Merge pull request #53 from Flast/bugfix/documentation

Documentation bugfix.
This commit is contained in:
Joel de Guzman
2015-02-09 06:35:12 +08:00
6 changed files with 68 additions and 62 deletions

View File

@ -441,10 +441,10 @@ Linear, exactly `__result_of_size__<Sequence>::value` applications of `F`.
[endsect]
[section for_each]
A metafunction returning the result type of applying __for_each__ to a sequence. The
return type of __for_each__ is always `void`.
[heading Description]
A metafunction returning the result type of applying __for_each__ to a sequence. The
return type of __for_each__ is always `void`.
[heading Synopsis]
template<
@ -724,8 +724,10 @@ or `__end__(seq)` if there is no such element.
[heading Complexity]
Linear. At most `__result_of_size__<Sequence>::value` comparisons.
#include <boost/fusion/algorithm/query/find_if.hpp>
#include <boost/fusion/include/find_if.hpp>
[heading Header]
#include <boost/fusion/algorithm/query/find_if.hpp>
#include <boost/fusion/include/find_if.hpp>
[heading Example]
const __vector__<double,int> vec(1.0,2);
@ -1361,7 +1363,7 @@ Returns a new sequence, with all the elements of the original sequence, except t
typename T,
typename Sequence
>
typename __result_of_remove__<Sequence const, T>::type replace(Sequence const& seq);
typename __result_of_remove__<Sequence const, T>::type remove(Sequence const& seq);
[table Parameters
[[Parameter][Requirement][Description]]
@ -1830,7 +1832,7 @@ Constant. Returns a view which is lazily evaluated.
#include <boost/fusion/include/pop_back.hpp>
[heading Example]
assert(___pop_back__(__make_vector__(1,2,3)) == __make_vector__(1,2));
assert(__pop_back__(__make_vector__(1,2,3)) == __make_vector__(1,2));
[endsect]
@ -2089,32 +2091,33 @@ Constant.
[section transform]
[heading Description]
For a sequence `seq` and function object or function pointer `f`, `transform` returns a new sequence
with elements created by applying `f(e)` to each element of `e` of `seq`.
Returns the result type of __transform__, given the types of the input sequence and unary __poly_func_obj__.
[heading Unary version synopsis]
template<
typename Sequence,
typename F
>
typename __result_of_transform__<Sequence const, F>::type transform(
Sequence const& seq, F f);
struct transform
{
typedef __unspecified__ type;
};
[table Parameters
[[Parameter][Requirement][Description]]
[[`seq`][A model of __forward_sequence__][Operation's argument]]
[[`f`][`f(e)` is a valid expression for each element `e` of `seq`. `__boost_result_of_call__<F(E)>::type` is the return type of `f` when called with a value of each element type `E`.][Transformation function]]
[[`Sequence`][A model of __forward_sequence__][Operation's argument]]
[[`F`][A model of unary __poly_func_obj__][Transformation metafunction]]
]
[heading Expression Semantics]
__transform__(seq, f);
__result_of_transform__<Sequence, F>::type
[*Return type]:
* A model of __forward_sequence__
* A model of __associative_sequence__ if `Sequence` implements the __associative_sequence__ model.
[*Semantics]: Returns a new sequence, containing the return values of `f(e)` for each element `e` within `seq`.
[*Semantics]: Returns a sequence that contains the types of `__result_of__<F(E)>::type` for each element `E` within `Sequence`.
[heading Binary version synopsis]
template<
@ -2122,41 +2125,33 @@ with elements created by applying `f(e)` to each element of `e` of `seq`.
typename Sequence2,
typename F
>
typename __result_of_transform__<Sequence1 const, Sequence2 const, F>::type transform(
Sequence1 const& seq1, Sequence2 const& seq2, F f);
struct transform
{
typedef __unspecified__ type;
};
[table Parameters
[[Parameter][Requirement][Description]]
[[`seq1`][A model of __forward_sequence__][Operation's argument]]
[[`seq2`][A model of __forward_sequence__][Operation's argument]]
[[`f`][`f(e1,e2)` is a valid expression for each pair of elements `e1` of `seq1` and `e2` of `seq2`. `__boost_result_of_call__<F(E1,E2)>::type` is the return type of `f` when called with elements of type `E1` and `E2`][Transformation function]]
[[`Sequence1`][A model of __forward_sequence__][Operation's argument]]
[[`Sequence2`][A model of __forward_sequence__][Operation's argument]]
[[`F`][A model of binary __poly_func_obj__][Transformation metafunction]]
]
[heading Expression Semantics]
__result_of_transform__<Sequence1, Sequence2, F>::type
[*Return type]: A model of __forward_sequence__.
[*Semantics]: Returns a new sequence, containing the return values of `f(e1, e2)` for each pair of elements `e1` and `e2` within `seq1` and `seq2` respectively.
[*Semantics]: Returns a sequence, that contains the types of `__result_of__<F(E1, E2)>::type` for each pair of elements `E1` and `E2` within `Sequence1` and `Sequence2` respectively.
[heading Complexity]
Constant. Returns a view which is lazily evaluated.
Constant.
[heading Header]
#include <boost/fusion/algorithm/transformation/transform.hpp>
#include <boost/fusion/include/transform.hpp>
[heading Example]
struct triple
{
typedef int result_type;
int operator()(int t) const
{
return t * 3;
};
};
...
assert(__transform__(__make_vector__(1,2,3), triple()) == __make_vector__(3,6,9));
[endsect]
[section replace]
@ -2200,7 +2195,7 @@ Constant.
[section replace_if]
[heading Description]
Returns the result type of __replace_if__, given the types of the sequence, __poly_func_obj__ predicate and replacement object.
Returns the result type of __replace_if__, given the types of the sequence, unary __mpl_lambda_expression__ predicate and replacement object.
[heading Synopsis]
template<
@ -2215,7 +2210,7 @@ Returns the result type of __replace_if__, given the types of the sequence, __po
[table Parameters
[[Parameter][Requirement][Description]]
[[`Sequence`][A model of __forward_sequence__][Operation's argument]]
[[`F`][A model of unary __poly_func_obj__][Replacement predicate]]
[[`F`][A model of unary __mpl_lambda_expression__][Replacement predicate]]
[[`T`][Any type][The type of the replacement object]]
]
@ -2265,7 +2260,7 @@ Returns the result type of __remove__, given the sequence and removal types.
* A model of __forward_sequence__.
* A model of __associative_sequence__ if `Sequence` implements the __associative_sequence__ model.
[*Semantics]: Returns a sequence containing the elements of `Sequence` not of type `T`. Equivalent to `__result_of_replace_if__<Sequence, boost::is_same<mpl::_, T> >::type`.
[*Semantics]: Returns a sequence containing the elements of `Sequence` not of type `T`. Equivalent to `__result_of_remove_if__<Sequence, boost::is_same<mpl::_, T> >::type`.
[heading Complexity]
Constant.

