Initial gh-pages commit.

This commit is contained in:
Beman
2013-05-28 17:08:33 -04:00
commit bc1257541e
3 changed files with 1563 additions and 0 deletions

344
conversion.html Normal file
View File

@@ -0,0 +1,344 @@
<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta name="GENERATOR" content="Microsoft FrontPage 5.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Boost Endian Conversion Functions</title>
<style type="text/css">
ins {background-color:#CCFFCC}
del {background-color:#FFCACA}
body { font-family: sans-serif; width:8.0in; }
pre { background-color:#D7EEFF }
</style>
</head>
<body>
<table border="0" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" width="100%">
<tr>
<td>
<a href="../../../index.html">
<img src="../../../boost.png" alt="boost.png (6897 bytes)" align="middle" width="277" height="86" border="0"></a></td>
<td align="middle">
<font size="7">Endian Conversion<br>
Functions</font></td>
</tr>
</table>
<table border="0" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" bgcolor="#D7EEFF" width="100%">
<tr>
<td><b><a href="../../../index.htm">Boost Home</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="index.html">Endian Home</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="conversion.html">Conversion Functions</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="types.html">Endian Types</a></b></td>
</tr>
</table>
<table border="1" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" align="right">
<tr>
<td width="100%" bgcolor="#D7EEFF" align="center">
<i><b>Contents</b></i></td>
</tr>
<tr>
<td width="100%" bgcolor="#E8F5FF">
<a href="#Introduction">Introduction</a><br>
<a href="#Reference">Reference</a><br>
&nbsp;&nbsp;&nbsp; <a href="#Synopsis">Synopsis</a><br>
&nbsp;&nbsp;&nbsp; <a href="#Requirements">Requirements</a><br>
&nbsp;&nbsp;&nbsp; <a href="#Functions">Functions</a><br>
<a href="#FAQ">FAQ</a><br>
<a href="#Acknowledgements">Acknowledgements</a></td>
</tr>
<tr>
<td width="100%" bgcolor="#D7EEFF" align="center">
<b><i>Headers</i></b></td>
</tr>
<tr>
<td width="100%" bgcolor="#E8F5FF">
<a href="../../../boost/endian/conversion.hpp">&lt;boost/endian/conversion.hpp&gt;</a><br>
<a href="../../../boost/endian/types.hpp">&lt;boost/endian/types.hpp&gt;</a></td>
</tr>
</table>
<h2><a name="Introduction">Introduction</a></h2>
<p>Header <a href="../../../boost/endian/conversion.hpp">boost/endian/conversion.hpp</a>
provides byte order reversal and conversion functions that convert objects of
the multi-byte built-in
integer types, and also types <code>float</code> and <code>double,</code>
between native, big, or little endian byte
ordering. User defined types are also supported.</p>
<table border="1" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111">
<tr>
<td bgcolor="#FFFFCC">Caution: Only big endianness and little endianness is supported;
middle endianness is not supported.</td>
</tr>
</table>
<h2><a name="Reference">Reference</a></h2>
<p>Functions are implemented <code>inline</code> if appropriate.<code> noexcept</code> is
elided for compilers that do not support it.
Boost scoped enum emulation is used so that the library still works for compilers that do not support scoped enums. </p>
<h3>
<a name="Synopsis">Synopsis</a></h3>
<pre>#define BOOST_ENDIAN_INTRINSIC_MSG &quot;<b><font face="Arial"><i>message describing presence or absence of intrinsics</i></font></b>&quot;
namespace boost
{
namespace endian
{
enum class <a name="order">order</a> {big, little, native};
// reverse byte order (i.e. endianness)
int16_t <a href="#reverse_value">reverse_value</a>(int16_t x) noexcept;
int32_t <a href="#reverse_value">reverse_value</a>(int32_t x) noexcept;
int64_t <a href="#reverse_value">reverse_value</a>(int64_t x) noexcept;
uint16_t <a href="#reverse_value">reverse_value</a>(uint16_t x) noexcept;
uint32_t <a href="#reverse_value">reverse_value</a>(uint32_t x) noexcept;
uint64_t <a href="#reverse_value">reverse_value</a>(uint64_t x) noexcept;
float <a href="#reverse_value">reverse_value</a>(float x) noexcept;
double <a href="#reverse_value">reverse_value</a>(double x) noexcept;
void <a href="#reverse">reverse</a>(int16_t&amp; x) noexcept;
void <a href="#reverse">reverse</a>(int32_t&amp; x) noexcept;
void <a href="#reverse">reverse</a>(int64_t&amp; x) noexcept;
void <a href="#reverse">reverse</a>(uint16_t&amp; x) noexcept;
void <a href="#reverse">reverse</a>(uint32_t&amp; x) noexcept;
void <a href="#reverse">reverse</a>(uint64_t&amp; x) noexcept;
void <a href="#reverse">reverse</a>(float&amp; x) noexcept;
void <a href="#reverse">reverse</a>(double&amp; x) noexcept;
// reverse byte order unless native endianness is big
template &lt;class ReversibleValue &gt;
ReversibleValue <a href="#big_endian_value">big_endian_value</a>(ReversibleValue x) noexcept;
template &lt;class Reversible&gt;
void <a href="#big_endian">big_endian</a>(Reversible&amp; x) noexcept;
// reverse byte order unless native endianness is little
template &lt;class ReversibleValue &gt;
ReversibleValue <a href="#little_endian_value">little_endian_value</a>(ReversibleValue x) noexcept;
template &lt;class Reversible&gt;
void <a href="#little_endian">little_endian</a>(Reversible&amp; x) noexcept;
// synonyms, based on names popularized by BSD (e.g. OS X, Linux) endian.h
// &quot;h&quot; for &quot;host&quot; (i.e. native), &quot;be&quot; for &quot;big endian&quot;,
// &quot;le&quot; for &quot;little endian&quot;, &quot;m&quot; for &quot;modify&quot; in place
template &lt;class T&gt; T bswap(T x) noexcept {return reverse_value(x);}
template &lt;class T&gt; T htobe(T host) noexcept {return big_endian_value(host);}
template &lt;class T&gt; T htole(T host) noexcept {return little_endian_value(host);}
template &lt;class T&gt; T betoh(T big) noexcept {return big_endian_value(big);}
template &lt;class T&gt; T letoh(T little) noexcept {return little_endian_value(little);}
template &lt;class T&gt; void bswapm(T&amp; x) noexcept {reverse(x);}
template &lt;class T&gt; void htobem(T&amp; host) noexcept {big_endian(host);}
template &lt;class T&gt; void htole(mT&amp; host noexcept) {little_endian(host);}
template &lt;class T&gt; void betohm(T&amp; big) noexcept {big_endian(big);}
template &lt;class T&gt; void letohm(T&amp; little) noexcept {little_endian(little);}
// generic byte order conversion
template &lt;order From, order To, class ReversibleValue&gt;
ReversibleValue <a href="#convert_value_generic">convert_value</a>(ReversibleValue from) noexcept;
template &lt;order From, order To, class Reversible&gt;
void <a href="#convert_generic">convert</a>(Reversible&amp; x) noexcept;
// runtime effective byte order determination
order <a href="#effective_order">effective_order</a>(order x) noexcept;
// runtime byte-order conversion
template &lt;class ReversibleValue&gt;
ReversibleValue <a href="#convert_value_runtime">convert_value</a>(ReversibleValue from,
order from_order, order to_order) noexcept;
template &lt;class Reversible&gt;
void <a href="#convert_runtime">convert</a>(Reversible&amp; x,
order from_order, order to_order) noexcept;
} // namespace endian
} // namespace boost</pre>
<h3><a name="Requirements">Requirements</a></h3>
<p>The template definitions in this header refer to named
requirements whose details are set out in this section. User defined types may
be used in the function templates in this header only if they meet the
function's template parameter requirements.</p>
<h4><a name="ReversibleValue">ReversibleValue</a> requirements</h4>
<p><code>ReversibleValue</code> is an object type to be
supplied by a C++ program instantiating a template; <code>x</code> is a value of
type (possibly <code>const</code>) <code>ReversibleValue</code>.</p>
<table border="1" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111">
<tr>
<td width="160"><b>Expression</b></td>
<td width="150"><b>Return type</b></td>
<td width="347"><b>Requirement</b></td>
</tr>
<tr>
<td valign="top">
<p><code>reverse_value(x)</code></td>
<td valign="top">
<p><a name="ReversibleValue"><code>ReversibleValue</code></a></td>
<td>
<p>The returned value is the value of <code>x</code> with the
order of its constituent bytes reversed.</td>
</tr>
</table>
<h4><a name="Reversible">Reversible</a> requirements</h4>
<p><code>Reversible</code> is an object type to be
supplied by a C++ program instantiating a template; <code>x</code> is a
modifiable lvalue of type <code>Reversible</code>.</p>
<table border="1" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111">
<tr>
<td width="160"><b>Expression</b></td>
<td width="347"><b>Post-condition</b></td>
</tr>
<tr>
<td valign="top">
<p><code>reverse(x)</code></td>
<td>
<p>The order of the constituent bytes of <code>x</code> are
reversed.</td>
</tr>
</table>
<h3><a name="Functions">Functions</a></h3>
<pre><a name="reverse_value"></a>int16_t reverse_value(int16_t x) noexcept;
int32_t reverse_value(int32_t x) noexcept;
int64_t reverse_value(int64_t x) noexcept;
uint16_t reverse_value(uint16_t x) noexcept;
uint32_t reverse_value(uint32_t x) noexcept;
uint64_t reverse_value(uint64_t x) noexcept;
float reverse_value(float x) noexcept;
double reverse_value(double x) noexcept;</pre>
<blockquote>
<p><i>Returns:</i> <i><code>x</code></i>, with the order of its
constituent bytes reversed.</p>
</blockquote>
<pre><a name="reverse"></a>void reverse(int16_t&amp; x) noexcept;
void reverse(int32_t&amp; x) noexcept;
void reverse(int64_t&amp; x) noexcept;
void reverse(uint16_t&amp; x) noexcept;
void reverse(uint32_t&amp; x) noexcept;
void reverse(uint64_t&amp; x) noexcept;
void reverse(float&amp; x) noexcept;
void reverse(double&amp; x) noexcept;</pre>
<blockquote>
<p><i>Postconditions:</i> The order of the constituent bytes of
