ag->sgp41.getNoxRaw();
if (!configuration.hasSensorSGP) {
return;
}
Serial.println();
Serial.printf("TVOC index: %d\r\n", measurements.TVOC);
Serial.printf("TVOC raw: %d\r\n", measurements.TVOCRaw);
Serial.printf("NOx index: %d\r\n", measurements.NOx);
Serial.printf("NOx raw: %d\r\n", measurements.NOxRaw);
measurements.update(Measurements::TVOC, ag->sgp41.getTvocIndex());
measurements.update(Measurements::TVOCRaw, ag->sgp41.getTvocRaw());
measurements.update(Measurements::NOx, ag->sgp41.getNoxIndex());
measurements.update(Measurements::NOxRaw, ag->sgp41.getNoxRaw());
}
static void updatePMS5003() {
if (ag->pms5003.connected()) {
measurements.update(Measurements::PM01, ag->pms5003.getPm01Ae());
measurements.update(Measurements::PM25, ag->pms5003.getPm25Ae());
measurements.update(Measurements::PM10, ag->pms5003.getPm10Ae());
measurements.update(Measurements::PM01_SP, ag->pms5003.getPm01Sp());
measurements.update(Measurements::PM25_SP, ag->pms5003.getPm25Sp());
measurements.update(Measurements::PM10_SP, ag->pms5003.getPm10Sp());
measurements.update(Measurements::PM03_PC, ag->pms5003.getPm03ParticleCount());
measurements.update(Measurements::PM05_PC, ag->pms5003.getPm05ParticleCount());
measurements.update(Measurements::PM01_PC, ag->pms5003.getPm01ParticleCount());
measurements.update(Measurements::PM25_PC, ag->pms5003.getPm25ParticleCount());
measurements.update(Measurements::PM5_PC, ag->pms5003.getPm5ParticleCount());
measurements.update(Measurements::PM10_PC, ag->pms5003.getPm10ParticleCount());
} else {
measurements.update(Measurements::PM01, utils::getInvalidPmValue());
measurements.update(Measurements::PM25, utils::getInvalidPmValue());
measurements.update(Measurements::PM10, utils::getInvalidPmValue());
measurements.update(Measurements::PM01_SP, utils::getInvalidPmValue());
measurements.update(Measurements::PM25_SP, utils::getInvalidPmValue());
measurements.update(Measurements::PM10_SP, utils::getInvalidPmValue());
measurements.update(Measurements::PM03_PC, utils::getInvalidPmValue());
measurements.update(Measurements::PM05_PC, utils::getInvalidPmValue());
measurements.update(Measurements::PM01_PC, utils::getInvalidPmValue());
measurements.update(Measurements::PM25_PC, utils::getInvalidPmValue());
measurements.update(Measurements::PM5_PC, utils::getInvalidPmValue());
measurements.update(Measurements::PM10_PC, utils::getInvalidPmValue());
}
}
static void updatePm(void) {
if (ag->isOne()) {
if (ag->pms5003.isFailed() == false) {
measurements.pm01_1 = ag->pms5003.getPm01Ae();
measurements.pm25_1 = ag->pms5003.getPm25Ae();
measurements.pm10_1 = ag->pms5003.getPm10Ae();
measurements.pm03PCount_1 = ag->pms5003.getPm03ParticleCount();
updatePMS5003();
return;
}
Serial.println();
Serial.printf("PM1 ug/m3: %d\r\n", measurements.pm01_1);
Serial.printf("PM2.5 ug/m3: %d\r\n", measurements.pm25_1);
Serial.printf("PM10 ug/m3: %d\r\n", measurements.pm10_1);
Serial.printf("PM0.3 Count: %d\r\n", measurements.pm03PCount_1);
pmFailCount = 0;
// Open Air Monitor series, can have two PMS5003T sensor
bool newPMS1Value = false;
bool newPMS2Value = false;
// Read PMS channel 1 if available
int channel = 1;
if (configuration.hasSensorPMS1) {
if (ag->pms5003t_1.connected()) {
measurements.update(Measurements::PM01, ag->pms5003t_1.getPm01Ae(), channel);
measurements.update(Measurements::PM25, ag->pms5003t_1.getPm25Ae(), channel);
measurements.update(Measurements::PM10, ag->pms5003t_1.getPm10Ae(), channel);
measurements.update(Measurements::PM01_SP, ag->pms5003t_1.getPm01Sp(), channel);
measurements.update(Measurements::PM25_SP, ag->pms5003t_1.getPm25Sp(), channel);
measurements.update(Measurements::PM10_SP, ag->pms5003t_1.getPm10Sp(), channel);
measurements.update(Measurements::PM03_PC, ag->pms5003t_1.getPm03ParticleCount(), channel);
measurements.update(Measurements::PM05_PC, ag->pms5003t_1.getPm05ParticleCount(), channel);
measurements.update(Measurements::PM01_PC, ag->pms5003t_1.getPm01ParticleCount(), channel);
measurements.update(Measurements::PM25_PC, ag->pms5003t_1.getPm25ParticleCount(), channel);
measurements.update(Measurements::Temperature, ag->pms5003t_1.getTemperature(), channel);
measurements.update(Measurements::Humidity, ag->pms5003t_1.getRelativeHumidity(), channel);
// flag that new valid PMS value exists
newPMS1Value = true;
} else {
pmFailCount++;
Serial.printf("PMS read failed: %d\r\n", pmFailCount);
if (pmFailCount >= 3) {
measurements.pm01_1 = -1;
measurements.pm25_1 = -1;
measurements.pm10_1 = -1;
measurements.pm03PCount_1 = -1;
}
// PMS channel 1 now is not connected, update using invalid value
measurements.update(Measurements::PM01, utils::getInvalidPmValue(), channel);
measurements.update(Measurements::PM25, utils::getInvalidPmValue(), channel);
measurements.update(Measurements::PM10, utils::getInvalidPmValue(), channel);
measurements.update(Measurements::PM01_SP, utils::getInvalidPmValue(), channel);
measurements.update(Measurements::PM25_SP, utils::getInvalidPmValue(), channel);
measurements.update(Measurements::PM10_SP, utils::getInvalidPmValue(), channel);
measurements.update(Measurements::PM03_PC, utils::getInvalidPmValue(), channel);
measurements.update(Measurements::PM05_PC, utils::getInvalidPmValue(), channel);
measurements.update(Measurements::PM01_PC, utils::getInvalidPmValue(), channel);
measurements.update(Measurements::PM25_PC, utils::getInvalidPmValue(), channel);
measurements.update(Measurements::Temperature, utils::getInvalidTemperature(), channel);
measurements.update(Measurements::Humidity, utils::getInvalidHumidity(), channel);
}
} else {
bool pmsResult_1 = false;
bool pmsResult_2 = false;
if (configuration.hasSensorPMS1 && (ag->pms5003t_1.isFailed() == false)) {
measurements.pm01_1 = ag->pms5003t_1.getPm01Ae();
measurements.pm25_1 = ag->pms5003t_1.getPm25Ae();
measurements.pm10_1 = ag->pms5003t_1.getPm10Ae();
measurements.pm03PCount_1 = ag->pms5003t_1.getPm03ParticleCount();
measurements.temp_1 = ag->pms5003t_1.getTemperature();
measurements.hum_1 = ag->pms5003t_1.getRelativeHumidity();
}
pmsResult_1 = true;
// Read PMS channel 2 if available
channel = 2;
if (configuration.hasSensorPMS2) {
if (ag->pms5003t_2.connected()) {
measurements.update(Measurements::PM01, ag->pms5003t_2.getPm01Ae(), channel);
measurements.update(Measurements::PM25, ag->pms5003t_2.getPm25Ae(), channel);
measurements.update(Measurements::PM10, ag->pms5003t_2.getPm10Ae(), channel);
measurements.update(Measurements::PM01_SP, ag->pms5003t_2.getPm01Sp(), channel);
measurements.update(Measurements::PM25_SP, ag->pms5003t_2.getPm25Sp(), channel);
measurements.update(Measurements::PM10_SP, ag->pms5003t_2.getPm10Sp(), channel);
measurements.update(Measurements::PM03_PC, ag->pms5003t_2.getPm03ParticleCount(), channel);
measurements.update(Measurements::PM05_PC, ag->pms5003t_2.getPm05ParticleCount(), channel);
measurements.update(Measurements::PM01_PC, ag->pms5003t_2.getPm01ParticleCount(), channel);
measurements.update(Measurements::PM25_PC, ag->pms5003t_2.getPm25ParticleCount(), channel);
measurements.update(Measurements::Temperature, ag->pms5003t_2.getTemperature(), channel);
measurements.update(Measurements::Humidity, ag->pms5003t_2.getRelativeHumidity(), channel);
Serial.println();
Serial.printf("[1] PM1 ug/m3: %d\r\n", measurements.pm01_1);
Serial.printf("[1] PM2.5 ug/m3: %d\r\n", measurements.pm25_1);
Serial.printf("[1] PM10 ug/m3: %d\r\n", measurements.pm10_1);
Serial.printf("[1] PM3.0 Count: %d\r\n", measurements.pm03PCount_1);
Serial.printf("[1] Temperature in C: %0.2f\r\n", measurements.temp_1);
Serial.printf("[1] Relative Humidity: %d\r\n", measurements.hum_1);
Serial.printf("[1] Temperature compensated in C: %0.2f\r\n",
ag->pms5003t_1.temperatureCompensated(measurements.temp_1));
Serial.printf("[1] Relative Humidity compensated: %f\r\n",
ag->pms5003t_1.humidityCompensated(measurements.hum_1));
// flag that new valid PMS value exists
newPMS2Value = true;
} else {
measurements.pm01_1 = -1;
measurements.pm25_1 = -1;
measurements.pm10_1 = -1;
measurements.pm03PCount_1 = -1;
measurements.temp_1 = -1001;
measurements.hum_1 = -1;
// PMS channel 2 now is not connected, update using invalid value
measurements.update(Measurements::PM01, utils::getInvalidPmValue(), channel);
measurements.update(Measurements::PM25, utils::getInvalidPmValue(), channel);
measurements.update(Measurements::PM10, utils::getInvalidPmValue(), channel);
measurements.update(Measurements::PM01_SP, utils::getInvalidPmValue(), channel);
measurements.update(Measurements::PM25_SP, utils::getInvalidPmValue(), channel);
measurements.update(Measurements::PM10_SP, utils::getInvalidPmValue(), channel);
measurements.update(Measurements::PM03_PC, utils::getInvalidPmValue(), channel);
measurements.update(Measurements::PM05_PC, utils::getInvalidPmValue(), channel);
measurements.update(Measurements::PM01_PC, utils::getInvalidPmValue(), channel);
measurements.update(Measurements::PM25_PC, utils::getInvalidPmValue(), channel);
measurements.update(Measurements::Temperature, utils::getInvalidTemperature(), channel);
measurements.update(Measurements::Humidity, utils::getInvalidHumidity(), channel);
}
}
if (configuration.hasSensorPMS2 && (ag->pms5003t_2.isFailed() == false)) {
measurements.pm01_2 = ag->pms5003t_2.getPm01Ae();
measurements.pm25_2 = ag->pms5003t_2.getPm25Ae();
measurements.pm10_2 = ag->pms5003t_2.getPm10Ae();
measurements.pm03PCount_2 = ag->pms5003t_2.getPm03ParticleCount();
measurements.temp_2 = ag->pms5003t_2.getTemperature();
measurements.hum_2 = ag->pms5003t_2.getRelativeHumidity();
pmsResult_2 = true;
Serial.println();
Serial.printf("[2] PM1 ug/m3: %d\r\n", measurements.pm01_2);
Serial.printf("[2] PM2.5 ug/m3: %d\r\n", measurements.pm25_2);
Serial.printf("[2] PM10 ug/m3: %d\r\n", measurements.pm10_2);
Serial.printf("[2] PM3.0 Count: %d\r\n", measurements.pm03PCount_2);
Serial.printf("[2] Temperature in C: %0.2f\r\n", measurements.temp_2);
Serial.printf("[2] Relative Humidity: %d\r\n", measurements.hum_2);
Serial.printf("[2] Temperature compensated in C: %0.2f\r\n",
ag->pms5003t_1.temperatureCompensated(measurements.temp_2));
Serial.printf("[2] Relative Humidity compensated: %d\r\n",
ag->pms5003t_1.humidityCompensated(measurements.hum_2));
if (configuration.hasSensorSGP) {
float temp, hum;
if (newPMS1Value && newPMS2Value) {
// Both PMS has new valid value
temp = (measurements.getFloat(Measurements::Temperature, 1) +
measurements.getFloat(Measurements::Temperature, 2)) /
2.0f;
hum = (measurements.getFloat(Measurements::Humidity, 1) +
measurements.getFloat(Measurements::Humidity, 2)) /
2.0f;
} else if (newPMS1Value) {
// Only PMS1 has new valid value
temp = measurements.getFloat(Measurements::Temperature, 1);
hum = measurements.getFloat(Measurements::Humidity, 1);
} else {
measurements.pm01_2 = -1;
measurements.pm25_2 = -1;
measurements.pm10_2 = -1;
measurements.pm03PCount_2 = -1;
measurements.temp_2 = -1001;
measurements.hum_2 = -1;
// Only PMS2 has new valid value
temp = measurements.getFloat(Measurements::Temperature, 2);
hum = measurements.getFloat(Measurements::Humidity, 2);
}
if (configuration.hasSensorPMS1 && configuration.hasSensorPMS2 &&
pmsResult_1 && pmsResult_2) {
/** Get total of PMS1*/
measurements.pm1Value01 = measurements.pm1Value01 + measurements.pm01_1;
measurements.pm1Value25 = measurements.pm1Value25 + measurements.pm25_1;
measurements.pm1Value10 = measurements.pm1Value10 + measurements.pm10_1;
measurements.pm1PCount =
measurements.pm1PCount + measurements.pm03PCount_1;
measurements.pm1temp = measurements.pm1temp + measurements.temp_1;
measurements.pm1hum = measurements.pm1hum + measurements.hum_1;
/** Get total of PMS2 */
measurements.pm2Value01 = measurements.pm2Value01 + measurements.pm01_2;
measurements.pm2Value25 = measurements.pm2Value25 + measurements.pm25_2;
measurements.pm2Value10 = measurements.pm2Value10 + measurements.pm10_2;
measurements.pm2PCount =
measurements.pm2PCount + measurements.pm03PCount_2;
measurements.pm2temp = measurements.pm2temp + measurements.temp_2;
measurements.pm2hum = measurements.pm2hum + measurements.hum_2;
measurements.countPosition++;
/** Get average */
if (measurements.countPosition == measurements.targetCount) {
measurements.pm01_1 =
measurements.pm1Value01 / measurements.targetCount;
measurements.pm25_1 =
measurements.pm1Value25 / measurements.targetCount;
measurements.pm10_1 =
measurements.pm1Value10 / measurements.targetCount;
measurements.pm03PCount_1 =
measurements.pm1PCount / measurements.targetCount;
measurements.temp_1 = measurements.pm1temp / measurements.targetCount;
measurements.hum_1 = measurements.pm1hum / measurements.targetCount;
measurements.pm01_2 =
measurements.pm2Value01 / measurements.targetCount;
measurements.pm25_2 =
measurements.pm2Value25 / measurements.targetCount;
measurements.pm10_2 =
measurements.pm2Value10 / measurements.targetCount;
measurements.pm03PCount_2 =
measurements.pm2PCount / measurements.targetCount;
measurements.temp_2 = measurements.pm2temp / measurements.targetCount;
measurements.hum_2 = measurements.pm2hum / measurements.targetCount;
measurements.countPosition = 0;
measurements.pm1Value01 = 0;
measurements.pm1Value25 = 0;
measurements.pm1Value10 = 0;
measurements.pm1PCount = 0;
measurements.pm1temp = 0;
measurements.pm1hum = 0;
measurements.pm2Value01 = 0;
measurements.pm2Value25 = 0;
measurements.pm2Value10 = 0;
measurements.pm2PCount = 0;
measurements.pm2temp = 0;
measurements.pm2hum = 0;
}
}
if (pmsResult_1 && pmsResult_2) {
measurements.Temperature =
(measurements.temp_1 + measurements.temp_2) / 2;
measurements.Humidity = (measurements.hum_1 + measurements.hum_2) / 2;
} else {
if (pmsResult_1) {
measurements.Temperature = measurements.temp_1;
measurements.Humidity = measurements.hum_1;
}
if (pmsResult_2) {
measurements.Temperature = measurements.temp_2;
measurements.Humidity = measurements.hum_2;
}
}
if (configuration.hasSensorSGP) {
float temp;
float hum;
if (pmsResult_1 && pmsResult_2) {
temp = (measurements.temp_1 + measurements.temp_2) / 2.0f;
hum = (measurements.hum_1 + measurements.hum_2) / 2.0f;
} else {
if (pmsResult_1) {
temp = measurements.temp_1;
hum = measurements.hum_1;
}
if (pmsResult_2) {
temp = measurements.temp_2;
hum = measurements.hum_2;
}
}
ag->sgp41.setCompensationTemperatureHumidity(temp, hum);
}
// Update compensation temperature and humidity for SGP41
ag->sgp41.setCompensationTemperatureHumidity(temp, hum);
}
}
static void sendDataToServer(void) {
/** Increment bootcount when send measurements data is scheduled */
measurements.bootCount++;
/** Ignore send data to server if postToAirGradient disabled */
if (configuration.isPostDataToAirGradient() == false || configuration.isOfflineMode()) {
return;
}
String syncData = measurements.toString(false, fwMode, wifiConnector.RSSI(),
ag, &configuration);
String syncData = measurements.toString(false, fwMode, wifiConnector.RSSI(), *ag, configuration);
if (apiClient.postToServer(syncData)) {
ag->watchdog.reset();
Serial.println();
Serial.println(
"Online mode and isPostToAirGradient = true: watchdog reset");
Serial.println();
}
measurements.bootCount++;
}
static void tempHumUpdate(void) {
delay(100);
if (ag->sht.measure()) {
measurements.Temperature = ag->sht.getTemperature();
measurements.Humidity = ag->sht.getRelativeHumidity();
float temp = ag->sht.getTemperature();
float rhum = ag->sht.getRelativeHumidity();
Serial.printf("Temperature in C: %0.2f\r\n", measurements.Temperature);
Serial.printf("Relative Humidity: %d\r\n", measurements.Humidity);
Serial.printf("Temperature compensated in C: %0.2f\r\n",
measurements.Temperature);
Serial.printf("Relative Humidity compensated: %d\r\n",
measurements.Humidity);
measurements.update(Measurements::Temperature, temp);
measurements.update(Measurements::Humidity, rhum);
// Update compensation temperature and humidity for SGP41
if (configuration.hasSensorSGP) {
ag->sgp41.setCompensationTemperatureHumidity(measurements.Temperature,
measurements.Humidity);
ag->sgp41.setCompensationTemperatureHumidity(temp, rhum);
}
} else {
measurements.update(Measurements::Temperature, utils::getInvalidTemperature());
measurements.update(Measurements::Humidity, utils::getInvalidHumidity());
Serial.println("SHT read failed");
}
}
/* Set max period for each measurement type based on sensor update interval*/
void setMeasurementMaxPeriod() {
int max;
/// Max period for S8 sensors measurements
measurements.maxPeriod(Measurements::CO2, calculateMaxPeriod(SENSOR_CO2_UPDATE_INTERVAL));
/// Max period for SGP sensors measurements
max = calculateMaxPeriod(SENSOR_TVOC_UPDATE_INTERVAL);
measurements.maxPeriod(Measurements::TVOC, max);
measurements.maxPeriod(Measurements::TVOCRaw, max);
measurements.maxPeriod(Measurements::NOx, max);
measurements.maxPeriod(Measurements::NOxRaw, max);
/// Max period for PMS sensors measurements
max = calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL);
measurements.maxPeriod(Measurements::PM25, max);
measurements.maxPeriod(Measurements::PM01, max);
measurements.maxPeriod(Measurements::PM10, max);
measurements.maxPeriod(Measurements::PM25_SP, max);
measurements.maxPeriod(Measurements::PM01_SP, max);
measurements.maxPeriod(Measurements::PM10_SP, max);
measurements.maxPeriod(Measurements::PM03_PC, max);
measurements.maxPeriod(Measurements::PM05_PC, max);
measurements.maxPeriod(Measurements::PM01_PC, max);
measurements.maxPeriod(Measurements::PM25_PC, max);
measurements.maxPeriod(Measurements::PM5_PC, max);
measurements.maxPeriod(Measurements::PM10_PC, max);
// Temperature and Humidity
if (configuration.hasSensorSHT) {
/// Max period for SHT sensors measurements
measurements.maxPeriod(Measurements::Temperature,
calculateMaxPeriod(SENSOR_TEMP_HUM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::Humidity,
calculateMaxPeriod(SENSOR_TEMP_HUM_UPDATE_INTERVAL));
} else {
/// Temp and hum data retrieved from PMS5003T sensor
measurements.maxPeriod(Measurements::Temperature,
calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
measurements.maxPeriod(Measurements::Humidity, calculateMaxPeriod(SENSOR_PM_UPDATE_INTERVAL));
}
}
int calculateMaxPeriod(int updateInterval) {
// 0.8 is 80% reduced interval for max period
return (SERVER_SYNC_INTERVAL - (SERVER_SYNC_INTERVAL * 0.8)) / updateInterval;
}

