Boost Exception

C++ Exception Augmentation Library | Emil Dotchevski

For C++11 or newer, consider using Boost LEAF. It provides similar
functionality more efficiently and understands Boost Exception for
compatibility; see this overview.

https://www.boost.org/doc/libs/release/libs/leaf/doc/html/index.html
https://www.boost.org/doc/libs/release/libs/leaf/doc/html/index.html#boost_exception

Introduction

The purpose of Boost Exception is to ease the design of exception class hierarchies and to help write
exception handling and error reporting code.

It supports transporting of arbitrary data to the catch site, which is otherwise tricky due to the no-
throw requirements (15.5.1) for exception types. Data can be added to any exception object, either
directly in the throw-expression (15.1), or at a later time as the exception object propagates up the
call stack.

The ability to add data to exception objects after they have been passed to throw is important,
because often some of the information needed to handle an exception is unavailable in the context
where the failure is detected.

Boost Exception also supports N2179-style copying of exception objects, implemented non-
intrusively and automatically by the boost : : t hr ow_except i on function.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2179.html

Tutorial

Transporting of Arbitrary Data to the Catch Site

All exception types that derive from boost : : excepti on can be used as type-safe containers of
arbitrary data objects, while complying with the no-throw requirements (15.5.1) of the ANSI C++
standard for exception types.

When exceptions derive from boost:: exception, arbitrary data can be added to exception
objects:

At the point of the throw;
* At a later time as exceptions bubble up the call stack.
Adding of Arbitrary Data at the Point of the Throw
The following example demonstrates how errno can be stored in exception objects using Boost

Exception:

#include <boost/exception/all.hpp>
#include <iostream>

typedef boost::error_info<struct tag_my_info,int> my_info; //(1)

struct my_error: virtual boost::exception, virtual std::exception { }; //(2)
void

f()

{
throw my_error() << my_info(42); //(3)

}

error_info | exception | operator<<

First, we instantiate the error_i nf o template using a unique identifier —tag_my_info, and the
type of the info it identifies—int. This provides compile-time type safety for the various values
stored in exception objects.

Second, we define class my_error, which derives from boost : : excepti on.

Finally, (3) illustrates how the typedef from (1) can be used with oper at or << to store values in
exception objects at the point of the throw.

The stored my_info value can be recovered at a later time like this:

// ...continued

void

9()

{

try
{
f();
}

catch(

my_error & x)
{
if(int const * mi=boost::get_error_info<my_info>(x))

std::cerr << "My info: " << *mi;

}

}

get _error _info

The get _error_i nf o function template is instantiated with the typedef from (1), and is passed an
exception object of a polymorphic type. If the exception object contains the requested value, err
will point to it; otherwise a null pointer is returned.

Adding of Arbitrary Data to Active Exception Objects

Sometimes the throw site does not have all the information that is needed at the catch site to make
sense of what went wrong. Let’s say we have an exception type file_read_error, which takes a file
name in its constructor. Consider the following function:

void
file_read(FILE * f, void * buffer, size t size)
{
if(sizel=fread(buffer,1,size,f))
throw file_read error(?7??);

}

How can the file_read function pass a file name to the exception type constructor? All it has is a
FILE handle.

Using boost : : excepti on allows us to free the file_read function from the burden of storing the
file name in exceptions it throws:

#include <boost/exception/all.hpp>
#include <boost/shared_ptr.hpp>
#include <stdio.h>

#include <errno.h>

struct file_read_error: virtual boost::exception { };

void
file_read(FILE * f, void * buffer, size_t size)

{
if(sizel=fread(buffer,1,size,f))
throw file_read error() << boost::errinfo_errno(errno);

}

exception | errinfo_errno

If file_read detects a failure, it throws an exception which contains the information that is available
at the time, namely the errno. Other relevant information, such as the file name, can be added in a
context higher up the call stack, where it is known naturally:

#include <boost/exception/all.hpp>
#include <boost/shared_ptr.hpp>
#include <stdio.h>

#include <string>

boost::shared_ptr<FILE> file_open(char const * file_name, char const * mode);
void file read(FILE * f, void * buffer, size_ t size);

void
parse_file(char const * file_name)
{
boost::shared_ptr<FILE> f = file_open(file_name,"rb");
assert(f);
try
{
char buf[1024];
file_read(f.get(), buf, sizeof(buf));
}
catch(
boost::exception & e)
{
e << boost::errinfo_file_name(file_name);
throw;
}
}

exception |errinfo_file_nane

The above function is (almost) exception-neutral —if an exception is emitted by any function call
within the try block, parse_file does not need to do any real work, but it intercepts any
boost : : excepti on object, stores the file name, and re-throws using a throw-expression with no
operand (15.1.6). The rationale for catching any boost : : excepti on object is that the file name is
relevant to any failure that occurs in parse_file, even if the failure is unrelated to file 1/O.

Adding Grouped Data to Exceptions

The code snippet below demonstrates how
boost:: http://ww. boost.org/libs/tuple/doc/tuple_users_guide. htm [tuple] can be

used to bundle the name of the function that failed, together with the reported errno so that they
can be added to exception objects more conveniently together:

#include <boost/exception/info_tuple.hpp>

#include <boost/exception/errinfo_file_name.hpp>
#include <boost/exception/errinfo_api_function.hpp>
#include <boost/exception/errinfo_errno.hpp>
#include <boost/shared_ptr.hpp>

#include <stdio.h>

#include <string>

#include <errno.h>

typedef boost::tuple<boost::errinfo_api_function,boost::errinfo_errno> clib_failure;
struct file_open_error: virtual boost::exception { };

boost::shared_ptr<FILE>
file_open(char const * name, char const * mode)
{
if(FILE * f=fopen(name,mode))
return boost::shared_ptr<FILE>(f,fclose);
else
throw file_open_error() <<
boost::errinfo_file _name(name) <<
clib_failure("fopen",errno);

tupl e/operator<< |errinfo file_nane |errinfo_api_function |errinfo _errno

Note that the members of a
boost:: http://ww. boost.org/libs/tuple/doc/tuple _users_guide. htm [tupl €] are
stored separately in exception objects; they can only be retrieved individually, using
get _error_info.

