<para> If your compiler does not appear in this list, please try the preferred syntax and report your results to the Boost list so that we can keep this table up-to-date.</para>
<using-classname="boost::function"/>
<section>
<title>Basic Usage</title><para> A function wrapper is defined simply
by instantiating the <computeroutput>function</computeroutput> class
template with the desired return type and argument types, formulated
as a C++ function type. Any number of arguments may be supplied, up to
some implementation-defined limit (10 is the default maximum). The
following declares a function object wrapper
<computeroutput>f</computeroutput> that takes two
<computeroutput>int</computeroutput> parameters and returns a
<computeroutput>float</computeroutput>:
<informaltable>
<tgroupcols="2"align="left">
<thead>
<row>
<entry>Preferred syntax</entry>
<entry>Portable syntax</entry>
</row>
</thead>
<tbody>
<row>
<entry>
<programlistingname="function.tutorial.arith.cxx98"><classname>boost::function</classname><float (int x, int y)> f;</programlisting>
<programlistingname="function.tutorial.sum_avg_decl.cxx98"><classname>boost::function</classname><void (int values[], int n, int& sum, float& avg)> sum_avg;</programlisting>
<para> Invoking a function object wrapper that does not actually
contain a function object is a precondition violation, much like
trying to call through a null function pointer, and will throw a <classname>bad_function_call</classname> exception). We can check for an
empty function object wrapper by using it in a boolean context (it evaluates <computeroutput>true</computeroutput> if the wrapper is not empty) or compare it against <computeroutput>0</computeroutput>. For instance:
method will return whether or not the wrapper is empty. </para>
<para> Finally, we can clear out a function target by assigning it to <computeroutput>0</computeroutput> or by calling the <computeroutput><methodname>clear</methodname>()</computeroutput> member function, e.g.,
<para> Free function pointers can be considered singleton function objects with const function call operators, and can therefore be directly used with the function object wrappers:
<para> Note that the <computeroutput>&</computeroutput> isn't really necessary unless you happen to be using Microsoft Visual C++ version 6. </para>
</section>
<section>
<title>Member functions</title>
<para> In many systems, callbacks often call to member functions of a
particular object. This is often referred to as "argument binding",
and is beyond the scope of Boost.Function. The use of member functions
directly, however, is supported, so the following code is valid:
<programlistingname="function.tutorial.X">struct X {
<listitem><para>The <libraryname>Lambda</libraryname> library. This library provides a powerful composition mechanism to construct function objects that uses very natural C++ syntax. Lambda requires a compiler that is reasonably conformant to the C++ standard. </para></listitem>
</itemizedlist>
</para>
</section>
<section>
<title>References to Functions</title><para> In some cases it is
expensive (or semantically incorrect) to have Boost.Function clone a
function object. In such cases, it is possible to request that
Boost.Function keep only a reference to the actual function
object. This is done using the <computeroutput>ref</computeroutput>
and <computeroutput>cref</computeroutput> functions to wrap a