View File

@ -57,94 +57,111 @@ String OpenMetrics::getPayload(void) {
"gauge", "dbm");
add_metric_point("", String(wifiConnector.RSSI()));
if (config.hasSensorS8 && measure.CO2 >= 0) {
add_metric("co2",
"Carbon dioxide concentration as measured by the AirGradient S8 "
"sensor, in parts per million",
"gauge", "ppm");
add_metric_point("", String(measure.CO2));
}
// Initialize default invalid value for each measurements
float _temp = utils::getInvalidTemperature();
float _hum = utils::getInvalidHumidity();
int pm01 = utils::getInvalidPmValue();
int pm25 = utils::getInvalidPmValue();
int pm10 = utils::getInvalidPmValue();
int pm03PCount = utils::getInvalidPmValue();
int co2 = utils::getInvalidCO2();
int atmpCompensated = utils::getInvalidTemperature();
int ahumCompensated = utils::getInvalidHumidity();
int tvoc = utils::getInvalidVOC();
int tvocRaw = utils::getInvalidVOC();
int nox = utils::getInvalidNOx();
int noxRaw = utils::getInvalidNOx();
float _temp = -1001;
float _hum = -1;
int pm01 = -1;
int pm25 = -1;
int pm10 = -1;
int pm03PCount = -1;
int atmpCompensated = -1;
int ahumCompensated = -1;
// Get values
if (config.hasSensorPMS1 && config.hasSensorPMS2) {
_temp = (measure.temp_1 + measure.temp_2) / 2.0f;
_hum = (measure.hum_1 + measure.hum_2) / 2.0f;
pm01 = (measure.pm01_1 + measure.pm01_2) / 2;
pm25 = (measure.pm25_1 + measure.pm25_2) / 2;
pm10 = (measure.pm10_1 + measure.pm10_2) / 2;
pm03PCount = (measure.pm03PCount_1 + measure.pm03PCount_2) / 2;
_temp = (measure.getFloat(Measurements::Temperature, 1) +
measure.getFloat(Measurements::Temperature, 2)) /
2.0f;
_hum = (measure.getFloat(Measurements::Humidity, 1) +
measure.getFloat(Measurements::Humidity, 2)) /
2.0f;
pm01 = (measure.get(Measurements::PM01, 1) + measure.get(Measurements::PM01, 2)) / 2.0f;
pm25 = (measure.get(Measurements::PM25, 1) + measure.get(Measurements::PM25, 2)) / 2.0f;
pm10 = (measure.get(Measurements::PM10, 1) + measure.get(Measurements::PM10, 2)) / 2.0f;
pm03PCount =
(measure.get(Measurements::PM03_PC, 1) + measure.get(Measurements::PM03_PC, 2)) / 2.0f;
} else {
if (ag->isOne()) {
if (config.hasSensorSHT) {
_temp = measure.Temperature;
_hum = measure.Humidity;
_temp = measure.getFloat(Measurements::Temperature);
_hum = measure.getFloat(Measurements::Humidity);
}
if (config.hasSensorPMS1) {
pm01 = measure.pm01_1;
pm25 = measure.pm25_1;
pm10 = measure.pm10_1;
pm03PCount = measure.pm03PCount_1;
pm01 = measure.get(Measurements::PM01);
pm25 = measure.get(Measurements::PM25);
pm10 = measure.get(Measurements::PM10);
pm03PCount = measure.get(Measurements::PM03_PC);
}
} else {
if (config.hasSensorPMS1) {
_temp = measure.temp_1;
_hum = measure.hum_1;
pm01 = measure.pm01_1;
pm25 = measure.pm25_1;
pm10 = measure.pm10_1;
pm03PCount = measure.pm03PCount_1;
_temp = measure.getFloat(Measurements::Temperature, 1);
_hum = measure.getFloat(Measurements::Humidity, 1);
pm01 = measure.get(Measurements::PM01, 1);
pm25 = measure.get(Measurements::PM25, 1);
pm10 = measure.get(Measurements::PM10, 1);
pm03PCount = measure.get(Measurements::PM03_PC, 1);
}
if (config.hasSensorPMS2) {
_temp = measure.temp_2;
_hum = measure.hum_2;
pm01 = measure.pm01_2;
pm25 = measure.pm25_2;
pm10 = measure.pm10_2;
pm03PCount = measure.pm03PCount_2;
_temp = measure.getFloat(Measurements::Temperature, 2);
_hum = measure.getFloat(Measurements::Humidity, 2);
pm01 = measure.get(Measurements::PM01, 2);
pm25 = measure.get(Measurements::PM25, 2);
pm10 = measure.get(Measurements::PM10, 2);
pm03PCount = measure.get(Measurements::PM03_PC, 2);
}
}
}
if (config.hasSensorSGP) {
tvoc = measure.get(Measurements::TVOC);
tvocRaw = measure.get(Measurements::TVOCRaw);
nox = measure.get(Measurements::NOx);
noxRaw = measure.get(Measurements::NOxRaw);
}
if (config.hasSensorS8) {
co2 = measure.get(Measurements::CO2);
}
/** Get temperature and humidity compensated */
if (ag->isOne()) {
atmpCompensated = _temp;
ahumCompensated = _hum;
} else {
atmpCompensated = ag->pms5003t_1.temperatureCompensated(_temp);
ahumCompensated = ag->pms5003t_1.humidityCompensated(_hum);
atmpCompensated = ag->pms5003t_1.compensateTemp(_temp);
ahumCompensated = ag->pms5003t_1.compensateHum(_hum);
}
// Add measurements that valid to the metrics
if (config.hasSensorPMS1 || config.hasSensorPMS2) {
if (pm01 >= 0) {
if (utils::isValidPm(pm01)) {
add_metric("pm1",
"PM1.0 concentration as measured by the AirGradient PMS "
"sensor, in micrograms per cubic meter",
"gauge", "ugm3");
add_metric_point("", String(pm01));
}
if (pm25 >= 0) {
if (utils::isValidPm(pm25)) {
add_metric("pm2d5",
"PM2.5 concentration as measured by the AirGradient PMS "
"sensor, in micrograms per cubic meter",
"gauge", "ugm3");
add_metric_point("", String(pm25));
}
if (pm10 >= 0) {
if (utils::isValidPm(pm10)) {
add_metric("pm10",
"PM10 concentration as measured by the AirGradient PMS "
"sensor, in micrograms per cubic meter",
"gauge", "ugm3");
add_metric_point("", String(pm10));
}
if (pm03PCount >= 0) {
if (utils::isValidPm03Count(pm03PCount)) {
add_metric("pm0d3",
"PM0.3 concentration as measured by the AirGradient PMS "
"sensor, in number of particules per 100 milliliters",
@ -154,63 +171,67 @@ String OpenMetrics::getPayload(void) {
}
if (config.hasSensorSGP) {
if (measure.TVOC >= 0) {
if (utils::isValidVOC(tvoc)) {
add_metric("tvoc_index",
"The processed Total Volatile Organic Compounds (TVOC) index "
"as measured by the AirGradient SGP sensor",
"gauge");
add_metric_point("", String(measure.TVOC));
add_metric_point("", String(tvoc));
}
if (measure.TVOCRaw >= 0) {
if (utils::isValidVOC(tvocRaw)) {
add_metric("tvoc_raw",
"The raw input value to the Total Volatile Organic Compounds "
"(TVOC) index as measured by the AirGradient SGP sensor",
"gauge");
add_metric_point("", String(measure.TVOCRaw));
add_metric_point("", String(tvocRaw));
}
if (measure.NOx >= 0) {
if (utils::isValidNOx(nox)) {
add_metric("nox_index",
"The processed Nitrous Oxide (NOx) index as measured by the "
"AirGradient SGP sensor",
"gauge");
add_metric_point("", String(measure.NOx));
add_metric_point("", String(nox));
}
if (measure.NOxRaw >= 0) {
if (utils::isValidNOx(noxRaw)) {
add_metric("nox_raw",
"The raw input value to the Nitrous Oxide (NOx) index as "
"measured by the AirGradient SGP sensor",
"gauge");
add_metric_point("", String(measure.NOxRaw));
add_metric_point("", String(noxRaw));
}
}
if (_temp > -1001) {
if (utils::isValidCO2(co2)) {
add_metric("co2",
"Carbon dioxide concentration as measured by the AirGradient S8 "
"sensor, in parts per million",
"gauge", "ppm");
add_metric_point("", String(co2));
}
if (utils::isValidTemperature(_temp)) {
add_metric("temperature",
"The ambient temperature as measured by the AirGradient SHT / PMS "
"sensor, in degrees Celsius",
"gauge", "celsius");
add_metric_point("", String(_temp));
}
if (atmpCompensated > -1001) {
add_metric(
"temperature_compensated",
"The compensated ambient temperature as measured by the AirGradient SHT / PMS "
"sensor, in degrees Celsius",
"gauge", "celsius");
if (utils::isValidTemperature(atmpCompensated)) {
add_metric("temperature_compensated",
"The compensated ambient temperature as measured by the AirGradient SHT / PMS "
"sensor, in degrees Celsius",
"gauge", "celsius");
add_metric_point("", String(atmpCompensated));
}
if (_hum >= 0) {
add_metric(
"humidity",
"The relative humidity as measured by the AirGradient SHT sensor",
"gauge", "percent");
if (utils::isValidHumidity(_hum)) {
add_metric("humidity", "The relative humidity as measured by the AirGradient SHT sensor",
"gauge", "percent");
add_metric_point("", String(_hum));
}
if (ahumCompensated >= 0) {
add_metric(
"humidity_compensated",
"The compensated relative humidity as measured by the AirGradient SHT / PMS sensor",
"gauge", "percent");
if (utils::isValidHumidity(ahumCompensated)) {
add_metric("humidity_compensated",
"The compensated relative humidity as measured by the AirGradient SHT / PMS sensor",
"gauge", "percent");
add_metric_point("", String(ahumCompensated));
}

View File

@ -44,7 +44,7 @@ void loop() {
if (ms >= 5000) {
lastRead = millis();
#ifdef ESP8266
if (ag.pms5003.isFailed() == false) {
if (ag.pms5003.connected()) {
PM2 = ag.pms5003.getPm25Ae();
Serial.printf("PM2.5 in ug/m3: %d\r\n", PM2);
Serial.printf("PM2.5 in US AQI: %d\r\n",
@ -54,12 +54,12 @@ void loop() {
}
#else
if (ag.getBoardType() == OPEN_AIR_OUTDOOR) {
if (ag.pms5003t_1.isFailed() == false) {
if (ag.pms5003t_1.connected()) {
PM2 = ag.pms5003t_1.getPm25Ae();
readResul = true;
}
} else {
if (ag.pms5003.isFailed() == false) {
if (ag.pms5003.connected()) {
PM2 = ag.pms5003.getPm25Ae();
readResul = true;
}

View File

@ -1,5 +1,5 @@
name=AirGradient Air Quality Sensor
version=3.1.4
version=3.1.16
author=AirGradient <support@airgradient.com>
maintainer=AirGradient <support@airgradient.com>
sentence=ESP32-C3 / ESP8266 library for air quality monitor measuring PM, CO2, Temperature, TVOC and Humidity with OLED display.

View File

@ -1,7 +1,7 @@
# Name, Type, SubType, Offset, Size, Flags
nvs, data, nvs, 0x9000, 0x5000,
otadata, data, ota, 0xe000, 0x2000,
app0, app, ota_0, 0x10000, 0x1E0000,
app1, app, ota_1, 0x1F0000,0x1E0000,
spiffs, data, spiffs, 0x3D0000,0x20000,
coredump, data, coredump,0x3F0000,0x10000,
# Name ,Type ,SubType ,Offset ,Size ,Flags
nvs ,data ,nvs ,0x9000 ,0x5000 ,
otadata ,data ,ota ,0xe000 ,0x2000 ,
app0 ,app ,ota_0 ,0x10000 ,0x1E0000 ,
app1 ,app ,ota_1 ,0x1F0000 ,0x1E0000 ,
spiffs ,data ,spiffs ,0x3D0000 ,0x20000 ,
coredump ,data ,coredump ,0x3F0000 ,0x10000 ,

1 # Name # Name Type Type SubType SubType Offset Offset Size Size Flags
2 nvs nvs data data nvs nvs 0x9000 0x9000 0x5000 0x5000
3 otadata otadata data data ota ota 0xe000 0xe000 0x2000 0x2000
4 app0 app0 app app ota_0 ota_0 0x10000 0x10000 0x1E0000 0x1E0000
5 app1 app1 app app ota_1 ota_1 0x1F0000 0x1F0000 0x1E0000 0x1E0000
6 spiffs spiffs data data spiffs spiffs 0x3D0000 0x3D0000 0x20000 0x20000
7 coredump coredump data data coredump coredump 0x3F0000 0x3F0000 0x10000 0x10000