Integrating Boost Exception in Existing Exception
Class Hierarchies

Some exception hierarchies can not be modified to make boost: : excepti on a base type. In this
case, the enabl e_error _i nf o function template can be used to make exception objects derive
from boost : : excepti on anyway. Here is an example:

#include <boost/exception/all.hpp>
#include <stdexcept>

typedef boost::error_info<struct tag_std_range_min,size_t> std_range_min;
typedef boost::error_info<struct tag_std_range_max,size_t> std_range_max;

typedef boost::error_info<struct tag_std_range_index,size_t> std_range_index;

template <class T>
class
my_container

{
public:

size t size() const;

T const &
operator[](size_t i) const
{
if(i > size())
throw boost::enable_error_info(std::range_error("Index out of range")) <<
std_range_min(@) <<
std_range_max(size()) <<
std_range_index(i);

enabl e_error_info | operator<<

The call to enabl e_error_i nf o<T> gets us an object of unspecified type which is guaranteed to
derive from both boost:: exception and T. This makes it possible to use oper at or << to store
additional information in the exception object. The exception can be intercepted as T &, so existing
exception handling will not break. It can also be intercepted as boost : : excepti on &, so that more
information can be added to the exception at a later time.

Transporting of Exceptions Between Threads

Boost Exception supports transporting of exception objects between threads through cloning. This
system is similar to N2179, but because Boost Exception can not rely on language support, the use
of enabl e_current _excepti on at the time of the throw is required in order to use cloning

0 All exceptions emitted by the familiar function boost: :throw exception are
guaranteed to derive from boost : : except i on and to support cloning.

Using enable_current_exception at the Time of the Throw
Here is how cloning can be enabled in a throw-expression (15.1):

#include <boost/exception/info.hpp>

#include <boost/exception/errinfo_errno.hpp>

#include <stdio.h>
#include <errno.h>

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2179.html

struct file_read_error: virtual boost::exception { };

void
file_read(FILE * f, void * buffer, size t size)
{
if(sizel=fread(buffer,1,size,f))
throw boost::enable_current_exception(file_read_error()) <<
boost::errinfo_errno(errno);

enabl e_current exception |errinfo_errno

Of course, enabl e_current _exception may be used with any exception type; there is no
requirement that it should derive from boost : : excepti on

Cloning and Re-Throwing an Exception

When you catch an exception, you can call cur rent _excepti on to get an excepti on_ptr object:

#include <boost/exception_ptr.hpp>
#include <boost/thread.hpp>
#include <boost/bind.hpp>

void do_work(); //throws cloning-enabled boost::exceptions

void
worker_thread(boost::exception_ptr & error)
{
try
{
do_work();
error = boost::exception_ptr();
}
catch(
)
{
error = boost::current_exception();
}
}

current _exception | exception_ptr

In the above example, note that current excepti on captures the original type of the exception
object. The exception can be thrown again using the r et hr ow except i on function:

// ...continued

void

work()
{
boost::exception_ptr error;
boost::thread t(boost::bind(worker _thread,boost::ref(error)));
t.join();
if(error)
boost::rethrow_exception(error);

ret hrow exception | exception_ptr

Note that current _exception could fail to copy the original exception object in the following
cases:

* if there is not enough memory, in which case the returned excepti on_ptr points to an
instance of std::bad_alloc, or

 if enabl e_current _excepti on was not used in the throw-expression passed to the original
throw statement and the current implementation does not have the necessary compiler-specific
support to copy the exception automatically, in which case the returned excepti on_pt r points
to an instance of unknown_except i on.

Regardless, the use of current _exception and rethrow exception in the above examples is
well-formed.

Exception Types as Simple Semantic Tags

Deriving from boost:: exception effectively decouples the semantics of a failure from the
information that is relevant to each individual instance of reporting a failure with a given
semantic.

In other words: with boost : : excepti on, what data a given exception object transports depends
primarily on the context in which failures are reported (not on its type.) Since exception types need
no members, it becomes very natural to throw exceptions that derive from more than one type to
indicate multiple appropriate semantics:

struct exception_base: virtual std::exception, virtual boost::exception { };
struct io_error: virtual exception_base { };

struct file_error: virtual io_error { };

struct read_error: virtual io_error { };

struct file_read_error: virtual file_error, virtual read_error { };

exception

Using this approach, exception types become a simple tagging system for categorizing errors and
selecting failures in exception handlers.

Using Virtual Inheritance in Exception Types

Exception types should use virtual inheritance when deriving from other exception types. This
insight is due to Andrew Koenig. Using virtual inheritance prevents ambiguity problems in the
exception handler:

#include <iostream>

struct my_exc1 : std::exception { char const* what() const throw(); };
struct my_exc2 : std::exception { char const* what() const throw(); };
struct your_exc3 : my_excl, my_exc2 {};

int
main()

{
try { throw your_exc3(); }

catch(std::exception const& e) {}
catch(...) { std::cout << "whoops!" << std::endl; }

}

The program above outputs "whoops!" because the conversion to std::exception is ambiguous.

The overhead introduced by virtual inheritance is always negligible in the context of exception
handling. Note that virtual bases are initialized directly by the constructor of the most-derived-type
(the type passed to the throw statement, in case of exceptions.) However, typically this detail is of
no concern when boost: : excepti on is used, because it enables exception types to be trivial
structs with no members (there’s nothing to initialize.) See Exception Types as Simple Semantic

Tags.

Diagnostic Information

Boost Exception provides a namespace-scope function di agnosti c_i nf or mati on which takes a
boost : : excepti on. The returned string contains:

* the string representation of all data objects added to the boost::exception through
oper at or <<;

* the output from std::exception::what;

* additional platform-specific diagnostic information.

The returned string is not presentable as a friendly user message, but because it is generated
automatically, it is useful for debugging or logging purposes. Here is an example:

#include <boost/exception/all.hpp>
#include <iostream>

void f(); //throws unknown types that derive from boost::exception.

