mirror of
https://github.com/boostorg/endian.git
synced 2025-08-01 13:34:39 +02:00
Convert Endian Conversion Types to asciidoc
This commit is contained in:
@@ -20,6 +20,8 @@ include::endian/overview.adoc[]
|
||||
|
||||
include::endian/conversion.adoc[]
|
||||
|
||||
include::endian/arithmetic.adoc[]
|
||||
|
||||
include::endian/choosing_approach.adoc[]
|
||||
|
||||
include::endian/mini_review_topics.adoc[]
|
||||
|
561
doc/endian/arithmetic.adoc
Normal file
561
doc/endian/arithmetic.adoc
Normal file
@@ -0,0 +1,561 @@
|
||||
////
|
||||
Copyright 2011-2016 Beman Dawes
|
||||
|
||||
Distributed under the Boost Software License, Version 1.0.
|
||||
(http://www.boost.org/LICENSE_1_0.txt)
|
||||
////
|
||||
|
||||
[#arithmetic]
|
||||
# Endian Arithmetic Types
|
||||
|
||||
## Introduction
|
||||
|
||||
Header `boost/endian/arithmetic.hpp` provides integer binary types with
|
||||
control over byte order, value type, size, and alignment. Typedefs provide
|
||||
easy-to-use names for common configurations.
|
||||
|
||||
These types provide portable byte-holders for integer data, independent of
|
||||
particular computer architectures. Use cases almost always involve I/O, either
|
||||
via files or network connections. Although data portability is the primary
|
||||
motivation, these integer byte-holders may also be used to reduce memory use,
|
||||
file size, or network activity since they provide binary integer sizes not
|
||||
otherwise available.
|
||||
|
||||
Such integer byte-holder types are traditionally called *endian* types. See the
|
||||
http://en.wikipedia.org/wiki/Endian[Wikipedia] for a full exploration of
|
||||
*endianness*, including definitions of *big endian* and *little endian*.
|
||||
|
||||
Boost endian integers provide the same full set of {cpp} assignment, arithmetic,
|
||||
and relational operators as {cpp} standard integral types, with the standard
|
||||
semantics.
|
||||
|
||||
Unary arithmetic operators are `+`, `-`, `~`, `!`, plus both prefix and postfix
|
||||
`--` and `++`. Binary arithmetic operators are `+`, `+=`, `-`, `-=`, `\*`,
|
||||
``*=``, `/`, `/=`, `&`, `&=`, `|`, `|=`, `^`, `^=`, `<<`, `<\<=`, `>>`, and
|
||||
`>>=`. Binary relational operators are `==`, `!=`, `<`, `<=`, `>`, and `>=`.
|
||||
|
||||
Implicit conversion to the underlying value type is provided. An implicit
|
||||
constructor converting from the underlying value type is provided.
|
||||
|
||||
## Example
|
||||
The `endian_example.cpp` program writes a binary file containing four-byte,
|
||||
big-endian and little-endian integers:
|
||||
|
||||
```
|
||||
#include <iostream>
|
||||
#include <cstdio>
|
||||
#include <boost/endian/arithmetic.hpp>
|
||||
#include <boost/static_assert.hpp>
|
||||
|
||||
using namespace boost::endian;
|
||||
|
||||
namespace
|
||||
{
|
||||
// This is an extract from a very widely used GIS file format.
|
||||
// Why the designer decided to mix big and little endians in
|
||||
// the same file is not known. But this is a real-world format
|
||||
// and users wishing to write low level code manipulating these
|
||||
// files have to deal with the mixed endianness.
