Add hex/unhex algorithms suggested by Olaf

[SVN r77138]
This commit is contained in:
Marshall Clow
2012-02-28 23:17:52 +00:00
parent 49668cf66a
commit 1af25699b7
6 changed files with 722 additions and 0 deletions

View File

@ -0,0 +1,278 @@
/*
Copyright (c) Marshall Clow 2011-2012.
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
Thanks to Nevin for his comments/help.
*/
/*
General problem - turn a sequence of integral types into a sequence of hexadecimal characters.
- and back.
TO DO:
1. these should really only work on integral types. (see the >> and << operations)
-- this is done, I think.
2. The 'value_type_or_char' struct is really a hack.
-- but it's a better hack now that it works with back_insert_iterators
*/
/// \file hex.hpp
/// \brief Convert sequence of integral types into a sequence of hexadecimal
/// characters and back. Based on the MySQL functions HEX and UNHEX
/// \author Marshall Clow
#ifndef BOOST_ALGORITHM_HEXHPP
#define BOOST_ALGORITHM_HEXHPP
#include <iterator> // for std::iterator_traits
#include <stdexcept>
#include <boost/range/begin.hpp>
#include <boost/range/end.hpp>
#include <boost/exception/all.hpp>
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/is_integral.hpp>
namespace boost { namespace algorithm {
/*!
\struct hex_decode_error
\brief Base exception class for all hex decoding errors
\struct non_hex_input
\brief Thrown when a non-hex value (0-9, A-F) encountered when decoding.
Contains the offending character
\struct not_enough_input
\brief Thrown when the input sequence unexpectedly ends
*/
struct hex_decode_error: virtual boost::exception, virtual std::exception {};
struct not_enough_input : public hex_decode_error {};
struct non_hex_input : public hex_decode_error {
non_hex_input ( char ch ) : bad_char ( ch ) {}
char bad_char;
private:
non_hex_input (); // don't allow creation w/o a char
};
namespace detail {
/// \cond DOXYGEN_HIDE
template <typename T, typename OutputIterator>
OutputIterator encode_one ( T val, OutputIterator out ) {
const std::size_t num_hex_digits = 2 * sizeof ( T );
char res [ num_hex_digits ];
char *p = res + num_hex_digits;
for ( std::size_t i = 0; i < num_hex_digits; ++i, val >>= 4 )
*--p = "0123456789ABCDEF" [ val & 0x0F ];
return std::copy ( res, res + num_hex_digits, out );
}
unsigned hex_char_to_int ( char c ) {
if ( c >= '0' && c <= '9' ) return c - '0';
if ( c >= 'A' && c <= 'F' ) return c - 'A' + 10;
if ( c >= 'a' && c <= 'f' ) return c - 'a' + 10;
BOOST_THROW_EXCEPTION (non_hex_input (c));
return 0; // keep dumb compilers happy
}
// My own iterator_traits class.
// It is here so that I can "reach inside" some kinds of output iterators
// and get the type to write.
template <typename Iterator>
struct hex_iterator_traits {
typedef typename std::iterator_traits<Iterator>::value_type value_type;
};
template<typename Container>
struct hex_iterator_traits< std::back_insert_iterator<Container> > {
typedef typename Container::value_type value_type;
};
template<typename Container>
struct hex_iterator_traits< std::front_insert_iterator<Container> > {
typedef typename Container::value_type value_type;
};
template<typename Container>
struct hex_iterator_traits< std::insert_iterator<Container> > {
typedef typename Container::value_type value_type;
};
// ostream_iterators have three template parameters.
// The first one is the output type, the second one is the character type of
// the underlying stream, the third is the character traits.
// We only care about the first one.
template<typename T, typename charType, typename traits>
struct hex_iterator_traits< std::ostream_iterator<T, charType, traits> > {
typedef T value_type;
};
// Output Iterators have a value type of 'void'. Kinda sucks.
// We special case some output iterators, but we can't enumerate them all.
// If we can't figure it out, we assume that you want to output chars.
// If you don't, pass in an iterator with a real value_type.
template <typename T> struct value_type_or_char { typedef T value_type; };
template <> struct value_type_or_char<void> { typedef char value_type; };
// All in one step
template <typename Iterator>
struct iterator_value_type {
// typedef typename value_type_or_char<typename hex_iterator_traits<Iterator>::value_type>::value_type value_type;
typedef typename hex_iterator_traits<Iterator>::value_type value_type;
};
// What can we assume here about the inputs?
// is std::iterator_traits<InputIterator>::value_type always 'char' ?
// Could it be wchar_t, say? Does it matter?
// We are assuming ASCII for the values - but what about the storage?
template <typename InputIterator, typename OutputIterator>
typename boost::enable_if<boost::is_integral<typename iterator_value_type<OutputIterator>::value_type>, OutputIterator>::type
decode_one ( InputIterator &first, InputIterator last, OutputIterator out ) {
typedef typename iterator_value_type<OutputIterator>::value_type T;
T res (0);
// Need to make sure that we get can read that many chars here.
for ( std::size_t i = 0; i < 2 * sizeof ( T ); ++i, ++first ) {
if ( first == last )