<code>x</code> are reversed.</p>
</blockquote>
<pre><a name="big_endian_value"></a>template &lt;class ReversibleValue &gt;
ReversibleValue big_endian_value(ReversibleValue x) noexcept;
<a name="big_endian"></a>template &lt;class Reversible&gt;
void big_endian(Reversible&amp; x) noexcept;</pre>
<blockquote>
<p><i>Returns (first form)</i>: <code>x</code> if the native byte order is big
endian, otherwise <code>reverse_value(x)</code>.</p>
<p><i>Effects (second form):</i> None if the native byte order is big
endian, otherwise <code>reverse(x)</code>.</p>
<p><i>Example:</i></p>
<blockquote>
<pre>int32_t x = <b><i>some-value</i></b>;
big_endian(x); // reverses the byte order of x, unless
// the native byte order is big-endian</pre>
</blockquote>
</blockquote>
<pre><a name="little_endian_value"></a>template &lt;class ReversibleValue &gt;
ReversibleValue little_endian_value(ReversibleValue x) noexcept;
<a name="little_endian"></a>template &lt;class Reversible&gt;
void little_endian(Reversible&amp; x) noexcept;</pre>
<blockquote>
<p><i>Returns (first form)</i>: <code>x</code> if the native byte order is little
endian, otherwise <code>reverse_value(x)</code>.</p>
<p><i>Effects (second form):</i> None if the native byte order is little
endian, otherwise <code>reverse(x)</code>.</p>
<p><i>Example:</i></p>
<blockquote>
<pre>int32_t x = <b><i>some-value</i></b>;
int32_t y(little_endian(x));
// y has been set to x; the byte order is reversed unless
// the native byte order is little-endian.</pre>
</blockquote>
</blockquote>
<pre><a name="convert_value_generic"></a>template &lt;order From, order To, class ReversibleValue&gt;
ReversibleValue convert_value(ReversibleValue from) noexcept;
<a name="convert_generic"></a>template &lt;order From, order To, class Reversible&gt;
void convert(Reversible&amp; x) noexcept;
</pre>
<blockquote>
<p>The <b><i>effective order</i></b> of an order template parameter
is the same as the order template parameter if the parameter is not <code>
order::native</code>, otherwise it is the constant <code>order::big</code> or
<code>order::little</code> that represents the actual native byte order.</p>
<p><i>Returns (first form)</i>: <code>from</code> if <code>From</code>
and <code>To</code> have the same effective order, otherwise <code>
reverse_value(from)</code>.</p>
<p><i>Effects (second form):</i> None if <code>From</code> and <code>
To</code> have the same effective order, otherwise <code>reverse(x)</code>.</p>
<p><i>Example:</i></p>
<blockquote>
<pre>int32_t x;
<i>... read an external big-endian value into x</i>
convert&lt;order::big, order::native&gt;(x); // more generic equivalent of big_endian(x);</pre>
</blockquote>
</blockquote>
<pre><a name="effective_order"></a>order effective_order(order x) noexcept;
</pre>
<blockquote>
<p><i>Returns:</i> <code>x</code> if <code>x != order::native</code>, otherwise the <code>order</code> constant for the actual native byte order.</p><p><i>Example:</i></p><blockquote><pre>effective_order(order::big); // returns order::big
effective_order(order::little); // returns order::little
effective_order(order::native); // returns order::big if the native order
// is big-endian, otherwise order::little</pre></blockquote></blockquote><pre><a name="convert_value_runtime"></a>template &lt;class ReversibleValue&gt;
ReversibleValue convert_value(ReversibleValue from,
order from_order, order to_order) noexcept;
<a name="convert_runtime"></a>template &lt;class Reversible&gt;
void convert(Reversible&amp; x,
order from_order, order to_order) noexcept;</pre><blockquote><p><i>Returns (first form)</i>: <code>from</code> if <code>effect_order(from_order) == effective_order(to_order)</code>, otherwise <code>reverse_value(from)</code>.</p>
<p><i>Effects (second form):</i> None if <code>effect_order(from_order) == effective_order(to_order)</code>, otherwise <code>reverse(x)</code>.</p>
<p><i>Example:</i></p>
<blockquote>
<pre>int32_t x;
<i>... read an external value of an endianness know only at runtime into x</i>
convert(x, some_order, order::native); // convert to native byte order if needed</pre>
</blockquote>
</blockquote>
<h2> <a name="FAQ">FAQ</a></h2>
<p>See the <a href="index.html#FAQ">Endian home page</a> FAQ for a library-wide
FAQ.</p>
<p><b>Why are the template versions of <code>reverse()</code> and <code>reverse_value()</code>
in a detail namespace?</b></p>
<blockquote>
<p>They are unsafe for general use. Consider reversing
the bytes of a <code>std::pai<b>r</b></code> as a whole - the bytes from <code>first</code>
would end up in <code>second</code> and visa versa, and this is totally
wrong!</p>
</blockquote>
<p><b>Why are both value returning and modify-in-place functions provided?</b></p>
<blockquote>
<p>Returning the result by value is the standard C and C++ idiom for functions that compute a
value from an argument. Modify-in-place functions allow cleaner code in many real-world
endian use cases and are more efficient for user defined types that have
members such as string data that do not need to be reversed. Thus both forms are
provided.</p>
</blockquote>
<h2><a name="Acknowledgements">Acknowledgements</a></h2><p>Tomas Puverle was instrumental in identifying and articulating the need to
support endian conversion as separate from endian integer types. Phil Endecott suggested the form of the value returning signatures. Vicente Botet and other reviewers suggested supporting floating point types and user defined types. General reverse template implementation approach using std::reverse suggested by Mathias Gaunard. Portable implementation approach for 16, 32, and 64-bit integers suggested by tymofey, with avoidance of undefined behavior as suggested by Giovanni Piero Deretta, and a further refinement suggested by Pyry Jahkola. Intrinsic builtins implementation approach for 16, 32, and 64-bit integers suggested by several reviewers, and by David Stone, who provided his Boost licensed macro implementation that became the starting point for <a href="../include/boost/endian/detail/intrinsic.hpp">boost/endian/detail/intrinsic.hpp</a>.</p>
<hr>
<p>Last revised:
<!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B, %Y" startspan -->28 May, 2013<!--webbot bot="Timestamp" endspan i-checksum="13992" --></p>
<p>© Copyright Beman Dawes, 2011, 2013</p>
<p>Distributed under the Boost Software License, Version 1.0. See <a href="http://www.boost.org/LICENSE_1_0.txt">www.boost.org/ LICENSE_1_0.txt</a></p>
</body>
</html>

595
index.html Normal file
View File

@@ -0,0 +1,595 @@
<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta name="GENERATOR" content="Microsoft FrontPage 5.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Boost Endian Library</title>
<style type="text/css">
ins {background-color:#CCFFCC}
del {background-color:#FFCACA}
body { font-family: sans-serif; width:8.0in; }
pre { background-color:#D7EEFF }
</style>
</head>
<body>
<table border="0" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" width="100%">
<tr>
<td>
<a href="../../../index.html">
<img src="../../../boost.png" alt="boost.png (6897 bytes)" align="middle" border="0" width="277" height="86"></a></td>
<td align="middle">
<font size="7">Endian Library</font></td>
</tr>
</table>
<table border="0" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" bgcolor="#D7EEFF" width="100%">
<tr>
<td><b><a href="../../../index.htm">Boost Home</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="index.html">Endian Home</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="conversion.html">Conversion Functions</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="types.html">Endian Types</a></b></td>
</tr>
</table>
<table border="1" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" align="right">
<tr>
<td width="100%" bgcolor="#D7EEFF" align="center">
<i><b>Contents</b></i></td>
</tr>
<tr>
<td width="100%" bgcolor="#E8F5FF">
<a href="#Abstract">Abstract</a><br>
<a href="#Introduction-to-endianness">Introduction to endianness</a><br>
<a href="#Introduction">Introduction to the Boost.Endian library</a><br>
<a href="#Choosing">Choosing approaches</a><br>
<a href="#Intrinsic">Intrinsic built-in support</a><br>
<a href="#Performance">Performance</a><br>
&nbsp;&nbsp;&nbsp; <a href="#Timings">Timings</a><br>
&nbsp;&nbsp;&nbsp; <a href="#Conclusions">Conclusions</a><br>
<a href="#FAQ">FAQ</a><br>
<a href="#Release-history">Release history</a><br>
<a href="#Acknowledgements">Acknowledgements</a></td>
</tr>
<tr>
<td width="100%" bgcolor="#D7EEFF" align="center">
<b><i>Headers</i></b></td>
</tr>
<tr>
<td width="100%" bgcolor="#E8F5FF">
<a href="../../../boost/endian/conversion.hpp">&lt;boost/endian/conversion.hpp&gt;</a><br>
<a href="../../../boost/endian/types.hpp">&lt;boost/endian/types.hpp&gt;</a></td>
</tr>
</table>
<h2><a name="Abstract">Abstract</a></h2>
<p>Boost.Endian provides facilities to manipulate the endianness of integers,
floating point, and user defined data.</p>
<ul>
<li>The primary use case is binary I/O for portable data exchange with
other systems, via either file or network transmission.<br>
&nbsp;</li>
<li>A secondary use case is minimizing storage size via sizes and/or
alignments not supported by the built-in types.<br>
&nbsp;</li>
<li>Two distinct approaches to dealing with endianness are provided. Each approach has a
long history of successful use, and each approach has use cases where it is
superior to the other approach.</li>
</ul>
<h2><a name="Introduction-to-endianness">Introduction to endianness</a></h2>
<p>Consider the following code:</p>
<blockquote>
<pre>int16_t i = 0x0102;
FILE * file = fopen(&quot;test.bin&quot;, &quot;wb&quot;); // binary file!