View File

@ -22,6 +22,7 @@ AgApiClient::~AgApiClient() {}
void AgApiClient::begin(void) {
getConfigFailed = false;
postToServerFailed = false;
logInfo("Init apiRoot: " + apiRoot);
logInfo("begin");
}
@ -44,9 +45,8 @@ bool AgApiClient::fetchServerConfiguration(void) {
return false;
}
String uri =
"http://hw.airgradient.com/sensors/airgradient:" + ag->deviceId() +
"/one/config";
String uri = apiRoot + "/sensors/airgradient:" +
ag->deviceId() + "/one/config";
/** Init http client */
#ifdef ESP8266
@ -58,6 +58,7 @@ bool AgApiClient::fetchServerConfiguration(void) {
}
#else
HTTPClient client;
client.setTimeout(timeoutMs);
if (client.begin(uri) == false) {
getConfigFailed = true;
return false;
@ -66,6 +67,10 @@ bool AgApiClient::fetchServerConfiguration(void) {
/** Get data */
int retCode = client.GET();
logInfo(String("GET: ") + uri);
logInfo(String("Return code: ") + String(retCode));
if (retCode != 200) {
client.end();
getConfigFailed = true;
@ -109,21 +114,25 @@ bool AgApiClient::postToServer(String data) {
return false;
}
String uri =
"http://hw.airgradient.com/sensors/airgradient:" + ag->deviceId() +
"/measures";
logInfo("Post uri: " + uri);
logInfo("Post data: " + data);
String uri = apiRoot + "/sensors/airgradient:" + ag->deviceId() + "/measures";
// logInfo("Post uri: " + uri);
// logInfo("Post data: " + data);
WiFiClient wifiClient;
HTTPClient client;
client.setTimeout(timeoutMs);
if (client.begin(wifiClient, uri.c_str()) == false) {
logError("Init client failed");
return false;
}
client.addHeader("content-type", "application/json");
int retCode = client.POST(data);
client.end();
logInfo(String("POST: ") + uri);
// logInfo(String("DATA: ") + data);
logInfo(String("Return code: ") + String(retCode));
if ((retCode == 200) || (retCode == 429)) {
postToServerFailed = false;
return true;
@ -177,3 +186,16 @@ bool AgApiClient::sendPing(int rssi, int bootCount) {
root["boot"] = bootCount;
return postToServer(JSON.stringify(root));
}
String AgApiClient::getApiRoot() const { return apiRoot; }
void AgApiClient::setApiRoot(const String &apiRoot) { this->apiRoot = apiRoot; }
/**
* @brief Set http request timeout. (Default: 10s)
*
* @param timeoutMs
*/
void AgApiClient::setTimeout(uint16_t timeoutMs) {
this->timeoutMs = timeoutMs;
}

View File

@ -20,10 +20,12 @@ class AgApiClient : public PrintLog {
private:
Configuration &config;
AirGradient *ag;
String apiRoot = "http://hw.airgradient.com";
bool getConfigFailed;
bool postToServerFailed;
bool notAvailableOnDashboard = false; // Device not setup on Airgradient cloud dashboard.
uint16_t timeoutMs = 10000; // Default set to 10s
public:
AgApiClient(Stream &stream, Configuration &config);
@ -37,6 +39,9 @@ public:
bool isNotAvailableOnDashboard(void);
void setAirGradient(AirGradient *ag);
bool sendPing(int rssi, int bootCount);
String getApiRoot() const;
void setApiRoot(const String &apiRoot);
void setTimeout(uint16_t timeoutMs);
};
#endif /** _AG_API_CLIENT_H_ */

View File

@ -1,5 +1,4 @@
#include "AgConfigure.h"
#include "Libraries/Arduino_JSON/src/Arduino_JSON.h"
#if ESP32
#include "FS.h"
#include "SPIFFS.h"
@ -22,6 +21,18 @@ const char *LED_BAR_MODE_NAMES[] = {
[LedBarModeCO2] = "co2",
};
const char *PM_CORRECTION_ALGORITHM_NAMES[] = {
[Unknown] = "-", // This is only to pass "non-trivial designated initializers" error
[None] = "none",
[EPA_2021] = "epa_2021",
[SLR_PMS5003_20220802] = "slr_PMS5003_20220802",
[SLR_PMS5003_20220803] = "slr_PMS5003_20220803",
[SLR_PMS5003_20220824] = "slr_PMS5003_20220824",
[SLR_PMS5003_20231030] = "slr_PMS5003_20231030",
[SLR_PMS5003_20231218] = "slr_PMS5003_20231218",
[SLR_PMS5003_20240104] = "slr_PMS5003_20240104",
};
#define JSON_PROP_NAME(name) jprop_##name
#define JSON_PROP_DEF(name) const char *JSON_PROP_NAME(name) = #name
@ -41,21 +52,24 @@ JSON_PROP_DEF(displayBrightness);
JSON_PROP_DEF(co2CalibrationRequested);
JSON_PROP_DEF(ledBarTestRequested);
JSON_PROP_DEF(offlineMode);
JSON_PROP_DEF(monitorDisplayCompensatedValues);
JSON_PROP_DEF(corrections);
#define jprop_model_default ""
#define jprop_country_default "TH"
#define jprop_pmStandard_default getPMStandardString(false)
#define jprop_ledBarMode_default getLedBarModeName(LedBarMode::LedBarModeCO2)
#define jprop_abcDays_default 8
#define jprop_tvocLearningOffset_default 12
#define jprop_noxLearningOffset_default 12
#define jprop_mqttBrokerUrl_default ""
#define jprop_temperatureUnit_default "c"
#define jprop_configurationControl_default String(CONFIGURATION_CONTROL_NAME[ConfigurationControl::ConfigurationControlBoth])
#define jprop_postDataToAirGradient_default true
#define jprop_ledBarBrightness_default 100
#define jprop_displayBrightness_default 100
#define jprop_offlineMode_default false
#define jprop_model_default ""
#define jprop_country_default "TH"
#define jprop_pmStandard_default getPMStandardString(false)
#define jprop_ledBarMode_default getLedBarModeName(LedBarMode::LedBarModeCO2)
#define jprop_abcDays_default 8
#define jprop_tvocLearningOffset_default 12
#define jprop_noxLearningOffset_default 12
#define jprop_mqttBrokerUrl_default ""
#define jprop_temperatureUnit_default "c"
#define jprop_configurationControl_default String(CONFIGURATION_CONTROL_NAME[ConfigurationControl::ConfigurationControlBoth])
#define jprop_postDataToAirGradient_default true
#define jprop_ledBarBrightness_default 100
#define jprop_displayBrightness_default 100
#define jprop_offlineMode_default false
#define jprop_monitorDisplayCompensatedValues_default false
JSONVar jconfig;
@ -85,6 +99,112 @@ String Configuration::getLedBarModeName(LedBarMode mode) {
return String("unknown");
}
PMCorrectionAlgorithm Configuration::matchPmAlgorithm(String algorithm) {
// Loop through all algorithm names in the PM_CORRECTION_ALGORITHM_NAMES array
// If the input string matches an algorithm name, return the corresponding enum value
// Else return Unknown
const size_t enumSize = SLR_PMS5003_20240104 + 1; // Get the actual size of the enum
PMCorrectionAlgorithm result = PMCorrectionAlgorithm::Unknown;
// Loop through enum values
for (size_t enumVal = 0; enumVal < enumSize; enumVal++) {
if (algorithm == PM_CORRECTION_ALGORITHM_NAMES[enumVal]) {
result = static_cast<PMCorrectionAlgorithm>(enumVal);
}
}
return result;
}
bool Configuration::updatePmCorrection(JSONVar &json) {
if (!json.hasOwnProperty("corrections")) {
// TODO: need to response message?
Serial.println("corrections not found");
return false;
}
JSONVar corrections = json["corrections"];
if (!corrections.hasOwnProperty("pm02")) {
Serial.println("pm02 not found");
return false;
}
JSONVar pm02 = corrections["pm02"];
if (!pm02.hasOwnProperty("correctionAlgorithm")) {
Serial.println("correctionAlgorithm not found");
return false;
}
// TODO: Need to have data type check, with error message response if invalid
// Check algorithm
String algorithm = pm02["correctionAlgorithm"];
PMCorrectionAlgorithm algo = matchPmAlgorithm(algorithm);
if (algo == Unknown) {
logInfo("Unknown algorithm");
return false;
}
logInfo("Correction algorithm: " + algorithm);
// If algo is None or EPA_2021, no need to check slr
// But first check if pmCorrection different from algo
if (algo == None || algo == EPA_2021) {
if (pmCorrection.algorithm != algo) {
// Deep copy corrections from root to jconfig, so it will be saved later
jconfig[jprop_corrections]["pm02"]["correctionAlgorithm"] = algorithm;
jconfig[jprop_corrections]["pm02"]["slr"] = JSON.parse("{}"); // Clear slr
// Update pmCorrection with new values
pmCorrection.algorithm = algo;
pmCorrection.changed = true;
logInfo("PM2.5 correction updated");
return true;
}
return false;
}
// Check if pm02 has slr object
if (!pm02.hasOwnProperty("slr")) {
Serial.println("slr not found");
return false;
}
JSONVar slr = pm02["slr"];
// Validate required slr properties exist
if (!slr.hasOwnProperty("intercept") || !slr.hasOwnProperty("scalingFactor") ||
!slr.hasOwnProperty("useEpa2021")) {
Serial.println("Missing required slr properties");
return false;
}
// arduino_json doesn't support float type, need to cast to double first
float intercept = (float)((double)slr["intercept"]);
float scalingFactor = (float)((double)slr["scalingFactor"]);
// Compare with current pmCorrection
if (pmCorrection.algorithm == algo && pmCorrection.intercept == intercept &&
pmCorrection.scalingFactor == scalingFactor &&
pmCorrection.useEPA == (bool)slr["useEpa2021"]) {
return false; // No changes needed
}
// Deep copy corrections from root to jconfig, so it will be saved later
jconfig[jprop_corrections] = corrections;
// Update pmCorrection with new values
pmCorrection.algorithm = algo;
pmCorrection.intercept = intercept;
pmCorrection.scalingFactor = scalingFactor;
pmCorrection.useEPA = (bool)slr["useEpa2021"];
pmCorrection.changed = true;
// Correction values were updated
logInfo("PM2.5 correction updated");
return true;
}
/**
* @brief Save configure to device storage (EEPROM)
*
@ -160,13 +280,21 @@ void Configuration::defaultConfig(void) {
jconfig[jprop_displayBrightness] = jprop_displayBrightness_default;
}
if (ag->isOne()) {
jconfig[jprop_ledBarMode] = jprop_ledBarBrightness_default;
jconfig[jprop_ledBarMode] = jprop_ledBarMode_default;
}
jconfig[jprop_tvocLearningOffset] = jprop_tvocLearningOffset_default;
jconfig[jprop_noxLearningOffset] = jprop_noxLearningOffset_default;
jconfig[jprop_abcDays] = jprop_abcDays_default;
jconfig[jprop_model] = jprop_model_default;
jconfig[jprop_offlineMode] = jprop_offlineMode_default;
jconfig[jprop_monitorDisplayCompensatedValues] = jprop_monitorDisplayCompensatedValues_default;
// PM2.5 correction
pmCorrection.algorithm = None;
pmCorrection.changed = false;
pmCorrection.intercept = 0;
pmCorrection.scalingFactor = 1;
pmCorrection.useEPA = false;
saveConfig();
}
@ -226,16 +354,16 @@ bool Configuration::begin(void) {
* @return false Failure
*/
bool Configuration::parse(String data, bool isLocal) {
logInfo("Parse configure: " + data);
logInfo("Parsing configuration: " + data);
JSONVar root = JSON.parse(data);
failedMessage = "";
if (root == undefined) {
if (root == undefined || JSONVar::typeof_(root) != "object") {
logError("Parse configuration failed, JSON invalid (" + JSONVar::typeof_(root) + ")");
failedMessage = "JSON invalid";
logError(failedMessage);
return false;
}
logInfo("Parse configure success");
logInfo("Parse configuration success");
/** Is configuration changed */
bool changed = false;
@ -264,12 +392,14 @@ bool Configuration::parse(String data, bool isLocal) {
jconfig[jprop_configurationControl]);
}
/** Check to return result if configurationControl is 'cloud' */
if (ctrl ==
String(CONFIGURATION_CONTROL_NAME
[ConfigurationControl::ConfigurationControlCloud])) {
failedMessage = String(msg);
return true;
/** Return failed if new "configurationControl" new and old is "cloud" */
if (ctrl == String(CONFIGURATION_CONTROL_NAME [ConfigurationControl::ConfigurationControlCloud])) {
if(ctrl != lastCtrl) {
return true;
} else {
failedMessage = String(msg);
return false;
}
}
} else {
failedMessage =
@ -626,6 +756,27 @@ bool Configuration::parse(String data, bool isLocal) {
}
}
if (JSON.typeof_(root[jprop_monitorDisplayCompensatedValues]) == "boolean") {
bool value = root[jprop_monitorDisplayCompensatedValues];
bool oldValue = jconfig[jprop_monitorDisplayCompensatedValues];
if (value != oldValue) {
changed = true;
jconfig[jprop_monitorDisplayCompensatedValues] = value;
configLogInfo(String(jprop_monitorDisplayCompensatedValues),
String(oldValue ? "true" : "false"),
String(value ? "true" : "false"));
}
} else {
if (jsonTypeInvalid(root[jprop_monitorDisplayCompensatedValues],
"boolean")) {
failedMessage = jsonTypeInvalidMessage(
String(jprop_monitorDisplayCompensatedValues), "boolean");
jsonInvalid();
return false;
}
}
if (ag->getBoardType() == ONE_INDOOR ||
ag->getBoardType() == OPEN_AIR_OUTDOOR) {
if (JSON.typeof_(root["targetFirmware"]) == "string") {
@ -634,20 +785,25 @@ bool Configuration::parse(String data, bool isLocal) {
if (curVer != newVer) {
logInfo("Detected new firmware version: " + newVer);
otaNewFirmwareVersion = newVer;
udpated = true;
updated = true;
} else {
otaNewFirmwareVersion = String("");
}
}
}
// Corrections
if (updatePmCorrection(root)) {
changed = true;
}
if (changed) {
udpated = true;
updated = true;
saveConfig();
printConfig();
} else {
if (ledBarTestRequested || co2CalibrationRequested) {
udpated = true;
updated = true;
}
}
return true;
@ -834,8 +990,8 @@ String Configuration::getModel(void) {
}
bool Configuration::isUpdated(void) {
bool updated = this->udpated;
this->udpated = false;
bool updated = this->updated;
this->updated = false;
return updated;
}
@ -1080,14 +1236,27 @@ void Configuration::toConfig(const char *buf) {
}
if (JSON.typeof_(jconfig[jprop_offlineMode]) != "boolean") {
isInvalid = true;
} else {
isInvalid = false;
changed = true;
jconfig[jprop_offlineMode] = jprop_offlineMode_default;
}
if (isInvalid) {
jconfig[jprop_offlineMode] = false;
/** Validate monitorDisplayCompensatedValues */
if (JSON.typeof_(jconfig[jprop_monitorDisplayCompensatedValues]) !=
"boolean") {
changed = true;
jconfig[jprop_monitorDisplayCompensatedValues] =
jprop_monitorDisplayCompensatedValues_default;
}
// Set default first before parsing local config
pmCorrection.algorithm = PMCorrectionAlgorithm::None;
pmCorrection.intercept = 0;
pmCorrection.scalingFactor = 0;
pmCorrection.useEPA = false;
// Load correction from saved config
updatePmCorrection(jconfig);
if (changed) {
saveConfig();
}
@ -1171,6 +1340,10 @@ bool Configuration::isLedBarModeChanged(void) {
return changed;
}
bool Configuration::isMonitorDisplayCompensatedValues(void) {
return jconfig[jprop_monitorDisplayCompensatedValues];
}
bool Configuration::isDisplayBrightnessChanged(void) {
bool changed = displayBrightnessChanged;
displayBrightnessChanged = false;
@ -1182,3 +1355,28 @@ String Configuration::newFirmwareVersion(void) {
otaNewFirmwareVersion = String("");
return newFw;
}
bool Configuration::isPMCorrectionChanged(void) {
bool changed = pmCorrection.changed;
pmCorrection.changed = false;
return changed;
}
/**
* @brief Check if PM correction is enabled
*
* @return true if PM correction algorithm is not None, otherwise false
*/
bool Configuration::isPMCorrectionEnabled(void) {
PMCorrection pmCorrection = getPMCorrection();
if (pmCorrection.algorithm == PMCorrectionAlgorithm::None ||
pmCorrection.algorithm == PMCorrectionAlgorithm::Unknown) {
return false;
}
return true;
}
Configuration::PMCorrection Configuration::getPMCorrection(void) {
return pmCorrection;
}

View File

@ -5,12 +5,22 @@
#include "Main/PrintLog.h"
#include "AirGradient.h"
#include <Arduino.h>
#include "Libraries/Arduino_JSON/src/Arduino_JSON.h"
class Configuration : public PrintLog {
public:
struct PMCorrection {
PMCorrectionAlgorithm algorithm;
float intercept;
float scalingFactor;
bool useEPA; // EPA 2021
bool changed;
};
private:
bool co2CalibrationRequested;
bool ledBarTestRequested;
bool udpated;
bool updated;
String failedMessage;
bool _noxLearnOffsetChanged;
bool _tvocLearningOffsetChanged;
@ -19,10 +29,13 @@ private:
String otaNewFirmwareVersion;
bool _offlineMode = false;
bool _ledBarModeChanged = false;
PMCorrection pmCorrection;
AirGradient* ag;
String getLedBarModeName(LedBarMode mode);
PMCorrectionAlgorithm matchPmAlgorithm(String algorithm);
bool updatePmCorrection(JSONVar &json);
void saveConfig(void);
void loadConfig(void);
void defaultConfig(void);
@ -82,6 +95,10 @@ public:
void setOfflineMode(bool offline);
void setOfflineModeWithoutSave(bool offline);
bool isLedBarModeChanged(void);
bool isMonitorDisplayCompensatedValues(void);
bool isPMCorrectionChanged(void);
bool isPMCorrectionEnabled(void);
PMCorrection getPMCorrection(void);
};
#endif /** _AG_CONFIG_H_ */