BOOST_THROW_EXCEPTION (not_enough_input ());
res = ( 16 * res ) + hex_char_to_int (static_cast<char> (*first));
}
*out = res;
return ++out;
}
/// \endcond
}
/// \fn hex ( InputIterator first, InputIterator last, OutputIterator out )
/// \brief Converts a sequence of integral types into a hexadecimal sequence of characters.
///
/// \param first The start of the input sequence
/// \param last One past the end of the input sequence
/// \param out An output iterator to the results into
/// \note Based on the MySQL function of the same name
template <typename InputIterator, typename OutputIterator>
typename boost::enable_if<boost::is_integral<typename detail::hex_iterator_traits<InputIterator>::value_type>, OutputIterator>::type
hex ( InputIterator first, InputIterator last, OutputIterator out ) {
for ( ; first != last; ++first )
out = detail::encode_one ( *first, out );
return out;
}
/// \fn hex ( const T *ptr, OutputIterator out )
/// \brief Converts a sequence of integral types into a hexadecimal sequence of characters.
///
/// \param ptr A pointer to a 0-terminated sequence of data.
/// \param out An output iterator to the results into
/// \return The updated output iterator
/// \note Based on the MySQL function of the same name
template <typename T, typename OutputIterator>
typename boost::enable_if<boost::is_integral<T>, OutputIterator>::type
hex ( const T *ptr, OutputIterator out ) {
while ( *ptr )
out = detail::encode_one ( *ptr++, out );
return out;
}
/// \fn hex ( const Range &r, OutputIterator out )
/// \brief Converts a sequence of integral types into a hexadecimal sequence of characters.
///
/// \param r The input range
/// \param out An output iterator to the results into
/// \return The updated output iterator
/// \note Based on the MySQL function of the same name
template <typename Range, typename OutputIterator>
typename boost::enable_if<boost::is_integral<typename detail::hex_iterator_traits<typename Range::iterator>::value_type>, OutputIterator>::type
hex ( const Range &r, OutputIterator out ) {
return hex (boost::begin(r), boost::end(r), out);
}
/// \fn unhex ( InputIterator first, InputIterator last, OutputIterator out )
/// \brief Converts a sequence of hexadecimal characters into a sequence of integers.
///
/// \param first The start of the input sequence
/// \param last One past the end of the input sequence
/// \param out An output iterator to the results into
/// \return The updated output iterator
/// \note Based on the MySQL function of the same name
template <typename InputIterator, typename OutputIterator>
OutputIterator unhex ( InputIterator first, InputIterator last, OutputIterator out ) {
while ( first != last )
out = detail::decode_one ( first, last, out );
return out;
}
/// \fn unhex ( const T *ptr, OutputIterator out )
/// \brief Converts a sequence of hexadecimal characters into a sequence of integers.
///
/// \param ptr A pointer to a null-terminated input sequence.
/// \param out An output iterator to the results into
/// \return The updated output iterator
/// \note Based on the MySQL function of the same name
template <typename T, typename OutputIterator>
OutputIterator unhex ( const T *ptr, OutputIterator out ) {
typedef typename detail::iterator_value_type<OutputIterator>::value_type OutputType;
// If we run into the terminator while decoding, we will throw a
// malformed input exception. It would be nicer to throw a 'Not enough input'
// exception - but how much extra work would that require?
// I just make up an "end iterator" which we will never get to -
// two Ts per byte of the output type.
while ( *ptr )
out = detail::decode_one ( ptr, ptr + 2 * sizeof(OutputType), out );
return out;
}
/// \fn unhex ( const Range &r, OutputIterator out )
/// \brief Converts a sequence of hexadecimal characters into a sequence of integers.
///
/// \param r The input range
/// \param out An output iterator to the results into
/// \return The updated output iterator
/// \note Based on the MySQL function of the same name
template <typename Range, typename OutputIterator>
OutputIterator unhex ( const Range &r, OutputIterator out ) {
return unhex (boost::begin(r), boost::end(r), out);
}
/// \fn hex ( const String &input )
/// \brief Converts a sequence of integral types into a hexadecimal sequence of characters.
///
/// \param input A container to be converted
/// \return A container with the encoded text
template<typename String>
String hex ( const String &input ) {
String output;
output.reserve (input.size () * (2 * sizeof (typename String::value_type)));
(void) hex (input, std::back_inserter (output));
return output;
}
/// \fn unhex ( const String &input )
/// \brief Converts a sequence of hexadecimal characters into a sequence of integers.
///
/// \param input A container to be converted
/// \return A container with the decoded text
template<typename String>
String unhex ( const String &input ) {
String output;
output.reserve (input.size () / (2 * sizeof (typename String::value_type)));
(void) unhex (input, std::back_inserter (output));
return output;
}
}}
#endif // BOOST_ALGORITHM_HEXHPP