View File

@ -323,7 +323,7 @@ For our __random_access_sequence__ we will also need to implement `size_impl`,
In order for `example_struct` to serve as an associative forward sequence,
we need to adapt the traversal category of our sequence and our iterator
accordingly and enable 3 intrinsic sequence lookup features, __at_key__,
__value_at_key__ and __has_key__. We also need to enable 3 iterator lookup
__result_of_value_at_key__ and __has_key__. We also need to enable 3 iterator lookup
features, __result_of_key_of__, __result_of_value_of_data__ and __deref_data__.
To implement `at_key_impl` we need to associate the `fields::name` and `fields::age`

View File

@ -321,10 +321,10 @@
[def __result_of_invoke__ [link fusion.functional.invocation.metafunctions.invoke `result_of::invoke`]]
[def __result_of_invoke_procedure__ [link fusion.functional.invocation.metafunctions.invoke_proc `result_of::invoke_procedure`]]
[def __result_of_invoke_function_object__ [link fusion.functional.invocation.metafunctions.invoke_fobj `result_of::invoke_function_object`]]
[def __result_of_make_fused__ [link fusion.functional.generation.metafunctions.mk_fused `make_fused`]]
[def __result_of_make_fused_procedure__ [link fusion.functional.generation.metafunctions.mk_fused_proc `make_fused_procedure`]]
[def __result_of_make_fused_function_object__ [link fusion.functional.generation.metafunctions.mk_fused_fobj `make_fused_function_object`]]
[def __result_of_make_unfused__ [link fusion.functional.generation.metafunctions.mk_unfused `make_unfused`]]
[def __result_of_make_fused__ [link fusion.functional.generation.metafunctions.mk_fused `result_of::make_fused`]]
[def __result_of_make_fused_procedure__ [link fusion.functional.generation.metafunctions.mk_fused_proc `result_of::make_fused_procedure`]]
[def __result_of_make_fused_function_object__ [link fusion.functional.generation.metafunctions.mk_fused_fobj `result_of::make_fused_function_object`]]
[def __result_of_make_unfused__ [link fusion.functional.generation.metafunctions.mk_unfused `result_of::make_unfused`]]
[def __recursive_inline__ [link fusion.notes.recursive_inlined_functions Recursive Inlined Functions]]
[def __overloaded_functions__ [link fusion.notes.overloaded_functions Overloaded Functions]]