fwrite(&amp;i, sizeof(int16_t), 1, file);
fclose(file);</pre>
</blockquote>
<p>On OS X, Linux, or Windows systems with an Intel CPU, a hex dump
of the &quot;test.bin&quot; output file produces:</p>
<blockquote>
<p><code>0201</code></p>
</blockquote>
<p>On OS X systems with a PowerPC CPU, or Solaris systems with a SPARC CPU, a hex dump of the &quot;test.bin&quot;
output file produces:</p>
<blockquote>
<p><code>0102</code></p>
</blockquote>
<p>What's happening here is that Intel CPUs order the bytes of an integer with
the least-significant byte first, while SPARC CPUs place the most-significant
byte first. Some CPUs, such as the PowerPC, allow the operating system to
choose which ordering applies.</p>
<p><a name="definition"></a>Most-significant-byte-first ordering is traditionally called &quot;big endian&quot;
ordering and the least-significant-byte-first is traditionally called
&quot;little-endian&quot; ordering. The names are derived from
<a href="http://en.wikipedia.org/wiki/Jonathan_Swift" title="Jonathan Swift">
Jonathan Swift</a>'s satirical novel <i>
<a href="http://en.wikipedia.org/wiki/Gulliver's_Travels" title="Gulliver's Travels">
Gullivers Travels</a></i>, where rival kingdoms opened their soft-boiled eggs
at different ends.</p>
<p>See the Wikipedia's
<a href="http://en.wikipedia.org/wiki/Endianness">Endianness</a> article for an
extensive discussion of endianness.</p>
<p>Most programmers can ignore endianness, except perhaps for reading a core
dump on little-endian systems. Programmers have to deal with endianness in their
code when exchanging binary integers and binary floating point
values between computer systems with differing endianness, whether by physical file transfer or over a network,
. </p>
<h2><a name="Introduction">Introduction</a> to the Boost.Endian library</h2>
<p>The Boost.Endian library provides two different approaches to dealing with
integer endianness. Both approaches support integers, floating point types
except&nbsp; <code>long double</code>, and user defined types (UDTs).</p>
<p>Each approach has a long history of successful use, and each approach has use
cases where it is superior to the other approach.</p>
<blockquote>
<p><b><a href="types.html">Endian types</a> -</b> The application uses the provided endian types
which mimic the
built-in integer types. For example, <code>big_int32_t</code> or <code>little_float64_t</code>.
Integer types with lengths of 1 through 8 bytes are supported, rather than just
2, 4, and 8 byte integers. The types may be aligned or unaligned.</p>
<p><b><a href="conversion.html">Endian conversion functions</a> -</b> The
application uses the built-in integer and floating point types, and calls the
provided conversion functions to convert byte ordering as needed. Both mutating
and non-mutating conversions are supplied, and each comes in unconditional and
conditional variants.</p>
</blockquote>
<p>Boost Endian is a header-only library.</p>
<h2><a name="Choosing">Choosing</a> between endian types and endian
conversion functions</h2>
<p>Which approach is better for dealing with endianness depends on
application needs.</p>
<table border="1" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111">
<tr>
<th colspan="2">Needs that favor one approach over the other</th>
</tr>
<tr>
<th width="50%"><b><a href="types.html">Endian types</a> are better with
these needs</b></th>
<th><b><a href="conversion.html">Endian conversion functions</a> are better
with these needs</b></th>
</tr>
<tr>
<td valign="top">
<ul>
<li>A need to simplify program logic and eliminate logic
errors. Since the endian types mimic the built-in types, there is no need to reason about the current endianness of variables
and that can simplify program logic and eliminate logic errors.<br>
&nbsp;</li>
<li>A need to use unusual integer sizes (i.e. 3, 5,
6, or 7 bytes) to reduce internal and external space usage and
save I/O time.<br>
&nbsp;</li>
<li>A need to use unaligned variables. Endian types can eliminate padding bytes in
structures, reducing internal and external space usage and saving I/O
time. They can deals with structures defined like this:</li>
</ul>
<blockquote>
<p><code>struct S {<br>
&nbsp; uint16_t a;<br>
&nbsp; uint32_t b;<br>
} __attribute__ ((packed));</code></p>
</blockquote>
</td>
<td valign="top">
<ul>
<li>A need to leverage knowledge of developers who have been using C byte
swapping
functions for years.<br>
&nbsp;</li>
<li>A need to save CPU time when a variable is used many times
relative to its I/O.<br>
&nbsp;</li>
<li>A need to pass structures to third-party libraries expecting a
specific structure format.<br>
&nbsp;</li>
</ul>
</td>
</tr>
</table>
<h2><a name="Intrinsic">Intrinsic</a> built-in support</h2>
<p>Recent compilers, including GCC, Clang, and Microsoft, supply intrinsic
built-in support for byte swapping. Such support is automatically detected and
used since it may in smaller and faster generated code, particularly for release
builds.</p>
<p dir="ltr">Defining <code>BOOST_ENDIAN_NO_INTRINSICS</code> will suppress use
of the intrinsics. Please try defining it if you get compiler errors, such as
header byteswap.h not being found.</p>
<p dir="ltr">The macro <code>BOOST_ENDIAN_INTRINSIC_MSG</code> is defined as
either <code>&quot;no byte swap intrinsics&quot;</code> or a string describing the
particular set of intrinsics being used.</p>
<h2><a name="Performance">Performance</a></h2>
<p>Consider this problem:</p>
<table border="1" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111">
<tr>
<td colspan="2">
<p align="center"><i><b><a name="Example-1">Example 1</a></b></i></td>
</tr>
<tr>
<td colspan="2"><b><i>Add 100 to a big endian value in a file, then write the
result to a file</i> </b> </td>
</tr>
<tr>
<td><i><b>Endian type approach</b></i></td>
<td><i><b>Endian conversion approach</b></i></td>
</tr>
<tr>
<td valign="top">
<pre>big_int32_t x;
... read into x from a file ...
x += 100;
... write x to a file ...
</pre>
</td>
<td>
<pre>
int32_t x;
... read into x from a file ...
big_endian(x);
x += 100;
big_endian(x);
... write x to a file ...
</pre>
</td>
</tr>
</table>
<p>There will be no performance difference between the two approaches,
regardless of the native endianness of the machine. Optimizing compilers will likely
generate exactly the same code for both. That conclusion was confirmed by
studying the generated assembly code.</p>
<p>Now consider a slightly different problem:&nbsp; </p>
<table border="1" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111">
<tr>
<td colspan="2">
<p align="center"><b><i><a name="Example-2">Example 2</a></i></b></td>
</tr>
<tr>
<td colspan="2"><i><b>Add a million values to a big endian value in a file, then write the
result to a file </b></i> </td>
</tr>
<tr>
<td><i><b>Endian type approach</b></i></td>
<td><i><b>Endian conversion approach</b></i></td>
</tr>
<tr>
<td valign="top">
<pre>big_int32_t x;
... read into x from a file ...
for (int32_t i = 0; i &lt; 1000000; ++i)
x += i;
... write x to a file ...
</pre>
</td>
<td>
<pre>int32_t x;
... read into x from a file ...
big_endian(x);
for (int32_t i = 0; i &lt; 1000000; ++i)
x += i;
big_endian(x);
... write x to a file ...