10

void

9()
{
try
{
f0);
}
catch(
boost::exception & e)
{
std::cerr << diagnostic_information(e);
}
}
di agnostic_information
Example:
this is a possible output from the diagnostic_informtion function, as used in
libs/exception/example/example_io.cpp:
example_io.cpp(70): Throw in function class boost::shared_ptr<struct _iobuf> __cdecl

my_fopen(const char *,const char *)

Dynamic exception type: class boost::exception_detail::clone_impl<struct fopen_error>
std::exception::what: example_io error

[struct boost:
[struct boost:
[struct boost:
[struct boost:

rerrinfo_api_function_ *] = fopen
rerrinfo_errno_ *] = 2, "No such file or directory"
rerrinfo_file_name_ *] = tmp1.txt
rerrinfo_file_open_mode_ *] = rb

11

Synopsis
This section lists each public header file, documenting the definitions it provides.

excepti on. hpp

#include <boost/exception/exception.hpp>

namespace boost

{
class exception
{
protected:
exception();
exception(exception const & x);
~exception();
I
template <class Tag,class T>
class error_info;
typedef error_info<struct throw_function_,char const *> throw_function;
typedef error_info<struct throw_file_,char const *> throw_file;
typedef error_info<struct throw_line_,int> throw_line;
}

Reference: exception | error_info

error _info. hpp

#include <boost/exception/error_info.hpp>

namespace boost

{
template <class Tag,class T>
class error_info;

Reference: error _info

| nfo. hpp

#include <boost/exception/info.hpp>

#include <boost/exception/exception.hpp>

12

namespace boost

{
template <class Tag,class T>
class error_info
{
public:
typedef T value_type;
error_info(value_type const & v);
value_type const & value() const;
value_type & value();
Iy
template <class E, class Tag, class T>
E const & operator<<(E const & x, error_info<Tag,T> const & v);
}

I nfo_tuple. hpp

#include <boost/exception/info_tuple.hpp>

#include <boost/exception/info.hpp>
#include <boost/tuple/tuple.hpp>

namespace boost

{
template <class E, class Tag1, class T1, ..
E const & operator<<(E const & x,
tuple<
error_info<Tag1,T1>,
error_info<TagN,TN> > const & v);
}

enabl e_error i nfo. hpp

#include <boost/exception/enable_error_info.hpp>
#include <boost/exception/exception.hpp>

namespace boost

Reference: error _i nf o | operat or <<

., class TagN, class TN>

Reference: t upl e/ oper at or <<

13

template <class T>
---unspecified--- enable_error_info(T const & x);

Reference: enabl e error _info

di agnosti c_i nformati on. hpp

#include <boost/exception/diagnostic_information.hpp>
#include <string>

namespace boost

{
class exception;
template <class E>
std::string diagnostic_information(E const & e, bool verbose=true);
std::string diagnostic_information(exception_ptr const & p, bool verbose=true
)i

char const * diagnostic_information_what(boost::exception const & e, bool
verbose=true) throw();

std::string current_exception_diagnostic_information();

Reference: di agnostic_i nformati on | di agnosti c_i nf or mati on_what
current exception_diagnostic_infornation

current _exception_cast. hpp

#include <boost/exception/current_exception_cast.hpp>

namespace boost

{

template <class E>
E * current_exception_cast();

Reference: current _excepti on_cast

14

exception_ptr. hpp

#include <boost/exception_ptr.hpp>
#include <boost/exception/exception.hpp>

namespace boost

{
class unknown_exception:
public std::exception
public boost::exception
{
---unspecified---

+;

typedef error_info<struct tag_original_exception_type,std::type_info const *>
original_exception_type;

typedef ---unspecified--- exception_ptr;

template <class T>
exception_ptr copy_exception(T const & e);

exception_ptr current_exception();

void rethrow_exception(exception_ptr const & ep);

Reference: exception_ptr | unknown_exception | origi nal _exception_type |
copy_exception | current _exception | rethrow exception

enabl e_current _exception. hpp

#include <boost/exception/enable_current_exception.hpp>
#include <boost/exception/exception.hpp>
namespace boost

{

template <class T>
---unspecified--- enable_current_exception(T const & e);

Reference: enabl e _current exception

15

t hr ow_excepti on. hpp

#include <boost/throw_exception.hpp>

#if !defined(BOOST_EXCEPTION_DISABLE)
#include <boost/exception/exception.hpp>
#include <boost/current_function.hpp>
#define BOOST_THROW_EXCEPTION(x)\
::boost::throw_exception(::boost::enable_error_info(x) <<\
::boost::throw_file(__FILE__) <<\
::boost::throw_line((int)__LINE_))
#else
#define BOOST_THROW_EXCEPTION(x) ::boost::throw_exception(x)
#endif

namespace boost
{
#ifdef BOOST_NO_EXCEPTIONS
void throw_exception(std::exception const & e); // user defined
#else
template <class E>
void throw_exception(E const & e);
#endif

}

Reference: t hr ow_excepti on | BOOST_THROW EXCEPTI ON

errinfo_api_function. hpp

#include <boost/exception/errinfo_api_function.hpp>
#include <boost/exception/error_info.hpp>

namespace boost

{

typedef error_info<struct errinfo_api_function_,char const *>
errinfo_api_function;

}

Reference: errinfo api function

errinfo_at |ine.hpp

#include <boost/exception/errinfo_at_line.hpp>

#include <boost/exception/error_info.hpp>

16

namespace boost

{
typedef error_info<struct errinfo_at_line_,int> errinfo_at_line;

}

Reference: errinfo at |ine

errinfo_errno. hpp

#include <boost/exception/errinfo_errno.hpp>

#include <boost/exception/error_info.hpp>
#include <errno.h>

namespace boost
{

typedef error_info<struct errinfo_errno_,int> errinfo_errno;

}

Reference:errinfo _errno

errinfo_file_ handle. hpp

#include <boost/exception/errinfo_file_handle.hpp>
#include <boost/exception/error_info.hpp>

namespace boost

{

template <class> class weak_ptr;

typedef error_info<struct errinfo_file_handle_,weak_ptr<FILE> >
errinfo_file_handle;

}

Reference: errinfo file handl e

errinfo_file_nane. hpp

#include <boost/exception/errinfo_file_name.hpp>

#include <boost/exception/error_info.hpp>
#include <string>

namespace boost

17

typedef error_info<struct errinfo_file_name_,std::string> errinfo_file_name;

Reference: errinfo file nanme

errinfo_file_open_node. hpp

#include <boost/exception/errinfo_file_open_mode.hpp>

#include <boost/exception/error_info.hpp>
#include <string>

namespace boost

{
typedef error_info<struct errinfo_file_open_mode_,std::string>
errinfo_file_open_mode;

}

Reference:errinfo fil e open node

errinfo_nested exception. hpp

#include <boost/exception/errinfo_nested_exception.hpp>
#include <boost/exception/error_info.hpp>

namespace boost
{

typedef ---unspecified--- exception_ptr;

typedef error_info<struct errinfo_nested_exception_,exception_ptr>
errinfo_nested_exception;

}

Reference: erri nf o _nested exception

errinfo_type_info_nane. hpp

#include <boost/exception/errinfo_type_info_name.hpp>

#include <boost/exception/error_info.hpp>
#include <string>

namespace boost

{

18

typedef error_info<struct errinfo_type_info_name_,std::string>
errinfo_type_info_name;