|
||||
|
||||
struct header
|
||||
{
|
||||
big_int32_t file_code;
|
||||
big_int32_t file_length;
|
||||
little_int32_t version;
|
||||
little_int32_t shape_type;
|
||||
};
|
||||
|
||||
const char* filename = "test.dat";
|
||||
}
|
||||
|
||||
int main(int, char* [])
|
||||
{
|
||||
header h;
|
||||
|
||||
BOOST_STATIC_ASSERT(sizeof(h) == 16U); // reality check
|
||||
|
||||
h.file_code = 0x01020304;
|
||||
h.file_length = sizeof(header);
|
||||
h.version = 1;
|
||||
h.shape_type = 0x01020304;
|
||||
|
||||
// Low-level I/O such as POSIX read/write or <cstdio>
|
||||
// fread/fwrite is sometimes used for binary file operations
|
||||
// when ultimate efficiency is important. Such I/O is often
|
||||
// performed in some {cpp} wrapper class, but to drive home the
|
||||
// point that endian integers are often used in fairly
|
||||
// low-level code that does bulk I/O operations, <cstdio>
|
||||
// fopen/fwrite is used for I/O in this example.
|
||||
|
||||
std::FILE* fi = std::fopen(filename, "wb"); // MUST BE BINARY
|
||||
|
||||
if (!fi)
|
||||
{
|
||||
std::cout << "could not open " << filename << '\n';
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (std::fwrite(&h, sizeof(header), 1, fi)!= 1)
|
||||
{
|
||||
std::cout << "write failure for " << filename << '\n';
|
||||
return 1;
|
||||
}
|
||||
|
||||
std::fclose(fi);
|
||||
|
||||
std::cout << "created file " << filename << '\n';
|
||||
|
||||
return 0;
|
||||
}
|
||||
```
|
||||
|
||||
After compiling and executing `endian_example.cpp`, a hex dump of `test.dat`
|
||||
shows:
|
||||
|
||||
```
|
||||
01020304 00000010 01000000 04030201
|
||||
```
|
||||
|
||||
Notice that the first two 32-bit integers are big endian while the second two
|
||||
are little endian, even though the machine this was compiled and run on was
|
||||
little endian.
|
||||
|
||||
## Limitations
|
||||
|
||||
Requires `<climits>`, `CHAR_BIT == 8`. If `CHAR_BIT` is some other value,
|
||||
compilation will result in an `#error`. This restriction is in place because the
|
||||
design, implementation, testing, and documentation has only considered issues
|
||||
related to 8-bit bytes, and there have been no real-world use cases presented
|
||||
for other sizes.
|
||||
|
||||
In {cpp}03, `endian_arithmetic` does not meet the requirements for POD types
|
||||
because it has constructors, private data members, and a base class. This means
|
||||
that common use cases are relying on unspecified behavior in that the {cpp}
|
||||
Standard does not guarantee memory layout for non-POD types. This has not been a
|
||||
problem in practice since all known {cpp} compilers lay out memory as if
|
||||
`endian` were a POD type. In {cpp}11, it is possible to specify the default
|
||||
constructor as trivial, and private data members and base classes no longer
|
||||
disqualify a type from being a POD type. Thus under {cpp}11, `endian_arithmetic`
|
||||
will no longer be relying on unspecified behavior.
|
||||
|
||||
## Feature set
|
||||
|
||||
* Big endian| little endian | native endian byte ordering.