View File

@ -67,8 +67,7 @@ the following expressions are valid:
]
[heading Expression Semantics]
[
table
[table
[[Expression] [Semantics]]
[[`__next__(i)`] [An iterator to the element following `i`]]
[[`i == j`] [Iterator equality comparison]]
@ -418,15 +417,15 @@ Moves an iterator by a specified distance.
[heading Synopsis]
template<
typename I,
typename M
typename M,
typename I
>
typename __result_of_advance__<I, M>::type advance(I const& i);
[table Parameters
[[Parameter] [Requirement] [Description]]
[[`i`] [Model of __forward_iterator__] [Iterator to move relative to]]
[[`N`] [An __mpl_integral_constant__] [Number of positions to move]]
[[`M`] [An __mpl_integral_constant__] [Number of positions to move]]
]
[heading Expression Semantics]
@ -455,8 +454,8 @@ Moves an iterator by a specified distance.
[heading Synopsis]
template<
typename I,
int N
int N,
typename I
>
typename __result_of_advance_c__<I, N>::type advance_c(I const& i);
@ -537,7 +536,7 @@ Dereferences an iterator.
template<
typename I
>
typename __result_of_deref__<I>::type operator*(__unspecified__<I> const& i);
typename __result_of_deref__<I>::type operator*(I const& i);
[table Parameters
[[Parameter] [Requirement] [Description]]

View File

@ -36,20 +36,26 @@ link against.
* tuple
* algorithm
* auxiliary
* iteration
* query
* transformation
* adapted
* adt
* array
* mpl
* boost::array
* boost::tuple
* mpl
* std_pair
* std_tuple
* struct
* variant
* view
* filter_view
* flatten_view
* iterator_range
* joint_view
* nview
* repetitive_view
* reverse_view
* single_view
* transform_view
@ -63,6 +69,9 @@ link against.
* generation
* mpl
* functional
* adapter
* generation
* invocation
* sequence
* comparison
* intrinsic

View File

@ -249,15 +249,18 @@ any Random Access Sequence the following must be met:
[[Expression] [Compile Time Complexity]]
[[`__result_of_begin__<S>::type`] [Amortized constant time]]
[[`__result_of_end__<S>::type`] [Amortized constant time]]
[[`__result_of_at__<S, N>::type`] [Amortized constant time]]
[[`__result_of_value_at__<S, N>::type`] [Amortized constant time]]
[[`__result_of_at__<S, M>::type`] [Amortized constant time]]
[[`__result_of_at_c__<S, N>::type`] [Amortized constant time]]
[[`__result_of_value_at__<S, M>::type`] [Amortized constant time]]
[[`__result_of_value_at_c__<S, N>::type`] [Amortized constant time]]
]
[blurb __note__ `__result_of_at__<S, N>` returns the actual type returned by
`__at__<N>(s)`. In most cases, this is a reference. Hence, there is no way to
know the exact element type using `__result_of_at__<S, N>`.The element at `N`
[blurb __note__ `__result_of_at__<S, M>` returns the actual type returned by
`__at__<M>(s)`. In most cases, this is a reference. Hence, there is no way to
know the exact element type using `__result_of_at__<S, M>`.The element at `M`
may actually be a reference to begin with. For this purpose, you can use
`__result_of_value_at__<S, N>`.]
`__result_of_value_at__<S, M>` (Note that, `__result_of_value_at_c__<S, N>`
is a counterpart of `__result_of_at_c__<S, N>` as well).]
[heading Expression Semantics]
@ -331,7 +334,7 @@ For any Associative Sequence the following expressions must be valid:
by `__at_key__<K>(s)`. In most cases, this is a reference. Hence, there is no
way to know the exact element type using `__result_of_at_key__<S, K>`.The
element at `K` may actually be a reference to begin with. For this purpose,
you can use `__result_of_value_at_key__<S, N>`.]
you can use `__result_of_value_at_key__<S, K>`.]
[heading Expression Semantics]
@ -1323,7 +1326,7 @@ Returns the result type of __has_key__.
[heading Description]
Returns the result type of __at_key__[footnote __result_of_at_key__
reflects the actual return type of the function __at_key__. __sequence__s
reflects the actual return type of the function __at_key__. __sequence__(s)
typically return references to its elements via the __at_key__ function. If
you want to get the actual element type, use __result_of_value_at_key__].
@ -1445,7 +1448,7 @@ operators for free.
The I/O operators: `<<` and `>>` work generically on all Fusion
sequences. The I/O operators are overloaded in namespace `boost::fusion`
[footnote __sequences__ and __views__ residing in different namespaces
[footnote __sequence__(s) and __views__ residing in different namespaces
will have to either provide their own I/O operators (possibly forwarding
to fusion's I/O operators) or hoist fusion's I/O operators (using
declaration), in their own namespaces for proper argument dependent
@ -1637,7 +1640,7 @@ compile time error.
[*Semantics]:
For each element, `e1`, in sequence `a`, and for each element, `e2`, in
sequence `b`, `e1 == e2` returns true. For any 2 zero length __sequence__s,
sequence `b`, `e1 == e2` returns true. For any 2 zero length __sequence__(s),
e and f, e == f returns true.
[heading Header]