Added avl trees

[SVN r40597]
This commit is contained in:
Ion Gaztañaga
2007-10-30 07:00:51 +00:00
parent 960f20c3af
commit 5d9b85323a
11 changed files with 5088 additions and 146 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,259 @@
/////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2007
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/intrusive for documentation.
//
/////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTRUSIVE_AVL_SET_HOOK_HPP
#define BOOST_INTRUSIVE_AVL_SET_HOOK_HPP
#include <boost/intrusive/detail/config_begin.hpp>
#include <boost/intrusive/intrusive_fwd.hpp>
#include <boost/intrusive/detail/utilities.hpp>
#include <boost/intrusive/detail/avltree_node.hpp>
#include <boost/intrusive/avltree_algorithms.hpp>
#include <boost/intrusive/options.hpp>
#include <boost/intrusive/detail/generic_hook.hpp>
namespace boost {
namespace intrusive {
/// @cond
template<class VoidPointer, bool OptimizeSize = false>
struct get_avl_set_node_algo
{
typedef avltree_algorithms<avltree_node_traits<VoidPointer, OptimizeSize> > type;
};
/// @endcond
//! Helper metafunction to define a \c avl_set_base_hook that yields to the same
//! type when the same options (either explicitly or implicitly) are used.
#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED
template<class ...Options>
#else
template<class O1 = none, class O2 = none, class O3 = none, class O4 = none>
#endif
struct make_avl_set_base_hook
{
/// @cond
typedef typename pack_options
< hook_defaults, O1, O2, O3, O4>::type packed_options;
typedef detail::generic_hook
< get_avl_set_node_algo<typename packed_options::void_pointer
,packed_options::optimize_size>
, typename packed_options::tag
, packed_options::link_mode
, detail::AvlSetBaseHook
> implementation_defined;
/// @endcond
typedef implementation_defined type;
};
//! Derive a class from avl_set_base_hook in order to store objects in
//! in an set/multiset. avl_set_base_hook holds the data necessary to maintain
//! the set/multiset and provides an appropriate value_traits class for set/multiset.
//!
//! The first integer template argument defines a tag to identify the node.
//! The same tag value can be used in different classes, but if a class is
//! derived from more than one avl_set_base_hook, then each avl_set_base_hook needs its
//! unique tag.
//!
//! The second boolean template parameter will specify the linking mode of the hook.
//!
//! The third argument is the pointer type that will be used internally in the hook
//! and the set/multiset configured from this hook.
#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED
template<class ...Options>
#else
template<class O1, class O2, class O3, class O4>
#endif
class avl_set_base_hook
: public make_avl_set_base_hook<O1, O2, O3, O4>::type
{
#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED
//! <b>Effects</b>: If link_mode is \c auto_unlink or \c safe_link
//! initializes the node to an unlinked state.
//!
//! <b>Throws</b>: Nothing.
avl_set_base_hook();
//! <b>Effects</b>: If link_mode is \c auto_unlink or \c safe_link
//! initializes the node to an unlinked state. The argument is ignored.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Rationale</b>: Providing a copy-constructor
//! makes classes using the hook STL-compliant without forcing the
//! user to do some additional work. \c swap can be used to emulate
//! move-semantics.
avl_set_base_hook(const avl_set_base_hook& );
//! <b>Effects</b>: Empty function. The argument is ignored.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Rationale</b>: Providing an assignment operator
//! makes classes using the hook STL-compliant without forcing the
//! user to do some additional work. \c swap can be used to emulate
//! move-semantics.
avl_set_base_hook& operator=(const avl_set_base_hook& );
//! <b>Effects</b>: If link_mode is \c normal_link, the destructor does
//! nothing (ie. no code is generated). If link_mode is \c safe_link and the
//! object is stored in an set an assertion is raised. If link_mode is
//! \c auto_unlink and \c is_linked() is true, the node is unlinked.
//!
//! <b>Throws</b>: Nothing.
~avl_set_base_hook();
//! <b>Effects</b>: Swapping two nodes swaps the position of the elements
//! related to those nodes in one or two containers. That is, if the node
//! this is part of the element e1, the node x is part of the element e2
//! and both elements are included in the containers s1 and s2, then after
//! the swap-operation e1 is in s2 at the position of e2 and e2 is in s1
//! at the position of e1. If one element is not in a container, then
//! after the swap-operation the other element is not in a container.
//! Iterators to e1 and e2 related to those nodes are invalidated.
//!
//! <b>Complexity</b>: Constant
//!
//! <b>Throws</b>: Nothing.
void swap_nodes(avl_set_base_hook &other);
//! <b>Precondition</b>: link_mode must be \c safe_link or \c auto_unlink.
//!
//! <b>Returns</b>: true, if the node belongs to a container, false
//! otherwise. This function can be used to test whether \c set::iterator_to
//! will return a valid iterator.
//!
//! <b>Complexity</b>: Constant
bool is_linked() const;
//! <b>Effects</b>: Removes the node if it's inserted in a container.
//! This function is only allowed if link_mode is \c auto_unlink.
//!
//! <b>Throws</b>: Nothing.
void unlink();
#endif
};
//! Helper metafunction to define a \c avl_set_member_hook that yields to the same
//! type when the same options (either explicitly or implicitly) are used.
#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED
template<class ...Options>
#else
template<class O1 = none, class O2 = none, class O3 = none, class O4 = none>
#endif
struct make_avl_set_member_hook
{
/// @cond
typedef typename pack_options
< hook_defaults, O1, O2, O3, O4>::type packed_options;
typedef detail::generic_hook
< get_avl_set_node_algo<typename packed_options::void_pointer
,packed_options::optimize_size>
, member_tag
, packed_options::link_mode
, detail::NoBaseHook
> implementation_defined;
/// @endcond
typedef implementation_defined type;
};
//! Put a public data member avl_set_member_hook in order to store objects of this class in
//! an set/multiset. avl_set_member_hook holds the data necessary for maintaining the
//! set/multiset and provides an appropriate value_traits class for set/multiset.
//!
//! The first boolean template parameter will specify the linking mode of the hook.
//!
//! The second argument is the pointer type that will be used internally in the hook
//! and the set/multiset configured from this hook.
#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED
template<class ...Options>
#else
template<class O1, class O2, class O3, class O4>
#endif
class avl_set_member_hook
: public make_avl_set_member_hook<O1, O2, O3, O4>::type
{
#ifdef BOOST_INTRUSIVE_DOXYGEN_INVOKED
//! <b>Effects</b>: If link_mode is \c auto_unlink or \c safe_link
//! initializes the node to an unlinked state.
//!
//! <b>Throws</b>: Nothing.
avl_set_member_hook();
//! <b>Effects</b>: If link_mode is \c auto_unlink or \c safe_link
//! initializes the node to an unlinked state. The argument is ignored.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Rationale</b>: Providing a copy-constructor
//! makes classes using the hook STL-compliant without forcing the
//! user to do some additional work. \c swap can be used to emulate
//! move-semantics.
avl_set_member_hook(const avl_set_member_hook& );
//! <b>Effects</b>: Empty function. The argument is ignored.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Rationale</b>: Providing an assignment operator
//! makes classes using the hook STL-compliant without forcing the
//! user to do some additional work. \c swap can be used to emulate
//! move-semantics.
avl_set_member_hook& operator=(const avl_set_member_hook& );
//! <b>Effects</b>: If link_mode is \c normal_link, the destructor does
//! nothing (ie. no code is generated). If link_mode is \c safe_link and the
//! object is stored in an set an assertion is raised. If link_mode is
//! \c auto_unlink and \c is_linked() is true, the node is unlinked.
//!
//! <b>Throws</b>: Nothing.
~avl_set_member_hook();
//! <b>Effects</b>: Swapping two nodes swaps the position of the elements
//! related to those nodes in one or two containers. That is, if the node
//! this is part of the element e1, the node x is part of the element e2
//! and both elements are included in the containers s1 and s2, then after
//! the swap-operation e1 is in s2 at the position of e2 and e2 is in s1
//! at the position of e1. If one element is not in a container, then
//! after the swap-operation the other element is not in a container.
//! Iterators to e1 and e2 related to those nodes are invalidated.
//!
//! <b>Complexity</b>: Constant
//!
//! <b>Throws</b>: Nothing.
void swap_nodes(avl_set_member_hook &other);
//! <b>Precondition</b>: link_mode must be \c safe_link or \c auto_unlink.
//!
//! <b>Returns</b>: true, if the node belongs to a container, false
//! otherwise. This function can be used to test whether \c set::iterator_to
//! will return a valid iterator.
//!
//! <b>Complexity</b>: Constant
bool is_linked() const;
//! <b>Effects</b>: Removes the node if it's inserted in a container.
//! This function is only allowed if link_mode is \c auto_unlink.
//!
//! <b>Throws</b>: Nothing.
void unlink();
#endif
};
} //namespace intrusive
} //namespace boost
#include <boost/intrusive/detail/config_end.hpp>
#endif //BOOST_INTRUSIVE_AVL_SET_HOOK_HPP