|
||||
* Signed | unsigned
|
||||
* Unaligned | aligned
|
||||
* 1-8 byte (unaligned) | 1, 2, 4, 8 byte (aligned)
|
||||
* Choice of value type
|
||||
|
||||
## Enums and typedefs
|
||||
|
||||
Two scoped enums are provided:
|
||||
|
||||
```
|
||||
enum class order {big, little, native};
|
||||
|
||||
enum class align {no, yes};
|
||||
```
|
||||
|
||||
One class template is provided:
|
||||
|
||||
```
|
||||
template <order Order, typename T, std::size_t n_bits,
|
||||
align Align = align::no>
|
||||
class endian_arithmetic;
|
||||
```
|
||||
|
||||
Typedefs, such as `big_int32_t`, provide convenient naming conventions for
|
||||
common use cases:
|
||||
|
||||
[%header,cols=5*]
|
||||
|===
|
||||
|Name |Alignment |Endianness |Sign |Sizes in bits (n)
|
||||
|big_intn_t |no |big |signed |8,16,24,32,40,48,56,64
|
||||
|big_uintn_t |no |big |unsigned |8,16,24,32,40,48,56,64
|
||||
|little_intn_t |no |little |signed |8,16,24,32,40,48,56,64
|
||||
|little_uintn_t |no |little |unsigned |8,16,24,32,40,48,56,64
|
||||
|native_intn_t |no |native |signed |8,16,24,32,40,48,56,64
|
||||
|native_uintn_t |no |native |unsigned |8,16,24,32,40,48,56,64
|
||||
|big_intn_at |yes |big |signed |8,16,32,64
|
||||
|big_uintn_at |yes |big |unsigned |8,16,32,64
|
||||
|little_intn_at |yes |little |signed |8,16,32,64
|
||||
|little_uintn_at |yes |little |unsigned |8,16,32,64
|
||||
|===
|
||||
|
||||
The unaligned types do not cause compilers to insert padding bytes in classes
|
||||
and structs. This is an important characteristic that can be exploited to
|
||||
minimize wasted space in memory, files, and network transmissions.
|
||||
|
||||
CAUTION: Code that uses aligned types is possibly non-portable because
|
||||
alignment requirements vary between hardware architectures and because
|
||||
alignment may be affected by compiler switches or pragmas. For example,
|
||||
alignment of an 64-bit integer may be to a 32-bit boundary on a 32-bit machine.
|
||||
Furthermore, aligned types are only available on architectures with 8, 16, 32,
|
||||
and 64-bit integer types.
|
||||
|
||||
TIP: Prefer unaligned arithmetic types.
|
||||
|
||||
TIP: Protect yourself against alignment ills. For example:
|
||||
|
||||
```
|
||||
static_assert(sizeof(containing_struct) == 12, "sizeof(containing_struct) is wrong");
|
||||
```
|
||||
|
||||
NOTE: One-byte arithmetic types have identical layout on all platforms, so they
|
||||
never actually reverse endianness. They are provided to enable generic code,
|
||||
and to improve code readability and searchability.
|
||||
|
||||
## Class template `endian_arithmetic`
|
||||
|
||||
An `endian_integer` is an integer byte-holder with user-specified
|
||||
<<arithmetic_endianness,endianness>>, value type, size, and
|
||||
<<arithmetic_alignment,alignment>>. The usual operations on arithmetic types
|
||||
are supplied.
|
||||
|
||||
### Synopsis
|
||||
|
||||
```
|
||||
#include <boost/endian/conversion.hpp>
|
||||
#include <boost/endian/buffers.hpp>
|
||||
|
||||
namespace boost
|
||||
{
|
||||
namespace endian
|
||||
{
|
||||
// {cpp}11 features emulated if not available
|
||||
|
||||
enum class align {no, yes};
|
||||
|
||||
template <order Order, class T, std::size_t n_bits,
|
||||
align Align = align::no>
|
||||
class endian_arithmetic
|
||||
: public endian_buffer<Order, T, n_bits, Align>
|
||||
{
|
||||
public:
|
||||
typedef T value_type;
|
||||
|
||||
// if BOOST_ENDIAN_FORCE_PODNESS is defined && {cpp}11 PODs are not
|
||||
// available then these two constructors will not be present
|
||||
endian_arithmetic() noexcept = default;
|
||||