View File

@ -1,5 +1,6 @@
#include "AgOledDisplay.h"
#include "Libraries/U8g2/src/U8g2lib.h"
#include "Main/utils.h"
/** Cast U8G2 */
#define DISP() ((U8G2_SH1106_128X64_NONAME_F_HW_I2C *)(this->u8g2))
@ -9,40 +10,48 @@
*
* @param hasStatus
*/
void OledDisplay::showTempHum(bool hasStatus) {
char buf[10];
if (value.Temperature > -1001) {
void OledDisplay::showTempHum(bool hasStatus, char *buf, int buf_size) {
/** Temperature */
float temp = value.getAverage(Measurements::Temperature);
if (utils::isValidTemperature(temp)) {
float t = 0.0f;
if (config.isTemperatureUnitInF()) {
t = utils::degreeC_To_F(temp);
} else {
t = temp;
}
if (config.isTemperatureUnitInF()) {
float tempF = (value.Temperature * 9) / 5 + 32;
if (hasStatus) {
snprintf(buf, sizeof(buf), "%0.1f", tempF);
snprintf(buf, buf_size, "%0.1f", t);
} else {
snprintf(buf, sizeof(buf), "%0.1f°F", tempF);
snprintf(buf, buf_size, "%0.1f°F", t);
}
} else {
if (hasStatus) {
snprintf(buf, sizeof(buf), "%.1f", value.Temperature);
snprintf(buf, buf_size, "%.1f", t);
} else {
snprintf(buf, sizeof(buf), "%.1f°C", value.Temperature);
snprintf(buf, buf_size, "%.1f°C", t);
}
}
} else {
} else { /** Show invalid value */
if (config.isTemperatureUnitInF()) {
snprintf(buf, sizeof(buf), "-°F");
snprintf(buf, buf_size, "-°F");
} else {
snprintf(buf, sizeof(buf), "-°C");
snprintf(buf, buf_size, "-°C");
}
}
DISP()->drawUTF8(1, 10, buf);
/** Show humidty */
if (value.Humidity >= 0) {
snprintf(buf, sizeof(buf), "%d%%", value.Humidity);
/** Show humidity */
int rhum = round(value.getAverage(Measurements::Humidity));
if (utils::isValidHumidity(rhum)) {
snprintf(buf, buf_size, "%d%%", rhum);
} else {
snprintf(buf, sizeof(buf), "%-%%");
snprintf(buf, buf_size, "-%%");
}
if (value.Humidity > 99) {
if (rhum > 99.0) {
DISP()->drawStr(97, 10, buf);
} else {
DISP()->drawStr(105, 10, buf);
@ -260,7 +269,7 @@ void OledDisplay::showDashboard(const char *status) {
do {
DISP()->setFont(u8g2_font_t0_16_tf);
if ((status == NULL) || (strlen(status) == 0)) {
showTempHum(false);
showTempHum(false, strBuf, sizeof(strBuf));
} else {
String strStatus = "Show status: " + String(status);
logInfo(strStatus);
@ -271,7 +280,7 @@ void OledDisplay::showDashboard(const char *status) {
/** Show WiFi NA*/
if (strcmp(status, "WiFi N/A") == 0) {
DISP()->setFont(u8g2_font_t0_12_tf);
showTempHum(true);
showTempHum(true, strBuf, sizeof(strBuf));
}
}
@ -283,12 +292,9 @@ void OledDisplay::showDashboard(const char *status) {
DISP()->drawUTF8(1, 27, "CO2");
DISP()->setFont(u8g2_font_t0_22b_tf);
if (value.CO2 > 0) {
int val = 9999;
if (value.CO2 < 10000) {
val = value.CO2;
}
sprintf(strBuf, "%d", val);
int co2 = round(value.getAverage(Measurements::CO2));
if (utils::isValidCO2(co2)) {
sprintf(strBuf, "%d", co2);
} else {
sprintf(strBuf, "%s", "-");
}
@ -299,88 +305,115 @@ void OledDisplay::showDashboard(const char *status) {
DISP()->drawStr(1, 61, "ppm");
/** Draw vertical line */
DISP()->drawLine(45, 14, 45, 64);
DISP()->drawLine(82, 14, 82, 64);
DISP()->drawLine(52, 14, 52, 64);
DISP()->drawLine(97, 14, 97, 64);
/** Draw PM2.5 label */
DISP()->setFont(u8g2_font_t0_12_tf);
DISP()->drawStr(48, 27, "PM2.5");
DISP()->drawStr(55, 27, "PM2.5");
/** Draw PM2.5 value */
int pm25 = round(value.getAverage(Measurements::PM25));
if (utils::isValidPm(pm25)) {
if (config.hasSensorSHT && config.isPMCorrectionEnabled()) {
pm25 = round(value.getCorrectedPM25(*ag, config, true));
}
if (config.isPmStandardInUSAQI()) {
sprintf(strBuf, "%d", ag->pms5003.convertPm25ToUsAqi(pm25));
} else {
sprintf(strBuf, "%d", pm25);
}
} else { /** Show invalid value. */
sprintf(strBuf, "%s", "-");
}
DISP()->setFont(u8g2_font_t0_22b_tf);
DISP()->drawStr(55, 48, strBuf);
/** Draw PM2.5 unit */
DISP()->setFont(u8g2_font_t0_12_tf);
if (config.isPmStandardInUSAQI()) {
if (value.pm25_1 >= 0) {
sprintf(strBuf, "%d", ag->pms5003.convertPm25ToUsAqi(value.pm25_1));
} else {
sprintf(strBuf, "%s", "-");
}
DISP()->drawStr(48, 48, strBuf);
DISP()->setFont(u8g2_font_t0_12_tf);
DISP()->drawUTF8(48, 61, "AQI");
DISP()->drawUTF8(55, 61, "AQI");
} else {
if (value.pm25_1 >= 0) {
sprintf(strBuf, "%d", value.pm25_1);
} else {
sprintf(strBuf, "%s", "-");
}
DISP()->drawStr(48, 48, strBuf);
DISP()->setFont(u8g2_font_t0_12_tf);
DISP()->drawUTF8(48, 61, "ug/m³");
DISP()->drawUTF8(55, 61, "ug/m³");
}
/** Draw tvocIndexlabel */
DISP()->setFont(u8g2_font_t0_12_tf);
DISP()->drawStr(85, 27, "tvoc:");
DISP()->drawStr(100, 27, "VOC:");
/** Draw tvocIndexvalue */
if (value.TVOC >= 0) {
sprintf(strBuf, "%d", value.TVOC);
int tvoc = round(value.getAverage(Measurements::TVOC));
if (utils::isValidVOC(tvoc)) {
sprintf(strBuf, "%d", tvoc);
} else {
sprintf(strBuf, "%s", "-");
}
DISP()->drawStr(85, 39, strBuf);
DISP()->drawStr(100, 39, strBuf);
/** Draw NOx label */
DISP()->drawStr(85, 53, "NOx:");
if (value.NOx >= 0) {
sprintf(strBuf, "%d", value.NOx);
int nox = round(value.getAverage(Measurements::NOx));
DISP()->drawStr(100, 53, "NOx:");
if (utils::isValidNOx(nox)) {
sprintf(strBuf, "%d", nox);
} else {
sprintf(strBuf, "%s", "-");
}
DISP()->drawStr(85, 63, strBuf);
DISP()->drawStr(100, 63, strBuf);
} while (DISP()->nextPage());
} else if (ag->isBasic()) {
ag->display.clear();
/** Set CO2 */
snprintf(strBuf, sizeof(strBuf), "CO2:%d", value.CO2);
int co2 = round(value.getAverage(Measurements::CO2));
if (utils::isValidCO2(co2)) {
snprintf(strBuf, sizeof(strBuf), "CO2:%d", co2);
} else {
snprintf(strBuf, sizeof(strBuf), "CO2:-");
}
ag->display.setCursor(0, 0);
ag->display.setText(strBuf);
/** Set PM */
int pm25 = round(value.getAverage(Measurements::PM25));
if (config.hasSensorSHT && config.isPMCorrectionEnabled()) {
pm25 = round(value.getCorrectedPM25(*ag, config, true));
}
ag->display.setCursor(0, 12);
snprintf(strBuf, sizeof(strBuf), "PM2.5:%d", value.pm25_1);
if (utils::isValidPm(pm25)) {
snprintf(strBuf, sizeof(strBuf), "PM2.5:%d", pm25);
} else {
snprintf(strBuf, sizeof(strBuf), "PM2.5:-");
}
ag->display.setText(strBuf);
/** Set temperature and humidity */
if (value.Temperature <= -1001.0f) {
float temp = value.getAverage(Measurements::Temperature);
if (utils::isValidTemperature(temp)) {
if (config.isTemperatureUnitInF()) {
snprintf(strBuf, sizeof(strBuf), "T:%0.1f F", utils::degreeC_To_F(temp));
} else {
snprintf(strBuf, sizeof(strBuf), "T:%0.f1 C", temp);
}
} else {
if (config.isTemperatureUnitInF()) {
snprintf(strBuf, sizeof(strBuf), "T:-F");
} else {
snprintf(strBuf, sizeof(strBuf), "T:-C");
}
} else {
if (config.isTemperatureUnitInF()) {
float tempF = (value.Temperature * 9) / 5 + 32;
snprintf(strBuf, sizeof(strBuf), "T:%d F", (int)tempF);
} else {
snprintf(strBuf, sizeof(strBuf), "T:%d C", (int)value.Temperature);
}
}
ag->display.setCursor(0, 24);
ag->display.setText(strBuf);
snprintf(strBuf, sizeof(strBuf), "H:%d %%", (int)value.Humidity);
int rhum = round(value.getAverage(Measurements::Humidity));
if (utils::isValidHumidity(rhum)) {
snprintf(strBuf, sizeof(strBuf), "H:%d %%", rhum);
} else {
snprintf(strBuf, sizeof(strBuf), "H:- %%");
}
ag->display.setCursor(0, 36);
ag->display.setText(strBuf);
@ -403,7 +436,17 @@ void OledDisplay::setBrightness(int percent) {
DISP()->setContrast((127 * percent) / 100);
}
} else if (ag->isBasic()) {
ag->display.setContrast((255 * percent) / 100);
if (percent == 0) {
isDisplayOff = true;
// Clear display.
ag->display.clear();
ag->display.show();
}
else {
isDisplayOff = false;
ag->display.setContrast((255 * percent) / 100);
}
}
}
@ -498,7 +541,7 @@ void OledDisplay::showRebooting(void) {
do {
DISP()->setFont(u8g2_font_t0_16_tf);
// setCentralText(20, "Firmware Update");
setCentralText(40, "Reboot...");
setCentralText(40, "Rebooting...");
// setCentralText(60, String("Retry after 24h"));
} while (DISP()->nextPage());
} else if (ag->isBasic()) {

View File

@ -16,7 +16,7 @@ private:
Measurements &value;
bool isDisplayOff = false;
void showTempHum(bool hasStatus);
void showTempHum(bool hasStatus, char* buf, int buf_size);
void setCentralText(int y, String text);
void setCentralText(int y, const char *text);