</pre>
</td>
</tr>
</table>
<p>With the Endian type approach, an implicit conversion from and then back to
big endian is done inside the loop. With the Endian conversion function
approach, the conversions are explicit, so only need to be done once, before and
after the loop.</p>
<h3><a name="Timings">Timings</a> for Example 2 (conversion functions hoisted
out of loop)</h3>
<p>These tests were run against release builds on a circa 2012 4-core little endian X64 Intel Core i5-3570K
CPU @ 3.40GHz under Windows 7.</p>
<p><b>Caveat emptor: The Windows CPU timer has very high granularity. Repeated
runs of the same tests often yield considerably different results.</b></p>
<p>See <a href="../test/loop_time_test.cpp">loop_time_test.cpp</a> and
<a href="../build/Jamfile.v2">Jamfile.v2</a> for the actual code and build
setup.
(For GCC 4.7, there are no 16-bit intrinsics, so they are emulated by using
32-bit intrinsics.)</p>
<table border="1" cellpadding="5" cellspacing="0"style="border-collapse: collapse" bordercolor="#111111">
<tr><td colspan="6" align="center"><b>GNU C++ version 4.7.0</b></td></tr>
<tr><td colspan="6" align="center"><b> Iterations: 1000000000, Intrinsics: __builtin_bswap16, etc.</b></td></tr>
<tr><td><b>Test Case</b></td>
<td align="center"><b>Endian<br>type</b></td>
<td align="center"><b>Endian<br>conversion<br>function</b></td>
</tr>
<tr><td>16-bit aligned big endian</td><td align="right">1.37 s</td><td align="right">0.81 s</td></tr>
<tr><td>16-bit aligned little endian</td><td align="right">0.83 s</td><td align="right">0.81 s</td></tr>
<tr><td>16-bit unaligned big endian</td><td align="right">1.09 s</td><td align="right">0.83 s</td></tr>
<tr><td>16-bit unaligned little endian</td><td align="right">1.09 s</td><td align="right">0.81 s</td></tr>
<tr><td>32-bit aligned big endian</td><td align="right">0.98 s</td><td align="right">0.27 s</td></tr>
<tr><td>32-bit aligned little endian</td><td align="right">0.28 s</td><td align="right">0.27 s</td></tr>
<tr><td>32-bit unaligned big endian</td><td align="right">3.82 s</td><td align="right">0.27 s</td></tr>
<tr><td>32-bit unaligned little endian</td><td align="right">3.82 s</td><td align="right">0.27 s</td></tr>
<tr><td>64-bit aligned big endian</td><td align="right">1.65 s</td><td align="right">0.41 s</td></tr>
<tr><td>64-bit aligned little endian</td><td align="right">0.41 s</td><td align="right">0.41 s</td></tr>
<tr><td>64-bit unaligned big endian</td><td align="right">17.53 s</td><td align="right">0.41 s</td></tr>
<tr><td>64-bit unaligned little endian</td><td align="right">17.52 s</td><td align="right">0.41 s</td></tr>
<tr><td colspan="6" align="center"><b> Iterations: 1000000000, Intrinsics: no byte swap intrinsics</b></td></tr>
<tr><td><b>Test Case</b></td>
<td align="center"><b>Endian<br>type</b></td>
<td align="center"><b>Endian<br>conversion<br>function</b></td>
</tr>
<tr><td>16-bit aligned big endian</td><td align="right">1.95 s</td><td align="right">0.81 s</td></tr>
<tr><td>16-bit aligned little endian</td><td align="right">0.83 s</td><td align="right">0.81 s</td></tr>
<tr><td>16-bit unaligned big endian</td><td align="right">1.19 s</td><td align="right">0.81 s</td></tr>
<tr><td>16-bit unaligned little endian</td><td align="right">1.20 s</td><td align="right">0.81 s</td></tr>
<tr><td>32-bit aligned big endian</td><td align="right">0.97 s</td><td align="right">0.28 s</td></tr>
<tr><td>32-bit aligned little endian</td><td align="right">0.27 s</td><td align="right">0.28 s</td></tr>
<tr><td>32-bit unaligned big endian</td><td align="right">4.10 s</td><td align="right">0.27 s</td></tr>
<tr><td>32-bit unaligned little endian</td><td align="right">4.10 s</td><td align="right">0.27 s</td></tr>
<tr><td>64-bit aligned big endian</td><td align="right">1.64 s</td><td align="right">0.42 s</td></tr>
<tr><td>64-bit aligned little endian</td><td align="right">0.41 s</td><td align="right">0.41 s</td></tr>
<tr><td>64-bit unaligned big endian</td><td align="right">17.52 s</td><td align="right">0.42 s</td></tr>
<tr><td>64-bit unaligned little endian</td><td align="right">17.52 s</td><td align="right">0.41 s</td></tr>
</table>
<p></p>
<table border="1" cellpadding="5" cellspacing="0"style="border-collapse: collapse" bordercolor="#111111">
<tr><td colspan="6" align="center"><b>Microsoft Visual C++ version 11.0</b></td></tr>
<tr><td colspan="6" align="center"><b> Iterations: 1000000000, Intrinsics: cstdlib _byteswap_ushort, etc.</b></td></tr>
<tr><td><b>Test Case</b></td>
<td align="center"><b>Endian<br>type</b></td>
<td align="center"><b>Endian<br>conversion<br>function</b></td>
</tr>
<tr><td>16-bit aligned big endian</td><td align="right">2.18 s</td><td align="right">0.83 s</td></tr>
<tr><td>16-bit aligned little endian</td><td align="right">0.81 s</td><td align="right">0.83 s</td></tr>
<tr><td>16-bit unaligned big endian</td><td align="right">1.64 s</td><td align="right">0.83 s</td></tr>
<tr><td>16-bit unaligned little endian</td><td align="right">1.64 s</td><td align="right">0.83 s</td></tr>
<tr><td>32-bit aligned big endian</td><td align="right">0.83 s</td><td align="right">0.81 s</td></tr>
<tr><td>32-bit aligned little endian</td><td align="right">0.83 s</td><td align="right">0.81 s</td></tr>
<tr><td>32-bit unaligned big endian</td><td align="right">3.01 s</td><td align="right">0.83 s</td></tr>
<tr><td>32-bit unaligned little endian</td><td align="right">3.01 s</td><td align="right">0.81 s</td></tr>
<tr><td>64-bit aligned big endian</td><td align="right">1.09 s</td><td align="right">1.05 s</td></tr>
<tr><td>64-bit aligned little endian</td><td align="right">0.83 s</td><td align="right">1.03 s</td></tr>
<tr><td>64-bit unaligned big endian</td><td align="right">12.64 s</td><td align="right">1.01 s</td></tr>
<tr><td>64-bit unaligned little endian</td><td align="right">8.41 s</td><td align="right">0.83 s</td></tr>
<tr><td colspan="6" align="center"><b> Iterations: 1000000000, Intrinsics: no byte swap intrinsics</b></td></tr>
<tr><td><b>Test Case</b></td>
<td align="center"><b>Endian<br>type</b></td>
<td align="center"><b>Endian<br>conversion<br>function</b></td>
</tr>
<tr><td>16-bit aligned big endian</td><td align="right">0.84 s</td><td align="right">0.81 s</td></tr>
<tr><td>16-bit aligned little endian</td><td align="right">0.83 s</td><td align="right">0.81 s</td></tr>
<tr><td>16-bit unaligned big endian</td><td align="right">1.65 s</td><td align="right">0.81 s</td></tr>
<tr><td>16-bit unaligned little endian</td><td align="right">1.65 s</td><td align="right">0.83 s</td></tr>
<tr><td>32-bit aligned big endian</td><td align="right">3.46 s</td><td align="right">0.83 s</td></tr>
<tr><td>32-bit aligned little endian</td><td align="right">0.81 s</td><td align="right">0.83 s</td></tr>
<tr><td>32-bit unaligned big endian</td><td align="right">3.01 s</td><td align="right">0.81 s</td></tr>
<tr><td>32-bit unaligned little endian</td><td align="right">3.01 s</td><td align="right">0.81 s</td></tr>
<tr><td>64-bit aligned big endian</td><td align="right">10.50 s</td><td align="right">0.83 s</td></tr>
<tr><td>64-bit aligned little endian</td><td align="right">0.83 s</td><td align="right">0.97 s</td></tr>
<tr><td>64-bit unaligned big endian</td><td align="right">12.62 s</td><td align="right">0.81 s</td></tr>
<tr><td>64-bit unaligned little endian</td><td align="right">8.42 s</td><td align="right">0.81 s</td></tr>
</table>
<h3><a name="Conclusions">Conclusions</a></h3>
<p>When program logic dictates the same number of conversions for both Endian
integer approach and Endian conversion function approach (<a href="#Example-1">example
1</a>):</p>
<blockquote>
<p><b>There will be no performance difference between the two approaches,
regardless of the native endianness of the machine.</b> Optimizing compilers will likely
generate exactly the same code for both. This conclusion was confirmed by
studying the generated assembly code.</p>
</blockquote>
<p>When program logic dictates many more conversions for the Endian integer
approach than the Endian conversion function approach (<a href="#Example-2">example
2</a>):</p>
<blockquote>
<p><b>There may be a considerable performance difference. </b>If machine endianness differs from the
desired endianness, the Endian type approach must do the byte reversal many
times while the Endian conversion approach only does the reversal once. But if
the endianness is the same, there is no conversion with either approach and no
conversion code is generated for typical release builds.</p>
<p><b>Whether or not compiler byte swap intrinsics are explicitly available has little
impact as tested.</b> Byte swap intrinsics are not available on some older
compilers and on some machine architectures, such as pre-486 X86 CPUs.</p>
<p><b>Unaligned types are much slower that aligned types, regardless of
endianness considerations.</b> Instead of single instruction register loads and
stores, multiple instructions are required.</p>
</blockquote>
<h2>Overall <a name="FAQ">FAQ</a></h2>
<p><b>Is the implementation header only?</b></p>
<blockquote>
<p>Yes.</p>
</blockquote>
<p><b>Does the implementation use compiler intrinsic built-in byte swapping?</b></p>
<blockquote>
<p>Yes, if available. See <a href="#Intrinsic">Intrinsic built-in support</a>.</p>
</blockquote>
<p><b>Why bother with endianness?</b></p>
<blockquote>
<p>Binary data portability is the primary use case.</p>
</blockquote>
<p><b>Does endianness have any uses outside of portable binary file or network
I/O formats?</b> </p>
<blockquote>
<p>Using the unaligned integer types to save internal or external
memory space is a minor secondary use case.</p>
</blockquote>
<p><b>Why bother with binary I/O? Why not just use C++ Standard Library stream
inserters and extractors?</b></p>
<blockquote>
<p>Binary arithmetic data is smaller and therefore I/O is faster and file sizes
are smaller. Transfer between systems is less expensive. Standard interchange
formats often specify binary arithmetic data.</p>
<p>Furthermore, binary arithmetic data is of fixed size, and so fixed-size disk
records are possible without padding, easing sorting and allowing direct access.
