Files
arduino/src/PMS/PMS.cpp
2024-11-02 11:02:36 +07:00

456 lines
10 KiB
C++

#include "PMS.h"
#include "../Main/BoardDef.h"
/**
* @brief Initializes the sensor and attempts to read data.
*
* @param stream UART stream
* @return true Sucecss
* @return false Failure
*/
bool PMSBase::begin(Stream *stream) {
Serial.printf("initializing PM sensor\n");
failCount = 0;
_connected = false;
// empty first
int bytesCleared = 0;
while (stream->read() != -1) {
bytesCleared++;
}
Serial.printf("cleared %d byte(s)\n", bytesCleared);
// explicitly put the sensor into active mode, this seems to be be needed for the Cubic PM2009X
Serial.printf("setting active mode\n");
uint8_t activeModeCommand[] = { 0x42, 0x4D, 0xE1, 0x00, 0x01, 0x01, 0x71 };
size_t bytesWritten = stream->write(activeModeCommand, sizeof(activeModeCommand));
Serial.printf("%d byte(s) written\n", bytesWritten);
// Run and check sensor data for 4sec
unsigned long lastInit = millis();
while (true) {
readPackage(stream);
if (_connected) {
break;
}
delay(1);
unsigned long ms = (unsigned long)(millis() - lastInit);
if (ms >= 4000) {
break;
}
}
return _connected;
}
/**
* @brief Read PMS package send to device each 1sec
*
* @param serial
*/
void PMSBase::readPackage(Stream *serial) {
/** If readPackage has process as period larger than READ_PACKAGE_TIMEOUT,
* should be clear the lastPackage and readBufferIndex */
if (lastReadPackage) {
unsigned long ms = (unsigned long)(millis() - lastReadPackage);
if (ms >= READ_PACKGE_TIMEOUT) {
/** Clear buffer */
readBufferIndex = 0;
/** Disable check read package timeout */
lastPackage = 0;
Serial.println("Last process timeout, clear buffer and last handle package");
}
lastReadPackage = millis();
if (!lastReadPackage) {
lastReadPackage = 1;
}
} else {
lastReadPackage = millis();
if (!lastReadPackage) {
lastReadPackage = 1;
}
}
/** Count to call delay() to release the while loop MCU resource for avoid the
* watchdog time reset */
uint8_t delayCount = 0;
while (serial->available()) {
/** Get value */
uint8_t value = (uint8_t)serial->read();
/** Process receiving package... */
switch (readBufferIndex) {
case 0: /** Start byte 1 */
if (value == 0x42) {
readBuffer[readBufferIndex++] = value;
}
break;
case 1: /** Start byte 2 */
if (value == 0x4d) {
readBuffer[readBufferIndex++] = value;
} else {
readBufferIndex = 0;
}
break;
case 2: /** Frame length */
if (value == 0x00) {
readBuffer[readBufferIndex++] = value;
} else {
readBufferIndex = 0;
}
break;
case 3: /** Frame length */
if (value == 0x1C) {
readBuffer[readBufferIndex++] = value;
} else {
readBufferIndex = 0;
}
break;
default: /** Data */
{
readBuffer[readBufferIndex++] = value;
/** Check that received full bufer */
if (readBufferIndex >= sizeof(readBuffer)) {
/** validata package */
if (validate(readBuffer)) {
_connected = true; /** Set connected status */
/** Parse data */
parse(readBuffer);
/** Set last received package */
lastPackage = millis();
if (lastPackage == 0) {
lastPackage = 1;
}
}
/** Clear buffer index */
readBufferIndex = 0;
}
break;
}
}
/** Avoid task watchdog timer reset... */
delayCount++;
if (delayCount >= 32) {
delayCount = 0;
delay(1);
}
}
/** Check that sensor removed */
if (lastPackage) {
unsigned long ms = (unsigned long)(millis() - lastPackage);