View File

@ -1,5 +1,6 @@
#include "AgStateMachine.h"
#define LED_TEST_BLINK_DELAY 50 /** ms */
#define LED_FAST_BLINK_DELAY 250 /** ms */
#define LED_SLOW_BLINK_DELAY 1000 /** ms */
#define LED_SHORT_BLINK_DELAY 500 /** ms */
@ -9,9 +10,10 @@
#define RGB_COLOR_R 255, 0, 0 /** Red */
#define RGB_COLOR_G 0, 255, 0 /** Green */
#define RGB_COLOR_Y 255, 255, 0 /** Yellow */
#define RGB_COLOR_O 255, 165, 0 /** Organge */
#define RGB_COLOR_P 160, 32, 240 /** Purple */
#define RGB_COLOR_Y 255, 150, 0 /** Yellow */
#define RGB_COLOR_O 255, 40, 0 /** Orange */
#define RGB_COLOR_P 180, 0, 255 /** Purple */
#define RGB_COLOR_CLEAR 0, 0, 0 /** No color */
/**
* @brief Animation LED bar with color
@ -46,47 +48,67 @@ void StateMachine::ledStatusBlinkDelay(uint32_t ms) {
}
/**
* @brief Led bar show led color status
* @brief Led bar show PM or CO2 led color status
*
* @return true if all led bar are used, false othwerwise
*/
void StateMachine::sensorhandleLeds(void) {
bool StateMachine::sensorhandleLeds(void) {
int totalLedUsed = 0;
switch (config.getLedBarMode()) {
case LedBarMode::LedBarModeCO2:
co2handleLeds();
totalLedUsed = co2handleLeds();
break;
case LedBarMode::LedBarModePm:
pm25handleLeds();
totalLedUsed = pm25handleLeds();
break;
default:
ag->ledBar.clear();
break;
}
if (totalLedUsed == ag->ledBar.getNumberOfLeds()) {
return true;
}
// Clear the rest of unused led
int startIndex = totalLedUsed + 1;
for (int i = startIndex; i <= ag->ledBar.getNumberOfLeds(); i++) {
ag->ledBar.setColor(RGB_COLOR_CLEAR, ag->ledBar.getNumberOfLeds() - i);
}
return false;
}
/**
* @brief Show CO2 LED status
*
* @return return total number of led that are used on the monitor
*/
void StateMachine::co2handleLeds(void) {
int co2Value = value.CO2;
int StateMachine::co2handleLeds(void) {
int totalUsed = ag->ledBar.getNumberOfLeds();
int co2Value = round(value.getAverage(Measurements::CO2));
if (co2Value <= 600) {
/** G; 1 */
ag->ledBar.setColor(RGB_COLOR_G, ag->ledBar.getNumberOfLeds() - 1);
totalUsed = 1;
} else if (co2Value <= 800) {
/** GG; 2 */
ag->ledBar.setColor(RGB_COLOR_G, ag->ledBar.getNumberOfLeds() - 1);
ag->ledBar.setColor(RGB_COLOR_G, ag->ledBar.getNumberOfLeds() - 2);
totalUsed = 2;
} else if (co2Value <= 1000) {
/** YYY; 3 */
ag->ledBar.setColor(RGB_COLOR_Y, ag->ledBar.getNumberOfLeds() - 1);
ag->ledBar.setColor(RGB_COLOR_Y, ag->ledBar.getNumberOfLeds() - 2);
ag->ledBar.setColor(RGB_COLOR_Y, ag->ledBar.getNumberOfLeds() - 3);
totalUsed = 3;
} else if (co2Value <= 1250) {
/** OOOO; 4 */
ag->ledBar.setColor(RGB_COLOR_O, ag->ledBar.getNumberOfLeds() - 1);
ag->ledBar.setColor(RGB_COLOR_O, ag->ledBar.getNumberOfLeds() - 2);
ag->ledBar.setColor(RGB_COLOR_O, ag->ledBar.getNumberOfLeds() - 3);
ag->ledBar.setColor(RGB_COLOR_O, ag->ledBar.getNumberOfLeds() - 4);
totalUsed = 4;
} else if (co2Value <= 1500) {
/** OOOOO; 5 */
ag->ledBar.setColor(RGB_COLOR_O, ag->ledBar.getNumberOfLeds() - 1);
@ -94,6 +116,7 @@ void StateMachine::co2handleLeds(void) {
ag->ledBar.setColor(RGB_COLOR_O, ag->ledBar.getNumberOfLeds() - 3);
ag->ledBar.setColor(RGB_COLOR_O, ag->ledBar.getNumberOfLeds() - 4);
ag->ledBar.setColor(RGB_COLOR_O, ag->ledBar.getNumberOfLeds() - 5);
totalUsed = 5;
} else if (co2Value <= 1750) {
/** RRRRRR; 6 */
ag->ledBar.setColor(RGB_COLOR_R, ag->ledBar.getNumberOfLeds() - 1);
@ -102,6 +125,7 @@ void StateMachine::co2handleLeds(void) {
ag->ledBar.setColor(RGB_COLOR_R, ag->ledBar.getNumberOfLeds() - 4);
ag->ledBar.setColor(RGB_COLOR_R, ag->ledBar.getNumberOfLeds() - 5);
ag->ledBar.setColor(RGB_COLOR_R, ag->ledBar.getNumberOfLeds() - 6);
totalUsed = 6;
} else if (co2Value <= 2000) {
/** RRRRRRR; 7 */
ag->ledBar.setColor(RGB_COLOR_R, ag->ledBar.getNumberOfLeds() - 1);
@ -111,6 +135,7 @@ void StateMachine::co2handleLeds(void) {
ag->ledBar.setColor(RGB_COLOR_R, ag->ledBar.getNumberOfLeds() - 5);
ag->ledBar.setColor(RGB_COLOR_R, ag->ledBar.getNumberOfLeds() - 6);
ag->ledBar.setColor(RGB_COLOR_R, ag->ledBar.getNumberOfLeds() - 7);
totalUsed = 7;
} else if (co2Value <= 3000) {
/** PPPPPPPP; 8 */
ag->ledBar.setColor(RGB_COLOR_P, ag->ledBar.getNumberOfLeds() - 1);
@ -121,6 +146,7 @@ void StateMachine::co2handleLeds(void) {
ag->ledBar.setColor(RGB_COLOR_P, ag->ledBar.getNumberOfLeds() - 6);
ag->ledBar.setColor(RGB_COLOR_P, ag->ledBar.getNumberOfLeds() - 7);
ag->ledBar.setColor(RGB_COLOR_P, ag->ledBar.getNumberOfLeds() - 8);
totalUsed = 8;
} else { /** > 3000 */
/* PRPRPRPRP; 9 */
ag->ledBar.setColor(RGB_COLOR_P, ag->ledBar.getNumberOfLeds() - 1);
@ -132,41 +158,56 @@ void StateMachine::co2handleLeds(void) {
ag->ledBar.setColor(RGB_COLOR_P, ag->ledBar.getNumberOfLeds() - 7);
ag->ledBar.setColor(RGB_COLOR_R, ag->ledBar.getNumberOfLeds() - 8);
ag->ledBar.setColor(RGB_COLOR_P, ag->ledBar.getNumberOfLeds() - 9);
totalUsed = 9;
}
return totalUsed;
}
/**
* @brief Show PM2.5 LED status
*
*
* @return return total number of led that are used on the monitor
*/
void StateMachine::pm25handleLeds(void) {
int pm25Value = value.pm25_1;
if (pm25Value < 5) {
int StateMachine::pm25handleLeds(void) {
int totalUsed = ag->ledBar.getNumberOfLeds();
int pm25Value = round(value.getAverage(Measurements::PM25));
if (config.hasSensorSHT && config.isPMCorrectionEnabled()) {
pm25Value = round(value.getCorrectedPM25(*ag, config, true));
}
if (pm25Value <= 5) {
/** G; 1 */
ag->ledBar.setColor(RGB_COLOR_G, ag->ledBar.getNumberOfLeds() - 1);
} else if (pm25Value < 10) {
totalUsed = 1;
} else if (pm25Value <= 9) {
/** GG; 2 */
ag->ledBar.setColor(RGB_COLOR_G, ag->ledBar.getNumberOfLeds() - 1);
ag->ledBar.setColor(RGB_COLOR_G, ag->ledBar.getNumberOfLeds() - 2);
} else if (pm25Value < 20) {
totalUsed = 2;
} else if (pm25Value <= 20) {
/** YYY; 3 */
ag->ledBar.setColor(RGB_COLOR_Y, ag->ledBar.getNumberOfLeds() - 1);
ag->ledBar.setColor(RGB_COLOR_Y, ag->ledBar.getNumberOfLeds() - 2);
ag->ledBar.setColor(RGB_COLOR_Y, ag->ledBar.getNumberOfLeds() - 3);
} else if (pm25Value < 35) {
totalUsed = 3;
} else if (pm25Value <= 35) {
/** YYYY; 4 */
ag->ledBar.setColor(RGB_COLOR_Y, ag->ledBar.getNumberOfLeds() - 1);
ag->ledBar.setColor(RGB_COLOR_Y, ag->ledBar.getNumberOfLeds() - 2);
ag->ledBar.setColor(RGB_COLOR_Y, ag->ledBar.getNumberOfLeds() - 3);
ag->ledBar.setColor(RGB_COLOR_Y, ag->ledBar.getNumberOfLeds() - 4);
} else if (pm25Value < 45) {
totalUsed = 4;
} else if (pm25Value <= 45) {
/** OOOOO; 5 */
ag->ledBar.setColor(RGB_COLOR_O, ag->ledBar.getNumberOfLeds() - 1);
ag->ledBar.setColor(RGB_COLOR_O, ag->ledBar.getNumberOfLeds() - 2);
ag->ledBar.setColor(RGB_COLOR_O, ag->ledBar.getNumberOfLeds() - 3);
ag->ledBar.setColor(RGB_COLOR_O, ag->ledBar.getNumberOfLeds() - 4);
ag->ledBar.setColor(RGB_COLOR_O, ag->ledBar.getNumberOfLeds() - 5);
} else if (pm25Value < 55) {
totalUsed = 5;
} else if (pm25Value <= 55) {
/** OOOOOO; 6 */
ag->ledBar.setColor(RGB_COLOR_O, ag->ledBar.getNumberOfLeds() - 1);
ag->ledBar.setColor(RGB_COLOR_O, ag->ledBar.getNumberOfLeds() - 2);
@ -174,7 +215,8 @@ void StateMachine::pm25handleLeds(void) {
ag->ledBar.setColor(RGB_COLOR_O, ag->ledBar.getNumberOfLeds() - 4);
ag->ledBar.setColor(RGB_COLOR_O, ag->ledBar.getNumberOfLeds() - 5);
ag->ledBar.setColor(RGB_COLOR_O, ag->ledBar.getNumberOfLeds() - 6);
} else if (pm25Value < 100) {
totalUsed = 6;
} else if (pm25Value <= 100) {
/** RRRRRRR; 7 */
ag->ledBar.setColor(RGB_COLOR_R, ag->ledBar.getNumberOfLeds() - 1);
ag->ledBar.setColor(RGB_COLOR_R, ag->ledBar.getNumberOfLeds() - 2);
@ -183,7 +225,8 @@ void StateMachine::pm25handleLeds(void) {
ag->ledBar.setColor(RGB_COLOR_R, ag->ledBar.getNumberOfLeds() - 5);
ag->ledBar.setColor(RGB_COLOR_R, ag->ledBar.getNumberOfLeds() - 6);
ag->ledBar.setColor(RGB_COLOR_R, ag->ledBar.getNumberOfLeds() - 7);
} else if (pm25Value < 200) {
totalUsed = 7;
} else if (pm25Value <= 125) {
/** RRRRRRRR; 8 */
ag->ledBar.setColor(RGB_COLOR_R, ag->ledBar.getNumberOfLeds() - 1);
ag->ledBar.setColor(RGB_COLOR_R, ag->ledBar.getNumberOfLeds() - 2);
@ -193,7 +236,8 @@ void StateMachine::pm25handleLeds(void) {
ag->ledBar.setColor(RGB_COLOR_R, ag->ledBar.getNumberOfLeds() - 6);
ag->ledBar.setColor(RGB_COLOR_R, ag->ledBar.getNumberOfLeds() - 7);
ag->ledBar.setColor(RGB_COLOR_R, ag->ledBar.getNumberOfLeds() - 8);
} else if (pm25Value < 250) {
totalUsed = 8;
} else if (pm25Value <= 225) {
/** PPPPPPPPP; 9 */
ag->ledBar.setColor(RGB_COLOR_P, ag->ledBar.getNumberOfLeds() - 1);
ag->ledBar.setColor(RGB_COLOR_P, ag->ledBar.getNumberOfLeds() - 2);
@ -204,7 +248,8 @@ void StateMachine::pm25handleLeds(void) {
ag->ledBar.setColor(RGB_COLOR_P, ag->ledBar.getNumberOfLeds() - 7);
ag->ledBar.setColor(RGB_COLOR_P, ag->ledBar.getNumberOfLeds() - 8);
ag->ledBar.setColor(RGB_COLOR_P, ag->ledBar.getNumberOfLeds() - 9);
} else { /** > 250 */
totalUsed = 9;
} else { /** > 225 */
/* PRPRPRPRP; 9 */
ag->ledBar.setColor(RGB_COLOR_P, ag->ledBar.getNumberOfLeds() - 1);
ag->ledBar.setColor(RGB_COLOR_R, ag->ledBar.getNumberOfLeds() - 2);
@ -215,7 +260,10 @@ void StateMachine::pm25handleLeds(void) {
ag->ledBar.setColor(RGB_COLOR_P, ag->ledBar.getNumberOfLeds() - 7);
ag->ledBar.setColor(RGB_COLOR_R, ag->ledBar.getNumberOfLeds() - 8);
ag->ledBar.setColor(RGB_COLOR_P, ag->ledBar.getNumberOfLeds() - 9);
totalUsed = 9;
}
return totalUsed;
}
void StateMachine::co2Calibration(void) {
@ -305,42 +353,62 @@ void StateMachine::co2Calibration(void) {
void StateMachine::ledBarTest(void) {
if (config.isLedBarTestRequested()) {
if (config.getCountry() == "TH") {
uint32_t tstart = millis();
logInfo("Start run LED test for 2 min");
while (1) {
ledBarRunTest();
uint32_t ms = (uint32_t)(millis() - tstart);
if (ms >= (60 * 1000 * 2)) {
logInfo("LED test after 2 min finish");
break;
if (ag->isOne()) {
ag->ledBar.clear();
if (config.getCountry() == "TH") {
uint32_t tstart = millis();
logInfo("Start run LED test for 2 min");
while (1) {
ledBarRunTest();
uint32_t ms = (uint32_t)(millis() - tstart);
if (ms >= (60 * 1000 * 2)) {
logInfo("LED test after 2 min finish");
break;
}
}
} else {
ledBarRunTest();
}
} else {
}
else if(ag->isOpenAir()) {
ledBarRunTest();
}
}
}
void StateMachine::ledBarPowerUpTest(void) { ledBarRunTest(); }
void StateMachine::ledBarPowerUpTest(void) {
if (ag->isOne()) {
ag->ledBar.clear();
}
ledBarRunTest();
}
void StateMachine::ledBarRunTest(void) {
disp.setText("LED Test", "running", ".....");
runLedTest('r');
ag->ledBar.show();
delay(1000);
runLedTest('g');
ag->ledBar.show();
delay(1000);
runLedTest('b');
ag->ledBar.show();
delay(1000);
runLedTest('w');
ag->ledBar.show();
delay(1000);
runLedTest('n');
ag->ledBar.show();
delay(1000);
if (ag->isOne()) {
disp.setText("LED Test", "running", ".....");
runLedTest('r');
ag->ledBar.show();
delay(1000);
runLedTest('g');
ag->ledBar.show();
delay(1000);
runLedTest('b');
ag->ledBar.show();
delay(1000);
runLedTest('w');
ag->ledBar.show();
delay(1000);
runLedTest('n');
ag->ledBar.show();
delay(1000);
} else if (ag->isOpenAir()) {
for (int i = 0; i < 100; i++) {
ag->statusLed.setOn();
delay(LED_TEST_BLINK_DELAY);
ag->statusLed.setOff();
delay(LED_TEST_BLINK_DELAY);
}
}
}
void StateMachine::runLedTest(char color) {
@ -480,7 +548,7 @@ void StateMachine::displayHandle(AgStateMachineState state) {
break;
}
case AgStateMachineServerLost: {
disp.showDashboard("Server N/A");
disp.showDashboard("AG Server N/A");
break;
}
case AgStateMachineSensorConfigFailed: {
@ -489,7 +557,7 @@ void StateMachine::displayHandle(AgStateMachineState state) {
if (ms >= 5000) {
addToDashboardTime = millis();
if (addToDashBoardToggle) {
disp.showDashboard("Add to Dashboard");
disp.showDashboard("Add to AG Dashb.");
} else {
disp.showDashboard(ag->deviceId().c_str());
}
@ -566,15 +634,13 @@ void StateMachine::handleLeds(AgStateMachineState state) {
}
ledState = state;
if (ag->isOne()) {
ag->ledBar.clear(); // Set all LED OFF
}
switch (state) {
case AgStateMachineWiFiManagerMode: {
/** In WiFi Manager Mode */
/** Turn LED OFF */
/** Turn midle LED Color */
/** Turn middle LED Color */
if (ag->isOne()) {
ag->ledBar.clear();
ag->ledBar.setColor(0, 0, 255, ag->ledBar.getNumberOfLeds() / 2);
} else {
ag->statusLed.setToggle();
@ -584,6 +650,7 @@ void StateMachine::handleLeds(AgStateMachineState state) {
case AgStateMachineWiFiManagerPortalActive: {
/** WiFi Manager has connected to mobile phone */
if (ag->isOne()) {
ag->ledBar.clear();
ag->ledBar.setColor(0, 0, 255);
} else {
ag->statusLed.setOn();
@ -594,6 +661,7 @@ void StateMachine::handleLeds(AgStateMachineState state) {
/** after SSID and PW entered and OK clicked, connection to WiFI network is
* attempted */
if (ag->isOne()) {
ag->ledBar.clear();
ledBarSingleLedAnimation(255, 255, 255);
} else {
ag->statusLed.setOff();
@ -603,6 +671,7 @@ void StateMachine::handleLeds(AgStateMachineState state) {
case AgStateMachineWiFiManagerStaConnected: {
/** Connecting to WiFi worked */
if (ag->isOne()) {
ag->ledBar.clear();
ag->ledBar.setColor(255, 255, 255);
} else {
ag->statusLed.setOff();
@ -612,6 +681,7 @@ void StateMachine::handleLeds(AgStateMachineState state) {
case AgStateMachineWiFiOkServerConnecting: {
/** once connected to WiFi an attempt to reach the server is performed */
if (ag->isOne()) {
ag->ledBar.clear();
ledBarSingleLedAnimation(0, 255, 0);
} else {
ag->statusLed.setOff();
@ -621,6 +691,7 @@ void StateMachine::handleLeds(AgStateMachineState state) {
case AgStateMachineWiFiOkServerConnected: {
/** Server is reachable, all fine */
if (ag->isOne()) {
ag->ledBar.clear();
ag->ledBar.setColor(0, 255, 0);
} else {
ag->statusLed.setOff();
@ -637,6 +708,7 @@ void StateMachine::handleLeds(AgStateMachineState state) {
case AgStateMachineWiFiManagerConnectFailed: {
/** Cannot connect to WiFi (e.g. wrong password, WPA Enterprise etc.) */
if (ag->isOne()) {
ag->ledBar.clear();
ag->ledBar.setColor(255, 0, 0);
} else {
ag->statusLed.setOff();
@ -655,6 +727,7 @@ void StateMachine::handleLeds(AgStateMachineState state) {
/** Connected to WiFi but server not reachable, e.g. firewall block/
* whitelisting needed etc. */
if (ag->isOne()) {
ag->ledBar.clear();
ag->ledBar.setColor(233, 183, 54); /** orange */
} else {
ag->statusLed.setOff();
@ -671,6 +744,7 @@ void StateMachine::handleLeds(AgStateMachineState state) {
case AgStateMachineWiFiOkServerOkSensorConfigFailed: {
/** Server reachable but sensor not configured correctly */
if (ag->isOne()) {
ag->ledBar.clear();
ag->ledBar.setColor(139, 24, 248); /** violet */
} else {
ag->statusLed.setOff();
@ -688,11 +762,10 @@ void StateMachine::handleLeds(AgStateMachineState state) {
/** Connection to WiFi network failed credentials incorrect encryption not
* supported etc. */
if (ag->isOne()) {
/** WIFI failed status LED color */
ag->ledBar.setColor(255, 0, 0, 0);
/** Show CO2 or PM color status */
// sensorLedColorHandler();
sensorhandleLeds();
bool allUsed = sensorhandleLeds();
if (allUsed == false) {
ag->ledBar.setColor(255, 0, 0, 0);
}
} else {
ag->statusLed.setOff();
}
@ -702,24 +775,23 @@ void StateMachine::handleLeds(AgStateMachineState state) {
/** Connected to WiFi network but the server cannot be reached through the
* internet, e.g. blocked by firewall */
if (ag->isOne()) {
ag->ledBar.setColor(233, 183, 54, 0);
/** Show CO2 or PM color status */
sensorhandleLeds();
// sensorLedColorHandler();
bool allUsed = sensorhandleLeds();
if (allUsed == false) {
ag->ledBar.setColor(233, 183, 54, 0);
}
} else {
ag->statusLed.setOff();
}
break;
}
case AgStateMachineSensorConfigFailed: {
/** Server is reachable but there is some conguration issue to be fixed on
/** Server is reachable but there is some configuration issue to be fixed on
* the server side */
if (ag->isOne()) {
ag->ledBar.setColor(139, 24, 248, 0);
/** Show CO2 or PM color status */
sensorhandleLeds();
bool allUsed = sensorhandleLeds();
if (allUsed == false) {
ag->ledBar.setColor(139, 24, 248, 0);
}
} else {
ag->statusLed.setOff();
}

View File

@ -24,9 +24,9 @@ private:
void ledBarSingleLedAnimation(uint8_t r, uint8_t g, uint8_t b);
void ledStatusBlinkDelay(uint32_t delay);
void sensorhandleLeds(void);
void co2handleLeds(void);
void pm25handleLeds(void);
bool sensorhandleLeds(void);
int co2handleLeds(void);
int pm25handleLeds(void);
void co2Calibration(void);
void ledBarTest(void);
void ledBarPowerUpTest(void);