Disadvantages, such as the inability to use text utilities on the resulting
files, limit usefulness to applications where the binary I/O advantages are
paramount.</p>
</blockquote>
<p><b>Which is better, big-endian or little-endian?</b></p>
<blockquote>
<p>Big-endian tends to be a
bit more of an industry standard, but little-endian may be preferred for
applications that run primarily Intel/AMD on x86, x64, and other little-endian
CPU's. The <a href="http://en.wikipedia.org/wiki/Endian">Wikipedia</a> article
gives more pros and cons.</p>
</blockquote>
<p><b>Why is only big, little, and native endianness supported?</b></p>
<blockquote>
<p>These are the only endian schemes that have any practical value today. PDP-11
and the other middle endian approaches are interesting historical curiosities
but have no relevance to C++ developers.</p>
</blockquote>
<p><b>What are the limitations of floating point support?</b></p>
<blockquote>
<p>The only supported types are four byte <code>float</code> and eight byte
<code>double</code>. Even after endianness has been accounted for, floating
point values will not be portable between systems that use different floating
point formats. Systems where the integer endianness differs from floating point
endianness are not supported.</p>
</blockquote>
<p><b>What are the limitations of integer support?</b></p>
<blockquote>
<p>Only 16-bit, 32-bit, and 64-bit integers are supported. Tests have only been
performed on machines that use two's complement arithmetic.</p>
</blockquote>
<h2><a name="Release-history">Release history</a></h2>
<h3>Changes since formal review</h3>
<ul>
<li>Headers have been renamed to endian/types.hpp and endian/conversion.hpp.
Infrastructure file names were changed accordingly.</li>
<li>The endian types and endian conversion functions now support 32-bit (<code>float)</code> and
64-bit <code>(double)</code> floating point, as requested.</li>
<li>Both the endian types and endian conversion functions now support UDTs, as requested.</li>
<li>The endian type aliases have been renamed,
using a naming pattern that is consistent for both integer and floating point,
and that emphasizes that aligned types are usually preferred compared to
unaligned types. Unaligned types are deliberately given slightly uglier names.</li>
<li>The conversion functions have been much revised,
refactored, and otherwise improved based on review comments.<ul>
<li>Functions have been renamed to clarify their functionality.</li>
<li>Both return-by-value and modify-in-place interfaces are provided, as
requested.</li>
<li>Synonyms for the BSD byte swapping function names popularized by OS X
and Linux are provided, so that that developers already used to these name
can continue to use them if they wish.</li>
<li>In addition to the named-endianness functions, functions that perform
compile-time (via template) and run-time (via function argument) dispatch
are now provided, as requested.</li>
</ul>
</li>
<li>Compiler (Clang, GCC, VisualC++, etc.) intrinsics and built-in functions
are used in the implementation where appropriate, as requested.</li>
<li>For the endian types, the implementation uses the endian conversion functions,
and thus the intrinsics,
as requested.</li>
<li>C++11 features such as <code>noexcept</code> are now used, while still
supporting C++03 compilers.</li>
<li>Acknowledgements have been updated.</li>
<li>Headers have been reorganized to make them easier to read,
with a synopsis at the front and implementation following, as requested.</li>
<li>Documentation has been revised to address most, but not all, concerns
raised during formal review.</li>
</ul>
<h2><a name="Acknowledgements">Acknowledgements</a></h2>
<p>Comments and suggestions were
received from
Adder, Benaka Moorthi,
Christopher Kohlhoff,
Cliff Green, Daniel James, Gennaro Proto,
Giovanni Piero Deretta, Gordon Woodhull, dizzy, Hartmut Kaiser, Jeff Flinn,
John Filo, John Maddock,
Kim Barrett,
Marsh Ray,
Martin Bonner, Mathias Gaunard, Matias Capeletto,
Neil Mayhew, Paul Bristow, Phil Endecott, Pyry Jahkola, Rene Rivera,
Robert Stewart, Roland Schwarz, Scott McMurray,
Sebastian Redl,
Tim Blechmann, Tim Moore, tymofey, Tomas Puverle, Vincente Botet, Yuval Ronen
and Vitaly Budovski,.</p>
<hr>
<p>Last revised:
<!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B, %Y" startspan -->28 May, 2013<!--webbot bot="Timestamp" endspan i-checksum="13992" --></p>
<p>© Copyright Beman Dawes, 2011, 2013</p>
<p>Distributed under the Boost Software License, Version 1.0. See
<a href="http://www.boost.org/LICENSE_1_0.txt">www.boost.org/ LICENSE_1_0.txt</a></p>
<p>&nbsp;</p>
</body>
</html>

624
types.html Normal file
View File

@@ -0,0 +1,624 @@
<html>
<head>
<meta http-equiv="Content-Language" content="en-us">
<meta name="GENERATOR" content="Microsoft FrontPage 5.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Boost Endian Integers</title>
<style type="text/css">
ins {background-color:#CCFFCC}
del {background-color:#FFCACA}
body { font-family: sans-serif; width:8.0in; }
pre { background-color:#D7EEFF }
</style>
</head>
<body>
<table border="0" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" width="710">
<tr>
<td width="277">
<a href="../../../index.html">
<img src="../../../boost.png" alt="boost.png (6897 bytes)" align="middle" width="277" height="86" border="0"></a></td>
<td width="413" align="middle">
<font size="7">Endian Types</font>
</td>
</tr>
</table>
<table border="0" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" bgcolor="#D7EEFF" width="100%">
<tr>
<td><b><a href="../../../index.htm">Boost Home</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="index.html">Endian Home</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="conversion.html">Conversion Functions</a>&nbsp;&nbsp;&nbsp;&nbsp;
<a href="types.html">Endian Types</a></b></td>
</tr>
</table>
<table border="1" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" align="right">
<tr>
<td width="100%" bgcolor="#D7EEFF" align="center">
<i><b>Contents</b></i></td>
</tr>
<tr>
<td width="100%" bgcolor="#E8F5FF">
<a href="#Introduction">Introduction</a><br>
<a href="#Example">Example</a><br>
<a href="#Limitations">Limitations</a><br>
<a href="#Feature-set">Feature set</a><br>
<a href="#Types">Typedefs</a><br>
&nbsp;&nbsp;&nbsp; <a href="#Comment-on-naming">Comment on naming</a><br>
<a href="#Class_template_endian">Class template <code>endian</code></a><br>
&nbsp;&nbsp;&nbsp;
<a href="#Synopsis">Synopsis</a><br>
&nbsp;&nbsp;&nbsp; <a href="#Members">Members</a><br>
<a href="#FAQ">FAQ</a><br>
<a href="#Design">Design</a><br>
<a href="#Experience">Experience</a><br>
<a href="#Motivating-use-cases">Motivating use cases</a><br>
<a href="#C++0x">C++11</a><br>
<a href="#Compilation">Compilation</a><br>
<a href="#Acknowledgements">Acknowledgements</a>
</td>
</tr>
<tr>
<td width="100%" bgcolor="#D7EEFF" align="center">
<b><i>Headers</i></b></td>
</tr>
<tr>
<td width="100%" bgcolor="#E8F5FF">
<a href="../../../boost/endian/conversion.hpp">&lt;boost/endian/conversion.hpp&gt;</a><br>
<a href="../../../boost/endian/types.hpp">&lt;boost/endian/types.hpp&gt;</a></td>
</tr>
</table>
<h2><a name="Introduction">Introduction</a></h2>
<p>Header <a href="file:///D:/endian/boost/endian/types.hpp">&lt;boost/endian/types.hpp&gt;</a> provides
integer-like byte-holder binary types with explicit control over
byte order, value type, size, and alignment. Typedefs provide easy-to-use names
for common configurations.</p>
<p>These types provide portable byte-holders for integer data, independent of
particular computer architectures. Use cases almost always involve I/O, either via files or
network connections. Although data portability is the primary motivation, these
integer byte-holders may
also be used to reduce memory use, file size, or network activity since they
provide binary integer sizes not otherwise available.</p>
<p>Such integer byte-holder types are traditionally called <b><i>
endian</i></b> types. See the <a href="http://en.wikipedia.org/wiki/Endian">Wikipedia</a> for
a full
exploration of <b><i>endianness</i></b>, including definitions of <i><b>big
endian</b></i> and <i><b>little endian</b></i>.</p>
<p>Boost endian integers provide the same full set of C++ assignment,
arithmetic, and relational operators&nbsp;as C++ standard integral types, with
the standard semantics.</p>
<p>Unary arithmetic operators are <code>+</code>, <code>-</code>, <code>~</code>,
<code>!</code>, prefix and postfix <code>--</code> and <code>++</code>. Binary
arithmetic operators are <code>+</code>, <code>+=</code>, <code>-</code>, <code>
-=</code>, <code>*</code>, <code>*=</code>, <code>/</code>, <code>/=</code>,
<code>%/ %=</code>, <code>&amp;</code>, <code>&amp;=</code>, <code>|</code>, <code>|=</code>,
<code>^</code>, <code>^=</code>, <code>&lt;&lt;</code>, <code>&lt;&lt;=</code>, <code>&gt;&gt;</code>,
<code>&gt;&gt;=</code>. Binary relational operators are <code>==</code>, <code>!=</code>,
<code>&lt;</code>, <code>&lt;=</code>, <code>&gt;</code>, <code>&gt;=</code>.</p>
<p>Automatic conversion is provided to the underlying integer value type.</p>
<h2><a name="Example">Example</a></h2>
<p>The <a href="../example/endian_example.cpp">endian_example.cpp</a> program writes a
binary file containing four byte big-endian and little-endian integers:</p>
<blockquote>
<pre>#include &lt;iostream&gt;
#include &lt;cstdio&gt;
#include &lt;boost/endian/types.hpp&gt;
#include &lt;boost/static_assert.hpp&gt;
using namespace boost::endian;
namespace
{
// This is an extract from a very widely used GIS file format. Who knows
// why a designer would mix big and little endians in the same file - but
// this is a real-world format and users wishing to write low level code
// manipulating these files have to deal with the mixed endianness.