}

Reference: erri nfo type info nane

al |l . hpp

#include <boost/exception/all. hpp>

#include <boost/exception/diagnostic_information.hpp>
#include <boost/exception/error_info.hpp>

#include <boost/exception/exception.hpp>

#include <boost/exception/get_error_info.hpp>
#include <boost/exception/info.hpp>

#include <boost/exception/info_tuple.hpp>

#include <boost/exception/errinfo_api_function.hpp>
#include <boost/exception/errinfo_at_line.hpp>
#include <boost/exception/errinfo_errno.hpp>

#include <boost/exception/errinfo_file_handle.hpp>
#include <boost/exception/errinfo_file_name.hpp>
#include <boost/exception/errinfo_file_open_mode.hpp>
#include <boost/exception/errinfo_type_info_name.hpp>
#ifndef BOOST_NO_EXCEPTIONS

#include <boost/exception/errinfo_nested_exception.hpp>
#include <boost/exception_ptr.hpp>

#endif

This header includes all Boost Exception headers except boost / excepti on_ptr. hpp (unless
BOOST_NO_EXCEPTIONS is defined.)

Reference

(r) The contents of each Reference section are organized alphabetically.
w

Types

exception

#include <boost/exception/exception.hpp>

namespace boost

{
class exception
{
protected:
exception();
exception(exception const & x);
~exception();
s
}

Class boost: : exception is designed to be used as a universal base for user-defined exception
types.

An object of any type deriving from boost : : excepti on can store data of arbitrary types, using the
error _i nf o wrapper and oper at or <<.

To retrieve data from a boost : : except i on object, use the get _error _i nf o function template.

exception::exception

exception();
exception(exception const & x);

Effects:

* Default constructor: initializes an empty boost : : except i on object.

» Copy constructor: initializes a boost : : except i on object which shares with x the pointers to
all currently stored data. Subsequently, data can be added to or retrieved from both
exception objects interchangeably, however doing so concurrently from multiple threads is
undefined behavior.

Throws:
Nothing.

20

exception:: ~exception
~exception();

Effects:

Releases all resources associated with the boost : : excepti on object.

Throws:
Nothing.

error_info

#include <boost/exception/info.hpp>

namespace boost

{
template <class Tag,class T>
class error_info

{
public:

typedef T value_type;
error_info(value_type const & v);

value_type const & value() const;
value_type & value();
Iy?

Requirements:

T must have accessible copy constructor and must not be a reference (there is no requirement
that T’s copy constructor does not throw.)

This class template is used to associate a Tag type with a value type T. Objects of type
error_info<Tag, T> can be passed to operator<< to be stored in objects of type

boost : : excepti on.

The header <boost/exception/error_info. hpp> provides a declaration of the error_info
template, which is sufficient for the purpose of typedefing an instance for specific Tag and T, for
example:

#include <boost/exception/error_info.hpp>

struct tag_errno;
typedef boost::error_info<tag_errno,int> errno_info;

21

Or, the shorter equivalent:

#include <boost/exception/error_info.hpp>

typedef boost::error_info<struct tag_errno,int> errno_info;

This errno_info typedef can be passed to oper at or << (#include <boost/ excepti on/i nfo. hpp>
first) to store an int named tag_errno in exceptions of types that derive from boost : : excepti on:

throw file_read error() << errno_info(errno);

It can also be passed to get _error_info (#include <boost/ excepti on/ get _error _i nfo. hpp>
first) to retrieve the tag_errno int from a boost : : excepti on:

catch(boost::exception & x)

{

if(int const * e=boost::get_error_info<errno_info>(x))

For convenience and uniformity, Boost Exception defines the following commonly used
error _i nf o typedefs, ready for use with oper at or <<:

e errinfo api function

eerrinfo at |ine

e errinfo _errno

e errinfo file handl e

eerrinfo file nanme

ceerrinfo file open nbde

e errinfo nested exception

e errinfo _type info nane

error_info::error_info

error_info(value_type const & v);

Effects:

Stores a copy of v.

Throws:

Whatever T’s copy constructor throws.

22

error_info::val ue_type

typedef T value_type;

This type is the same as the error _i nf o T parameter.

error _info::val ue

value_type const & value() const;
value_type & value();

Returns:

A reference to the copy of the value passed to the err or _i nf o constructor.

Throws:

Nothing.

errinfo_api_function

#include <boost/exception/errinfo_api_function.hpp>
#include <boost/exception/error_info.hpp>

namespace boost

{
typedef error_info<struct errinfo_api_function_,char const *>
errinfo_api_function;

}

This type is designed to be used as a standard err or _i nf o instance for transporting the name of a
failed API function in exceptions deriving from boost : : excepti on.

errinfo_at _|ine

#include <boost/exception/errinfo_at_line.hpp>
#include <boost/exception/error_info.hpp>
namespace boost

{

typedef error_info<struct errinfo_at_line_,int> errinfo_at_line;

This type is designed to be used as a standard err or _i nf 0 instance for transporting a line number
in exceptions deriving from boost : : excepti on.

23

errinfo_errno

#include <boost/exception/errinfo_errno.hpp>

#include <boost/exception/error_info.hpp>
#include <errno.h>

namespace boost

{

typedef error_info<struct errinfo_errno_,int> errinfo_errno;

}

This type is designed to be used as a standard error_i nf o instance for transporting a relevant
errno value in exceptions deriving from boost : : excepti on.

Example:

#include <boost/exception/errinfo_api_function.hpp>
#include <boost/exception/errinfo_at_line.hpp>
#include <boost/exception/errinfo_errno.hpp>
#include <boost/exception/errinfo_file_handle.hpp>
#include <boost/exception/errinfo_file_name.hpp>
#include <boost/exception/errinfo_file_open_mode.hpp>
#include <boost/exception/info.hpp>

#include <boost/throw_exception.hpp>

#include <boost/shared_ptr.hpp>

#include <boost/weak_ptr.hpp>

#include <stdio.h>

#include <errno.h>

#include <exception>

struct error : virtual std::exception, virtual boost::exception { };
struct file error : virtual error { };

struct file_open_error: virtual file_error { };

struct file_read_error: virtual file_error { };

boost::shared_ptr<FILE>
open_file(char const * file, char const * mode)
{
if(FILE * f=fopen(file,mode))
return boost::shared_ptr<FILE>(f,fclose);
else
BOOST_THROW_EXCEPTION(
file_open_error() <<
boost::errinfo_api_function("fopen") <<
boost::errinfo_errno(errno) <<
boost::errinfo_file_name(file) <<
boost::errinfo_file_open_mode(mode));