File diff suppressed because it is too large Load Diff

View File

@ -1,76 +1,217 @@
#ifndef _AG_VALUE_H_
#define _AG_VALUE_H_
#include <Arduino.h>
#include "AgConfigure.h"
#include "AirGradient.h"
#include "App/AppDef.h"
#include "Libraries/Arduino_JSON/src/Arduino_JSON.h"
#include "Main/utils.h"
#include <Arduino.h>
#include <vector>
class Measurements {
private:
// Generic struct for update indication for respective value
struct Update {
int invalidCounter; // Counting on how many invalid value that are passed to update function
int max; // Maximum length of the period of the moving average
float avg; // Moving average value, updated every update function called
};
// Reading type for sensor value that outputs float
struct FloatValue {
float sumValues; // Total value from each update
std::vector<float> listValues; // List of update value that are kept
Update update;
};
// Reading type for sensor value that outputs integer
struct IntegerValue {
unsigned long sumValues; // Total value from each update; unsigned long to accomodate TVOx and
// NOx raw data
std::vector<int> listValues; // List of update value that are kept
Update update;
};
public:
Measurements() {
pm25_1 = -1;
pm01_1 = -1;
pm10_1 = -1;
pm03PCount_1 = -1;
temp_1 = -1001;
hum_1 = -1;
pm25_2 = -1;
pm01_2 = -1;
pm10_2 = -1;
pm03PCount_2 = -1;
temp_2 = -1001;
hum_2 = -1;
Temperature = -1001;
Humidity = -1;
CO2 = -1;
TVOC = -1;
TVOCRaw = -1;
NOx = -1;
NOxRaw = -1;
}
Measurements() {}
~Measurements() {}
float Temperature;
int Humidity;
int CO2;
int TVOC;
int TVOCRaw;
int NOx;
int NOxRaw;
// Enumeration for every AG measurements
enum MeasurementType {
Temperature,
Humidity,
CO2,
TVOC, // index value
TVOCRaw,
NOx, // index value
NOxRaw,
PM01, // PM1.0 under atmospheric environment
PM25, // PM2.5 under athompheric environment
PM10, // PM10 under atmospheric environment
PM01_SP, // PM1.0 standard particle
PM25_SP, // PM2.5 standard particle
PM10_SP, // PM10 standard particle
PM03_PC, // Particle 0.3 count
PM05_PC, // Particle 0.5 count
PM01_PC, // Particle 1.0 count
PM25_PC, // Particle 2.5 count
PM5_PC, // Particle 5.0 count
PM10_PC, // Particle 10 count
};
int pm25_1;
int pm01_1;
int pm10_1;
int pm03PCount_1;
float temp_1;
int hum_1;
/**
* @brief Set each MeasurementType maximum period length for moving average
*
* @param type the target measurement type to set
* @param max the maximum period length
*/
void maxPeriod(MeasurementType, int max);
int pm25_2;
int pm01_2;
int pm10_2;
int pm03PCount_2;
float temp_2;
int hum_2;
/**
* @brief update target measurement type with new value.
* Each MeasurementType has last raw value and moving average value based on max period
* This function is for MeasurementType that use INT as the data type
*
* @param type measurement type that will be updated
* @param val (int) the new value
* @param ch (int) the MeasurementType channel, not every MeasurementType has more than 1 channel.
* Currently maximum channel is 2. Default: 1 (channel 1)
* @return false if new value invalid consecutively reach threshold (max period)
* @return true otherwise
*/
bool update(MeasurementType type, int val, int ch = 1);
int pm1Value01;
int pm1Value25;
int pm1Value10;
int pm1PCount;
int pm1temp;
int pm1hum;
int pm2Value01;
int pm2Value25;
int pm2Value10;
int pm2PCount;
int pm2temp;
int pm2hum;
int countPosition;
const int targetCount = 20;
/**
* @brief update target measurement type with new value.
* Each MeasurementType has last raw value and moving average value based on max period
* This function is for MeasurementType that use FLOAT as the data type
*
* @param type measurement type that will be updated
* @param val (float) the new value
* @param ch (int) the MeasurementType channel, not every MeasurementType has more than 1 channel.
* Currently maximum channel is 2. Default: 1 (channel 1)
* @return false if new value invalid consecutively reach threshold (max period)
* @return true otherwise
*/
bool update(MeasurementType type, float val, int ch = 1);
/**
* @brief Get the target measurement latest value
*
* @param type measurement type that will be retrieve
* @param ch target type value channel
* @return int measurement type value
*/
int get(MeasurementType type, int ch = 1);
/**
* @brief Get the target measurement latest value
*
* @param type measurement type that will be retrieve
* @param ch target type value channel
* @return float measurement type value
*/
float getFloat(MeasurementType type, int ch = 1);
/**
* @brief Get the target measurement average value
*
* @param type measurement type that will be retrieve
* @param ch target type value channel
* @return moving average value of target measurements type
*/
float getAverage(MeasurementType type, int ch = 1);
/**
* @brief Get the Corrected PM25 object based on the correction algorithm from configuration
*
* If correction is not enabled, then will return the raw value (either average or last value)
*
* @param ag AirGradient instance
* @param config Configuration instance
* @param useAvg Use moving average value if true, otherwise use latest value
* @param ch MeasurementType channel
* @return float Corrected PM2.5 value
*/
float getCorrectedPM25(AirGradient &ag, Configuration &config, bool useAvg = false, int ch = 1);
/**
* build json payload for every measurements
*/
String toString(bool localServer, AgFirmwareMode fwMode, int rssi, AirGradient &ag,
Configuration &config);
/**
* Set to true if want to debug every update value
*/
void setDebug(bool debug);
// TODO: update this to use setter
int bootCount;
String toString(bool isLocal, AgFirmwareMode fwMode, int rssi, void* _ag, void* _config);
private:
// Some declared as an array (channel), because FW_MODE_O_1PPx has two PMS5003T
FloatValue _temperature[2];
FloatValue _humidity[2];
IntegerValue _co2;
IntegerValue _tvoc; // Index value
IntegerValue _tvoc_raw;
IntegerValue _nox; // Index value
IntegerValue _nox_raw;
IntegerValue _pm_01[2]; // pm 1.0 atmospheric environment
IntegerValue _pm_25[2]; // pm 2.5 atmospheric environment
IntegerValue _pm_10[2]; // pm 10 atmospheric environment
IntegerValue _pm_01_sp[2]; // pm 1.0 standard particle
IntegerValue _pm_25_sp[2]; // pm 2.5 standard particle
IntegerValue _pm_10_sp[2]; // pm 10 standard particle
IntegerValue _pm_03_pc[2]; // particle count 0.3
IntegerValue _pm_05_pc[2]; // particle count 0.5
IntegerValue _pm_01_pc[2]; // particle count 1.0
IntegerValue _pm_25_pc[2]; // particle count 2.5
IntegerValue _pm_5_pc[2]; // particle count 5.0
IntegerValue _pm_10_pc[2]; // particle count 10
bool _debug = false;
/**
* @brief Get PMS5003 firmware version string
*
* @param fwCode
* @return String
*/
String pms5003FirmwareVersion(int fwCode);
/**
* @brief Get PMS5003T firmware version string
*
* @param fwCode
* @return String
*/
String pms5003TFirmwareVersion(int fwCode);
/**
* @brief Get firmware version string
*
* @param prefix Prefix firmware string
* @param fwCode Version code
* @return string
*/
String pms5003FirmwareVersionBase(String prefix, int fwCode);
/**
* Convert AgValue Type to string representation of the value
*/
String measurementTypeStr(MeasurementType type);
/**
* @brief check if provided channel is a valid channel or not
* abort program if invalid
*/
void validateChannel(int ch);
JSONVar buildOutdoor(bool localServer, AgFirmwareMode fwMode, AirGradient &ag,
Configuration &config);
JSONVar buildIndoor(bool localServer, AirGradient &ag, Configuration &config);
JSONVar buildPMS(AirGradient &ag, int ch, bool allCh, bool withTempHum, bool compensate);
};
#endif /** _AG_VALUE_H_ */

View File

@ -41,6 +41,28 @@ bool WifiConnector::connect(void) {
}
}
WiFi.begin();
String wifiSSID = WIFI()->getWiFiSSID(true);
if (wifiSSID.isEmpty()) {
logInfo("Connected WiFi is empty, connect to default wifi \"" +
String(this->defaultSsid) + String("\""));
/** Set wifi connect */
WiFi.begin(this->defaultSsid, this->defaultPassword);
/** Wait for wifi connect to AP */
int count = 0;
while (WiFi.status() != WL_CONNECTED) {
delay(1000);
count++;
if (count >= 15) {
logError("Try connect to default wifi \"" + String(this->defaultSsid) +
String("\" failed"));
break;
}
}
}
WIFI()->setConfigPortalBlocking(false);
WIFI()->setConnectTimeout(15);
WIFI()->setTimeout(WIFI_CONNECT_COUNTDOWN_MAX);
@ -50,7 +72,7 @@ bool WifiConnector::connect(void) {
WIFI()->setSaveParamsCallback([this]() { _wifiSaveParamCallback(); });
WIFI()->setConfigPortalTimeoutCallback([this]() {_wifiTimeoutCallback();});
if (ag->isOne() || (ag->isPro4_2()) || ag->isPro3_3() || ag->isBasic()) {
disp.setText("Connect to", "WiFi", "...");
disp.setText("Connecting to", "WiFi", "...");
} else {
logInfo("Connecting to WiFi...");
}
@ -383,3 +405,11 @@ bool WifiConnector::hasConfigurated(void) {
* @return false
*/
bool WifiConnector::isConfigurePorttalTimeout(void) { return connectorTimeout; }
/**
* @brief Set wifi connect to default WiFi
*
*/
void WifiConnector::setDefault(void) {
WiFi.begin("airgradient", "cleanair");
}

View File

@ -46,6 +46,10 @@ public:
String localIpStr(void);
bool hasConfigurated(void);
bool isConfigurePorttalTimeout(void);
const char* defaultSsid = "airgradient";
const char* defaultPassword = "cleanair";
void setDefault(void);
};
#endif /** _AG_WIFI_CONNECTOR_H_ */

View File

@ -41,7 +41,14 @@ String AirGradient::getVersion(void) { return GIT_VERSION; }
BoardType AirGradient::getBoardType(void) { return boardType; }
double AirGradient::round2(double value) {
return (int)(value * 100 + 0.5) / 100.0;
double ret;
if (value >= 0) {
ret = (int)(value * 100 + 0.5f);
} else {
ret = (int)(value * 100 - 0.5f);
}
return ret / 100;
}
String AirGradient::getBoardName(void) {
@ -58,6 +65,10 @@ bool AirGradient::isOne(void) {
return boardType == BoardType::ONE_INDOOR;
}
bool AirGradient::isOpenAir(void) {
return boardType == BoardType::OPEN_AIR_OUTDOOR;
}
bool AirGradient::isPro4_2(void) {
return boardType == BoardType::DIY_PRO_INDOOR_V4_2;
}

View File

@ -12,9 +12,10 @@
#include "S8/S8.h"
#include "Sgp41/Sgp41.h"
#include "Sht/Sht.h"
#include "Main/utils.h"
#ifndef GIT_VERSION
#define GIT_VERSION "snapshot"
#define GIT_VERSION "3.1.16-snap"
#endif
/**
@ -134,6 +135,14 @@ public:
*/
bool isOne(void);
/**
* @brief Check that Airgradient object is OPEN_AIR
*
* @return true
* @return false
*/
bool isOpenAir(void);
/**
* @brief Check that Airgradient object is DIY_PRO 4.2 indoor
*

View File

@ -94,6 +94,18 @@ enum ConfigurationControl {
ConfigurationControlBoth
};
enum PMCorrectionAlgorithm {
Unknown, // Unknown algorithm
None, // No PM correction
EPA_2021,
SLR_PMS5003_20220802,
SLR_PMS5003_20220803,
SLR_PMS5003_20220824,
SLR_PMS5003_20231030,
SLR_PMS5003_20231218,
SLR_PMS5003_20240104,
};
enum AgFirmwareMode {
FW_MODE_I_9PSL, /** ONE_INDOOR */
FW_MODE_O_1PST, /** PMS5003T, S8 and SGP41 */

94
src/Main/utils.cpp Normal file
View File

@ -0,0 +1,94 @@
#include "utils.h"
#define VALID_TEMPERATURE_MAX (125)
#define VALID_TEMPERATURE_MIN (-40)
#define INVALID_TEMPERATURE (-1000)
#define VALID_HUMIDITY_MAX (100)
#define VALID_HUMIDITY_MIN (0)
#define INVALID_HUMIDITY (-1)
#define VALID_PMS_MAX (1000)
#define VALID_PMS_MIN (0)
#define INVALID_PMS (-1)
#define VALID_PMS03COUNT_MIN (0)
#define VALID_CO2_MAX (10000)
#define VALID_CO2_MIN (0)
#define INVALID_CO2 (-1)
#define VALID_NOX_MIN (0)
#define VALID_VOC_MIN (0)
#define INVALID_NOX (-1)
#define INVALID_VOC (-1)
utils::utils(/* args */) {}
utils::~utils() {}
bool utils::isValidTemperature(float value) {
if ((value >= VALID_TEMPERATURE_MIN) && (value <= VALID_TEMPERATURE_MAX)) {
return true;
}
return false;
}
bool utils::isValidHumidity(float value) {
if ((value >= VALID_HUMIDITY_MIN) && (value <= VALID_HUMIDITY_MAX)) {
return true;
}
return false;
}
bool utils::isValidCO2(int16_t value) {
if ((value >= VALID_CO2_MIN) && (value <= VALID_CO2_MAX)) {
return true;
}
return false;
}
bool utils::isValidPm(int value) {
if ((value >= VALID_PMS_MIN) && (value <= VALID_PMS_MAX)) {
return true;
}
return false;
}
bool utils::isValidPm03Count(int value) {
if (value >= VALID_PMS03COUNT_MIN) {
return true;
}
return false;
}
bool utils::isValidNOx(int value) {
if (value >= VALID_NOX_MIN) {
return true;
}
return false;
}
bool utils::isValidVOC(int value) {
if (value >= VALID_VOC_MIN) {
return true;
}
return false;
}
float utils::getInvalidTemperature(void) { return INVALID_TEMPERATURE; }
float utils::getInvalidHumidity(void) { return INVALID_HUMIDITY; }
int utils::getInvalidCO2(void) { return INVALID_CO2; }
int utils::getInvalidPmValue(void) { return INVALID_PMS; }
int utils::getInvalidNOx(void) { return INVALID_NOX; }
int utils::getInvalidVOC(void) { return INVALID_VOC; }
float utils::degreeC_To_F(float t) {
/** (t * 9)/5 + 32 */
return t * 1.8f + 32.0f;
}

31
src/Main/utils.h Normal file
View File

@ -0,0 +1,31 @@
#ifndef _UTILS_H_
#define _UTILS_H_
#include <Arduino.h>
class utils
{
private:
/* data */
public:
utils(/* args */);
~utils();
static bool isValidTemperature(float value);
static bool isValidHumidity(float value);
static bool isValidCO2(int16_t value);
static bool isValidPm(int value);
static bool isValidPm03Count(int value);
static bool isValidNOx(int value);
static bool isValidVOC(int value);
static float getInvalidTemperature(void);
static float getInvalidHumidity(void);
static int getInvalidCO2(void);
static int getInvalidPmValue(void);
static int getInvalidNOx(void);
static int getInvalidVOC(void);
static float degreeC_To_F(float t);
};
#endif /** _UTILS_H_ */