struct header
{
big_int32_t file_code;
big_int32_t file_length;
little_int32_t version;
little_int32_t shape_type;
};
const char* filename = &quot;test.dat&quot;;
}
int main(int, char* [])
{
BOOST_STATIC_ASSERT(sizeof(header) == 16U); // reality check
header h;
h.file_code = 0x01020304;
h.file_length = sizeof(header);
h.version = 1;
h.shape_type = 0x01020304;
// Low-level I/O such as POSIX read/write or &lt;cstdio&gt; fread/fwrite is sometimes
// used for binary file operations when ultimate efficiency is important.
// Such I/O is often performed in some C++ wrapper class, but to drive home the
// point that endian integers are often used in fairly low-level code that
// does bulk I/O operations, &lt;cstdio&gt; fopen/fwrite is used for I/O in this example.
std::FILE* fi = std::fopen(filename, &quot;wb&quot;); // MUST BE BINARY
if (!fi)
{
std::cout &lt;&lt; &quot;could not open &quot; &lt;&lt; filename &lt;&lt; '\n';
return 1;
}
if (std::fwrite(&amp;h, sizeof(header), 1, fi)!= 1)
{
std::cout &lt;&lt; &quot;write failure for &quot; &lt;&lt; filename &lt;&lt; '\n';
return 1;
}
std::fclose(fi);
std::cout &lt;&lt; &quot;created file &quot; &lt;&lt; filename &lt;&lt; '\n';
return 0;
}
</pre>
</blockquote>
<p>After compiling and executing <a href="endian_example.cpp">endian_example.cpp</a>,
a hex dump of <code>test.dat</code> shows:</p>
<blockquote>
<pre>01020304 00000010 01000000 04030201</pre>
</blockquote>
<p>Notice that the first two 32-bit integers are big endian while the second two
are little endian, even though the machine this was compiled and run on was
little endian.</p>
<h2><a name="Limitations">Limitations</a></h2>
<p>Requires <code>&lt;climits&gt;</code> <code>CHAR_BIT == 8</code>. If <code>CHAR_BIT</code>
is some other value, compilation will result in an <code>#error</code>. This
restriction is in place because the design, implementation, testing, and
documentation has only considered issues related to 8-bit bytes, and there have
been no real-world use cases presented for other sizes.</p>
<p>In C++03, <code>endian</code> does not meet the requirements for POD types
because it has constructors, private data members, and a base class. This means
that common use cases are relying on unspecified behavior in that the C++
Standard does not guarantee memory layout for non-POD types. This has not been a
problem in practice since all known C++ compilers do layout memory as if <code>
endian</code> were a POD type. In C++11, it is possible to specify the
default constructor as trivial, and private data members and base classes will
no longer disqualify a type from being a POD. Thus under C++11, <code>endian</code>
will no longer be relying on unspecified behavior.</p>
<h2><a name="Feature-set">Feature set</a></h2>
<ul>
<li>Big endian| little endian | native endian byte ordering.</li>
<li>Signed | unsigned</li>
<li>Unaligned | aligned</li>
<li>Integer | floating point</li>
<li>1-8 byte (unaligned) | 2, 4, 8 byte (aligned)</li>
<li>Choice of value type</li>
</ul>
<h2>Enums and t<a name="Types">ypedefs</a></h2>
<p>Two scoped enums are provided:</p>
<blockquote>
<pre>enum class order {big, little, native};
enum class align {no, yes}; </pre>
</blockquote>
<p>One class template is provided:</p>
<blockquote>
<pre>template &lt;order Order, typename T, std::size_t n_bits, align A = align::no&gt;
class endian;
</pre>
</blockquote>
<p>Typedefs, such as <code>big_int32_t</code>, provide convenient naming
conventions for common use cases:</p>
<blockquote>
<table border="1" cellpadding="5" cellspacing="0" style="border-collapse: collapse" bordercolor="#111111" width="49%">
<tr>
<td width="18%" align="center"><b><i>Name</i></b></td>
<td width="10%" align="center"><b><i>Endianness</i></b></td>
<td width="10%" align="center"><b><i>Sign</i></b></td>
<td width="15%" align="center"><b><i>Sizes in bits (n)</i></b></td>
<td width="49%" align="center"><b><i>Alignment</i></b></td>
</tr>
<tr>
<td width="18%"><code>big_int</code><i><b>n</b></i><code>_t</code></td>
<td width="10%" align="center"><code>big</code></td>
<td width="10%" align="center">signed</td>
<td width="15%">16,32,64</td>
<td width="49%" align="center"><code>yes</code></td>
</tr>
<tr>
<td width="18%"><code>big_uint</code><i><b>n</b></i><code>_t</code></td>
<td width="10%" align="center"><code>big</code></td>
<td width="10%" align="center">unsigned</td>
<td width="15%">16,32,64</td>
<td width="49%" align="center"><code>yes</code></td>
</tr>
<tr>
<td width="18%"><code>big_float</code><i><b>n</b></i><code>_t</code></td>
<td width="10%" align="center"><code>big</code></td>
<td width="10%" align="center">signed</td>
<td width="15%">32,64</td>
<td width="49%" align="center"><code>yes</code></td>
</tr>
<tr>
<td width="18%"><code>little_int</code><i><b>n</b></i><code>_t</code></td>
<td width="10%" align="center"><code>little</code></td>
<td width="10%" align="center">signed</td>
<td width="15%">16,32,64</td>
<td width="49%" align="center"><code>yes</code></td>
</tr>
<tr>
<td width="18%"><code>little_uint</code><i><b>n</b></i><code>_t</code></td>
<td width="10%" align="center"><code>little</code></td>
<td width="10%" align="center">unsigned</td>
<td width="15%">16,32,64</td>
<td width="49%" align="center"><code>yes</code></td>
</tr>
<tr>
<td width="18%"><code>little_float</code><i><b>n</b></i><code>_t</code></td>
<td width="10%" align="center"><code>little</code></td>
<td width="10%" align="center">signed</td>
<td width="15%">32,64</td>
<td width="49%" align="center"><code>yes</code></td>
</tr>
<tr>
<td width="18%"><code>big_int</code><b><i>n</i></b><code>un_t</code></td>
<td width="10%" align="center"><code>big</code></td>
<td width="10%" align="center">signed</td>
<td width="15%">8,16,24,32,40,48,56,64</td>
<td width="49%" align="center"><code>no</code></td>
</tr>
<tr>
<td width="18%"><code>big_uint</code><i><b>n</b></i><code>un_</code><code>t</code></td>
<td width="10%" align="center"><code>big</code></td>
<td width="10%" align="center">unsigned</td>
<td width="15%">8,16,24,32,40,48,56,64</td>
<td width="49%" align="center"><code>no</code></td>
</tr>
<tr>
<td width="18%"><code>big_float</code><i><b>n</b></i><code>un_t</code></td>
<td width="10%" align="center"><code>big</code></td>
<td width="10%" align="center">signed</td>
<td width="15%">32,64</td>
<td width="49%" align="center"><code>no</code></td>
</tr>
<tr>
<td width="18%"><code>little_int</code><i><b>n</b></i><code>un_</code><code>t</code></td>
<td width="10%" align="center"><code>little</code></td>
<td width="10%" align="center">signed</td>
<td width="15%">8,16,24,32,40,48,56,64</td>
<td width="49%" align="center"><code>no</code></td>
</tr>
<tr>
<td width="18%"><code>little_uint</code><i><b>n</b></i><code>un_</code><code>t</code></td>
<td width="10%" align="center"><code>little</code></td>
<td width="10%" align="center">unsigned</td>
<td width="15%">8,16,24,32,40,48,56,64</td>
<td width="49%" align="center"><code>no</code></td>
</tr>
<tr>
<td width="18%"><code>little_float</code><i><b>n</b></i><code>un_t</code></td>
<td width="10%" align="center"><code>little</code></td>
<td width="10%" align="center">signed</td>
<td width="15%">32,64</td>
<td width="49%" align="center"><code>no</code></td>
</tr>
<tr>
<td width="18%"><code>native_int</code><i><b>n</b></i><code>un_</code><code>t</code></td>
<td width="10%" align="center"><code>native</code></td>
<td width="10%" align="center">signed</td>
<td width="15%">8,16,24,32,40,48,56,64</td>
<td width="49%" align="center"><code>no</code></td>
</tr>
<tr>
<td width="18%"><code>native_uint</code><i><b>n</b></i><code>un_</code><code>t</code></td>
<td width="10%" align="center"><code>native</code></td>
<td width="10%" align="center">unsigned</td>
<td width="15%">8,16,24,32,40,48,56,64</td>
<td width="49%" align="center"><code>no</code></td>
</tr>
</table>
</blockquote>
<p>The unaligned types do not cause compilers to insert padding bytes in classes
and structs. This is an important characteristic that can be exploited to minimize wasted space in