24

size_t
read_file(boost::shared_ptr<FILE> const & f, void * buf, size_t size)
{
size_t nr=fread(buf,1,size,f.get());
if(ferror(f.get()))
BOOST_THROW_EXCEPTION(
file_read _error() <<
boost::errinfo_api_function("fread") <<
boost::errinfo_errno(errno) <<
boost::errinfo_file_handle(f));
return nr;

}

errinfo _file handle

#include <boost/exception/errinfo_file_handle.hpp>
#include <boost/exception/error_info.hpp>

namespace boost

{
template <class> class weak_ptr;

typedef error_info<struct errinfo_file_handle_,weak_ptr<FILE> >
errinfo_file_handle;

}

This type is designed to be used as a standard er r or _i nf o instance for transporting a FILE pointer
in exceptions deriving from boost : : excepti on.

errinfo file_ name

#include <boost/exception/errinfo_file_ name.hpp>

#include <boost/exception/error_info.hpp>
#include <string>

namespace boost
{

typedef error_info<struct errinfo_file_name_,std::string> errinfo_file_name;

}

This type is designed to be used as a standard err or _i nf 0 instance for transporting a file name in
exceptions deriving from boost : : excepti on.

25

errinfo _file_ open_node

#include <boost/exception/errinfo_file_open_mode.hpp>

#include <boost/exception/error_info.hpp>
#include <string>

namespace boost

{
typedef error_info<struct errinfo_file_open_mode_,std::string>
errinfo_file_open_mode;

}

This type is designed to be used as a standard error _i nf o instance for transporting a fopen file
open mode in exceptions deriving from boost : : excepti on.

errinfo_nested_exception

#include <boost/exception/errinfo_nested_exception.hpp>
#include <boost/exception/error_info.hpp>

namespace boost

{

typedef ---unspecified--- exception_ptr;

typedef error_info<struct errinfo_nested_exception_,exception_ptr>
errinfo_nested_exception;

}

This type is designed to be used as a standard error _i nf o instance for transporting a nested
exception in exceptions deriving from boost : : excepti on

errinfo_type_info_nane
#include <boost/exception/errinfo_type_info_name.hpp>

#include <boost/exception/error_info.hpp>
#include <string>

namespace boost

{
typedef error_info<struct errinfo_type_info_name_,std::string>
errinfo_type_info_name;

}

This type is designed to be used as a standard er r or _i nf o instance for transporting a type name in
exceptions deriving from boost : : excepti on.

26

exception_ptr

#include <boost/exception_ptr.hpp>

namespace boost

{

typedef ---unspecified--- exception_ptr;

The exception_ptr type can be used to refer to a copy of an exception object. It is Default
Constructible, Copy Constructible, Assignable and Equality Comparable; "exception_ptr’s
operations do not throw.

The referenced object remains valid at least as long as there is an excepti on_ptr object that refers
to it.

Two instances of excepti on_ptr are equivalent and compare equal if and only if they refer to the
same exception.

The default constructor of excepti on_ptr produces the null value of the type. The null value is
equivalent only to itself.

Thread safety:

The excepti on_ptr type is "as thread-safe as built-in types":

* An excepti on_ptr instance can be "read" simultaneously by multiple threads

» Different excepti on_ptr instances can be "written to" simultaneously by multiple threads,
even when these instances refer to the same exception object

All other simultaneous accesses result in undefined behavior.

Nesting of exceptions:

An exception_ptr can be added as error_info to any boost::exception. This is a
convenient way to nest exceptions. There is no limit on the depth of the nesting, however cyclic
references result in undefined behavior.

ori gi nal _exception_type

#include <boost/exception_ptr.hpp>

namespace boost

{

typedef error_info<struct tag_original_exception_type,std::type_info const *>
original_exception_type;

}

27

This type is wused by the exception ptr

current exception.

unknown_exception

#include <boost/exception_ptr.hpp>

namespace boost

{
class unknown_exception:
public std::exception
public boost::exception
{
---unspecified---
IE
}

This type is wused by the exception_ptr

current exception.

Functions

copy_exception

#include <boost/exception_ptr.hpp>

namespace boost

{

template <class T>

support

support

exception_ptr copy_exception(T const & e);

Effects:
As if

try
{

throw enable_current_exception(e);

+
catch(...)

{

return current_exception();

}

28

in

in

Boost Exception. Please

Boost Exception. Please

see

see

current _exception

#include <boost/exception_ptr.hpp>

namespace boost

{
exception_ptr current_exception();
+
Requirements:

The cur rent _except i on function must not be called outside of a catch block.

In addition, to safely copy an exception from one thread to another, if the exception object is
copied by current _excepti on or copy_excepti on, the two copies must not have shared state.
Exceptions that have value-type semantics (as well as the boost : : except i on type itself) satisfy
this requirement.

Returns:

* An exception_ptr that refers to the currently handled exception or a copy of the currently
handled exception.

« If the function needs to allocate memory and the attempt fails, it returns an excepti on_ptr
that refers to an instance of std::bad_alloc.

Throws:

Nothing.

Notes:

* It is unspecified whether the return values of two successive calls to current _excepti on
refer to the same exception object.

* Correct implementation of current _excepti on may require compiler support (e.g. C++11
std::current exception() is used when available, as specified by Boost.Config
BOOST_NO_CXX11_HDR_EXCEPTION), unless enabl e_current _excepti on was used at the
time the currently handled exception object was passed to throw. Whenever
current _exception fails to properly copy the current exception object, it returns an
excepti on_ptr to an object of type that is as close as possible to the original exception type,
using unknown_exception as a final fallback. All such types derive from
boost : : excepti on, and:

o if the original exception object derives from boost::exception, then the
boost : : excepti on sub-object of the object referred to by the returned excepti on_ptr
is initialized by the boost : : except i on copy constructor;

o if available, the exception contains the std::type_info of the original exception object,
accessible through get _error_i nf o< original exception type >.

current _excepti on_cast

29

https://en.cppreference.com/w/cpp/error/current_exception

#include <boost/exception/current_exception_cast.hpp>

namespace boost

{
template <class E>
E * current_exception_cast();
¥
Requirements:

This function must not be called outside of a catch block.

Returns:

A pointer of type E to the current exception object, or null if the current exception object can not
be converted to E *

Throws:
Nothing.

current _exception_di agnostic_i nfornmation

#include <boost/exception/diagnostic_information.hpp>

namespace boost

{
std::string current_exception_diagnostic_information();
}
Requirements:

This function must not be called outside of a catch block.