View File

@ -2,248 +2,294 @@
#include "../Main/BoardDef.h"
/**
* @brief Init and check that sensor has connected
*
* @brief Initializes the sensor and attempts to read data.
*
* @param stream UART stream
* @return true Sucecss
* @return false Failure
*/
bool PMSBase::begin(Stream *stream) {
this->stream = stream;
Serial.printf("initializing PM sensor\n");
failed = true;
lastRead = 0; // To read buffer on handle without wait after 1.5sec
failCount = 0;
_connected = false;
this->stream->flush();
// empty first
int bytesCleared = 0;
while (stream->read() != -1) {
bytesCleared++;
}
Serial.printf("cleared %d byte(s)\n", bytesCleared);
// explicitly put the sensor into active mode, this seems to be be needed for the Cubic PM2009X
Serial.printf("setting active mode\n");
uint8_t activeModeCommand[] = { 0x42, 0x4D, 0xE1, 0x00, 0x01, 0x01, 0x71 };
size_t bytesWritten = stream->write(activeModeCommand, sizeof(activeModeCommand));
Serial.printf("%d byte(s) written\n", bytesWritten);
// Run and check sensor data for 4sec
while (1) {
handle();
if (failed == false) {
return true;
unsigned long lastInit = millis();
while (true) {
readPackage(stream);
if (_connected) {
break;
}
delay(1);
uint32_t ms = (uint32_t)(millis() - lastRead);
unsigned long ms = (unsigned long)(millis() - lastInit);
if (ms >= 4000) {
break;
}
}
return false;
return _connected;
}
/**
* @brief Check and read sensor data then update variable.
* Check result from method @isFailed before get value
* @brief Read PMS package send to device each 1sec
*
* @param serial
*/
void PMSBase::handle() {
uint32_t ms;
if (lastRead == 0) {
lastRead = millis();
if (lastRead == 0) {
lastRead = 1;
void PMSBase::readPackage(Stream *serial) {
/** If readPackage has process as period larger than READ_PACKAGE_TIMEOUT,
* should be clear the lastPackage and readBufferIndex */
if (lastReadPackage) {
unsigned long ms = (unsigned long)(millis() - lastReadPackage);
if (ms >= READ_PACKGE_TIMEOUT) {
/** Clear buffer */
readBufferIndex = 0;
/** Disable check read package timeout */
lastPackage = 0;
Serial.println("Last process timeout, clear buffer and last handle package");
}
lastReadPackage = millis();
if (!lastReadPackage) {
lastReadPackage = 1;
}
} else {
ms = (uint32_t)(millis() - lastRead);
/**
* The PMS in Active mode sends an update data every 1 second. If we read
* exactly every 1 sec then we may or may not get an update (depending on
* timing tolerances). Hence we read every 2.5 seconds and expect 2 ..3
* updates,
*/
if (ms < 2500) {
return;
lastReadPackage = millis();
if (!lastReadPackage) {
lastReadPackage = 1;
}
}
bool result = false;
char buf[32];
int bufIndex;
int step = 0;
int len = 0;
int bcount = 0;
while (stream->available()) {
char value = stream->read();
switch (step) {
case 0: {
/** Count to call delay() to release the while loop MCU resource for avoid the
* watchdog time reset */
uint8_t delayCount = 0;
while (serial->available()) {
/** Get value */
uint8_t value = (uint8_t)serial->read();
/** Process receiving package... */
switch (readBufferIndex) {
case 0: /** Start byte 1 */
if (value == 0x42) {
step = 1;
bufIndex = 0;
buf[bufIndex++] = value;
readBuffer[readBufferIndex++] = value;
}
break;
}
case 1: {
case 1: /** Start byte 2 */
if (value == 0x4d) {
step = 2;
buf[bufIndex++] = value;
// Serial.println("Got 0x4d");
readBuffer[readBufferIndex++] = value;
} else {
step = 0;
readBufferIndex = 0;
}
break;
}
case 2: {
buf[bufIndex++] = value;
if (bufIndex >= 4) {
len = toValue(&buf[2]);
if (len != 28) {
// Serial.printf("Got good bad len %d\r\n", len);
len += 4;
step = 3;
} else {
// Serial.println("Got good len");
step = 4;
case 2: /** Frame length */
if (value == 0x00) {
readBuffer[readBufferIndex++] = value;
} else {
readBufferIndex = 0;
}
break;
case 3: /** Frame length */
if (value == 0x1C) {
readBuffer[readBufferIndex++] = value;
} else {
readBufferIndex = 0;
}
break;
default: /** Data */
{
readBuffer[readBufferIndex++] = value;
/** Check that received full bufer */
if (readBufferIndex >= sizeof(readBuffer)) {
/** validata package */
if (validate(readBuffer)) {
_connected = true; /** Set connected status */
/** Parse data */
parse(readBuffer);
/** Set last received package */
lastPackage = millis();
if (lastPackage == 0) {
lastPackage = 1;
}
}
/** Clear buffer index */
readBufferIndex = 0;
}
break;
}
case 3: {
bufIndex++;
if (bufIndex >= len) {
step = 0;
// Serial.println("Bad lengh read all buffer");
}
break;
}
case 4: {
buf[bufIndex++] = value;
if (bufIndex >= 32) {
result |= validate(buf);
step = 0;
// Serial.println("Got data");
}
break;
}
default:
break;
}
// Reduce core panic: delay 1 ms each 32bytes data
bcount++;
if ((bcount % 32) == 0) {
/** Avoid task watchdog timer reset... */
delayCount++;
if (delayCount >= 32) {
delayCount = 0;
delay(1);
}
}
if (result) {
lastRead = millis();
if (lastRead == 0) {
lastRead = 1;
}
failed = false;
} else {
if (ms > 5000) {
failed = true;
/** Check that sensor removed */
if (lastPackage) {
unsigned long ms = (unsigned long)(millis() - lastPackage);
if (ms >= READ_PACKGE_TIMEOUT) {
lastPackage = 0;
_connected = false;
Serial.println("PMS disconnected");
}
}
}
/**
* @brief Check that PMS send is failed or disconnected
* @brief Increate number of fail
*
* @return true Failed
* @return false No problem
*/
bool PMSBase::isFailed(void) { return failed; }
void PMSBase::updateFailCount(void) {
if (failCount < failCountMax) {
failCount++;
}
}
void PMSBase::resetFailCount(void) { failCount = 0; }
/**
* @brief Get number of fail
*
* @return int
*/
int PMSBase::getFailCount(void) { return failCount; }
int PMSBase::getFailCountMax(void) { return failCountMax; }
/**
* @brief Read PMS 0.1 ug/m3 with CF = 1 PM estimates
*
* @return uint16_t
*/
uint16_t PMSBase::getRaw0_1(void) { return toValue(&package[4]); }
uint16_t PMSBase::getRaw0_1(void) { return pms_raw0_1; }
/**
* @brief Read PMS 2.5 ug/m3 with CF = 1 PM estimates
*
* @return uint16_t
*/
uint16_t PMSBase::getRaw2_5(void) { return toValue(&package[6]); }
uint16_t PMSBase::getRaw2_5(void) { return pms_raw2_5; }
/**
* @brief Read PMS 10 ug/m3 with CF = 1 PM estimates
*
* @return uint16_t
*/
uint16_t PMSBase::getRaw10(void) { return toValue(&package[8]); }
uint16_t PMSBase::getRaw10(void) { return pms_raw10; }
/**
* @brief Read PMS 0.1 ug/m3
*
* @return uint16_t
*/
uint16_t PMSBase::getPM0_1(void) { return toValue(&package[10]); }
uint16_t PMSBase::getPM0_1(void) { return pms_pm0_1; }
/**
* @brief Read PMS 2.5 ug/m3
*
* @return uint16_t
*/
uint16_t PMSBase::getPM2_5(void) { return toValue(&package[12]); }
uint16_t PMSBase::getPM2_5(void) { return pms_pm2_5; }
/**
* @brief Read PMS 10 ug/m3
*
* @return uint16_t
*/
uint16_t PMSBase::getPM10(void) { return toValue(&package[14]); }
uint16_t PMSBase::getPM10(void) { return pms_pm10; }
/**
* @brief Get numnber concentrations over 0.3 um/0.1L
*
* @return uint16_t
*/
uint16_t PMSBase::getCount0_3(void) { return toValue(&package[16]); }
uint16_t PMSBase::getCount0_3(void) { return pms_count0_3; }
/**
* @brief Get numnber concentrations over 0.5 um/0.1L
*
* @return uint16_t
*/
uint16_t PMSBase::getCount0_5(void) { return toValue(&package[18]); }
uint16_t PMSBase::getCount0_5(void) { return pms_count0_5; }
/**
* @brief Get numnber concentrations over 1.0 um/0.1L
*
* @return uint16_t
*/
uint16_t PMSBase::getCount1_0(void) { return toValue(&package[20]); }
uint16_t PMSBase::getCount1_0(void) { return pms_count1_0; }
/**
* @brief Get numnber concentrations over 2.5 um/0.1L
*
* @return uint16_t
*/
uint16_t PMSBase::getCount2_5(void) { return toValue(&package[22]); }
uint16_t PMSBase::getCount2_5(void) { return pms_count2_5; }
bool PMSBase::connected(void) { return _connected; }
/**
* @brief Get numnber concentrations over 5.0 um/0.1L (only PMS5003)
*
* @return uint16_t
*/
uint16_t PMSBase::getCount5_0(void) { return toValue(&package[24]); }
uint16_t PMSBase::getCount5_0(void) { return pms_count5_0; }
/**
* @brief Get numnber concentrations over 10.0 um/0.1L (only PMS5003)
*
* @return uint16_t
*/
uint16_t PMSBase::getCount10(void) { return toValue(&package[26]); }
uint16_t PMSBase::getCount10(void) { return pms_count10; }
/**
* @brief Get temperature (only PMS5003T)
*
* @return uint16_t
*/
uint16_t PMSBase::getTemp(void) { return toValue(&package[24]); }
int16_t PMSBase::getTemp(void) { return pms_temp; }
/**
* @brief Get humidity (only PMS5003T)
*
* @return uint16_t
*/
uint16_t PMSBase::getHum(void) { return toValue(&package[26]); }
uint16_t PMSBase::getHum(void) { return pms_hum; }
/**
* @brief Get firmware version code
*
* @return uint8_t
*/
uint8_t PMSBase::getFirmwareVersion(void) { return pms_firmwareVersion; }
/**
* @brief Ge PMS5003 error code
*
* @return uint8_t
*/
uint8_t PMSBase::getErrorCode(void) { return pms_errorCode; }
/**
* @brief Convert PMS2.5 to US AQI unit
@ -252,31 +298,118 @@ uint16_t PMSBase::getHum(void) { return toValue(&package[26]); }
* @return int
*/
int PMSBase::pm25ToAQI(int pm02) {
if (pm02 <= 12.0)
return ((50 - 0) / (12.0 - .0) * (pm02 - .0) + 0);
if (pm02 <= 9.0)
return ((50 - 0) / (9.0 - .0) * (pm02 - .0) + 0);
else if (pm02 <= 35.4)
return ((100 - 50) / (35.4 - 12.0) * (pm02 - 12.0) + 50);
return ((100 - 51) / (35.4 - 9.1) * (pm02 - 9.0) + 51);
else if (pm02 <= 55.4)
return ((150 - 100) / (55.4 - 35.4) * (pm02 - 35.4) + 100);
else if (pm02 <= 150.4)
return ((200 - 150) / (150.4 - 55.4) * (pm02 - 55.4) + 150);
else if (pm02 <= 250.4)
return ((300 - 200) / (250.4 - 150.4) * (pm02 - 150.4) + 200);
else if (pm02 <= 350.4)
return ((400 - 300) / (350.4 - 250.4) * (pm02 - 250.4) + 300);
else if (pm02 <= 500.4)
return ((500 - 400) / (500.4 - 350.4) * (pm02 - 350.4) + 400);
return ((150 - 101) / (55.4 - 35.5) * (pm02 - 35.5) + 101);
else if (pm02 <= 125.4)
return ((200 - 151) / (125.4 - 55.5) * (pm02 - 55.5) + 151);
else if (pm02 <= 225.4)
return ((300 - 201) / (225.4 - 125.5) * (pm02 - 125.5) + 201);
else if (pm02 <= 325.4)
return ((500 - 301) / (325.4 - 225.5) * (pm02 - 225.5) + 301);
else
return 500;
}
/**
* @brief SLR correction for PM2.5
*
* Reference: https://www.airgradient.com/blog/low-readings-from-pms5003/
*
* @param pm25 PM2.5 raw value
* @param pm003Count PM0.3 count
* @param scalingFactor Scaling factor
* @param intercept Intercept
* @return float Calibrated PM2.5 value
*/
float PMSBase::slrCorrection(float pm25, float pm003Count, float scalingFactor, float intercept) {
float calibrated;
float lowCalibrated = (scalingFactor * pm003Count) + intercept;
if (lowCalibrated < 31) {
calibrated = lowCalibrated;
} else {
calibrated = pm25;
}
// No negative value for pm2.5
if (calibrated < 0) {
return 0.0;
}
return calibrated;
}
/**
* @brief Correction PM2.5
*
* Formula: https://www.airgradient.com/documentation/correction-algorithms/
*
* @param pm25 Raw PM2.5 value
* @param humidity Humidity value (%)
* @return compensated pm25 value
*/
float PMSBase::compensate(float pm25, float humidity) {
float value;
// Correct invalid humidity value
if (humidity < 0) {
humidity = 0;
}
if (humidity > 100) {
humidity = 100.0f;
}
// If its already 0, do not proceed
if (pm25 == 0) {
return 0.0;
}
if (pm25 < 30) { /** pm2.5 < 30 */
value = (pm25 * 0.524f) - (humidity * 0.0862f) + 5.75f;
} else if (pm25 < 50) { /** 30 <= pm2.5 < 50 */
value = (0.786f * (pm25 * 0.05f - 1.5f) + 0.524f * (1.0f - (pm25 * 0.05f - 1.5f))) * pm25 -
(0.0862f * humidity) + 5.75f;
} else if (pm25 < 210) { /** 50 <= pm2.5 < 210 */
value = (0.786f * pm25) - (0.0862f * humidity) + 5.75f;
} else if (pm25 < 260) { /** 210 <= pm2.5 < 260 */
value = (0.69f * (pm25 * 0.02f - 4.2f) + 0.786f * (1.0f - (pm25 * 0.02f - 4.2f))) * pm25 -
(0.0862f * humidity * (1.0f - (pm25 * 0.02f - 4.2f))) +
(2.966f * (pm25 * 0.02f - 4.2f)) + (5.75f * (1.0f - (pm25 * 0.02f - 4.2f))) +
(8.84f * (1.e-4) * pm25 * pm25 * (pm25 * 0.02f - 4.2f));
} else { /** 260 <= pm2.5 */
value = 2.966f + (0.69f * pm25) + (8.84f * (1.e-4) * pm25 * pm25);
}
// No negative value for pm2.5
if (value < 0) {
return 0.0;
}
return value;
}
/**
* @brief Convert two byte value to uint16_t value
*
* @param buf bytes array (must be >= 2)
* @return uint16_t
* @return int16_t
*/
uint16_t PMSBase::toValue(char *buf) { return (buf[0] << 8) | buf[1]; }
int16_t PMSBase::toI16(const uint8_t *buf) {
int16_t value = buf[0];
value = (value << 8) | buf[1];
return value;
}
uint16_t PMSBase::toU16(const uint8_t *buf) {
uint16_t value = buf[0];
value = (value << 8) | buf[1];
return value;
}
/**
* @brief Validate package data
@ -285,16 +418,38 @@ uint16_t PMSBase::toValue(char *buf) { return (buf[0] << 8) | buf[1]; }
* @return true Success
* @return false Failed
*/
bool PMSBase::validate(char *buf) {
bool PMSBase::validate(const uint8_t *buf) {
uint16_t sum = 0;
for (int i = 0; i < 30; i++) {
sum += buf[i];
}
if (sum == toValue(&buf[30])) {
for (int i = 0; i < 32; i++) {
package[i] = buf[i];
}
if (sum == toU16(&buf[30])) {
return true;
}
return false;
}
void PMSBase::parse(const uint8_t *buf) {
// Standard particle
pms_raw0_1 = toU16(&buf[4]);
pms_raw2_5 = toU16(&buf[6]);
pms_raw10 = toU16(&buf[8]);
// atmospheric
pms_pm0_1 = toU16(&buf[10]);
pms_pm2_5 = toU16(&buf[12]);
pms_pm10 = toU16(&buf[14]);
// particle count
pms_count0_3 = toU16(&buf[16]);
pms_count0_5 = toU16(&buf[18]);
pms_count1_0 = toU16(&buf[20]);
pms_count2_5 = toU16(&buf[22]);
pms_count5_0 = toU16(&buf[24]); // PMS5003 only
pms_count10 = toU16(&buf[26]); // PMS5003 only
// Others
pms_temp = toU16(&buf[24]); // PMS5003T only
pms_hum = toU16(&buf[26]); // PMS5003T only
pms_firmwareVersion = buf[28];
pms_errorCode = buf[29];
}

View File

@ -3,11 +3,19 @@
#include <Arduino.h>
#define PMS_FAIL_COUNT_SET_INVALID 3
/**
* Known to work with these sensors: Plantower PMS5003, Plantower PMS5003, Cubic PM2009X
*/
class PMSBase {
public:
bool begin(Stream *stream);
void handle();
bool isFailed(void);
void readPackage(Stream *stream);
void updateFailCount(void);
void resetFailCount(void);
int getFailCount(void);
int getFailCountMax(void);
uint16_t getRaw0_1(void);
uint16_t getRaw2_5(void);
uint16_t getRaw10(void);
@ -18,26 +26,65 @@ public:
uint16_t getCount0_5(void);
uint16_t getCount1_0(void);
uint16_t getCount2_5(void);
bool connected(void);
/** For PMS5003 */
uint16_t getCount5_0(void);
uint16_t getCount10(void);
/** For PMS5003T*/
uint16_t getTemp(void);
int16_t getTemp(void);
uint16_t getHum(void);
uint8_t getFirmwareVersion(void);
uint8_t getErrorCode(void);
int pm25ToAQI(int pm02);
float slrCorrection(float pm25, float pm003Count, float scalingFactor, float intercept);
float compensate(float pm25, float humidity);
private:
Stream *stream;
char package[32];
int packageIndex;
bool failed = false;
uint32_t lastRead;
static const uint8_t package_size = 32;
uint16_t toValue(char *buf);
bool validate(char *buf);
/** In normal package interval is 200-800ms, In case small changed on sensor
* it's will interval reach to 2.3sec
*/
const uint16_t READ_PACKGE_TIMEOUT = 3000; /** ms */
const int failCountMax = 10;
int failCount = 0;
uint8_t readBuffer[package_size];
uint8_t readBufferIndex = 0;
/**
* Save last time received package success. 0 to disable check package
* timeout.
*/
unsigned long lastPackage = 0;
bool _connected;
unsigned long lastReadPackage = 0;
uint16_t pms_raw0_1;
uint16_t pms_raw2_5;
uint16_t pms_raw10;
uint16_t pms_pm0_1;
uint16_t pms_pm2_5;
uint16_t pms_pm10;
uint16_t pms_count0_3;
uint16_t pms_count0_5;
uint16_t pms_count1_0;
uint16_t pms_count2_5;
uint16_t pms_count5_0;
uint16_t pms_count10;
int16_t pms_temp;
uint16_t pms_hum;
uint8_t pms_errorCode;
uint8_t pms_firmwareVersion;
int16_t toI16(const uint8_t *buf);
uint16_t toU16(const uint8_t *buf);
bool validate(const uint8_t *buf);
void parse(const uint8_t* buf);
};
#endif /** _PMS5003_BASE_H_ */