endian_arithmetic(T v) noexcept;
|
||||
|
||||
endian_arithmetic& operator=(T v) noexcept;
|
||||
operator value_type() const noexcept;
|
||||
value_type value() const noexcept; // for exposition; see endian_buffer
|
||||
const char* data() const noexcept; // for exposition; see endian_buffer
|
||||
|
||||
// arithmetic operations
|
||||
// note that additional operations are provided by the value_type
|
||||
value_type operator+(const endian& x) noexcept;
|
||||
endian& operator+=(endian& x, value_type y) noexcept;
|
||||
endian& operator-=(endian& x, value_type y) noexcept;
|
||||
endian& operator*=(endian& x, value_type y) noexcept;
|
||||
endian& operator/=(endian& x, value_type y) noexcept;
|
||||
endian& operator%=(endian& x, value_type y) noexcept;
|
||||
endian& operator&=(endian& x, value_type y) noexcept;
|
||||
endian& operator|=(endian& x, value_type y) noexcept;
|
||||
endian& operator^=(endian& x, value_type y) noexcept;
|
||||
endian& operator<<=(endian& x, value_type y) noexcept;
|
||||
endian& operator>>=(endian& x, value_type y noexcept;
|
||||
value_type operator<<(const endian& x, value_type y) noexcept;
|
||||
value_type operator>>(const endian& x, value_type y) noexcept;
|
||||
endian& operator++(endian& x) noexcept;
|
||||
endian& operator--(endian& x) noexcept;
|
||||
endian operator++(endian& x, int) noexcept;
|
||||
endian operator--(endian& x, int) noexcept;
|
||||
|
||||
// Stream inserter
|
||||
template <class charT, class traits>
|
||||
friend std::basic_ostream<charT, traits>&
|
||||
operator<<(std::basic_ostream<charT, traits>& os, const T& x);
|
||||
|
||||
// Stream extractor
|
||||
template <class charT, class traits>
|
||||
friend std::basic_istream<charT, traits>&
|
||||
operator>>(std::basic_istream<charT, traits>& is, T& x);
|
||||
};
|
||||
|
||||
// typedefs
|
||||
|
||||
// unaligned big endian signed integer types
|
||||
typedef endian<order::big, int_least8_t, 8> big_int8_t;
|
||||
typedef endian<order::big, int_least16_t, 16> big_int16_t;
|
||||
typedef endian<order::big, int_least32_t, 24> big_int24_t;
|
||||
typedef endian<order::big, int_least32_t, 32> big_int32_t;
|
||||
typedef endian<order::big, int_least64_t, 40> big_int40_t;
|
||||
typedef endian<order::big, int_least64_t, 48> big_int48_t;
|
||||
typedef endian<order::big, int_least64_t, 56> big_int56_t;
|
||||
typedef endian<order::big, int_least64_t, 64> big_int64_t;
|
||||
|
||||
// unaligned big endian unsigned integer types
|
||||
typedef endian<order::big, uint_least8_t, 8> big_uint8_t;
|
||||
typedef endian<order::big, uint_least16_t, 16> big_uint16_t;
|
||||
typedef endian<order::big, uint_least32_t, 24> big_uint24_t;
|
||||
typedef endian<order::big, uint_least32_t, 32> big_uint32_t;
|
||||
typedef endian<order::big, uint_least64_t, 40> big_uint40_t;
|
||||
typedef endian<order::big, uint_least64_t, 48> big_uint48_t;
|
||||
typedef endian<order::big, uint_least64_t, 56> big_uint56_t;
|
||||
typedef endian<order::big, uint_least64_t, 64> big_uint64_t;
|
||||
|
||||
// unaligned little endian signed integer types
|
||||
typedef endian<order::little, int_least8_t, 8> little_int8_t;
|
||||
typedef endian<order::little, int_least16_t, 16> little_int16_t;
|
||||
typedef endian<order::little, int_least32_t, 24> little_int24_t;
|
||||
typedef endian<order::little, int_least32_t, 32> little_int32_t;
|
||||
typedef endian<order::little, int_least64_t, 40> little_int40_t;
|
||||
typedef endian<order::little, int_least64_t, 48> little_int48_t;
|
||||
typedef endian<order::little, int_least64_t, 56> little_int56_t;
|
||||