if (ms >= READ_PACKGE_TIMEOUT) {
lastPackage = 0;
_connected = false;
Serial.println("PMS disconnected");
}
}
}
/**
* @brief Increate number of fail
*
*/
void PMSBase::updateFailCount(void) {
if (failCount < failCountMax) {
failCount++;
}
}
void PMSBase::resetFailCount(void) { failCount = 0; }
/**
* @brief Get number of fail
*
* @return int
*/
int PMSBase::getFailCount(void) { return failCount; }
int PMSBase::getFailCountMax(void) { return failCountMax; }
/**
* @brief Read PMS 0.1 ug/m3 with CF = 1 PM estimates
*
* @return uint16_t
*/
uint16_t PMSBase::getRaw0_1(void) { return pms_raw0_1; }
/**
* @brief Read PMS 2.5 ug/m3 with CF = 1 PM estimates
*
* @return uint16_t
*/
uint16_t PMSBase::getRaw2_5(void) { return pms_raw2_5; }
/**
* @brief Read PMS 10 ug/m3 with CF = 1 PM estimates
*
* @return uint16_t
*/
uint16_t PMSBase::getRaw10(void) { return pms_raw10; }
/**
* @brief Read PMS 0.1 ug/m3
*
* @return uint16_t
*/
uint16_t PMSBase::getPM0_1(void) { return pms_pm0_1; }
/**
* @brief Read PMS 2.5 ug/m3
*
* @return uint16_t
*/
uint16_t PMSBase::getPM2_5(void) { return pms_pm2_5; }
/**
* @brief Read PMS 10 ug/m3
*
* @return uint16_t
*/
uint16_t PMSBase::getPM10(void) { return pms_pm10; }
/**
* @brief Get numnber concentrations over 0.3 um/0.1L
*
* @return uint16_t
*/
uint16_t PMSBase::getCount0_3(void) { return pms_count0_3; }
/**
* @brief Get numnber concentrations over 0.5 um/0.1L
*
* @return uint16_t
*/
uint16_t PMSBase::getCount0_5(void) { return pms_count0_5; }
/**
* @brief Get numnber concentrations over 1.0 um/0.1L
*
* @return uint16_t
*/
uint16_t PMSBase::getCount1_0(void) { return pms_count1_0; }
/**
* @brief Get numnber concentrations over 2.5 um/0.1L
*
* @return uint16_t
*/
uint16_t PMSBase::getCount2_5(void) { return pms_count2_5; }
bool PMSBase::connected(void) { return _connected; }
/**
* @brief Get numnber concentrations over 5.0 um/0.1L (only PMS5003)
*
* @return uint16_t
*/
uint16_t PMSBase::getCount5_0(void) { return pms_count5_0; }
/**
* @brief Get numnber concentrations over 10.0 um/0.1L (only PMS5003)
*
* @return uint16_t
*/
uint16_t PMSBase::getCount10(void) { return pms_count10; }
/**
* @brief Get temperature (only PMS5003T)
*
* @return uint16_t
*/
int16_t PMSBase::getTemp(void) { return pms_temp; }
/**
* @brief Get humidity (only PMS5003T)
*
* @return uint16_t
*/
uint16_t PMSBase::getHum(void) { return pms_hum; }
/**
* @brief Get firmware version code
*
* @return uint8_t
*/
uint8_t PMSBase::getFirmwareVersion(void) { return pms_firmwareVersion; }
/**
* @brief Ge PMS5003 error code
*
* @return uint8_t
*/
uint8_t PMSBase::getErrorCode(void) { return pms_errorCode; }
/**
* @brief Convert PMS2.5 to US AQI unit
*
* @param pm02
* @return int
*/
int PMSBase::pm25ToAQI(int pm02) {
if (pm02 <= 9.0)
return ((50 - 0) / (9.0 - .0) * (pm02 - .0) + 0);
else if (pm02 <= 35.4)
return ((100 - 51) / (35.4 - 9.1) * (pm02 - 9.0) + 51);
else if (pm02 <= 55.4)
return ((150 - 101) / (55.4 - 35.5) * (pm02 - 35.5) + 101);
else if (pm02 <= 125.4)
return ((200 - 151) / (125.4 - 55.5) * (pm02 - 55.5) + 151);
else if (pm02 <= 225.4)
return ((300 - 201) / (225.4 - 125.5) * (pm02 - 125.5) + 201);
else if (pm02 <= 325.4)
return ((500 - 301) / (325.4 - 225.5) * (pm02 - 225.5) + 301);
else
return 500;
}
/**