Returns:

If the current exception object can be converted to boost: : excepti on or std::exception, this
function returns the same string value returned by di agnosti c_i nf ormati on for the current
exception object. Otherwise, an unspecified non-empty string is returned.

Typical use is to call current _excepti on_di agnosti c_i nf or mati on from a top-level function to
output diagnostic information about unhandled exceptions:

int
main()

{
try

{

run_program();

}
catch(
error & e)

30

{

//handle error

}
catch(

)
{

std::cerr << "Unhandled exception!" << std::endl <<
boost::current_exception_diagnostic_information();

di agnostic_infornmati on

#include <boost/exception/diagnostic_information.hpp>

namespace boost

{
template <class E>
std::string diagnostic_information(E const & e, bool verbose=true);
std::string diagnostic_information(exception_ptr const & p, bool verbose=true);
}
Returns:

A string value that contains varying amount of diagnostic information about the passed object:

« If E can be statically converted to either boost::exception or to std:exception,
dynamic_cast is used to access both the boost : : except i on and std::exception subobjects of
e; otherwise, the boost : : di agnosti c_i nf or mat i on template is not available.

* The returned value contains the string representations of all error _i nf o objects stored in
the boost : : except i on subobject through oper at or <<.

* In addition, if verbose is true, it contains other diagnostic information relevant to the
exception, including the string returned by std::exception::what().

The string representation of each error_i nfo object is deduced by an unqualified call to
to_string(x), where x is of type error_inf o<Tag, T>, for which Boost Exception defines a
generic overload. It converts x.value() to string, attempting to bind (at the time the
error_inf o<Tag, T> template is instantiated) the following functions in order:

1. Unqualified call to to_string(x.val ue()) (the return value is expected to be of type std::string.)

2. Unqualified call to s << x.val ue(), where s is a std::ostringstream.

The first successfully bound function is used at the time di agnosti c_i nf or mati on is called; if
both overload resolutions are unsuccessful, the system is unable to convert the error_info
object to string, and an unspecified stub string value is used without issuing a compile error.

The excepti on_ptr overload of di agnosti c_i nf or mati on is equivalent to:

31

if(p)
try
{

rethrow_exception(p);

}
catch(...)

{
return current_exception_diagnostic_information(verbose);
}

else return <unspecified-string-value>;

Example:

this is a possible output from the diagnostic_information function, as used in
libs/exception/example/example_io.cpp:

example_io.cpp(70): Throw in function class boost::shared_ptr<struct _iobuf> __cdecl
my_fopen(const char *,const char *)

Dynamic exception type: class boost::exception_detail::clone_impl<struct fopen_error>
std::exception::what: example_io error

[struct boost::errinfo_api_function_ *] = fopen

[struct boost::errinfo_errno_ *] = 2, "No such file or directory"

[struct boost::errinfo_file_name_ *] = tmp1.txt

[struct boost::errinfo_file_open_mode_ *] = rb

di agnosti c_i nformati on_what

#include <boost/exception/diagnostic_information.hpp>

namespace boost

{

char const * diagnostic_information_what(boost::exception const & e, bool
verbose=true) throw();

}

The di agnostic_i nformation_what function is intended to be called from a user-defined
std::exception::what() override. This allows diagnostic information to be returned as the what()

string.
Returns:

A pointer to a zero-terminated buffer that contains a string similar to the std::string returned by
the di agnosti c_i nf or mati on function, or null to indicate a failure.

Throws:

Nothing.

32

Note:

The returned pointer becomes invalid if any er r or _i nf o is modified or added to the exception
object, or if another diagnostic information function is called.

enabl e_current _exception

#include <boost/exception/enable_current_exception.hpp>

namespace boost

{
template <class T>
---unspecified--- enable_current_exception(T const & e);
+
Requirements:

* T must be a class with an accessible no-throw copy constructor.

 If T has any virtual base types, those types must have an accessible default constructor.

Returns:

An object of unspecified type which derives publicly from T. That is, the returned object can be
intercepted by a catch(T &).

This function is designed to be used directly in a throw-expression to enable the excepti on_ptr
support in Boost Exception. For example:

class

my_exception:
public std::exception
{
b

throw boost::enable_current_exception(my_exception());

Unless enabl e_current _exception is called at the time an exception object is used in a throw-
expression, an attempt to copy it using current excepti on may return an excepti on_ptr which
refers to an instance of unknown_excepti on. See current _excepti on for details.

Note:

Instead of using the throw keyword directly, it is preferable to call boost: : t hr ow excepti on.
This is guaranteed to throw an exception that derives from boost:: excepti on and supports
the excepti on_pt r functionality.

33

enabl e_error_info

#include <boost/exception/enable_error_info.hpp>

namespace boost

{
template <class T>
---unspecified--- enable_error_info(T const & x);
+
Requirements:

T must be a class with an accessible no-throw copy constructor as per (15.5.1).

Returns:

» If T derives from boost : : except i on, the returned object is of type T and is a copy of x.

* Otherwise, the returned object is of an unspecified type that derives publicly from both T
and boost : : excepti on. The T sub-object is initialized from x by the T copy constructor.

Throws:

Nothing.

get _error_info

#include <boost/exception/get_error_info.hpp>

namespace boost

{
template <class ErrorInfo,class E>
typename ErrorInfo::value_type const * get_error_info(E const & x);
template <class ErrorInfo,class E>
typename ErrorInfo::value_type * get_error_info(E & x);
}
Requirements:

* ErrorInfo must be an instance of the err or _i nf o template.

* E must be polymorphic.

Returns:
 If dynamic_cast<boost::exception const *>(&x) is 0, or if X does not store an object of type
Errorinfo, the returned value is null.

* Otherwise, the returned pointer points to the stored value (use oper at or << to store values
in exception objects.) When x is destroyed, any pointers returned by get _error_info
become invalid.

34

Throws:

Nothing.

Note:

The interface of get _error _i nf o may be affected by the build configuration macros.

oper at or <<

#include <boost/exception/info.hpp>

namespace boost

{
template <class E, class Tag, class T>
E const & operator<<(E const & x, error_info<Tag,T> const & v);
+
Requirements:

E must be boost : : excepti on, or a type that derives (indirectly) from boost : : excepti on.

Postcondition:

A copy of v is stored into x. If X already contains data of type error _i nf o<Tag, T>, that data is
overwritten. Basic exception safety guarantee.

Returns:

X.