View File

@ -39,6 +39,11 @@ import testing ;
[ run is_partitioned_test1.cpp : : : : is_partitioned_test1 ] [ run is_partitioned_test1.cpp : : : : is_partitioned_test1 ]
[ run partition_copy_test1.cpp : : : : partition_copy_test1 ] [ run partition_copy_test1.cpp : : : : partition_copy_test1 ]
# Hex tests
[ run hex_test1.cpp : : : : hex_test1 ]
[ run hex_test2.cpp : : : : hex_test2 ]
[ run hex_test3.cpp : : : : hex_test3 ]
[ compile-fail hex_fail1.cpp ]
; ;
} }

25
test/hex_fail1.cpp Normal file
View File

@ -0,0 +1,25 @@
/*
Copyright (c) Marshall Clow 2011-2012.
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
For more information, see http://www.boost.org
*/
#include <boost/config.hpp>
#include <boost/algorithm/hex.hpp>
#include <boost/test/included/test_exec_monitor.hpp>
#include <string>
#include <iostream>
#include <vector>
// should not compile: vector is not an integral type
int test_main( int , char* [] )
{
std::vector<float> v;
std::string out;
boost::algorithm::unhex ( out, std::back_inserter(v));
return 0;
}

154
test/hex_test1.cpp Normal file
View File

@ -0,0 +1,154 @@
/*
Copyright (c) Marshall Clow 2011-2012.
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
For more information, see http://www.boost.org
*/
#include <boost/config.hpp>
#include <boost/algorithm/hex.hpp>
#include <boost/test/included/test_exec_monitor.hpp>
#include <string>
#include <iostream>
template<typename String>
void test_to_hex ( const typename String::value_type ** tests ) {
for ( const typename String::value_type **p = tests; *p; p++ ) {
String arg, argh, one, two, three, four;
arg.assign ( *p );
boost::algorithm::hex ( *p, std::back_inserter ( one ));
boost::algorithm::hex ( arg, std::back_inserter ( two ));
boost::algorithm::hex ( arg.begin (), arg.end (), std::back_inserter ( three ));
four = boost::algorithm::hex ( arg );
BOOST_CHECK ( one == two );
BOOST_CHECK ( one == three );
BOOST_CHECK ( one == four );
argh = one;
one.clear (); two.clear (); three.clear (); four.clear ();
boost::algorithm::unhex ( argh.c_str (), std::back_inserter ( one ));
boost::algorithm::unhex ( argh, std::back_inserter ( two ));
boost::algorithm::unhex ( argh.begin (), argh.end (), std::back_inserter ( three ));
four = boost::algorithm::unhex ( argh );
BOOST_CHECK ( one == two );
BOOST_CHECK ( one == three );
BOOST_CHECK ( one == four );
BOOST_CHECK ( one == arg );
}
}
template<typename String>
void test_from_hex_success ( const typename String::value_type ** tests ) {
for ( const typename String::value_type **p = tests; *p; p++ ) {