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,975 @@
/////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Daniel K. O. 2005.
// (C) Copyright Ion Gaztanaga 2007.
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/intrusive for documentation.
//
/////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTRUSIVE_AVLTREE_ALGORITHMS_HPP
#define BOOST_INTRUSIVE_AVLTREE_ALGORITHMS_HPP
#include <boost/intrusive/detail/config_begin.hpp>
#include <cstddef>
#include <boost/intrusive/intrusive_fwd.hpp>
#include <boost/intrusive/detail/assert.hpp>
#include <boost/intrusive/detail/no_exceptions_support.hpp>
#include <boost/intrusive/detail/utilities.hpp>
#include <boost/intrusive/detail/tree_algorithms.hpp>
namespace boost {
namespace intrusive {
//! avltree_algorithms is configured with a NodeTraits class, which encapsulates the
//! information about the node to be manipulated. NodeTraits must support the
//! following interface:
//!
//! <b>Typedefs</b>:
//!
//! <tt>node</tt>: The type of the node that forms the circular list
//!
//! <tt>node_ptr</tt>: A pointer to a node
//!
//! <tt>const_node_ptr</tt>: A pointer to a const node
//!
//! <tt>balance</tt>: The type of the balance factor
//!
//! <b>Static functions</b>:
//!
//! <tt>static node_ptr get_parent(const_node_ptr n);</tt>
//!
//! <tt>static void set_parent(node_ptr n, node_ptr parent);</tt>
//!
//! <tt>static node_ptr get_left(const_node_ptr n);</tt>
//!
//! <tt>static void set_left(node_ptr n, node_ptr left);</tt>
//!
//! <tt>static node_ptr get_right(const_node_ptr n);</tt>
//!
//! <tt>static void set_right(node_ptr n, node_ptr right);</tt>
//!
//! <tt>static balance get_balance(const_node_ptr n);</tt>
//!
//! <tt>static void set_balance(node_ptr n, balance b);</tt>
//!
//! <tt>static balance negative();</tt>
//!
//! <tt>static balance zero();</tt>
//!
//! <tt>static balance positive();</tt>
template<class NodeTraits>
class avltree_algorithms
{
public:
typedef NodeTraits node_traits;
typedef typename NodeTraits::node_ptr node_ptr;
typedef typename NodeTraits::const_node_ptr const_node_ptr;
typedef typename NodeTraits::balance balance;
/// @cond
private:
typedef typename NodeTraits::node node;
typedef detail::tree_algorithms<NodeTraits> tree_algorithms;
template<class F>
struct avltree_node_cloner
: private detail::ebo_functor_holder<F>
{
typedef detail::ebo_functor_holder<F> base_t;
avltree_node_cloner(F f)
: base_t(f)
{}
node_ptr operator()(node_ptr p)
{
node_ptr n = base_t::get()(p);
NodeTraits::set_balance(n, NodeTraits::get_balance(p));
return n;
}
};
struct avltree_erase_fixup
{
void operator()(node_ptr to_erase, node_ptr successor)
{ NodeTraits::set_balance(successor, NodeTraits::get_balance(to_erase)); }
};
static node_ptr uncast(const_node_ptr ptr)
{
return node_ptr(const_cast<node*>(::boost::intrusive::detail::get_pointer(ptr)));
}
/// @endcond
public:
static node_ptr begin_node(const_node_ptr header)
{ return tree_algorithms::begin_node(header); }
static node_ptr end_node(const_node_ptr header)
{ return tree_algorithms::end_node(header); }
//! This type is the information that will be
//! filled by insert_unique_check
typedef typename tree_algorithms::insert_commit_data insert_commit_data;
//! <b>Requires</b>: header1 and header2 must be the header nodes
//! of two trees.
//!
//! <b>Effects</b>: Swaps two trees. After the function header1 will contain
//! links to the second tree and header2 will have links to the first tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
static void swap_tree(node_ptr header1, node_ptr header2)
{ return tree_algorithms::swap_tree(header1, header2); }
//! <b>Requires</b>: node1 and node2 can't be header nodes
//! of two trees.
//!
//! <b>Effects</b>: Swaps two nodes. After the function node1 will be inserted
//! in the position node2 before the function. node2 will be inserted in the
//! position node1 had before the function.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: This function will break container ordering invariants if
//! node1 and node2 are not equivalent according to the ordering rules.
//!
//!Experimental function
static void swap_nodes(node_ptr node1, node_ptr node2)
{
if(node1 == node2)
return;
node_ptr header1(tree_algorithms::get_header(node1)), header2(tree_algorithms::get_header(node2));
swap_nodes(node1, header1, node2, header2);
}
//! <b>Requires</b>: node1 and node2 can't be header nodes
//! of two trees with header header1 and header2.
//!
//! <b>Effects</b>: Swaps two nodes. After the function node1 will be inserted
//! in the position node2 before the function. node2 will be inserted in the
//! position node1 had before the function.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: This function will break container ordering invariants if
//! node1 and node2 are not equivalent according to the ordering rules.
//!
//!Experimental function
static void swap_nodes(node_ptr node1, node_ptr header1, node_ptr node2, node_ptr header2)
{
if(node1 == node2) return;
tree_algorithms::swap_nodes(node1, header1, node2, header2);
//Swap balance
balance c = NodeTraits::get_balance(node1);
NodeTraits::set_balance(node1, NodeTraits::get_balance(node2));
NodeTraits::set_balance(node2, c);
}
//! <b>Requires</b>: node_to_be_replaced must be inserted in a tree
//! and new_node must not be inserted in a tree.
//!
//! <b>Effects</b>: Replaces node_to_be_replaced in its position in the
//! tree with new_node. The tree does not need to be rebalanced
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: This function will break container ordering invariants if
//! new_node is not equivalent to node_to_be_replaced according to the
//! ordering rules. This function is faster than erasing and inserting
//! the node, since no rebalancing and comparison is needed.
//!
//!Experimental function
static void replace_node(node_ptr node_to_be_replaced, node_ptr new_node)
{
if(node_to_be_replaced == new_node)
return;
replace_node(node_to_be_replaced, tree_algorithms::get_header(node_to_be_replaced), new_node);
}
//! <b>Requires</b>: node_to_be_replaced must be inserted in a tree
//! with header "header" and new_node must not be inserted in a tree.
//!
//! <b>Effects</b>: Replaces node_to_be_replaced in its position in the