typedef endian<order::little, int_least64_t, 64> little_int64_t;
|
||||
|
||||
// unaligned little endian unsigned integer types
|
||||
typedef endian<order::little, uint_least8_t, 8> little_uint8_t;
|
||||
typedef endian<order::little, uint_least16_t, 16> little_uint16_t;
|
||||
typedef endian<order::little, uint_least32_t, 24> little_uint24_t;
|
||||
typedef endian<order::little, uint_least32_t, 32> little_uint32_t;
|
||||
typedef endian<order::little, uint_least64_t, 40> little_uint40_t;
|
||||
typedef endian<order::little, uint_least64_t, 48> little_uint48_t;
|
||||
typedef endian<order::little, uint_least64_t, 56> little_uint56_t;
|
||||
typedef endian<order::little, uint_least64_t, 64> little_uint64_t;
|
||||
|
||||
// unaligned native endian signed integer types
|
||||
typedef implementation-defined_int8_t native_int8_t;
|
||||
typedef implementation-defined_int16_t native_int16_t;
|
||||
typedef implementation-defined_int24_t native_int24_t;
|
||||
typedef implementation-defined_int32_t native_int32_t;
|
||||
typedef implementation-defined_int40_t native_int40_t;
|
||||
typedef implementation-defined_int48_t native_int48_t;
|
||||
typedef implementation-defined_int56_t native_int56_t;
|
||||
typedef implementation-defined_int64_t native_int64_t;
|
||||
|
||||
// unaligned native endian unsigned integer types
|
||||
typedef implementation-defined_uint8_t native_uint8_t;
|
||||
typedef implementation-defined_uint16_t native_uint16_t;
|
||||
typedef implementation-defined_uint24_t native_uint24_t;
|
||||
typedef implementation-defined_uint32_t native_uint32_t;
|
||||
typedef implementation-defined_uint40_t native_uint40_t;
|
||||
typedef implementation-defined_uint48_t native_uint48_t;
|
||||
typedef implementation-defined_uint56_t native_uint56_t;
|
||||
typedef implementation-defined_uint64_t native_uint64_t;
|
||||
|
||||
// aligned big endian signed integer types
|
||||
typedef endian<order::big, int8_t, 8, align::yes> big_int8_at;
|
||||
typedef endian<order::big, int16_t, 16, align::yes> big_int16_at;
|
||||
typedef endian<order::big, int32_t, 32, align::yes> big_int32_at;
|
||||
typedef endian<order::big, int64_t, 64, align::yes> big_int64_at;
|
||||
|
||||
// aligned big endian unsigned integer types
|
||||
typedef endian<order::big, uint8_t, 8, align::yes> big_uint8_at;
|
||||
typedef endian<order::big, uint16_t, 16, align::yes> big_uint16_at;
|
||||
typedef endian<order::big, uint32_t, 32, align::yes> big_uint32_at;
|
||||
typedef endian<order::big, uint64_t, 64, align::yes> big_uint64_at;
|
||||
|
||||
// aligned little endian signed integer types
|
||||
typedef endian<order::little, int8_t, 8, align::yes> little_int8_at;
|
||||
typedef endian<order::little, int16_t, 16, align::yes> little_int16_at;
|
||||
typedef endian<order::little, int32_t, 32, align::yes> little_int32_at;
|
||||
typedef endian<order::little, int64_t, 64, align::yes> little_int64_at;
|
||||
|
||||
// aligned little endian unsigned integer types
|
||||
typedef endian<order::little, uint8_t, 8, align::yes> little_uint8_at;
|
||||
typedef endian<order::little, uint16_t, 16, align::yes> little_uint16_at;
|
||||
typedef endian<order::little, uint32_t, 32, align::yes> little_uint32_at;
|
||||
typedef endian<order::little, uint64_t, 64, align::yes> little_uint64_at;
|
||||
|
||||
// aligned native endian typedefs are not provided because
|
||||
// <cstdint> types are superior for that use case
|
||||
|
||||
} // namespace endian
|
||||
} // namespace boost
|
||||
```
|
||||
|
||||
The `implementation-defined` text above is either `big` or `little` according
|
||||
to the endianness of the platform.