Throws:

std::bad_alloc, or any exception emitted by the T copy constructor.

ret hrow_exception

#include <boost/exception_ptr.hpp>

namespace boost

{
void rethrow_exception(exception_ptr const & ep);
}
Precondition:

ep shall not be null.

Throws:

The exception to which ep refers.

35

t hrow_exception

Please see Boost.ThrowException.

t upl e/ oper at or <<

#include <boost/exception/info_tuple.hpp>

namespace boost

{
template <class E, class Tagl, class T1, ..., class TagN, class TN>
E const & operator<<(E const & x,
tuple<
error_info<Tag1,T1>,
error_info<TagN,TN> > const & v);
}
Requirements:

E must be boost : : excepti on, or a type that derives (indirectly) from boost : : excepti on.

Effects:

Equivalent to X <<
v.http://www.boost.org/libs/tuple/doc/tuple_users_guide.html#accessing_elements[get]<0>() << ...
<< v.http://www.boost.org/libs/tuple/doc/tuple_users_guide.html#accessing_elements[get]<N>().

Returns:

X.

Throws:

std::bad_alloc, or any exception emitted by T1..TN copy constructor.

Macros

BOOST_THROW EXCEPTI ON

Please see Boost.ThrowException.

Configuration Macros

Boost Exception responds to the following configuration macros:

BOOST_NO_RTTI
BOOST_NO_TYPEID (both defined automatically by boost/config.hpp)

36

https://www.boost.org/doc/libs/release/libs/throw_exception/doc/html/throw_exception.html
https://www.boost.org/doc/libs/release/libs/throw_exception/doc/html/throw_exception.html

The first macro prevents Boost Exception from using dynamic_cast and dynamic typeid. If the
second macro is also defined, Boost Exception does not use static typeid either. There are no
observable degrading effects on the library functionality, except for the following: by default, the
get _error_info function template can be called with any exception type; if BOOST _NO_RTTI is
defined, get _error_i nf o can be used only with objects of type boost : : excepti on.

Note:

The library needs RTTI functionality. Disabling the language RTTI support enables an internal
RTTI system, which may have more or less overhead depending on the platform.

Note that on some non-conformant compilers, for example MSVC 7.0 and older, as well as BCC,
BOOST_EXCEPTION_DISABLE is implicitly defined in boost /t hr ow excepti on. hpp.

BOOST_NO_EXCEPTIONS (defined automatically by boost/config.hpp)

This macro disables exception handling in Boost, forwarding all exceptions to a user-defined non-
template version of boost: : t hrow excepti on. However, unless BOOST_EXCEPTION_DISABLE is
also defined, users can still examine the exception object for any data added at the point of the
throw, or use boost : : di agnosti c i nformati on (of course under BOOST NO_EXCEPTIONS, the
user-defined boost::throw_exception is not allowed to return to the caller.)

In addition, the following user-defined macros are recognized:
BOOST_EXCEPTION_DISABLE (user-defined)

By default, enabl e_current exception and enabl e_error_inf o are integrated directly in the
t hr ow_except i on function. Defining BOOST_EXCEPTION_DISABLE disables this integration.

37

Design Rationale

Traditionally, when using exceptions to report failures, the throw site:

* creates an exception object of the appropriate type, and

* stuffs it with data relevant to the detected error.
A higher context in the program contains a catch statement which:

* selects failures based on exception types, and

* inspects exception objects for data required to deal with the problem.

The main issue with this "traditional" approach is that often, the data available at the point of the
throw is insufficient for the catch site to handle the failure.

Here is an example of a catch statement:

catch(file_read error & e)

{

std::cerr << e.file_name();

}

And here is a possible matching throw:

void
read file(FILE * f)
{

size_t nr=fread(buf,1,count,f);
if(ferror(f))
throw file_read error(???);

Clearly, the problem is that the handler requires a file name but the read_file function does not
have a file name to put in the exception object; all it has is a FILE pointer!

In an attempt to deal with this problem, we could modify read_file to accept a file name:
void

read_file(FILE * f, char const * name)

{

size t nr=fread(buf,1,count,f);
if(ferror(f))
throw file _read error(name);

38

This is not a real solution: it simply shifts the burden of supplying a file name to the immediate
caller of the read_file function.

In general, the data required to handle a given library-emitted exception depends on the program
that links to it. Many contexts between the throw and the catch may have relevant information
which must be transported to the exception handler.

Exception wrapping

The idea of exception wrapping is to catch an exception from a lower level function (such as the
read_file function above), and throw a new exception object that contains the original exception
(and also carries a file name.) This method seems to be particularly popular with C++ programmers
with Java background.

Exception wrapping leads to the following problems:

» To wrap an exception object it must be copied, which may result in slicing.
* Wrapping is practically impossible to use in generic contexts.
The second point is actually special case of violating the exception neutrality principle. Most

contexts in a program can not handle exceptions; such contexts should not interfere with the
process of exception handling.

The boost::exception solution

« Simply derive your exception types from boost : : excepti on.
* Confidently limit the throw site to provide only data that is available naturally.
* Use exception-neutral contexts between the throw and the catch to augment exceptions with

more relevant data as they bubble up.

For example, in the throw statement below we only add the errno code, since this is the only
failure-relevant information available in this context:

struct exception_base: virtual std::exception, virtual boost::exception { };
struct io_error: virtual exception_base { };
struct file_read error: virtual io_error { };

typedef boost::error_info<struct tag_errno_code,int> errno_code;
void

read file(FILE * f)
{

size t nr=fread(buf,1,count,f);
if(ferror(f))

39

throw file_read error() << errno_code(errno);

exception | error_info | operator<<

In a higher exception-neutral context, we add the file name to any exception that derives from
boost : : excepti on:

typedef boost::error_info<struct tag_file_name,std::string> file_name;

try

{
if(FILE * fp=fopen("foo.txt","rt"))
{
shared_ptr<FILE> f(fp,fclose);
read_file(fp); //throws types deriving from boost::exception
do_something();
}
else
throw file_open_error() << errno_code(errno);
}
catch(boost::exception & e)
{
e << file name("foo.txt");
throw;
}

exception | error_info | operator<<

Finally here is how the handler retrieves data from exceptions that derive from
boost : : excepti on:

catch(io_error & e)

{

std::cerr << "I/0 Error!\n";

if(std::string const * fn=get_error_info<file_name>(e))
std::cerr << "File name: " << *fn << "\n";

if(int const * c=get_error_info<errno_code>(e))

std::cerr << "0S says: " << strerror(*c) << "\n";

}

get _error _info

40

In addition, boost : : di agnosti c_i nf or mati on can be used to compose an automatic (if not user-
friendly) message that contains all of the error_i nf o objects added to a boost : : excepti on. This
is useful for inclusion in logs and other diagnostic objects.