//! tree with new_node. The tree does not need to be rebalanced
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Note</b>: This function will break container ordering invariants if
//! new_node is not equivalent to node_to_be_replaced according to the
//! ordering rules. This function is faster than erasing and inserting
//! the node, since no rebalancing or comparison is needed.
//!
//!Experimental function
static void replace_node(node_ptr node_to_be_replaced, node_ptr header, node_ptr new_node)
{
tree_algorithms::replace_node(node_to_be_replaced, header, new_node);
NodeTraits::set_balance(new_node, NodeTraits::get_balance(node_to_be_replaced));
}
//! <b>Requires</b>: node is a tree node but not the header.
//!
//! <b>Effects</b>: Unlinks the node and rebalances the tree.
//!
//! <b>Complexity</b>: Average complexity is constant time.
//!
//! <b>Throws</b>: Nothing.
static void unlink(node_ptr node)
{
node_ptr x = NodeTraits::get_parent(node);
if(x){
while(!is_header(x))
x = NodeTraits::get_parent(x);
erase(x, node);
}
}
//! <b>Requires</b>: header is the header of a tree.
//!
//! <b>Effects</b>: Unlinks the leftmost node from the tree, and
//! updates the header link to the new leftmost node.
//!
//! <b>Complexity</b>: Average complexity is constant time.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Notes</b>: This function breaks the tree and the tree can
//! only be used for more unlink_leftmost_without_rebalance calls.
//! This function is normally used to achieve a step by step
//! controlled destruction of the tree.
static node_ptr unlink_leftmost_without_rebalance(node_ptr header)
{ return tree_algorithms::unlink_leftmost_without_rebalance(header); }
//! <b>Requires</b>: node is a node of the tree or an node initialized
//! by init(...).
//!
//! <b>Effects</b>: Returns true if the node is initialized by init().
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Throws</b>: Nothing.
static bool unique(const_node_ptr node)
{ return tree_algorithms::unique(node); }
//! <b>Requires</b>: node is a node of the tree but it's not the header.
//!
//! <b>Effects</b>: Returns the number of nodes of the subtree.
//!
//! <b>Complexity</b>: Linear time.
//!
//! <b>Throws</b>: Nothing.
static std::size_t count(const_node_ptr node)
{ return tree_algorithms::count(node); }
//! <b>Requires</b>: p is a node from the tree except the header.
//!
//! <b>Effects</b>: Returns the next node of the tree.
//!
//! <b>Complexity</b>: Average constant time.
//!
//! <b>Throws</b>: Nothing.
static node_ptr next_node(node_ptr p)
{ return tree_algorithms::next_node(p); }
//! <b>Requires</b>: p is a node from the tree except the leftmost node.
//!
//! <b>Effects</b>: Returns the previous node of the tree.
//!
//! <b>Complexity</b>: Average constant time.
//!
//! <b>Throws</b>: Nothing.
static node_ptr prev_node(node_ptr p)
{ return tree_algorithms::prev_node(p); }
//! <b>Requires</b>: node must not be part of any tree.
//!
//! <b>Effects</b>: After the function unique(node) == true.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Nodes</b>: If node is inserted in a tree, this function corrupts the tree.
static void init(node_ptr node)
{ tree_algorithms::init(node); }
//! <b>Requires</b>: node must not be part of any tree.
//!
//! <b>Effects</b>: Initializes the header to represent an empty tree.
//! unique(header) == true.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Nodes</b>: If node is inserted in a tree, this function corrupts the tree.
static void init_header(node_ptr header)
{
tree_algorithms::init_header(header);
NodeTraits::set_balance(header, NodeTraits::zero());
}
//! <b>Requires</b>: header must be the header of a tree, z a node
//! of that tree and z != header.
//!
//! <b>Effects</b>: Erases node "z" from the tree with header "header".
//!
//! <b>Complexity</b>: Amortized constant time.
//!
//! <b>Throws</b>: Nothing.
static node_ptr erase(node_ptr header, node_ptr z)
{
typename tree_algorithms::data_for_rebalance info;
tree_algorithms::erase(header, z, avltree_erase_fixup(), info);
node_ptr x = info.x;
node_ptr x_parent = info.x_parent;
//Rebalance avltree
rebalance_after_erasure(header, x, x_parent);
return z;
}
//! <b>Requires</b>: "cloner" must be a function
//! object taking a node_ptr and returning a new cloned node of it. "disposer" must
//! take a node_ptr and shouldn't throw.
//!
//! <b>Effects</b>: First empties target tree calling
//! <tt>void disposer::operator()(node_ptr)</tt> for every node of the tree
//! except the header.
//!
//! Then, duplicates the entire tree pointed by "source_header" cloning each
//! source node with <tt>node_ptr Cloner::operator()(node_ptr)</tt> to obtain
//! the nodes of the target tree. If "cloner" throws, the cloned target nodes
//! are disposed using <tt>void disposer(node_ptr)</tt>.
//!
//! <b>Complexity</b>: Linear to the number of element of the source tree plus the.
//! number of elements of tree target tree when calling this function.
//!
//! <b>Throws</b>: If cloner functor throws. If this happens target nodes are disposed.
template <class Cloner, class Disposer>
static void clone
(const_node_ptr source_header, node_ptr target_header, Cloner cloner, Disposer disposer)
{
avltree_node_cloner<Cloner> new_cloner(cloner);
tree_algorithms::clone(source_header, target_header, new_cloner, disposer);
}
//! <b>Requires</b>: "disposer" must be an object function
//! taking a node_ptr parameter and shouldn't throw.
//!
//! <b>Effects</b>: Empties the target tree calling
//! <tt>void disposer::operator()(node_ptr)</tt> for every node of the tree
//! except the header.
//!
//! <b>Complexity</b>: Linear to the number of element of the source tree plus the.
//! number of elements of tree target tree when calling this function.
//!
//! <b>Throws</b>: If cloner functor throws. If this happens target nodes are disposed.
template<class Disposer>
static void clear_and_dispose(node_ptr header, Disposer disposer)
{ tree_algorithms::clear_and_dispose(header, disposer); }
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
//!
//! <b>Effects</b>: Returns an node_ptr to the first element that is
//! not less than "key" according to "comp" or "header" if that element does
//! not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
