Files
function/doc/tutorial.html

251 lines
11 KiB
HTML
Raw Normal View History

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Boost.Function Tutorial</title>
</head>
<body bgcolor="#FFFFFF" text="#000000" link="#0000FF" vlink="#800080">
<h1><IMG SRC="../../../c++boost.gif" WIDTH="276" HEIGHT="86">Boost.Function Tutorial</h1>
<p> Boost.Function has two syntactical forms: the preferred form and the compatibility form. The tutorial is therefore split into two sections: the first section introduces Boost.Function using the <a href="#preferred">preferred form</a> and the second section introduces Boost.Function using a <a href="#compatibility">compatibility form</a> that is available on all supported compilers. If you intend to write code to be compiled only on conforming compilers, use the preferred form; if compatibility with nonconforming compilers (e.g., Borland C++ 5.5.1 or Microsoft Visual C++ 6.0/7.0) is required, use the compatibility form. The compatibility form coincides with the older Boost.Function usage.
<a name="preferred"><h2>Preferred Syntactic Form: Basic Usage</h2></a>
<p> A function wrapper is defined simply by instantiating the <code>function</code> class template with the desired return type and argument types, formulated as a C++ function type. Any number of arguments may be supplied, up to some implementation-defined limit (10 is the default maximum). The following declares a function object wrapper <code>f</code> that takes two <code>int</code> parameters and returns a <code>float</code>:
<pre>
boost::<a href="reference.html#function">function</a>&lt;float (int x, int y)&gt; f;
</pre>
<p> By default, function object wrappers are empty, so we can create a
function object to assign to <code>f</code>:
<pre>
struct int_div {
float operator()(int x, int y) const { return ((float)x)/y; };
};
f = int_div();
</pre>
<p> Now we can use <code>f</code> to execute the underlying function object
<code>int_div</code>:
<pre>
std::cout &lt;&lt; f(5, 3) &gt;&gt; std::endl;
</pre>
<p> We are free to assign any compatible function object to <code>f</code>. If <code>int_div</code> had been declared to take two <code>long</code> operands,
the implicit conversions would have been applied to the arguments without any user interference. The only limit on the types of arguments is that they be CopyConstructible, so we can even use references and arrays:
<pre>
boost::function&lt;void (int values[], int n, int&amp; sum, float&amp; avg)&gt; sum_avg;
void do_sum_avg(int values[], int n, int& sum, float&amp; avg)
{
sum = 0;
for (int i = 0; i &lt; n; i++)
sum += values[i];
avg = (float)sum / n;
}
sum_avg = &amp;do_sum_avg;
</pre>
<p> Invoking a function object wrapper that does not actually contain a function object is a precondition violation, much like trying to call through a null function pointer. We can check for an empty function object wrapper by querying its <code><a href="reference.html#empty">empty</a>()</code> method or, more succinctly, by using it in a boolean context: if it evaluates true, it contains a function object target, i.e.,
<pre>
if (f)
std::cout &lt;&lt; f(5, 3) &lt;&lt; std::endl;
else
std::cout &lt;&lt; "f has no target, so it is unsafe to call" &lt;&lt; std::endl;
</pre>
<p> We can clear out a function target using the <code><a href="reference.html#functionN_clear">clear</a>()</code> member function.
<h3>Free functions</h3>
<p> Free function pointers can be considered singleton function objects with const function call operators, and can therefore be directly used with the function object wrappers:
<pre>
float mul_ints(int x, int y) { return ((float)x) * y; }
f = &amp;mul_ints;
</pre>
<p> Note that the <code>&amp;</code> isn't really necessary unless you happen to be using Microsoft Visual C++ version 6.
<h3>Member functions</h3>
<a name="member_func">
<p> In many systems, callbacks often call to member functions of a particular
object. This is often referred to as "argument binding", and is beyond the scope of Boost.Function. The use of member functions directly, however, is supported, so the following code is valid:
<pre>
struct X {
int foo(int);
};
boost::function&lt;int (X*, int)&gt; f;
f = &amp;X::foo;
X x;
f(&amp;x, 5);
</pre>
<p> Several libraries exist that support argument binding. Three such libraries are summarized below:
<ul>
<li> <a href="../../bind/bind.html">Boost.Bind</a>. This library allows binding of arguments for any function object. It is lightweight and very portable.</li>
<li> The C++ Standard library. Using <code>std::bind1st</code> and <code>std::mem_fun</code> together one can bind the object of a pointer-to-member function for use with Boost.Function:
<pre>
struct X {
int foo(int);
};
boost::function&lt;int (int)&gt; f;
X x;
f = std::bind1st(std::mem_fun(&X::foo), &x);
f(5); // Call x.foo(5)</pre></li>
<li><a href="../../lambda/doc/index.html">The Boost.Lambda library</a>. This library provides a powerful composition mechanism to construct function objects that uses very natural C++ syntax. Lambda requires a compiler that is reasonably conformant to the C++ standard. </li>
</ul>
<h3>References to Functions</h3>
<p> In some cases it is expensive (or semantically incorrect) to have
Boost.Function clone a function object. In such cases, it is possible
to request that Boost.Function keep only a reference to the actual
function object. This is done using the <a
href="../../bind/ref.html"><code>ref</code></a> and <a
href="../../bind/ref.html"><code>cref</code></a> functions to wrap a
reference to a function object:
<pre>
stateful_type a_function_object;
boost::function&lt;int (int)&gt; f;
f = ref(a_function_object);
boost::function&lt;int (int)&gt; f2(f);
</pre>
Here, <code>f</code> will not make a copy of
<code>a_function_object</code>, nor will <code>f2</code> when it is
targeted to <code>f</code>'s reference to
<code>a_function_object</code>. Additionally, when using references to
function objects, Boost.Function will not throw exceptions during
assignment or construction.