String arg, argh, one, two, three, four;
arg.assign ( *p );
boost::algorithm::unhex ( *p, std::back_inserter ( one ));
boost::algorithm::unhex ( arg, std::back_inserter ( two ));
boost::algorithm::unhex ( arg.begin (), arg.end (), std::back_inserter ( three ));
four = boost::algorithm::unhex ( arg );
BOOST_CHECK ( one == two );
BOOST_CHECK ( one == three );
BOOST_CHECK ( one == four );
argh = one;
one.clear (); two.clear (); three.clear (); four.clear ();
boost::algorithm::hex ( argh.c_str (), std::back_inserter ( one ));
boost::algorithm::hex ( argh, std::back_inserter ( two ));
boost::algorithm::hex ( argh.begin (), argh.end (), std::back_inserter ( three ));
four = boost::algorithm::hex ( argh );
BOOST_CHECK ( one == two );
BOOST_CHECK ( one == three );
BOOST_CHECK ( one == four );
BOOST_CHECK ( one == arg );
}
}
template<typename String>
void test_from_hex_failure ( const typename String::value_type ** tests ) {
int num_catches;
for ( const typename String::value_type **p = tests; *p; p++ ) {
String arg, one;
arg.assign ( *p );
num_catches = 0;
try { boost::algorithm::unhex ( *p, std::back_inserter ( one )); }
catch ( const boost::algorithm::hex_decode_error & /*ex*/ ) { num_catches++; }
try { boost::algorithm::unhex ( arg, std::back_inserter ( one )); }
catch ( const boost::algorithm::hex_decode_error & /*ex*/ ) { num_catches++; }
try { boost::algorithm::unhex ( arg.begin (), arg.end (), std::back_inserter ( one )); }
catch ( const boost::algorithm::hex_decode_error & /*ex*/ ) { num_catches++; }
BOOST_CHECK ( num_catches == 3 );
}
}
const char *tohex [] = {
"",
"a",
"\001",
"12",
"asdfadsfsad",
"01234567890ABCDEF",
NULL // End of the list
};
const wchar_t *tohex_w [] = {
L"",
L"a",
L"\001",
L"12",
L"asdfadsfsad",
L"01234567890ABCDEF",
NULL // End of the list
};
const char *fromhex [] = {
"20",
"2122234556FF",
NULL // End of the list
};
const wchar_t *fromhex_w [] = {
L"00101020",
L"2122234556FF3456",
NULL // End of the list
};
const char *fromhex_fail [] = {
"2",
"H",
"234",
"21222G4556FF",
NULL // End of the list
};
const wchar_t *fromhex_fail_w [] = {
L"2",
L"12",
L"H",
L"234",
L"21222G4556FF",
NULL // End of the list
};
int test_main( int , char* [] )
{
test_to_hex<std::string> ( tohex );
test_from_hex_success<std::string> ( fromhex );
test_from_hex_failure<std::string> ( fromhex_fail );
test_to_hex<std::wstring> ( tohex_w );
test_from_hex_success<std::wstring> ( fromhex_w );
test_from_hex_failure<std::wstring> ( fromhex_fail_w );
return 0;
}