|
||||
|
||||
### Members
|
||||
|
||||
```
|
||||
endian() = default; // {cpp}03: endian(){}
|
||||
```
|
||||
[horizontal]
|
||||
Effects:: Constructs an uninitialized object of type
|
||||
`endian_arithmetic<E, T, n_bits, A>`.
|
||||
|
||||
```
|
||||
endian(T v);
|
||||
```
|
||||
[horizontal]
|
||||
Effects:: Constructs an object of type `endian_arithmetic<E, T, n_bits, A>`.
|
||||
Postcondition:: `x == v,` where `x` is the constructed object.
|
||||
|
||||
```
|
||||
endian& operator=(T v);
|
||||
```
|
||||
[horizontal]
|
||||
Postcondition:: `x == v,` where `x` is the constructed object.
|
||||
Returns:: `*this`.
|
||||
|
||||
```
|
||||
operator T() const;
|
||||
```
|
||||
[horizontal]
|
||||
Returns:: The current value stored in `*this`, converted to `value_type`.
|
||||
|
||||
```
|
||||
const char* data() const;
|
||||
```
|
||||
[horizontal]
|
||||
Returns:: A pointer to the first byte of the endian binary value stored in
|
||||
`*this`.
|
||||
|
||||
### Other operators
|
||||
|
||||
Other operators on endian objects are forwarded to the equivalent operator on
|
||||
`value_type`.
|
||||
|
||||
### Stream inserter
|
||||
|
||||
```
|
||||
template <class charT, class traits>
|
||||
friend std::basic_ostream<charT, traits>&
|
||||
operator<<(std::basic_ostream<charT, traits>& os, const T& x);
|
||||
|
||||
```
|
||||
[horizontal]
|
||||
Returns:: `os << +x`.</p>
|
||||
|
||||
### Stream extractor
|
||||
|
||||
```
|
||||
template <class charT, class traits>
|
||||
friend std::basic_istream<charT, traits>&
|
||||
operator>>(std::basic_istream<charT, traits>& is, T& x);
|
||||
```
|
||||
[horizontal]
|
||||
Effects:: As if:
|
||||
```
|
||||
T i;
|
||||
if (is >> i)
|
||||
x = i;
|
||||
```
|
||||
[horizontal]
|
||||
Returns:: `is`.
|
||||
|
||||
## FAQ
|
||||
|
||||
See the <<overview_faq,Endian home page>> FAQ for a library-wide FAQ.
|
||||
|
||||
### Why not just use Boost.Serialization?
|
||||
|
||||
Serialization involves a conversion for every object involved in I/O. Endian
|
||||
integers require no conversion or copying. They are already in the desired
|
||||
format for binary I/O. Thus they can be read or written in bulk.
|
||||
|
||||
### Are endian types PODs?
|
||||
|
||||
Yes for {cpp}11. No for {cpp}03, although several
|
||||
<<arithmetic_compilation,macros>> are available to force PODness in all cases.
|
||||
|
||||
### What are the implications of endian integer types not being PODs with {cpp}03
|
||||
compilers?
|
||||
|
||||
They can't be used in unions. Also, compilers aren't required to align or lay
|
||||
out storage in portable ways, although this potential problem hasn't prevented
|
||||
use of Boost.Endian with real compilers.
|
||||
|
||||
### What good is native endianness?
|
||||
|
||||
It provides alignment and size guarantees not available from the built-in
|
||||
types. It eases generic programming.
|
||||
|
||||
### Why bother with the aligned endian types?
|
||||
|
||||
Aligned integer operations may be faster (as much as 10 to 20 times faster)
|
||||
if the endianness and alignment of the type matches the endianness and
|
||||
alignment requirements of the machine. The code, however, will be somewhat less
|
||||
portable than with the unaligned types.
|
||||
|
||||
### Why provide the arithmetic operations?
|
||||
|
||||
Providing a full set of operations reduces program clutter and makes code
|
||||
both easier to write and to read. Consider incrementing a variable in a record.