<a name="compatibility"><h2>Compatible Syntactic Form: Basic usage</h2></a>
<p> A function wrapper is defined simply by instantiating a <code>function<em>I</em></code> class template with the desired return type and argument types, where <em>I</em> denotes the number of argument types. Any number of arguments may be supplied, up to some implementation-defined limit (10 is the default maximum). The following declares a function object wrapper <code>f</code> that takes two <code>int</code> parameters and returns a <code>float</code>:
<pre>
boost::<a href="reference.html#functionN">function2</a>&lt;float, int, int&gt; f;
</pre>
<p> By default, function object wrappers are empty, so we can create a
function object to assign to <code>f</code>:
<pre>
struct int_div {
float operator()(int x, int y) const { return ((float)x)/y; };
};
f = int_div();
</pre>
<p> Now we can use <code>f</code> to execute the underlying function object
<code>int_div</code>:
<pre>
std::cout &lt;&lt; f(5, 3) &lt;&lt; std::endl;
</pre>
<p> We are free to assign any compatible function object to <code>f</code>. If <code>int_div</code> had been declared to take two <code>long</code> operands,
the implicit conversions would have been applied to the arguments without any user interference. The only limit on the types of arguments is that they be CopyConstructible, so we can even use references and arrays:
<pre>
boost::function4&lt;void, int[], int, int&amp;, float&amp;&gt; sum_avg;
void do_sum_avg(int values[], int n, int&amp; sum, float&amp; avg)
{
sum = 0;
for (int i = 0; i &lt; n; i++)
sum += values[i];
avg = (float)sum / n;
}
sum_avg = &amp;do_sum_avg;
</pre>
<p> Invoking a function object wrapper that does not actually contain a function object is a precondition violation, much like trying to call through a null function pointer. We can check for an empty function object wrapper by querying its <code><a href="reference.html#empty">empty</a>()</code> method or, more succinctly, by using it in a boolean context: if it evaluates true, it contains a function object target, i.e.,
<pre>
if (f)
std::cout << f(5, 3) << std::endl;
else
std::cout << "f has no target, so it is unsafe to call" << std::endl;
</pre>
<p> We can clear out a function target using the <code><a href="reference.html#functionN_clear">clear</a>()</code> member function.
<h3>Free functions</h3>
<p> Free function pointers can be considered singleton function objects with const function call operators, and can therefore be directly used with the function object wrappers:
<pre>
float mul_ints(int x, int y) { return ((float)x) * y; }
f = &amp;mul_ints;
</pre>
<p> Note that the <code>&amp;</code> isn't really necessary unless you happen to be using Microsoft Visual C++ version 6.
<h3>Member functions</h3>
<a name="member_func">
<p> In many systems, callbacks often call to member functions of a particular
object. This is often referred to as "argument binding", and is beyond the scope of Boost.Function. The use of member functions directly, however, is supported, so the following code is valid:
<pre>
struct X {
int foo(int);
};
boost::function2&lt;int, X*, int&gt; f;
f = &amp;X::foo;
X x;
f(&amp;x, 5);
</pre>
<p> Several libraries exist that support argument binding. Three such libraries are summarized below:
<ul>
<li> <a href="../../bind/bind.html">Boost.Bind</a>. This library allows binding of arguments for any function object. It is lightweight and very portable.</li>
<li> The C++ Standard library. Using <code>std::bind1st</code> and <code>std::mem_fun</code> together one can bind the object of a pointer-to-member function for use with Boost.Function:
<pre>
struct X {
int foo(int);
};
boost::function1&lt;int, int&gt; f;
X x;
f = std::bind1st(std::mem_fun(&X::foo), &x);
f(5); // Call x.foo(5)</pre></li>
<li><a href="../../lambda/doc/index.html">The Boost.Lambda library</a>. This library provides a powerful composition mechanism to construct function objects that uses very natural C++ syntax. Lambda requires a compiler that is reasonably conformant to the C++ standard. </li>
</ul>
<h3>References to Functions</h3>
<p> In some cases it is expensive (or semantically incorrect) to have
Boost.Function clone a function object. In such cases, it is possible
to request that Boost.Function keep only a reference to the actual
function object. This is done using the <a
href="../../bind/ref.html"><code>ref</code></a> and <a
href="../../bind/ref.html"><code>cref</code></a> functions to wrap a
reference to a function object:
<pre>
stateful_type a_function_object;
boost::function1&lt;int, int&gt; f;
f = ref(a_function_object);
boost::function1&lt;int, int&gt; f2(f);
</pre>
Here, <code>f</code> will not make a copy of
<code>a_function_object</code>, nor will <code>f2</code> when it is
targeted to <code>f</code>'s reference to
<code>a_function_object</code>. Additionally, when using references to
function objects, Boost.Function will not throw exceptions during
assignment or construction.
<hr>
<address><a href="mailto:gregod@cs.rpi.edu">Douglas Gregor</a></address>
<!-- Created: Fri Jul 13 12:47:11 EDT 2001 -->
<!-- hhmts start -->
Last modified: Fri Jul 19 17:17:15 EDT 2002
<!-- hhmts end -->
</body>
</html>