template<class KeyType, class KeyNodePtrCompare>
static node_ptr lower_bound
(const_node_ptr header, const KeyType &key, KeyNodePtrCompare comp)
{ return tree_algorithms::lower_bound(header, key, comp); }
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
//!
//! <b>Effects</b>: Returns an node_ptr to the first element that is greater
//! than "key" according to "comp" or "header" if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
template<class KeyType, class KeyNodePtrCompare>
static node_ptr upper_bound
(const_node_ptr header, const KeyType &key, KeyNodePtrCompare comp)
{ return tree_algorithms::upper_bound(header, key, comp); }
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
//!
//! <b>Effects</b>: Returns an node_ptr to the element that is equivalent to
//! "key" according to "comp" or "header" if that element does not exist.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
template<class KeyType, class KeyNodePtrCompare>
static node_ptr find
(const_node_ptr header, const KeyType &key, KeyNodePtrCompare comp)
{ return tree_algorithms::find(header, key, comp); }
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. KeyNodePtrCompare can compare KeyType with tree's node_ptrs.
//!
//! <b>Effects</b>: Returns an a pair of node_ptr delimiting a range containing
//! all elements that are equivalent to "key" according to "comp" or an
//! empty range that indicates the position where those elements would be
//! if they there are no equivalent elements.
//!
//! <b>Complexity</b>: Logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
template<class KeyType, class KeyNodePtrCompare>
static std::pair<node_ptr, node_ptr> equal_range
(const_node_ptr header, const KeyType &key, KeyNodePtrCompare comp)
{ return tree_algorithms::equal_range(header, key, comp); }
//! <b>Requires</b>: "h" must be the header node of a tree.
//! NodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. NodePtrCompare compares two node_ptrs.
//!
//! <b>Effects</b>: Inserts new_node into the tree before the upper bound
//! according to "comp".
//!
//! <b>Complexity</b>: Average complexity for insert element is at
//! most logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
template<class NodePtrCompare>
static node_ptr insert_equal_upper_bound
(node_ptr h, node_ptr new_node, NodePtrCompare comp)
{
tree_algorithms::insert_equal_upper_bound(h, new_node, comp);
rebalance_after_insertion(h, new_node);
return new_node;
}
//! <b>Requires</b>: "h" must be the header node of a tree.
//! NodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. NodePtrCompare compares two node_ptrs.
//!
//! <b>Effects</b>: Inserts new_node into the tree before the lower bound
//! according to "comp".
//!
//! <b>Complexity</b>: Average complexity for insert element is at
//! most logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
template<class NodePtrCompare>
static node_ptr insert_equal_lower_bound
(node_ptr h, node_ptr new_node, NodePtrCompare comp)
{
tree_algorithms::insert_equal_lower_bound(h, new_node, comp);
rebalance_after_insertion(h, new_node);
return new_node;
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! NodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. NodePtrCompare compares two node_ptrs. "hint" is node from
//! the "header"'s tree.
//!
//! <b>Effects</b>: Inserts new_node into the tree, using "hint" as a hint to
//! where it will be inserted. If "hint" is the upper_bound
//! the insertion takes constant time (two comparisons in the worst case).
//!
//! <b>Complexity</b>: Logarithmic in general, but it is amortized
//! constant time if new_node is inserted immediately before "hint".
//!
//! <b>Throws</b>: If "comp" throws.
template<class NodePtrCompare>
static node_ptr insert_equal
(node_ptr header, node_ptr hint, node_ptr new_node, NodePtrCompare comp)
{
tree_algorithms::insert_equal(header, hint, new_node, comp);
rebalance_after_insertion(header, new_node);
return new_node;
}
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. NodePtrCompare compares KeyType with a node_ptr.
//!
//! <b>Effects</b>: Checks if there is an equivalent node to "key" in the
//! tree according to "comp" and obtains the needed information to realize
//! a constant-time node insertion if there is no equivalent node.
//!
//! <b>Returns</b>: If there is an equivalent value
//! returns a pair containing a node_ptr to the already present node
//! and false. If there is not equivalent key can be inserted returns true
//! in the returned pair's boolean and fills "commit_data" that is meant to
//! be used with the "insert_commit" function to achieve a constant-time
//! insertion function.
//!
//! <b>Complexity</b>: Average complexity is at most logarithmic.
//!
//! <b>Throws</b>: If "comp" throws.
//!
//! <b>Notes</b>: This function is used to improve performance when constructing
//! a node is expensive and the user does not want to have two equivalent nodes
//! in the tree: if there is an equivalent value
//! the constructed object must be discarded. Many times, the part of the
//! node that is used to impose the order is much cheaper to construct
//! than the node and this function offers the possibility to use that part
//! to check if the insertion will be successful.
//!
//! If the check is successful, the user can construct the node and use
//! "insert_commit" to insert the node in constant-time. This gives a total
//! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)).
//!
//! "commit_data" remains valid for a subsequent "insert_unique_commit" only
//! if no more objects are inserted or erased from the set.
template<class KeyType, class KeyNodePtrCompare>
static std::pair<node_ptr, bool> insert_unique_check
(const_node_ptr header, const KeyType &key
,KeyNodePtrCompare comp, insert_commit_data &commit_data)
{ return tree_algorithms::insert_unique_check(header, key, comp, commit_data); }
//! <b>Requires</b>: "header" must be the header node of a tree.
//! KeyNodePtrCompare is a function object that induces a strict weak
//! ordering compatible with the strict weak ordering used to create the
//! the tree. NodePtrCompare compares KeyType with a node_ptr.
//! "hint" is node from the "header"'s tree.
//!
//! <b>Effects</b>: Checks if there is an equivalent node to "key" in the