memory, files, and network transmissions. </p>
<p><font color="#FF0000"><b><i><span style="background-color: #FFFFFF">Warning:</span></i></b></font><span style="background-color: #FFFFFF">
Code that uses a</span>ligned types is possibly non-portable because alignment
requirements vary between hardware architectures and because alignment may be
affected by compiler switches or pragmas. Furthermore, aligned types
are only available on architectures with 16, 32, and 64-bit integer types.</p>
<p><b><i>Note:</i></b> One-byte types
have identical
functionality. They are provided to improve code readability and searchability.</p>
<h2><a name="Class_template_endian">Class template <code>endian</code></a></h2>
<p>An endian is an integer byte-holder with user-specified <a href="#endianness">
endianness</a>, value type, size, and <a href="#alignment">alignment</a>. The
usual operations on integers are supplied.</p>
<h3><a name="Synopsis">Synopsis</a></h3>
<pre>namespace boost
{
namespace endian
{
// C++11 features emulated if not available
enum class <a name="endianness">order</a> {big, little, native};
enum class <a name="alignment">align</a> {no, yes};
template &lt;order Order, typename T, std::size_t n_bits, align A = align::no&gt;
class endian
{
public:
typedef T value_type;
// if BOOST_ENDIAN_FORCE_PODNESS is defined &amp;&amp; C++11 POD's are not
// available then these two constructors will not be present
<a href="#endian">endian</a>() noexcept = default;
explicit <a href="#explicit-endian">endian</a>(T v) noexcept;
endian&amp; <a href="#operator-eq">operator=</a>(T v) noexcept;
<a href="#operator-T">operator T</a>() const noexcept;
const char* <a href="#data">data</a>() const noexcept;
// arithmetic operations; additional operators provided by value_type
value_type operator+(const endian&amp; x) noexcept;
endian&amp; operator+=(endian&amp; x, value_type y) noexcept;
endian&amp; operator-=(endian&amp; x, value_type y) noexcept;
endian&amp; operator*=(endian&amp; x, value_type y) noexcept;
endian&amp; operator/=(endian&amp; x, value_type y) noexcept;
endian&amp; operator%=(endian&amp; x, value_type y) noexcept;
endian&amp; operator&amp;=(endian&amp; x, value_type y) noexcept;
endian&amp; operator|=(endian&amp; x, value_type y) noexcept;
endian&amp; operator^=(endian&amp; x, value_type y) noexcept;
endian&amp; operator&lt;&lt;=(endian&amp; x, value_type y) noexcept;
endian&amp; operator&gt;&gt;=(endian&amp; x, value_type y noexcept;
value_type operator&lt;&lt;(const endian&amp; x, value_type y) noexcept;
value_type operator&gt;&gt;(const endian&amp; x, value_type y) noexcept;
endian&amp; operator++(endian&amp; x) noexcept;
endian&amp; operator--(endian&amp; x) noexcept;
endian operator++(endian&amp; x, int) noexcept;
endian operator--(endian&amp; x, int) noexcept;
};
typedef endian&lt;order::big, float, 32, align::yes&gt; big_float32_t;
typedef endian&lt;order::big, double, 64, align::yes&gt; big_float64_t;
// aligned little endian floating point types
typedef endian&lt;order::little, float, 32, align::yes&gt; little_float32_t;
typedef endian&lt;order::little, double, 64, align::yes&gt; little_float64_t;
// unaligned big endian floating point types
typedef endian&lt;order::big, float, 32, align::no&gt; big_float32un_t;
typedef endian&lt;order::big, double, 64, align::no&gt; big_float64un_t;
// unaligned little endian floating point types
typedef endian&lt;order::little, float, 32, align::no&gt; little_float32un_t;
typedef endian&lt;order::little, double, 64, align::no&gt; little_float64un_t;
// aligned big endian signed integer types
typedef endian&lt;order::big, int16_t, 16, align::yes&gt; big_int16_t;
typedef endian&lt;order::big, int32_t, 32, align::yes&gt; big_int32_t;
typedef endian&lt;order::big, int64_t, 64, align::yes&gt; big_int64_t;
// aligned big endian unsigned integer types
typedef endian&lt;order::big, uint16_t, 16, align::yes&gt; big_uint16_t;
typedef endian&lt;order::big, uint32_t, 32, align::yes&gt; big_uint32_t;
typedef endian&lt;order::big, uint64_t, 64, align::yes&gt; big_uint64_t;
// aligned little endian signed integer types
typedef endian&lt;order::little, int16_t, 16, align::yes&gt; little_int16_t;
typedef endian&lt;order::little, int32_t, 32, align::yes&gt; little_int32_t;
typedef endian&lt;order::little, int64_t, 64, align::yes&gt; little_int64_t;
// aligned little endian unsigned integer types
typedef endian&lt;order::little, uint16_t, 16, align::yes&gt; little_uint16_t;
typedef endian&lt;order::little, uint32_t, 32, align::yes&gt; little_uint32_t;
typedef endian&lt;order::little, uint64_t, 64, align::yes&gt; little_uint64_t;
// aligned native endian typedefs are not provided because
// &lt;cstdint&gt; types are superior for this use case
// unaligned big endian signed integer types
typedef endian&lt;order::big, int_least8_t, 8&gt; big_int8un_t;
typedef endian&lt;order::big, int_least16_t, 16&gt; big_int16un_t;
typedef endian&lt;order::big, int_least32_t, 24&gt; big_int24un_t;
typedef endian&lt;order::big, int_least32_t, 32&gt; big_int32un_t;
typedef endian&lt;order::big, int_least64_t, 40&gt; big_int40un_t;
typedef endian&lt;order::big, int_least64_t, 48&gt; big_int48un_t;
typedef endian&lt;order::big, int_least64_t, 56&gt; big_int56un_t;
typedef endian&lt;order::big, int_least64_t, 64&gt; big_int64un_t;
// unaligned big endian unsigned integer types
typedef endian&lt;order::big, uint_least8_t, 8&gt; big_uint8un_t;
typedef endian&lt;order::big, uint_least16_t, 16&gt; big_uint16un_t;
typedef endian&lt;order::big, uint_least32_t, 24&gt; big_uint24un_t;
typedef endian&lt;order::big, uint_least32_t, 32&gt; big_uint32un_t;
typedef endian&lt;order::big, uint_least64_t, 40&gt; big_uint40un_t;
typedef endian&lt;order::big, uint_least64_t, 48&gt; big_uint48un_t;
typedef endian&lt;order::big, uint_least64_t, 56&gt; big_uint56un_t;
typedef endian&lt;order::big, uint_least64_t, 64&gt; big_uint64un_t;
// unaligned little endian signed integer types
typedef endian&lt;order::little, int_least8_t, 8&gt; little_int8un_t;
typedef endian&lt;order::little, int_least16_t, 16&gt; little_int16un_t;
typedef endian&lt;order::little, int_least32_t, 24&gt; little_int24un_t;
typedef endian&lt;order::little, int_least32_t, 32&gt; little_int32un_t;
typedef endian&lt;order::little, int_least64_t, 40&gt; little_int40un_t;
typedef endian&lt;order::little, int_least64_t, 48&gt; little_int48un_t;
typedef endian&lt;order::little, int_least64_t, 56&gt; little_int56un_t;
typedef endian&lt;order::little, int_least64_t, 64&gt; little_int64un_t;
// unaligned little endian unsigned integer types
typedef endian&lt;order::little, uint_least8_t, 8&gt; little_uint8un_t;
typedef endian&lt;order::little, uint_least16_t, 16&gt; little_uint16un_t;
typedef endian&lt;order::little, uint_least32_t, 24&gt; little_uint24un_t;
typedef endian&lt;order::little, uint_least32_t, 32&gt; little_uint32un_t;
typedef endian&lt;order::little, uint_least64_t, 40&gt; little_uint40un_t;
typedef endian&lt;order::little, uint_least64_t, 48&gt; little_uint48un_t;
typedef endian&lt;order::little, uint_least64_t, 56&gt; little_uint56un_t;
typedef endian&lt;order::little, uint_least64_t, 64&gt; little_uint64un_t;
// unaligned native endian signed integer types
typedef endian&lt;order::native, int_least8_t, 8&gt; native_int8un_t;
typedef endian&lt;order::native, int_least16_t, 16&gt; native_int16un_t;
typedef endian&lt;order::native, int_least32_t, 24&gt; native_int24un_t;
typedef endian&lt;order::native, int_least32_t, 32&gt; native_int32un_t;
typedef endian&lt;order::native, int_least64_t, 40&gt; native_int40un_t;
typedef endian&lt;order::native, int_least64_t, 48&gt; native_int48un_t;
typedef endian&lt;order::native, int_least64_t, 56&gt; native_int56un_t;
typedef endian&lt;order::native, int_least64_t, 64&gt; native_int64un_t;
// unaligned native endian unsigned integer types
typedef endian&lt;order::native, uint_least8_t, 8&gt; native_uint8un_t;
