mirror of
				https://github.com/boostorg/integer.git
				synced 2025-11-04 02:01:38 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			172 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			172 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
 *  (C) Copyright Nick Thompson 2018.
 | 
						|
 *  Use, modification and distribution are subject to the
 | 
						|
 *  Boost Software License, Version 1.0. (See accompanying file
 | 
						|
 *  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | 
						|
 *
 | 
						|
 *  Two methods of computing the discrete logarithm over the multiplicative group of integers mod p.
 | 
						|
 */
 | 
						|
 | 
						|
#ifndef BOOST_INTEGER_DISCRETE_LOG_HPP
 | 
						|
#define BOOST_INTEGER_DISCRETE_LOG_HPP
 | 
						|
#include <stdexcept>
 | 
						|
#include <limits>
 | 
						|
#include <sstream>
 | 
						|
#include <unordered_map>
 | 
						|
#include <boost/throw_exception.hpp>
 | 
						|
#include <boost/optional.hpp>
 | 
						|
#include <boost/multiprecision/integer.hpp>
 | 
						|
#include <boost/integer/common_factor_rt.hpp>
 | 
						|
#include <boost/integer/mod_inverse.hpp>
 | 
						|
 | 
						|
namespace boost { namespace integer {
 | 
						|
 | 
						|
// base^^x = a mod p <-> x = log_base(a) mod p
 | 
						|
template<class Z>
 | 
						|
boost::optional<Z> trial_multiplication_discrete_log(Z base, Z arg, Z modulus)
 | 
						|
{
 | 
						|
    if (base <= 1)
 | 
						|
    {
 | 
						|
        std::ostringstream oss;
 | 
						|
        oss << "The base b is " << base << ", but must be > 1.\n";
 | 
						|
        BOOST_THROW_EXCEPTION(std::domain_error(oss.str()));
 | 
						|
    }
 | 
						|
    if (modulus < 3)
 | 
						|
    {
 | 
						|
        std::ostringstream oss;
 | 
						|
        oss << "The modulus must be > 2, but is " << modulus << ".\n";
 | 
						|
        BOOST_THROW_EXCEPTION(std::domain_error(oss.str()));
 | 
						|
    }
 | 
						|
    if (arg < 1)
 | 
						|
    {
 | 
						|
        std::ostringstream oss;
 | 
						|
        oss << "The argument must be > 0, but is " << arg << ".\n";
 | 
						|
        BOOST_THROW_EXCEPTION(std::domain_error(oss.str()));
 | 
						|
    }
 | 
						|
    if (base >= modulus || arg >= modulus)
 | 
						|
    {
 | 
						|
        if (base >= modulus)
 | 
						|
        {
 | 
						|
            std::ostringstream oss;
 | 
						|
            oss << "Error computing the discrete log: The base " << base
 | 
						|
                << " is greater than the modulus " << modulus
 | 
						|
                << ". Are the arguments in the wrong order?";
 | 
						|
            BOOST_THROW_EXCEPTION(std::domain_error(oss.str()));
 | 
						|
        }
 | 
						|
        if (arg >= modulus)
 | 
						|
        {
 | 
						|
            std::ostringstream oss;
 | 
						|
            oss << "Error computing the discrete log: The argument " << arg
 | 
						|
                << " is greater than the modulus " << modulus
 | 
						|
                << ". Are the arguments in the wrong order?";
 | 
						|
            BOOST_THROW_EXCEPTION(std::domain_error(oss.str()));
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (arg == 1)
 | 
						|
    {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    Z s = 1;
 | 
						|
    for (Z i = 1; i < modulus; ++i)
 | 
						|
    {
 | 
						|
        s = (s * base) % modulus;
 | 
						|
        if (s == arg)
 | 
						|
        {
 | 
						|
            // Maybe a bit trivial assertion. But still a negligible fraction of the total compute time.