* @brief SLR correction for PM2.5
*
* Reference: https://www.airgradient.com/blog/low-readings-from-pms5003/
*
* @param pm25 PM2.5 raw value
* @param pm003Count PM0.3 count
* @param scalingFactor Scaling factor
* @param intercept Intercept
* @return float Calibrated PM2.5 value
*/
float PMSBase::slrCorrection(float pm25, float pm003Count, float scalingFactor, float intercept) {
float calibrated;
float lowCalibrated = (scalingFactor * pm003Count) + intercept;
if (lowCalibrated < 31) {
calibrated = lowCalibrated;
} else {
calibrated = pm25;
}
// No negative value for pm2.5
if (calibrated < 0) {
return 0.0;
}
return calibrated;
}
/**
* @brief Correction PM2.5
*
* Formula: https://www.airgradient.com/documentation/correction-algorithms/
*
* @param pm25 Raw PM2.5 value
* @param humidity Humidity value (%)
* @return compensated pm25 value
*/
float PMSBase::compensate(float pm25, float humidity) {
float value;
// Correct invalid humidity value
if (humidity < 0) {
humidity = 0;
}
if (humidity > 100) {
humidity = 100.0f;
}
// If its already 0, do not proceed
if (pm25 == 0) {
return 0.0;
}
if (pm25 < 30) { /** pm2.5 < 30 */
value = (pm25 * 0.524f) - (humidity * 0.0862f) + 5.75f;
} else if (pm25 < 50) { /** 30 <= pm2.5 < 50 */
value = (0.786f * (pm25 * 0.05f - 1.5f) + 0.524f * (1.0f - (pm25 * 0.05f - 1.5f))) * pm25 -
(0.0862f * humidity) + 5.75f;
} else if (pm25 < 210) { /** 50 <= pm2.5 < 210 */
value = (0.786f * pm25) - (0.0862f * humidity) + 5.75f;
} else if (pm25 < 260) { /** 210 <= pm2.5 < 260 */
value = (0.69f * (pm25 * 0.02f - 4.2f) + 0.786f * (1.0f - (pm25 * 0.02f - 4.2f))) * pm25 -
(0.0862f * humidity * (1.0f - (pm25 * 0.02f - 4.2f))) +
(2.966f * (pm25 * 0.02f - 4.2f)) + (5.75f * (1.0f - (pm25 * 0.02f - 4.2f))) +
(8.84f * (1.e-4) * pm25 * pm25 * (pm25 * 0.02f - 4.2f));
} else { /** 260 <= pm2.5 */
value = 2.966f + (0.69f * pm25) + (8.84f * (1.e-4) * pm25 * pm25);
}
// No negative value for pm2.5
if (value < 0) {
return 0.0;
}
return value;
}
/**
* @brief Convert two byte value to uint16_t value
*
* @param buf bytes array (must be >= 2)
* @return int16_t
*/
int16_t PMSBase::toI16(const uint8_t *buf) {
int16_t value = buf[0];
value = (value << 8) | buf[1];
return value;
}
uint16_t PMSBase::toU16(const uint8_t *buf) {
uint16_t value = buf[0];
value = (value << 8) | buf[1];
return value;
}
/**
* @brief Validate package data
*
* @param buf Package buffer
* @return true Success
* @return false Failed
*/
bool PMSBase::validate(const uint8_t *buf) {
uint16_t sum = 0;
for (int i = 0; i < 30; i++) {
sum += buf[i];
}
if (sum == toU16(&buf[30])) {
return true;
}
return false;
}
void PMSBase::parse(const uint8_t *buf) {
// Standard particle
pms_raw0_1 = toU16(&buf[4]);
pms_raw2_5 = toU16(&buf[6]);
pms_raw10 = toU16(&buf[8]);
// atmospheric
pms_pm0_1 = toU16(&buf[10]);
pms_pm2_5 = toU16(&buf[12]);
pms_pm10 = toU16(&buf[14]);
// particle count
pms_count0_3 = toU16(&buf[16]);
pms_count0_5 = toU16(&buf[18]);
pms_count1_0 = toU16(&buf[20]);
pms_count2_5 = toU16(&buf[22]);
pms_count5_0 = toU16(&buf[24]); // PMS5003 only
pms_count10 = toU16(&buf[26]); // PMS5003 only
// Others
pms_temp = toU16(&buf[24]); // PMS5003T only
pms_hum = toU16(&buf[26]); // PMS5003T only
pms_firmwareVersion = buf[28];
pms_errorCode = buf[29];
}