//! tree according to "comp" using "hint" as a hint to where it should be
//! inserted and obtains the needed information to realize
//! a constant-time node insertion if there is no equivalent node.
//! If "hint" is the upper_bound the function has constant time
//! complexity (two comparisons in the worst case).
//!
//! <b>Returns</b>: If there is an equivalent value
//! returns a pair containing a node_ptr to the already present node
//! and false. If there is not equivalent key can be inserted returns true
//! in the returned pair's boolean and fills "commit_data" that is meant to
//! be used with the "insert_commit" function to achieve a constant-time
//! insertion function.
//!
//! <b>Complexity</b>: Average complexity is at most logarithmic, but it is
//! amortized constant time if new_node should be inserted immediately before "hint".
//!
//! <b>Throws</b>: If "comp" throws.
//!
//! <b>Notes</b>: This function is used to improve performance when constructing
//! a node is expensive and the user does not want to have two equivalent nodes
//! in the tree: if there is an equivalent value
//! the constructed object must be discarded. Many times, the part of the
//! node that is used to impose the order is much cheaper to construct
//! than the node and this function offers the possibility to use that part
//! to check if the insertion will be successful.
//!
//! If the check is successful, the user can construct the node and use
//! "insert_commit" to insert the node in constant-time. This gives a total
//! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)).
//!
//! "commit_data" remains valid for a subsequent "insert_unique_commit" only
//! if no more objects are inserted or erased from the set.
template<class KeyType, class KeyNodePtrCompare>
static std::pair<node_ptr, bool> insert_unique_check
(const_node_ptr header, node_ptr hint, const KeyType &key
,KeyNodePtrCompare comp, insert_commit_data &commit_data)
{ return tree_algorithms::insert_unique_check(header, hint, key, comp, commit_data); }
//! <b>Requires</b>: "header" must be the header node of a tree.
//! "commit_data" must have been obtained from a previous call to
//! "insert_unique_check". No objects should have been inserted or erased
//! from the set between the "insert_unique_check" that filled "commit_data"
//! and the call to "insert_commit".
//!
//!
//! <b>Effects</b>: Inserts new_node in the set using the information obtained
//! from the "commit_data" that a previous "insert_check" filled.
//!
//! <b>Complexity</b>: Constant time.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Notes</b>: This function has only sense if a "insert_unique_check" has been
//! previously executed to fill "commit_data". No value should be inserted or
//! erased between the "insert_check" and "insert_commit" calls.
static void insert_unique_commit
(node_ptr header, node_ptr new_value, const insert_commit_data &commit_data)
{
tree_algorithms::insert_unique_commit(header, new_value, commit_data);
rebalance_after_insertion(header, new_value);
}
/// @cond
private:
//! <b>Requires</b>: p is a node of a tree.
//!
//! <b>Effects</b>: Returns true if p is the header of the tree.
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Throws</b>: Nothing.
static bool is_header(const_node_ptr p)
{ return NodeTraits::get_balance(p) == NodeTraits::zero() && tree_algorithms::is_header(p); }
static void rebalance_after_erasure(node_ptr header, node_ptr x, node_ptr x_parent)
{
node_ptr root = NodeTraits::get_parent(header);
while (x != root) {
const balance x_parent_balance = NodeTraits::get_balance(x_parent);
if(x_parent_balance == NodeTraits::zero()){
NodeTraits::set_balance(x_parent,
(x == NodeTraits::get_right(x_parent) ? NodeTraits::negative() : NodeTraits::positive()));
break; // the height didn't change, let's stop here
}
else if(x_parent_balance == NodeTraits::negative()){
if (x == NodeTraits::get_left(x_parent)) {
NodeTraits::set_balance(x_parent, NodeTraits::zero()); // balanced
x = x_parent;
x_parent = NodeTraits::get_parent(x_parent);
}
else {
// x is right child
// a is left child
node_ptr a = NodeTraits::get_left(x_parent);
assert(a);
if (NodeTraits::get_balance(a) == NodeTraits::positive()) {
// a MUST have a right child
assert(NodeTraits::get_right(a));
rotate_left_right(x_parent, root);
x = NodeTraits::get_parent(x_parent);
x_parent = NodeTraits::get_parent(x);
}
else {
rotate_right(x_parent, root);
x = NodeTraits::get_parent(x_parent);
x_parent = NodeTraits::get_parent(x);
}
// if changed from negative to NodeTraits::positive(), no need to check above
if (NodeTraits::get_balance(x) == NodeTraits::positive()){
break;
}
}
}
else if(x_parent_balance == NodeTraits::positive()){
if (x == NodeTraits::get_right(x_parent)) {
NodeTraits::set_balance(x_parent, NodeTraits::zero()); // balanced
x = x_parent;
x_parent = NodeTraits::get_parent(x_parent);
}
else {
// x is left child
// a is right child
node_ptr a = NodeTraits::get_right(x_parent);
assert(a);
if (NodeTraits::get_balance(a) == NodeTraits::negative()) {
// a MUST have then a left child
assert(NodeTraits::get_left(a));
rotate_right_left(x_parent, root);
x = NodeTraits::get_parent(x_parent);
x_parent = NodeTraits::get_parent(x);
}
else {
rotate_left(x_parent, root);
x = NodeTraits::get_parent(x_parent);
x_parent = NodeTraits::get_parent(x);
}
// if changed from NodeTraits::positive() to negative, no need to check above
if (NodeTraits::get_balance(x) == NodeTraits::negative()){
break;
}
}
}
else{
assert(false); // never reached
}
}
NodeTraits::set_parent(header, root);
}
static void rebalance_after_insertion(node_ptr header, node_ptr x)
{
node_ptr root = NodeTraits::get_parent(header);
NodeTraits::set_balance(x, NodeTraits::zero());
// Rebalance.
while (x != root){
const balance x_parent_balance = NodeTraits::get_balance(NodeTraits::get_parent(x));
if(x_parent_balance == NodeTraits::zero()){
// if x is left, parent will have parent->bal_factor = negative
// else, parent->bal_factor = NodeTraits::positive()
NodeTraits::set_balance( NodeTraits::get_parent(x)
, x == NodeTraits::get_left(NodeTraits::get_parent(x))
? NodeTraits::negative() : NodeTraits::positive() );
x = NodeTraits::get_parent(x);
}
else if(x_parent_balance == NodeTraits::positive()){