|
||||
It is very convenient to write:
|
||||
```
|
||||
++record.foo;
|
||||
```
|
||||
Rather than:
|
||||
```
|
||||
int temp(record.foo);
|
||||
++temp;
|
||||
record.foo = temp;
|
||||
```
|
||||
|
||||
## Design considerations for Boost.Endian types
|
||||
|
||||
* Must be suitable for I/O - in other words, must be memcpyable.
|
||||
* Must provide exactly the size and internal byte ordering specified.
|
||||
* Must work correctly when the internal integer representation has more bits
|
||||
that the sum of the bits in the external byte representation. Sign extension
|
||||
must work correctly when the internal integer representation type has more
|
||||
bits than the sum of the bits in the external bytes. For example, using
|
||||
a 64-bit integer internally to represent 40-bit (5 byte) numbers must work for
|
||||
both positive and negative values.
|
||||
* Must work correctly (including using the same defined external
|
||||
representation) regardless of whether a compiler treats char as signed or
|
||||
unsigned.
|
||||
* Unaligned types must not cause compilers to insert padding bytes.
|
||||
* The implementation should supply optimizations with great care. Experience
|
||||
has shown that optimizations of endian integers often become pessimizations
|
||||
when changing machines or compilers. Pessimizations can also happen when
|
||||
changing compiler switches, compiler versions, or CPU models of the same
|
||||
architecture.
|
||||
|
||||
## Experience
|
||||
|
||||
Classes with similar functionality have been independently developed by
|
||||
several Boost programmers and used very successful in high-value, high-use
|
||||
applications for many years. These independently developed endian libraries
|
||||
often evolved from C libraries that were also widely used. Endian types have
|
||||
proven widely useful across a wide range of computer architectures and
|
||||
applications.
|
||||
|
||||
## Motivating use cases
|
||||
|
||||
Neil Mayhew writes: "I can also provide a meaningful use-case for this
|
||||
library: reading TrueType font files from disk and processing the contents. The
|
||||
data format has fixed endianness (big) and has unaligned values in various
|
||||
places. Using Boost.Endian simplifies and cleans the code wonderfully."
|
||||
|
||||
## {cpp}11
|
||||
|
||||
The availability of the {cpp}11
|
||||
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2346.htm[Defaulted
|
||||
Functions] feature is detected automatically, and will be used if present to
|
||||
ensure that objects of `class endian_arithmetic` are trivial, and thus PODs.
|
||||
|
||||
## Compilation
|
||||
Boost.Endian is implemented entirely within headers, with no need to link to any
|
||||
Boost object libraries.
|
||||
|
||||
Several macros allow user control over features:
|
||||
|
||||
* BOOST_ENDIAN_NO_CTORS causes `class endian_arithmetic` to have no
|
||||
constructors. The intended use is for compiling user code that must be portable
|
||||
between compilers regardless of {cpp}11
|
||||
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2346.htm[Defaulted
|
||||
Functions] support. Use of constructors will always fail,
|
||||
* BOOST_ENDIAN_FORCE_PODNESS causes BOOST_ENDIAN_NO_CTORS to be defined if
|
||||
the compiler does not support {cpp}11
|
||||
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2346.htm[Defaulted
|
||||
Functions]. This is ensures that objects of `class endian_arithmetic` are PODs,
|
||||
and so can be used in {cpp}03 unions. In {cpp}11, `class endian_arithmetic`
|
||||
objects are PODs, even though they have constructors, so can always be used in
|
||||
unions.
|
||||
|
||||
## Acknowledgements
|
||||
|
||||
Original design developed by Darin Adler based on classes developed by Mark
|
||||
Borgerding. Four original class templates combined into a single
|
||||
`endian_arithmetic` class template by Beman Dawes, who put the library together,
|
||||
provided documentation, added the typedefs, and also added the
|
||||
`unrolled_byte_loops` sign partial specialization to correctly extend the sign
|
||||
when cover integer size differs from endian representation size.
|
Reference in New Issue
Block a user