137
test/hex_test2.cpp Normal file
View File

@ -0,0 +1,137 @@
/*
Copyright (c) Marshall Clow 2011-2012.
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
For more information, see http://www.boost.org
Test non-string cases; vector and list
*/
#include <boost/config.hpp>
#include <boost/algorithm/hex.hpp>
#include <boost/test/included/test_exec_monitor.hpp>
#include <string>
#include <iostream>
#include <deque>
#include <list>
const char *tohex [] = {
"",
"a",
"\001",
"12",
"asdfadsfsad",
"01234567890ABCDEF",
NULL // End of the list
};
void test_to_hex () {
for ( const char **p = tohex; *p; p++ ) {
std::deque<char> arg, argh;
std::list<char> one, two, three;
arg.assign ( *p, *p + strlen (*p));
boost::algorithm::hex ( *p, std::back_inserter ( one ));
boost::algorithm::hex ( arg, std::back_inserter ( two ));
boost::algorithm::hex ( arg.begin (), arg.end (), std::back_inserter ( three ));
BOOST_CHECK ( std::equal ( one.begin (), one.end (), two.begin ()));
BOOST_CHECK ( std::equal ( two.begin (), two.end (), three.begin ()));
std::copy ( one.begin (), one.end (), std::back_inserter ( argh ));
one.clear (); two.clear (); three.clear ();
// boost::algorithm::unhex ( argh.c_str (), std::back_inserter ( one ));
boost::algorithm::unhex ( argh, std::back_inserter ( two ));
boost::algorithm::unhex ( argh.begin (), argh.end (), std::back_inserter ( three ));
// BOOST_CHECK ( std::equal ( one.begin (), one.end (), two.begin ()));
BOOST_CHECK ( std::equal ( two.begin (), two.end (), three.begin ()));
BOOST_CHECK ( std::equal ( two.begin (), two.end (), arg.begin ()));
}
// Again, with a front_inserter
for ( const char **p = tohex; *p; p++ ) {
std::deque<char> arg, argh;
std::list<char> one, two, three;
arg.assign ( *p, *p + strlen (*p));
boost::algorithm::hex ( *p, std::front_inserter ( one ));
boost::algorithm::hex ( arg, std::front_inserter ( two ));
boost::algorithm::hex ( arg.begin (), arg.end (), std::front_inserter ( three ));
BOOST_CHECK ( std::equal ( one.begin (), one.end (), two.begin ()));
BOOST_CHECK ( std::equal ( two.begin (), two.end (), three.begin ()));
// Copy, reversing
std::copy ( one.begin (), one.end (), std::front_inserter ( argh ));
one.clear (); two.clear (); three.clear ();
// boost::algorithm::unhex ( argh.c_str (), std::front_inserter ( one ));
boost::algorithm::unhex ( argh, std::front_inserter ( two ));
boost::algorithm::unhex ( argh.begin (), argh.end (), std::front_inserter ( three ));
// BOOST_CHECK ( std::equal ( one.begin (), one.end (), two.begin ()));
BOOST_CHECK ( std::equal ( two.begin (), two.end (), three.begin ()));
BOOST_CHECK ( std::equal ( two.begin (), two.end (), arg.rbegin ())); // reverse
}
}
const char *fromhex [] = {
"20",
"2122234556FF",
NULL // End of the list
};
void test_from_hex_success () {
for ( const char **p = fromhex; *p; p++ ) {
std::deque<char> arg, argh;
std::list<char> one, two, three;
arg.assign ( *p, *p + strlen (*p));
boost::algorithm::unhex ( *p, std::back_inserter ( one ));
boost::algorithm::unhex ( arg, std::back_inserter ( two ));
boost::algorithm::unhex ( arg.begin (), arg.end (), std::back_inserter ( three ));
BOOST_CHECK ( std::equal ( one.begin (), one.end (), two.begin ()));
BOOST_CHECK ( std::equal ( two.begin (), two.end (), three.begin ()));
std::copy ( one.begin (), one.end (), std::back_inserter ( argh ));
one.clear (); two.clear (); three.clear ();
// boost::algorithm::hex ( argh.c_str (), std::back_inserter ( one ));
boost::algorithm::hex ( argh, std::back_inserter ( two ));
boost::algorithm::hex ( argh.begin (), argh.end (), std::back_inserter ( three ));
// BOOST_CHECK ( std::equal ( one.begin (), one.end (), two.begin ()));
BOOST_CHECK ( std::equal ( two.begin (), two.end (), three.begin ()));
BOOST_CHECK ( std::equal ( two.begin (), two.end (), arg.begin ()));
}
// Again, with a front_inserter
for ( const char **p = fromhex; *p; p++ ) {
std::deque<char> arg, argh;
std::list<char> one, two, three;
arg.assign ( *p, *p + strlen (*p));
boost::algorithm::unhex ( *p, std::front_inserter ( one ));
boost::algorithm::unhex ( arg, std::front_inserter ( two ));
boost::algorithm::unhex ( arg.begin (), arg.end (), std::front_inserter ( three ));
BOOST_CHECK ( std::equal ( one.begin (), one.end (), two.begin ()));
BOOST_CHECK ( std::equal ( two.begin (), two.end (), three.begin ()));
// Copy, reversing
std::copy ( one.begin (), one.end (), std::front_inserter ( argh ));
one.clear (); two.clear (); three.clear ();
// boost::algorithm::hex ( argh.c_str (), std::front_inserter ( one ));
boost::algorithm::hex ( argh, std::front_inserter ( two ));
boost::algorithm::hex ( argh.begin (), argh.end (), std::front_inserter ( three ));
// BOOST_CHECK ( std::equal ( one.begin (), one.end (), two.begin ()));
BOOST_CHECK ( std::equal ( two.begin (), two.end (), three.begin ()));
BOOST_CHECK ( std::equal ( two.begin (), two.end (), arg.rbegin ())); // reversed
}
}
int test_main( int , char* [] )
{
test_to_hex ();
test_from_hex_success ();
return 0;
}