// if x is a left child, parent->bal_factor = zero
if (x == NodeTraits::get_left(NodeTraits::get_parent(x)))
NodeTraits::set_balance(NodeTraits::get_parent(x), NodeTraits::zero());
else{ // x is a right child, needs rebalancing
if (NodeTraits::get_balance(x) == NodeTraits::negative())
rotate_right_left(NodeTraits::get_parent(x), root);
else
rotate_left(NodeTraits::get_parent(x), root);
}
break;
}
else if(x_parent_balance == NodeTraits::negative()){
// if x is a left child, needs rebalancing
if (x == NodeTraits::get_left(NodeTraits::get_parent(x))) {
if (NodeTraits::get_balance(x) == NodeTraits::positive())
rotate_left_right(NodeTraits::get_parent(x), root);
else
rotate_right(NodeTraits::get_parent(x), root);
}
else
NodeTraits::set_balance(NodeTraits::get_parent(x), NodeTraits::zero());
break;
}
else{
assert(false); // never reached
}
}
NodeTraits::set_parent(header, root);
}
static void rotate_left_right(node_ptr a, node_ptr &root)
{
// | | //
// a(-2) c //
// / \ / \ //
// / \ ==> / \ //
// (pos)b [g] b a //
// / \ / \ / \ //
// [d] c [d] e f [g] //
// / \ //
// e f //
node_ptr b = NodeTraits::get_left(a), c = NodeTraits::get_right(b);
// switch
NodeTraits::set_left(a, NodeTraits::get_right(c));
NodeTraits::set_right(b, NodeTraits::get_left(c));
NodeTraits::set_right(c, a);
NodeTraits::set_left(c, b);
// set the parents
NodeTraits::set_parent(c, NodeTraits::get_parent(a));
NodeTraits::set_parent(a, c);
NodeTraits::set_parent(b, c);
if (NodeTraits::get_left(a)) // do we have f?
NodeTraits::set_parent(NodeTraits::get_left(a), a);
if (NodeTraits::get_right(b)) // do we have e?
NodeTraits::set_parent(NodeTraits::get_right(b), b);
if (a==root) root = c;
else // a had a parent, his child is now c
if (a == NodeTraits::get_left(NodeTraits::get_parent(c)))
NodeTraits::set_left(NodeTraits::get_parent(c), c);
else
NodeTraits::set_right(NodeTraits::get_parent(c), c);
// balancing...
const balance c_balance = NodeTraits::get_balance(c);
if(c_balance == NodeTraits::negative()){
NodeTraits::set_balance(a, NodeTraits::positive());
NodeTraits::set_balance(b, NodeTraits::zero());
}
else if(c_balance == NodeTraits::zero()){
NodeTraits::set_balance(a, NodeTraits::zero());
NodeTraits::set_balance(b, NodeTraits::zero());
}
else if(c_balance == NodeTraits::positive()){
NodeTraits::set_balance(a, NodeTraits::zero());
NodeTraits::set_balance(b, NodeTraits::negative());
}
else{
assert(false); // never reached
}
NodeTraits::set_balance(c, NodeTraits::zero());
}
static void rotate_right_left(node_ptr a, node_ptr &root)
{
// | | //
// a(pos) c //
// / \ / \ //
// / \ / \ //
// [d] b(neg) ==> a b //
// / \ / \ / \ //
// c [g] [d] e f [g] //
// / \ //
// e f //
node_ptr b = NodeTraits::get_right(a), c = NodeTraits::get_left(b);
// switch
NodeTraits::set_right(a, NodeTraits::get_left(c));
NodeTraits::set_left(b, NodeTraits::get_right(c));
NodeTraits::set_left(c, a);
NodeTraits::set_right(c, b);
// set the parents
NodeTraits::set_parent(c, NodeTraits::get_parent(a));
NodeTraits::set_parent(a, c);
NodeTraits::set_parent(b, c);
if (NodeTraits::get_right(a)) // do we have e?
NodeTraits::set_parent(NodeTraits::get_right(a), a);
if (NodeTraits::get_left(b)) // do we have f?
NodeTraits::set_parent(NodeTraits::get_left(b), b);
if (a==root) root = c;
else // a had a parent, his child is now c
if (a == NodeTraits::get_left(NodeTraits::get_parent(c)))
NodeTraits::set_left(NodeTraits::get_parent(c), c);
else
NodeTraits::set_right(NodeTraits::get_parent(c), c);
// balancing...
const balance c_balance = NodeTraits::get_balance(c);
if(c_balance == NodeTraits::negative()){
NodeTraits::set_balance(a, NodeTraits::zero());
NodeTraits::set_balance(b, NodeTraits::positive());
}
else if(c_balance == NodeTraits::zero()){
NodeTraits::set_balance(a, NodeTraits::zero());
NodeTraits::set_balance(b, NodeTraits::zero());
}
else if(c_balance == NodeTraits::positive()){
NodeTraits::set_balance(a, NodeTraits::negative());
NodeTraits::set_balance(b, NodeTraits::zero());
}
else{
assert(false);
}
NodeTraits::set_balance(c, NodeTraits::zero());
}
static void rotate_left(node_ptr x, node_ptr & root)
{
// | | //
// x(2) y(0) //
// / \ ==> / \ //
// n[a] y(1)n+2 n+1(0)x [c]n+1 //
// / \ / \ //
// n[b] [c]n+1 n[a] [b]n //
node_ptr y = NodeTraits::get_right(x);
// switch
NodeTraits::set_right(x, NodeTraits::get_left(y));
NodeTraits::set_left(y, x);
// rearrange parents
NodeTraits::set_parent(y, NodeTraits::get_parent(x));
NodeTraits::set_parent(x, y);
// do we have [b]?
if (NodeTraits::get_right(x))
NodeTraits::set_parent(NodeTraits::get_right(x), x);
if (x == root)
root = y;
else
// need to reparent y
if (NodeTraits::get_left(NodeTraits::get_parent(y)) == x)
NodeTraits::set_left(NodeTraits::get_parent(y), y);
else
NodeTraits::set_right(NodeTraits::get_parent(y), y);
// reset the balancing factor
if (NodeTraits::get_balance(y) == NodeTraits::positive()) {
NodeTraits::set_balance(x, NodeTraits::zero());
NodeTraits::set_balance(y, NodeTraits::zero());
}
else { // this doesn't happen during insertions
NodeTraits::set_balance(x, NodeTraits::positive());
NodeTraits::set_balance(y, NodeTraits::negative());
}
}
static void rotate_right(node_ptr x, node_ptr &root)
{
node_ptr y = NodeTraits::get_left(x);
// switch
NodeTraits::set_left(x, NodeTraits::get_right(y));
NodeTraits::set_right(y, x);
// rearrange parents
NodeTraits::set_parent(y, NodeTraits::get_parent(x));
NodeTraits::set_parent(x, y);
// do we have [b]?
if (NodeTraits::get_left(x))
NodeTraits::set_parent(NodeTraits::get_left(x), x);
if (x == root)
root = y;
else
// need to reparent y
if (NodeTraits::get_left(NodeTraits::get_parent(y)) == x)
NodeTraits::set_left(NodeTraits::get_parent(y), y);
else
NodeTraits::set_right(NodeTraits::get_parent(y), y);
// reset the balancing factor
if (NodeTraits::get_balance(y) == NodeTraits::negative()) {
NodeTraits::set_balance(x, NodeTraits::zero());
NodeTraits::set_balance(y, NodeTraits::zero());
}
else { // this doesn't happen during insertions
NodeTraits::set_balance(x, NodeTraits::negative());
NodeTraits::set_balance(y, NodeTraits::positive());
}
}
/// @endcond
};
} //namespace intrusive
} //namespace boost
#include <boost/intrusive/detail/config_end.hpp>
#endif //BOOST_INTRUSIVE_AVLTREE_ALGORITHMS_HPP