 | 
						|
            BOOST_ASSERT(arg == boost::multiprecision::powm(base, i, modulus));
 | 
						|
            return i;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return {};
 | 
						|
}
 | 
						|
 | 
						|
template<class Z>
 | 
						|
class bsgs_discrete_log
 | 
						|
{
 | 
						|
public:
 | 
						|
    bsgs_discrete_log(Z base, Z modulus) : m_p{modulus}, m_base{base}
 | 
						|
    {
 | 
						|
        using std::numeric_limits;
 | 
						|
        static_assert(numeric_limits<Z>::is_integer,
 | 
						|
                      "The baby-step, giant-step discrete log works on integral types.\n");
 | 
						|
 | 
						|
        if (base <= 1)
 | 
						|
        {
 | 
						|
            BOOST_THROW_EXCEPTION(std::logic_error("The base must be > 1.\n"));
 | 
						|
        }
 | 
						|
        if (modulus < 3)
 | 
						|
        {
 | 
						|
            BOOST_THROW_EXCEPTION(std::logic_error("The modulus must be > 2.\n"));
 | 
						|
        }
 | 
						|
        if (base >= modulus)
 | 
						|
        {
 | 
						|
            BOOST_THROW_EXCEPTION(std::logic_error("Error computing the discrete log: Are your arguments in the wrong order?\n"));
 | 
						|
        }
 | 
						|
        m_root_p = boost::multiprecision::sqrt(modulus);
 | 
						|
        if (m_root_p*m_root_p != modulus)
 | 
						|
        {
 | 
						|
            m_root_p += 1;
 | 
						|
        }
 | 
						|
 | 
						|
        boost::optional<Z> x = mod_inverse(base, modulus);
 | 
						|
        if (!x)
 | 
						|
        {
 | 
						|
            Z d = boost::integer::gcd(base, modulus);
 | 
						|
            std::ostringstream oss;
 | 
						|
            oss << "The gcd of the base " << base << " and the modulus " << modulus << " is " << d
 | 
						|
                << ", which is not equal 1; hence the discrete log is not guaranteed to exist.\n"
 | 
						|
                << "This breaks the baby-step giant step algorithm.\n"
 | 
						|
                << "If you don't require existence for all inputs, use trial multiplication.\n";
 | 
						|
            BOOST_THROW_EXCEPTION(std::logic_error(oss.str()));
 | 
						|
        }
 | 
						|
        m_inv_base_pow_m = boost::multiprecision::powm(x.value(), m_root_p, modulus);
 | 
						|
 | 
						|
        m_lookup_table.reserve(m_root_p);
 | 
						|
        // Now the expensive part:
 | 
						|
        Z k = 1;
 | 
						|
        for (Z j = 0; j < m_root_p; ++j)
 | 
						|
        {
 | 
						|
            m_lookup_table.emplace(k, j);
 | 
						|
            k = k*base % modulus;
 | 
						|
        }
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
    boost::optional<Z> operator()(Z arg) const
 | 
						|
    {
 | 
						|
        Z ami = m_inv_base_pow_m;
 | 
						|
        Z k = arg % m_p;
 | 
						|
        if(k == 0)
 | 
						|
        {
 | 
						|
            return {};
 | 
						|
        }
 | 
						|
        for (Z i = 0; i < m_lookup_table.size(); ++i)
 | 
						|
        {
 | 
						|
            auto it = m_lookup_table.find(k);
 | 
						|
            if (it != m_lookup_table.end())
 | 
						|
            {
 | 
						|
                Z log_b_arg = (i*m_root_p + it->second) % m_p;
 | 
						|
                // This computation of the modular exponentiation is laughably quick relative to computing the discrete log.
 | 
						|
                // Why not put an assert here for our peace of mind?
 | 
						|
                BOOST_ASSERT(arg == boost::multiprecision::powm(m_base, log_b_arg, m_p));
 | 
						|
                return log_b_arg;
 | 
						|
            }
 | 
						|
            ami = (ami*m_inv_base_pow_m) % m_p;
 | 
						|
            k = k * ami % m_p;
 | 
						|
        }
 | 
						|
        return {};
 | 
						|
    }
 | 
						|
 | 
						|
private:
 | 
						|
    Z m_p;
 | 
						|
    Z m_base;
 | 
						|
    Z m_root_p;
 | 
						|
    Z m_inv_base_pow_m;
 | 
						|
    std::unordered_map<Z, Z> m_lookup_table;
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
}}
 | 
						|
#endif
 |