123
test/hex_test3.cpp Normal file
View File

@ -0,0 +1,123 @@
/*
Copyright (c) Marshall Clow 2011-2012.
Distributed under the Boost Software License, Version 1.0. (See accompanying
file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
For more information, see http://www.boost.org
Try ostream_iterators
*/
#include <boost/config.hpp>
#include <boost/algorithm/hex.hpp>
#include <boost/test/included/test_exec_monitor.hpp>
#include <string>
#include <iostream>
#include <deque>
#include <list>
template <typename char_type>
void test_to_hex ( const char_type ** tests ) {
typedef std::basic_string<char_type> String;
typedef std::basic_ostringstream<char_type> Stream;
typedef std::ostream_iterator<char_type, char_type> Iter;
for ( const char_type **p = tests; *p; p++ ) {
String arg, argh;
Stream one, two, three;
arg.assign ( *p );
boost::algorithm::hex ( *p, Iter ( one ));
boost::algorithm::hex ( arg, Iter ( two ));
boost::algorithm::hex ( arg.begin (), arg.end (), Iter ( three ));
boost::algorithm::hex ( arg );
BOOST_CHECK ( one.str () == two.str ());
BOOST_CHECK ( one.str () == three.str ());
argh = one.str ();
one.str (String()); two.str (String()); three.str (String());
boost::algorithm::unhex ( argh.c_str (), Iter ( one ));
boost::algorithm::unhex ( argh, Iter ( two ));
boost::algorithm::unhex ( argh.begin (), argh.end (), Iter ( three ));
BOOST_CHECK ( one.str () == two.str ());
BOOST_CHECK ( one.str () == three.str ());
BOOST_CHECK ( one.str () == arg );
}
}
template <typename char_type>
void test_from_hex_success ( const char_type ** tests ) {
typedef std::basic_string<char_type> String;
typedef std::basic_ostringstream<char_type> Stream;
typedef std::ostream_iterator<char_type, char_type> Iter;
for ( const char_type **p = tests; *p; p++ ) {
String arg, argh;
Stream one, two, three;
arg.assign ( *p );
boost::algorithm::unhex ( *p, Iter ( one ));
boost::algorithm::unhex ( arg, Iter ( two ));
boost::algorithm::unhex ( arg.begin (), arg.end (), Iter ( three ));
BOOST_CHECK ( one.str () == two.str ());
BOOST_CHECK ( one.str () == three.str ());
argh = one.str ();
one.str (String()); two.str (String()); three.str (String());
boost::algorithm::hex ( argh.c_str (), Iter ( one ));
boost::algorithm::hex ( argh, Iter ( two ));
boost::algorithm::hex ( argh.begin (), argh.end (), Iter ( three ));
BOOST_CHECK ( one.str () == two.str ());
BOOST_CHECK ( one.str () == three.str ());
BOOST_CHECK ( one.str () == arg );
}
}
const char *tohex [] = {
"",
"a",
"\001",
"12",
"asdfadsfsad",
"01234567890ABCDEF",
NULL // End of the list
};
const wchar_t *tohex_w [] = {
L"",
L"a",
L"\001",
L"12",
L"asdfadsfsad",
L"01234567890ABCDEF",
NULL // End of the list
};
const char *fromhex [] = {
"20",
"2122234556FF",
NULL // End of the list
};
const wchar_t *fromhex_w [] = {
L"11223320",
L"21222345010256FF",
NULL // End of the list
};
int test_main( int , char* [] )
{
test_to_hex ( tohex );
test_to_hex ( tohex_w );
test_from_hex_success ( fromhex );
test_from_hex_success ( fromhex_w );
return 0;
}