View File

@@ -0,0 +1,179 @@
/////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2007.
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/intrusive for documentation.
//
/////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTRUSIVE_AVLTREE_NODE_HPP
#define BOOST_INTRUSIVE_AVLTREE_NODE_HPP
#include <boost/intrusive/detail/config_begin.hpp>
#include <iterator>
#include <boost/intrusive/detail/pointer_to_other.hpp>
#include <boost/intrusive/avltree_algorithms.hpp>
#include <boost/intrusive/pointer_plus_2_bits.hpp>
#include <boost/intrusive/detail/mpl.hpp>
namespace boost {
namespace intrusive {
/////////////////////////////////////////////////////////////////////////////
// //
// Generic node_traits for any pointer type //
// //
/////////////////////////////////////////////////////////////////////////////
//This is the compact representation: 3 pointers
template<class VoidPointer>
struct compact_avltree_node
{
typedef typename pointer_to_other
<VoidPointer
,compact_avltree_node<VoidPointer> >::type node_ptr;
enum balance { negative_t, zero_t, positive_t };
node_ptr parent_, left_, right_;
};
//This is the normal representation: 3 pointers + enum
template<class VoidPointer>
struct avltree_node
{
typedef typename pointer_to_other
<VoidPointer
,avltree_node<VoidPointer> >::type node_ptr;
enum balance { negative_t, zero_t, positive_t };
node_ptr parent_, left_, right_;
balance balance_;
};
//This is the default node traits implementation
//using a node with 3 generic pointers plus an enum
template<class VoidPointer>
struct default_avltree_node_traits_impl
{
typedef avltree_node<VoidPointer> node;
typedef typename boost::pointer_to_other
<VoidPointer, node>::type node_ptr;
typedef typename boost::pointer_to_other
<VoidPointer, const node>::type const_node_ptr;
typedef typename node::balance balance;
static node_ptr get_parent(const_node_ptr n)
{ return n->parent_; }
static void set_parent(node_ptr n, node_ptr p)
{ n->parent_ = p; }
static node_ptr get_left(const_node_ptr n)
{ return n->left_; }
static void set_left(node_ptr n, node_ptr l)
{ n->left_ = l; }
static node_ptr get_right(const_node_ptr n)
{ return n->right_; }
static void set_right(node_ptr n, node_ptr r)
{ n->right_ = r; }
static balance get_balance(const_node_ptr n)
{ return n->balance_; }
static void set_balance(node_ptr n, balance b)
{ n->balance_ = b; }
static balance negative()
{ return node::negative_t; }
static balance zero()
{ return node::zero_t; }
static balance positive()
{ return node::positive_t; }
};
//This is the compact node traits implementation
//using a node with 3 generic pointers
template<class VoidPointer>
struct compact_avltree_node_traits_impl
{
typedef compact_avltree_node<VoidPointer> node;
typedef typename boost::pointer_to_other
<VoidPointer, node>::type node_ptr;
typedef typename boost::pointer_to_other
<VoidPointer, const node>::type const_node_ptr;
typedef typename node::balance balance;
typedef pointer_plus_2_bits<node_ptr> ptr_bit;
static node_ptr get_parent(const_node_ptr n)
{ return ptr_bit::get_pointer(n->parent_); }
static void set_parent(node_ptr n, node_ptr p)
{ ptr_bit::set_pointer(n->parent_, p); }
static node_ptr get_left(const_node_ptr n)
{ return n->left_; }
static void set_left(node_ptr n, node_ptr l)
{ n->left_ = l; }
static node_ptr get_right(const_node_ptr n)
{ return n->right_; }
static void set_right(node_ptr n, node_ptr r)
{ n->right_ = r; }
static balance get_balance(const_node_ptr n)
{ return (balance)ptr_bit::get_bits(n->parent_); }
static void set_balance(node_ptr n, balance b)
{ ptr_bit::set_bits(n->parent_, (std::size_t)b); }
static balance negative()
{ return node::negative_t; }
static balance zero()
{ return node::zero_t; }
static balance positive()
{ return node::positive_t; }
};
//Dispatches the implementation based on the boolean
template<class VoidPointer, bool compact>
struct avltree_node_traits_dispatch
: public default_avltree_node_traits_impl<VoidPointer>
{};
template<class VoidPointer>
struct avltree_node_traits_dispatch<VoidPointer, true>
: public compact_avltree_node_traits_impl<VoidPointer>
{};
//Inherit from the detail::link_dispatch depending on the embedding capabilities
template<class VoidPointer, bool OptimizeSize = false>
struct avltree_node_traits
: public avltree_node_traits_dispatch
< VoidPointer
, OptimizeSize &&
has_pointer_plus_2_bits
< VoidPointer
, detail::alignment_of<compact_avltree_node<VoidPointer> >::value
>::value
>
{};
} //namespace intrusive
} //namespace boost
#include <boost/intrusive/detail/config_end.hpp>
#endif //BOOST_INTRUSIVE_AVLTREE_NODE_HPP

View File

@@ -33,6 +33,7 @@ enum
, SetBaseHook
, UsetBaseHook
, SplaySetBaseHook
, AvlSetBaseHook
};
struct no_default_definer{};
@@ -52,13 +53,17 @@ template <class Hook>
struct default_definer<Hook, SetBaseHook>
{ typedef Hook default_set_hook; };
template <class Hook>
struct default_definer<Hook, UsetBaseHook>
{ typedef Hook default_uset_hook; };
template <class Hook>
struct default_definer<Hook, SplaySetBaseHook>
{ typedef Hook default_splay_set_hook; };
template <class Hook>
struct default_definer<Hook, UsetBaseHook>
{ typedef Hook default_uset_hook; };
struct default_definer<Hook, AvlSetBaseHook>
{ typedef Hook default_avl_set_hook; };
template <class Hook, unsigned int BaseHookType>
struct make_default_definer

View File

@@ -168,131 +168,7 @@ struct rbtree_node_traits
>::value
>
{};
/*
/////////////////////////////////////////////////////////////////////////////
// //
// Implementation of the rbtree iterator //
// //
/////////////////////////////////////////////////////////////////////////////
// rbtree_iterator provides some basic functions for a
// node oriented bidirectional iterator:
template<class Container, bool IsConst>
class rbtree_iterator
: public std::iterator
< std::bidirectional_iterator_tag
, typename detail::add_const_if_c
<typename Container::value_type, IsConst>::type
>
{
protected:
typedef typename Container::real_value_traits real_value_traits;
typedef typename real_value_traits::node_traits node_traits;
typedef typename node_traits::node node;
typedef typename node_traits::node_ptr node_ptr;
typedef rbtree_algorithms<node_traits> node_algorithms;
typedef typename boost::pointer_to_other
<node_ptr, void>::type void_pointer;
static const bool store_container_ptr =
detail::store_cont_ptr_on_it<Container>::value;
public:
public:
typedef typename detail::add_const_if_c
<typename Container::value_type, IsConst>
::type value_type;
typedef value_type & reference;
typedef value_type * pointer;
rbtree_iterator()
: members_ (0, 0)
{}
explicit rbtree_iterator(node_ptr node, const Container *cont_ptr)
: members_ (node, cont_ptr)
{}
rbtree_iterator(rbtree_iterator<Container, false> const& other)
: members_(other.pointed_node(), other.get_container())
{}
const node_ptr &pointed_node() const
{ return members_.nodeptr_; }
rbtree_iterator &operator=(const node_ptr &node)
{ members_.nodeptr_ = node; return static_cast<rbtree_iterator&>(*this); }
public:
rbtree_iterator& operator++()
{
members_.nodeptr_ = node_algorithms::next_node(members_.nodeptr_);
return static_cast<rbtree_iterator&> (*this);
}
rbtree_iterator operator++(int)
{
rbtree_iterator result (*this);
members_.nodeptr_ = node_algorithms::next_node(members_.nodeptr_);
return result;
}
rbtree_iterator& operator--()
{
members_.nodeptr_ = node_algorithms::prev_node(members_.nodeptr_);
return static_cast<rbtree_iterator&> (*this);
}
rbtree_iterator operator--(int)
{
rbtree_iterator result (*this);
members_.nodeptr_ = node_algorithms::prev_node(members_.nodeptr_);
return result;
}
bool operator== (const rbtree_iterator& i) const
{ return members_.nodeptr_ == i.pointed_node(); }
bool operator!= (const rbtree_iterator& i) const
{ return !operator== (i); }
value_type& operator*() const
{ return *operator->(); }
pointer operator->() const
{ return detail::get_pointer(this->get_real_value_traits()->to_value_ptr(members_.nodeptr_)); }
const Container *get_container() const
{
if(store_container_ptr)
return static_cast<const Container*>(members_.get_ptr());
else
return 0;
}
const real_value_traits *get_real_value_traits() const
{
if(store_container_ptr)
return &this->get_container()->get_real_value_traits();
else
return 0;
}
private:
struct members
: public detail::select_constptr
<void_pointer, store_container_ptr>::type
{
typedef typename detail::select_constptr
<void_pointer, store_container_ptr>::type Base;
members(const node_ptr &n_ptr, const void *cont)
: Base(cont), nodeptr_(n_ptr)
{}
node_ptr nodeptr_;
} members_;
};
*/
} //namespace intrusive
} //namespace boost