View File

@ -1,8 +1,8 @@
#include "PMS5003.h"
#include "Arduino.h"
#include "../Main/utils.h"
#if defined(ESP8266)
#include <SoftwareSerial.h>
/**
* @brief Init sensor
*
@ -37,14 +37,11 @@ bool PMS5003::begin(HardwareSerial &serial) {
PMS5003::PMS5003(BoardType def) : _boardDef(def) {}
/**
* @brief Init sensor
*
* @return true Success
* @return false Failure
* Initializes the sensor.
*/
bool PMS5003::begin(void) {
if (this->_isBegin) {
AgLog("Initialized, call end() then try again");
AgLog("Already initialized, call end() then try again");
return true;
}
@ -62,11 +59,10 @@ bool PMS5003::begin(void) {
}
#if defined(ESP8266)
bsp->Pms5003.uart_tx_pin;
SoftwareSerial *uart =
this->_serial =
new SoftwareSerial(bsp->Pms5003.uart_tx_pin, bsp->Pms5003.uart_rx_pin);
uart->begin(9600);
if (pms.begin(uart) == false) {
this->_serial->begin(9600);
if (pms.begin(this->_serial) == false) {
AgLog("PMS failed");
return false;
}
@ -77,38 +73,96 @@ bool PMS5003::begin(void) {
return false;
}
#endif
_ver = pms.getFirmwareVersion();
this->_isBegin = true;
return true;
}
/**
* @brief Read PM1.0 must call this function after @ref readData success
* @brief Read PM1.0
*
* @return int PM1.0 index
* @return int PM1.0 index (atmospheric environment)
*/
int PMS5003::getPm01Ae(void) { return pms.getPM0_1(); }
/**
* @brief Read PM2.5 must call this function after @ref readData success
* @brief Read PM2.5
*
* @return int PM2.5 index
* @return int PM2.5 index (atmospheric environment)
*/
int PMS5003::getPm25Ae(void) { return pms.getPM2_5(); }
/**
* @brief Read PM10.0 must call this function after @ref readData success
* @brief Read PM10.0
*
* @return int PM10.0 index
* @return int PM10.0 index (atmospheric environment)
*/
int PMS5003::getPm10Ae(void) { return pms.getPM10(); }
/**
* @brief Read PM0.3 must call this function after @ref readData success
* @brief Read PM1.0
*
* @return int PM1.0 index (standard particle)
*/
int PMS5003::getPm01Sp(void) { return pms.getRaw0_1(); }
/**
* @brief Read PM2.5
*
* @return int PM2.5 index (standard particle)
*/
int PMS5003::getPm25Sp(void) { return pms.getRaw2_5(); }
/**
* @brief Read PM10
*
* @return int PM10 index (standard particle)
*/
int PMS5003::getPm10Sp(void) { return pms.getRaw10(); }
/**
* @brief Read particle 0.3 count
*
* @return int PM0.3 index
*/
int PMS5003::getPm03ParticleCount(void) { return pms.getCount0_3(); }
int PMS5003::getPm03ParticleCount(void) {
return pms.getCount0_3();
}
/**
* @brief Read particle 1.0 count
*
* @return int particle 1.0 count index
*/
int PMS5003::getPm01ParticleCount(void) { return pms.getCount1_0(); }
/**
* @brief Read particle 0.5 count
*
* @return int particle 0.5 count index
*/
int PMS5003::getPm05ParticleCount(void) { return pms.getCount0_5(); }
/**
* @brief Read particle 2.5 count
*
* @return int particle 2.5 count index
*/
int PMS5003::getPm25ParticleCount(void) { return pms.getCount2_5(); }
/**
* @brief Read particle 5.0 count
*
* @return int particle 5.0 count index
*/
int PMS5003::getPm5ParticleCount(void) { return pms.getCount5_0(); }
/**
* @brief Read particle 10 count
*
* @return int particle 10 count index
*/
int PMS5003::getPm10ParticleCount(void) { return pms.getCount10(); }
/**
* @brief Convert PM2.5 to US AQI
@ -118,6 +172,43 @@ int PMS5003::getPm03ParticleCount(void) { return pms.getCount0_3(); }
*/
int PMS5003::convertPm25ToUsAqi(int pm25) { return pms.pm25ToAQI(pm25); }
float PMS5003::slrCorrection(float pm25, float pm003Count, float scalingFactor, float intercept) {
return pms.slrCorrection(pm25, pm003Count, scalingFactor, intercept);
}
/**
* @brief Correct PM2.5
*
* Reference formula: https://www.airgradient.com/documentation/correction-algorithms/
*
* @param pm25 PM2.5 raw value
* @param humidity Humidity value
* @return compensated value in float
*/
float PMS5003::compensate(float pm25, float humidity) { return pms.compensate(pm25, humidity); }
/**
* @brief Get sensor firmware version
*
* @return int
*/
int PMS5003::getFirmwareVersion(void) { return _ver; }
/**
* @brief Get sensor error code
*
* @return uint8_t
*/
uint8_t PMS5003::getErrorCode(void) { return pms.getErrorCode(); }
/**
* @brief Is sensor connect with device
*
* @return true Connected
* @return false Removed
*/
bool PMS5003::connected(void) { return pms.connected(); }
/**
* @brief Check device initialized or not
*
@ -152,12 +243,26 @@ void PMS5003::end(void) {
* @brief Check and read PMS sensor data. This method should be callack from
* loop process to continoue check sensor data if it's available
*/
void PMS5003::handle(void) { pms.handle(); }
void PMS5003::handle(void) { pms.readPackage(this->_serial); }
void PMS5003::updateFailCount(void) {
pms.updateFailCount();
}
void PMS5003::resetFailCount(void) {
pms.resetFailCount();
}
/**
* @brief Get sensor status
* @brief Get number of fail count
*
* @return true No problem
* @return false Communication timeout or sensor has removed
* @return int
*/
bool PMS5003::isFailed(void) { return pms.isFailed(); }
int PMS5003::getFailCount(void) { return pms.getFailCount(); }
/**
* @brief Get number of fail count max
*
* @return int
*/
int PMS5003::getFailCountMax(void) { return pms.getFailCountMax(); }

View File

@ -4,6 +4,9 @@
#include "../Main/BoardDef.h"
#include "PMS.h"
#include "Stream.h"
#ifdef ESP8266
#include <SoftwareSerial.h>
#endif
/**
* @brief The class define how to handle PMS5003 sensor bas on @ref PMS class
@ -18,21 +21,43 @@ public:
#endif
void end(void);
void handle(void);
bool isFailed(void);
void updateFailCount(void);
void resetFailCount(void);
int getFailCount(void);
int getFailCountMax(void);
// Atmospheric environment
int getPm01Ae(void);
int getPm25Ae(void);
int getPm10Ae(void);
// Standard particle
int getPm01Sp(void);
int getPm25Sp(void);
int getPm10Sp(void);
// Particle count
int getPm03ParticleCount(void);
int getPm05ParticleCount(void);
int getPm01ParticleCount(void);
int getPm25ParticleCount(void);
int getPm5ParticleCount(void);
int getPm10ParticleCount(void);
int convertPm25ToUsAqi(int pm25);
float slrCorrection(float pm25, float pm003Count, float scalingFactor, float intercept);
float compensate(float pm25, float humidity);
int getFirmwareVersion(void);
uint8_t getErrorCode(void);
bool connected(void);
private:
bool _isBegin = false;
int _ver;
BoardType _boardDef;
PMSBase pms;
const BoardDef *bsp;
#if defined(ESP8266)
Stream *_debugStream;
const char *TAG = "PMS5003";
SoftwareSerial *_serial;
#else
HardwareSerial *_serial;
#endif

View File

@ -1,5 +1,6 @@
#include "PMS5003T.h"
#include "Arduino.h"
#include "../Main/utils.h"
#if defined(ESP8266)
#include <SoftwareSerial.h>
@ -66,11 +67,10 @@ bool PMS5003T::begin(void) {
}
#if defined(ESP8266)
bsp->Pms5003.uart_tx_pin;
SoftwareSerial *uart =
this->_serial =
new SoftwareSerial(bsp->Pms5003.uart_tx_pin, bsp->Pms5003.uart_rx_pin);
uart->begin(9600);
if (pms.begin(uart) == false) {
this->_serial->begin(9600);
if (pms.begin(this->_serial) == false) {
AgLog("PMS failed");
return false;
}
@ -102,38 +102,82 @@ bool PMS5003T::begin(void) {
return false;
}
#endif
_ver = pms.getFirmwareVersion();
this->_isBegin = true;
return true;
}
/**
* @brief Read PM1.0 must call this function after @ref readData success
* @brief Read PM1.0
*
* @return int PM1.0 index
* @return int PM1.0 index (atmospheric environment)
*/
int PMS5003T::getPm01Ae(void) { return pms.getPM0_1(); }
/**
* @brief Read PM2.5 must call this function after @ref readData success
* @brief Read PM2.5
*
* @return int PM2.5 index
* @return int PM2.5 index (atmospheric environment)
*/
int PMS5003T::getPm25Ae(void) { return pms.getPM2_5(); }
/**
* @brief Read PM10.0 must call this function after @ref readData success
* @brief Read PM10.0
*
* @return int PM10.0 index
* @return int PM10.0 index (atmospheric environment)
*/
int PMS5003T::getPm10Ae(void) { return pms.getPM10(); }
/**
* @brief Read PM 0.3 Count must call this function after @ref readData success
* @brief Read PM1.0
*
* @return int PM 0.3 Count index
* @return int PM1.0 index (standard particle)
*/
int PMS5003T::getPm03ParticleCount(void) { return pms.getCount0_3(); }
int PMS5003T::getPm01Sp(void) { return pms.getRaw0_1(); }
/**
* @brief Read PM2.5
*
* @return int PM2.5 index (standard particle)
*/
int PMS5003T::getPm25Sp(void) { return pms.getRaw2_5(); }
/**
* @brief Read PM10
*
* @return int PM10 index (standard particle)
*/
int PMS5003T::getPm10Sp(void) { return pms.getRaw10(); }
/**
* @brief Read particle 0.3 count
*
* @return int particle 0.3 count index
*/
int PMS5003T::getPm03ParticleCount(void) {
return pms.getCount0_3();
}
/**
* @brief Read particle 0.5 count
*
* @return int particle 0.5 count index
*/
int PMS5003T::getPm05ParticleCount(void) { return pms.getCount0_5(); }
/**
* @brief Read particle 1.0 count
*
* @return int particle 1.0 count index
*/
int PMS5003T::getPm01ParticleCount(void) { return pms.getCount1_0(); }
/**
* @brief Read particle 2.5 count
*
* @return int particle 2.5 count index
*/
int PMS5003T::getPm25ParticleCount(void) { return pms.getCount2_5(); }
/**
* @brief Convert PM2.5 to US AQI
@ -149,7 +193,7 @@ int PMS5003T::convertPm25ToUsAqi(int pm25) { return pms.pm25ToAQI(pm25); }
* @return float Degree Celcius
*/
float PMS5003T::getTemperature(void) {
return pms.getTemp()/10.0f;
return pms.getTemp() / 10.0f;
}
/**
@ -158,9 +202,42 @@ float PMS5003T::getTemperature(void) {
* @return float Percent (%)
*/
float PMS5003T::getRelativeHumidity(void) {
return pms.getHum()/10.0f;
return pms.getHum() / 10.0f;
}
/**
* @brief Correct PM2.5
*
* Reference formula: https://www.airgradient.com/documentation/correction-algorithms/
*
* @param pm25 PM2.5 raw value
* @param humidity Humidity value
* @return compensated value
*/
float PMS5003T::compensate(float pm25, float humidity) { return pms.compensate(pm25, humidity); }
/**
* @brief Get module(s) firmware version
*
* @return int Version code
*/
int PMS5003T::getFirmwareVersion(void) { return _ver; }
/**
* @brief Get sensor error code
*
* @return uint8_t
*/
uint8_t PMS5003T::getErrorCode(void) { return pms.getErrorCode(); }
/**
* @brief Is sensor connect to device
*
* @return true Connected
* @return false Removed
*/
bool PMS5003T::connected(void) { return pms.connected(); }
/**
* @brief Check device initialized or not
*
@ -192,13 +269,26 @@ void PMS5003T::end(void) {
* @brief Check and read PMS sensor data. This method should be callack from
* loop process to continoue check sensor data if it's available
*/
void PMS5003T::handle(void) { pms.handle(); }
void PMS5003T::handle(void) { pms.readPackage(this->_serial); }
void PMS5003T::updateFailCount(void) {
pms.updateFailCount();
}
void PMS5003T::resetFailCount(void) {
pms.resetFailCount();
}
/**
* @brief Get sensor status
*
* @return true No problem
* @return false Communication timeout or sensor has removed
* @brief Get fail count
*
* @return int
*/
bool PMS5003T::isFailed(void) { return pms.isFailed(); }
int PMS5003T::getFailCount(void) { return pms.getFailCount(); }
/**
* @brief Get fail count max
*
* @return int
*/
int PMS5003T::getFailCountMax(void) { return pms.getFailCountMax(); }

View File

@ -6,6 +6,9 @@
#include "PMS5003TBase.h"
#include "Stream.h"
#include <HardwareSerial.h>
#ifdef ESP8266
#include <SoftwareSerial.h>
#endif
/**
* @brief The class define how to handle PMS5003T sensor bas on @ref PMS class
@ -21,24 +24,43 @@ public:
void end(void);
void handle(void);
bool isFailed(void);
void updateFailCount(void);
void resetFailCount(void);
int getFailCount(void);
int getFailCountMax(void);
// Atmospheric environment
int getPm01Ae(void);
int getPm25Ae(void);
int getPm10Ae(void);
// Standard particle
int getPm01Sp(void);
int getPm25Sp(void);
int getPm10Sp(void);
// Particle count
int getPm03ParticleCount(void);
int getPm05ParticleCount(void);
int getPm01ParticleCount(void);
int getPm25ParticleCount(void);
int convertPm25ToUsAqi(int pm25);
float getTemperature(void);
float getRelativeHumidity(void);
float compensate(float pm25, float humidity);
int getFirmwareVersion(void);
uint8_t getErrorCode(void);
bool connected(void);
private:
bool _isBegin = false;
bool _isSleep = false;
int _ver; /** Firmware version code */
BoardType _boardDef;
const BoardDef *bsp;
#if defined(ESP8266)
Stream *_debugStream;
const char *TAG = "PMS5003T";
SoftwareSerial *_serial;
#else
HardwareSerial *_serial;
#endif

View File

@ -4,14 +4,30 @@ PMS5003TBase::PMS5003TBase() {}
PMS5003TBase::~PMS5003TBase() {}
float PMS5003TBase::temperatureCompensated(float temp) {
/**
* @brief Compensate the temperature
*
* Reference formula: https://www.airgradient.com/documentation/correction-algorithms/
*
* @param temp
* @return * float
*/
float PMS5003TBase::compensateTemp(float temp) {
if (temp < 10.0f) {
return temp * 1.327f - 6.738f;
}
return temp * 1.181f - 5.113f;
}
float PMS5003TBase::humidityCompensated(float hum) {
/**
* @brief Compensate the humidity
*
* Reference formula: https://www.airgradient.com/documentation/correction-algorithms/
*
* @param temp
* @return * float
*/
float PMS5003TBase::compensateHum(float hum) {
hum = hum * 1.259f + 7.34f;
if (hum > 100.0f) {

View File

@ -8,8 +8,8 @@ private:
public:
PMS5003TBase();
~PMS5003TBase();
float temperatureCompensated(float temp);
float humidityCompensated(float hum);
float compensateTemp(float temp);
float compensateHum(float hum);
};
#endif

View File

@ -1,5 +1,6 @@
#include "S8.h"
#include "mb_crc.h"
#include "../Main/utils.h"
#if defined(ESP8266)
#include <SoftwareSerial.h>
#else
@ -103,7 +104,7 @@ void S8::getFirmwareVersion(char firmver[]) {
*/
int32_t S8::getSensorTypeId(void) {
if (this->isBegin() == false) {
return -1;
return utils::getInvalidCO2();
}
int32_t sensorType = 0;

View File

@ -2,6 +2,7 @@
#include "../Libraries/SensirionSGP41/src/SensirionI2CSgp41.h"
#include "../Libraries/Sensirion_Gas_Index_Algorithm/src/NOxGasIndexAlgorithm.h"
#include "../Libraries/Sensirion_Gas_Index_Algorithm/src/VOCGasIndexAlgorithm.h"
#include "../Main/utils.h"
#define sgpSensor() ((SensirionI2CSgp41 *)(this->_sensor))
#define vocAlgorithm() ((VOCGasIndexAlgorithm *)(this->_vocAlgorithm))
@ -66,6 +67,7 @@ bool Sgp41::begin(TwoWire &wire) {
}
onConditioning = true;
_handleFailCount = 0;
#ifdef ESP32
/** Create task */
xTaskCreate(
@ -108,7 +110,21 @@ void Sgp41::handle(void) {
noxRaw = srawNox;
nox = noxAlgorithm()->process(srawNox);
tvoc = vocAlgorithm()->process(srawVoc);
_handleFailCount = 0;
// AgLog("Polling SGP41 success: tvoc: %d, nox: %d", tvoc, nox);
} else {
if(_handleFailCount < 5) {
_handleFailCount++;
AgLog("Polling SGP41 failed: %d", _handleFailCount);
}
if (_handleFailCount >= 5) {
tvocRaw = utils::getInvalidVOC();
tvoc = utils::getInvalidVOC();
noxRaw = utils::getInvalidNOx();
nox = utils::getInvalidNOx();
}
}
}
}
@ -141,7 +157,21 @@ void Sgp41::_handle(void) {
noxRaw = srawNox;
nox = noxAlgorithm()->process(srawNox);
tvoc = vocAlgorithm()->process(srawVoc);
_handleFailCount = 0;
// AgLog("Polling SGP41 success: tvoc: %d, nox: %d", tvoc, nox);
} else {
if(_handleFailCount < 5) {
_handleFailCount++;
AgLog("Polling SGP41 failed: %d", _handleFailCount);
}
if (_handleFailCount >= 5) {
tvocRaw = utils::getInvalidVOC();
tvoc = utils::getInvalidVOC();
noxRaw = utils::getInvalidNOx();
nox = utils::getInvalidNOx();
}
}
}
}
@ -176,7 +206,7 @@ void Sgp41::end(void) {
*/
int Sgp41::getTvocIndex(void) {
if (onConditioning) {
return -1;
return utils::getInvalidVOC();
}
return tvoc;
}
@ -188,7 +218,7 @@ int Sgp41::getTvocIndex(void) {
*/
int Sgp41::getNoxIndex(void) {
if (onConditioning) {
return -1;
return utils::getInvalidNOx();
}
return nox;
}

View File

@ -35,6 +35,7 @@ private:
bool onConditioning = true;
bool ready = false;
bool _isBegin = false;
uint8_t _handleFailCount = 0;
void *_sensor;
void *_vocAlgorithm;
void *_noxAlgorithm;

View File

@ -1,6 +1,7 @@
#include "Sht.h"
#include "../Libraries/arduino-sht/SHTSensor.h"
#include "../Main/utils.h"
/** Cast _sensor to SHTSensor */
#define shtSensor() ((SHTSensor *)(this->_sensor))
@ -131,14 +132,18 @@ void Sht::end(void) {
*
* @return float
*/
float Sht::getTemperature(void) { return shtSensor()->getTemperature(); }
float Sht::getTemperature(void) {
return shtSensor()->getTemperature();
}
/**
* @brief Get humidity
*
* @return float
*/
float Sht::getRelativeHumidity(void) { return shtSensor()->getHumidity(); }
float Sht::getRelativeHumidity(void) {
return shtSensor()->getHumidity();
}
/**
* @brief Measure temperature and humidity