41

Frequently Asked Questions

What is the cost of calling boost::throw_exception?

The cost is that boost::exception is added as a base of the exception emitted by
boost : :t hr ow _excepti on (unless the passed type already derives from boost : : excepti on.)

Calling boost : : t hr ow excepti on does not cause dynamic memory allocations.

What is the cost of BOOST THROW_EXCEPTION?

In addition to calling boost: : t hr ow_excepti on, BOOST THROW EXCEPTI ON invokes _ FILE__ and
__LINE__ macros. The space required to store the information is already included in
sizeof(boost::exception).

Calling BOOST_THROW EXCEPTI ON does not cause dynamic memory allocations.

Should I use boost::throw_exception or
BOOST_THROW_EXCEPTION or just throw?

The benefit of calling boost : : t hr ow_excepti on instead of using throw directly is that it ensures
that the emitted exception derives from boost::exception and that it is compatible with
boost::current_exception.

The BOOST_THROW EXCEPTI ON macro also results in a call to boost:: t hrow excepti on, but in
addition it records in the exception object the _ FILE__ and __LINE__ of the throw, as well as the
pretty name of the function that throws. This enables boost: : di agnostic_information to
compose a more useful, if not user-friendly message.

Typical use of boost : : di agnosti c_i nf ormati on is:

catch(...)
{

std::cerr <<
"Unexpected exception, diagnostic information follows:\n" <<
current_exception_diagnostic_information();

This is a possible message it may display —the information in the first line is only available if
BOOST_THROW EXCEPTI ONwas used to throw:

example_io.cpp(70): Throw in function class boost::shared_ptr<struct _iobuf> __cdecl
my_fopen(const char *,const char *)

Dynamic exception type: class boost::exception_detail::clone_impl<class fopen_error>
std::exception::what: example_io error

[struct boost::errinfo_api_function_ *] = fopen

42

[struct boost::errinfo_errno_ *] = 2, "No such file or directory"
[struct boost::errinfo_file_name_ *] = tmp1.txt
[struct boost::errinfo_file_open_mode_ *] = rb

In some development environments, the first line in that message can be clicked to show the
location of the throw in the debugger, so it’s easy to set a break point and run again to see the
unexpected throw in the context of its call stack.

Why doesn’t boost::exception derive from
std::exception?

Despite that virtual inheritance should be used in deriving from base exception types, quite often
exception types (including the ones defined in the standard library) don’t derive from
std::exception virtually.

If boost : : excepti on derives from std::exception, using the enabl e_error_i nf o function with
such user-defined types would introduce dangerous ambiguity which would break all
catch(std::exception &) statements.

Of course, boost : : excepti on should not be used to replace std::exception as a base type in
exception type hierarchies. Instead, it should be included as a virtual base, in addition to
std::exception (wWhich should probably also be derived virtually.)

Why is boost::exception abstract?

To prevent exception-neutral contexts from erroneously erasing the type of the original exception
when adding err or _i nf o to an active exception object:

catch(boost::exception & e)

{
e << foo_info(foo);
throw e; //Compile error: boost::exception is abstract

}

The correct code is:

catch(boost::exception & e)

{
e << foo_info(foo);
throw; //Okay, re-throwing the original exception object.

}

43

Why use operator<< overload for adding info to
exceptions?

Before throwing an object of type that derives from boost : : excepti on, it is often desirable to add
one or more error_info objects in it. The syntactic sugar provided by oper at or << allows this to
be done directly in a throw expression:

throw error() << foo_info(foo) << bar_info(bar);

Why is operator<< allowed to throw?

This question is referring to the following issue. Consider this throw statement example:
throw file_open_error() << file_name(fn);

The intention here is to throw a file_open_error, however if oper at or << fails to copy the std::string
contained in the file_name error_i nf o wrapper, a std::bad_alloc could propagate instead. This
behavior seems undesirable to some programmers.

"Throwing an exception requires an object to throw. A C++ implementation
is required to have enough spare memory to be able to throw bad_alloc in
case of memory exhaustion. However, it is possible that throwing some
other exception will cause memory exhaustion."

— Bjarne Stroustrup, The C++ Programming Language 3rd Edition p. 371

Therefore, the language itself does not guarantee that an attempt to throw an exception is
guaranteed to throw an object of the specified type; propagating a std::bad_alloc seems to be a
possibility even outside of the scope of Boost Exception.

44

Acknowledgements

Thanks to Peter Dimov for his continuing help. Also thanks to Tobias Schwinger, Tom Brinkman,
Pavel Vozenilek and everyone who participated in the review process.

Copyright 2006-2026 Emil Dotchevski and Reverge Studios, Inc.

Distributed under the Boost Software License, Version 1.0.

45

http://www.boost.org/LICENSE_1_0.txt

	Boost Exception
	Introduction
	Tutorial
	Transporting of Arbitrary Data to the Catch Site
	Integrating Boost Exception in Existing Exception Class Hierarchies
	Transporting of Exceptions Between Threads
	Exception Types as Simple Semantic Tags
	Using Virtual Inheritance in Exception Types
	Diagnostic Information

	Synopsis
	exception.hpp
	error_info.hpp
	info.hpp
	info_tuple.hpp
	enable_error_info.hpp
	diagnostic_information.hpp
	current_exception_cast.hpp
	exception_ptr.hpp
	enable_current_exception.hpp
	throw_exception.hpp
	errinfo_api_function.hpp
	errinfo_at_line.hpp
	errinfo_errno.hpp
	errinfo_file_handle.hpp
	errinfo_file_name.hpp
	errinfo_file_open_mode.hpp
	errinfo_nested_exception.hpp
	errinfo_type_info_name.hpp
	all.hpp

	Reference
	Types
	Functions
	Macros
	Configuration Macros

	Design Rationale
	Exception wrapping
	The boost::exception solution

	Frequently Asked Questions
	What is the cost of calling boost::throw_exception?
	What is the cost of BOOST_THROW_EXCEPTION?
	Should I use boost::throw_exception or BOOST_THROW_EXCEPTION or just throw?
	Why doesn’t boost::exception derive from std::exception?
	Why is boost::exception abstract?
	Why use operator<< overload for adding info to exceptions?
	Why is operator<< allowed to throw?

	Acknowledgements