View File

@@ -693,8 +693,7 @@ class tree_algorithms
{
node_ptr end = uncast(header);
node_ptr y = lower_bound(header, key, comp);
node_ptr r = (y == end || comp(key, y)) ? end : y;
return r;
return (y == end || comp(key, y)) ? end : y;
}
//! <b>Requires</b>: "header" must be the header node of a tree.
@@ -1243,16 +1242,39 @@ class tree_algorithms
// delete node | complexity : constant | exception : nothrow
static void erase(node_ptr header, node_ptr z)
{ erase(header, z, nop_erase_fixup()); }
{
data_for_rebalance ignored;
erase(header, z, nop_erase_fixup(), ignored);
}
struct data_for_rebalance
{
node_ptr x;
node_ptr x_parent;
node_ptr y;
};
template<class F>
static void erase(node_ptr header, node_ptr z, F z_and_successor_fixup, data_for_rebalance * info = 0)
static void erase(node_ptr header, node_ptr z, F z_and_successor_fixup, data_for_rebalance &info)
{
erase_impl(header, z, info);
if(info.y != z){
z_and_successor_fixup(z, info.y);
}
}
static void unlink(node_ptr node)
{
node_ptr x = NodeTraits::get_parent(node);
if(x){
while(!is_header(x))
x = NodeTraits::get_parent(x);
erase(x, node);
}
}
private:
static void erase_impl(node_ptr header, node_ptr z, data_for_rebalance &info)
{
node_ptr y(z);
node_ptr x;
@@ -1287,7 +1309,6 @@ class tree_algorithms
x_parent = y;
tree_algorithms::replace_own (z, y, header);
NodeTraits::set_parent(y, NodeTraits::get_parent(z));
z_and_successor_fixup(z, y);
}
else { // y == z --> z has only one child, or none
x_parent = NodeTraits::get_parent(z);
@@ -1306,21 +1327,11 @@ class tree_algorithms
}
}
if(info){
info->x = x;
info->x_parent = x_parent;
}
info.x = x;
info.x_parent = x_parent;
info.y = y;
}
static void unlink(node_ptr node)
{
node_ptr x = NodeTraits::get_parent(node);
if(x){
while(!is_header(x))
x = NodeTraits::get_parent(x);
erase(x, node);
}
}
};
} //namespace detail {

View File

@@ -195,6 +195,50 @@ template
>
class splay_set_member_hook;
//avltree/avl_set/avl_multiset
template
< class T
, class O1 = none
, class O2 = none
, class O3 = none
, class O4 = none
>
class avltree;
template
< class T
, class O1 = none
, class O2 = none
, class O3 = none
, class O4 = none
>
class avl_set;
template
< class T
, class O1 = none
, class O2 = none
, class O3 = none
, class O4 = none
>
class avl_multiset;
template
< class O1 = none
, class O2 = none
, class O3 = none
, class O4 = none
>
class avl_set_base_hook;
template
< class O1 = none
, class O2 = none
, class O3 = none
, class O4 = none
>
class avl_set_member_hook;
//hash/unordered
//rbtree/set/multiset
template

View File

@@ -0,0 +1,82 @@
/////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2007
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/intrusive for documentation.
//
/////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_INTRUSIVE_POINTER_PLUS_2_BIT_HPP
#define BOOST_INTRUSIVE_POINTER_PLUS_2_BIT_HPP
namespace boost {
namespace intrusive {
//!This trait class is used to know if a pointer
//!can embed 2 extra bits of information if
//!it's going to be used to point to objects
//!with an alignment of "Alignment" bytes.
template<class VoidPointer, std::size_t Alignment>
struct has_pointer_plus_2_bits
{
static const bool value = false;
};
//!This is an specialization for raw pointers.
//!Raw pointers can embed two extra bits in the lower bits
//!if the alignment is multiple of 4.
template<std::size_t N>
struct has_pointer_plus_2_bits<void*, N>
{
static const bool value = (N % 4u == 0);
};
//!This is class that is supposed to have static methods
//!to embed 2 extra bits of information in a pointer.
//!
//!This is a declaration and there is no default implementation,
//!because operations to embed bits change with every pointer type.
//!
//!An implementation that detects that a pointer type whose
//!has_pointer_plus_2_bits<>::value is non-zero can make use of these
//!operations to embed bits in the pointer.
template<class Pointer>
struct pointer_plus_2_bits
{
static const bool value = false;
};
//!This is the specialization to embed 2 extra bits of information
//!in a raw pointer. Extra bits are stored in the lower bits of the pointer.
template<class T>
struct pointer_plus_2_bits<T*>
{
typedef T* pointer;
static pointer get_pointer(pointer n)
{ return pointer(std::size_t(n) & ~std::size_t(3u)); }
static void set_pointer(pointer &n, pointer p)
{
assert(0 == (std::size_t(p) & std::size_t(3u)));
n = pointer(std::size_t(p) | (std::size_t(n) & std::size_t(3u)));
}
static std::size_t get_bits(pointer n)
{ return (std::size_t(n) & std::size_t(3u)); }
static void set_bits(pointer &n, std::size_t c)
{
assert(c < 4);
n = pointer(std::size_t(get_pointer(n)) | c);
}
};
} //namespace intrusive
} //namespace boost
#endif //BOOST_INTRUSIVE_POINTER_PLUS_2_BIT_HPP

View File

@@ -393,7 +393,7 @@ class rbtree_algorithms
static node_ptr erase(node_ptr header, node_ptr z)
{
typename tree_algorithms::data_for_rebalance info;
tree_algorithms::erase(header, z, rbtree_erase_fixup(), &info);
tree_algorithms::erase(header, z, rbtree_erase_fixup(), info);
node_ptr x = info.x;
node_ptr x_parent = info.x_parent;