typedef endian&lt;order::native, uint_least16_t, 16&gt; native_uint16un_t;
typedef endian&lt;order::native, uint_least32_t, 24&gt; native_uint24un_t;
typedef endian&lt;order::native, uint_least32_t, 32&gt; native_uint32un_t;
typedef endian&lt;order::native, uint_least64_t, 40&gt; native_uint40un_t;
typedef endian&lt;order::native, uint_least64_t, 48&gt; native_uint48un_t;
typedef endian&lt;order::native, uint_least64_t, 56&gt; native_uint56un_t;
typedef endian&lt;order::native, uint_least64_t, 64&gt; native_uint64un_t;
} // namespace endian
} // namespace boost</pre>
<h3><a name="Members">Members</a></h3>
<p><code><a name="endian">endian</a>() = default;&nbsp; // C++03: endian(){}</code></p>
<blockquote>
<p><i>Effects:</i> Constructs an object of type <code>endian&lt;E, T, n_bits, A&gt;</code>.</p>
</blockquote>
<p><code><a name="explicit-endian">explicit endian</a>(T v);</code></p>
<blockquote>
<p><i>Effects:</i> Constructs an object of type <code>endian&lt;E, T, n_bits, A&gt;</code>.</p>
<p><i>Postcondition:</i> <code>x == v,</code> where <code>x</code> is the
constructed object.</p>
</blockquote>
<p><code>endian&amp; <a name="operator-eq">operator=</a>(T v);</code></p>
<blockquote>
<p><i>Postcondition:</i> <code>x == v,</code> where <code>x</code> is the
constructed object.</p>
<p><i>Returns:</i> <code>*this</code>.</p>
</blockquote>
<p><code><a name="operator-T">operator T</a>() const;</code></p>
<blockquote>
<p><i>Returns:</i> The current value stored in <code>*this</code>, converted to
<code>value_type</code>.</p>
</blockquote>
<p><code>const char* <a name="data">data</a>() const;</code></p>
<blockquote>
<p><i>Returns:</i> A pointer to the first byte of the endian binary value stored
in <code>*this</code>.</p>
</blockquote>
<h3>Other operators</h3>
<p>Other operators on endian objects are forwarded to the equivalent
operator on <code>value_type</code>.</p>
<h2><a name="FAQ">FAQ</a></h2>
<p>See the <a href="index.html#FAQ">Endian home page</a> FAQ for a library-wide
FAQ.</p>
<p><b>Why not just use Boost.Serialization?</b> Serialization involves a
conversion for every object involved in I/O. Endian integers require no
conversion or copying. They are already in the desired format for binary I/O.
Thus they can be read or written in bulk.</p>
<p><b>Are endian types POD's?</b> Yes for C++11. No for C++03, although several
<a href="#Compilation">macros</a> are available to force PODness in all cases.</p>
<p><b>What are the implications endian integer types not being POD's with C++03
compilers?</b> They
can't be used in unions. Also, compilers aren't required to align or lay
out storage in portable ways, although this potential problem hasn't prevented
use of Boost.Endian with
real compilers.</p>
<p><b>What good is <i>native </i>endianness?</b> It provides alignment and
size guarantees not available from the built-in types. It eases generic
programming.</p>
<p><b>Why bother with the aligned endian types?</b> Aligned integer operations
may be faster (as much as 10 to 20 times faster) if the endianness and alignment of
the type matches the endianness and alignment requirements of the machine. The code,
however, is
likely to be somewhat less portable than with the unaligned types.</p>
<p><b>Why provide the arithmetic operations?</b> Providing a full set of operations reduces program
clutter and makes code both easier to write and to read. Consider
incrementing a variable in a record. It is very convenient to write:</p>
<pre wrap> ++record.foo;</pre>
<p wrap>Rather than:</p>
<pre wrap> int temp(record.foo);
++temp;
record.foo = temp;</pre>
<h2><a name="Design">Design</a> considerations for Boost.Endian types</h2>
<ul>
<li>Must be suitable for I/O - in other words, must be memcpyable.</li>
<li>Must provide exactly the size and internal byte ordering specified.</li>
<li>Must work correctly when the internal integer representation has more bits
that the sum of the bits in the external byte representation. Sign extension
must work correctly when the internal integer representation type has more
bits than the sum of the bits in the external bytes. For example, using
a 64-bit integer internally to represent 40-bit (5 byte) numbers must work for
both positive and negative values.</li>
<li>Must work correctly (including using the same defined external
representation) regardless of whether a compiler treats char as signed or
unsigned.</li>
<li>Unaligned types must not cause compilers to insert padding bytes.</li>
<li>The implementation should supply optimizations only in very limited
circumstances. Experience has shown that optimizations of endian
integers often become pessimizations when changing
machines or compilers. Pessimizations can also happen when changing compiler switches,
compiler versions, or CPU models of the same architecture.</li>
<li>It is better software engineering if the same implementation works regardless
of the CPU endianness. In other words, #ifdefs should be avoided in user code.</li>
</ul>
<h2><a name="Experience">Experience</a></h2>
<p>Classes with similar functionality have been independently developed by
several Boost programmers and used very successful in high-value, high-use
applications for many years. These independently developed endian libraries
often evolved from C libraries that were also widely used. Endian types have proven widely useful across a wide
range of computer architectures and applications.</p>
<h2><a name="Motivating-use-cases">Motivating use cases</a></h2>
<p>Neil Mayhew writes: &quot;I can also provide a meaningful use-case for this
library: reading TrueType font files from disk and processing the contents. The
data format has fixed endianness (big) and has unaligned values in various
places. Using Boost.Endian simplifies and cleans the code wonderfully.&quot;</p>
<h2><a name="C++0x">C++11</a></h2>
<p>The availability of the C++11
<a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2346.htm">
Defaulted Functions</a> feature is detected automatically, and will be used if
present to ensure that objects of <code>class endian</code> are trivial, and
thus POD's.</p>
<h2><a name="Compilation">Compilation</a></h2>
<p>Boost.Endian is implemented entirely within headers, with no need to link to
any Boost object libraries.</p>
<p>Several macros allow user control over features:</p>
<ul>
<li>BOOST_ENDIAN_NO_CTORS causes <code>class endian</code> to have no
constructors. The intended use is for compiling user code that must be
portable between compilers regardless of C++11
<a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2346.htm">
Defaulted Functions</a> support. Use of constructors will always fail, <br>
&nbsp;</li>
<li>BOOST_ENDIAN_FORCE_PODNESS causes BOOST_ENDIAN_NO_CTORS to be defined if
the compiler does not support C++11
<a href="http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2346.htm">
Defaulted Functions</a>. This is ensures that , and so can be used in unions.
In C++11, <code>class endian</code> objects are POD's even though they have
constructors.</li>
</ul>
<h2><a name="Acknowledgements">Acknowledgements</a></h2>
<p>Original design developed by Darin Adler based on classes developed by Mark
Borgerding. Four original class templates combined into a single <code>endian</code>
class template by Beman Dawes, who put the library together, provided
documentation, added the typedefs, and also added the <code>unrolled_byte_loops</code>
sign partial specialization to correctly extend the sign when cover integer size
differs from endian representation size. Vicente Botet and other reviewers
suggested supporting floating point types.</p>
<hr>
<p>Last revised:
<!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B, %Y" startspan -->28 May, 2013<!--webbot bot="Timestamp" endspan i-checksum="13992" --></p>
<p>© Copyright Beman Dawes, 2006-2009, 2013</p>
<p>Distributed under the Boost Software License, Version 1.0. See
<a href="http://www.boost.org/LICENSE_1_0.txt">www.boost.org/ LICENSE_1_0.txt</a></p>
</body>
</html>