mirror of
				https://github.com/boostorg/integer.git
				synced 2025-10-31 00:01:37 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			52 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			52 lines
		
	
	
		
			1.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| [section:mod_inverse Modular Multiplicative Inverse]
 | |
| 
 | |
| [section Introduction]
 | |
| 
 | |
| The modular multiplicative inverse of a number /a/ is that number /x/ which satisfies /ax/ = 1 mod /p/.
 | |
| A fast algorithm for computing modular multiplicative inverses based on the extended Euclidean algorithm exists and is provided by Boost.
 | |
| 
 | |
| [endsect]
 | |
| 
 | |
| [section Synopsis]
 | |
| 
 | |
|     #include <boost/integer/mod_inverse.hpp>
 | |
| 
 | |
|     namespace boost { namespace integer {
 | |
| 
 | |
|       template<class Z>
 | |
|       boost::optional<Z> mod_inverse(Z a, Z p);
 | |
| 
 | |
|     }}
 | |
| 
 | |
| [endsect]
 | |
| 
 | |
| [section Usage]
 | |
| 
 | |
| Multiplicative modular inverses exist if and only if /a/ and /p/ are coprime.
 | |
| So for example
 | |
| 
 | |
|     auto x = mod_inverse(2, 5);
 | |
|     if (x)
 | |
|     {
 | |
|         int should_be_three = x.value();
 | |
|     }
 | |
|     auto y = mod_inverse(2, 4);
 | |
|     if (!y)
 | |
|     {
 | |
|         std::cout << "There is no inverse of 2 mod 4\n";
 | |
|     }
 | |
| 
 | |
| [endsect]
 | |
| 
 | |
| [section References]
 | |
| Wagstaff, Samuel S., ['The Joy of Factoring], Vol. 68. American Mathematical Soc., 2013.
 | |
| 
 | |
| [endsect]
 | |
| [endsect]
 | |
| [/
 | |
| Copyright 2018 Nick Thompson.
 | |
| Distributed under the Boost Software License, Version 1.0.
 | |
| (See accompanying file LICENSE_1_0.txt or copy at
 | |
| http://www.boost.org/LICENSE_1_0.txt).
 | |
| ]
 |