| 
									
										
										
										
											2006-09-11 22:27:29 +00:00
										 |  |  | .. Copyright David Abrahams 2006. Distributed under the Boost
 | 
					
						
							|  |  |  | .. Software License, Version 1.0. (See accompanying
 | 
					
						
							|  |  |  | .. file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2004-01-27 17:03:46 +00:00
										 |  |  | Interoperable Iterator Concept
 | 
					
						
							|  |  |  | ..............................
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | A class or built-in type ``X`` that models Single Pass Iterator is
 | 
					
						
							|  |  |  | *interoperable with* a class or built-in type ``Y`` that also models
 | 
					
						
							|  |  |  | Single Pass Iterator if the following expressions are valid and
 | 
					
						
							|  |  |  | respect the stated semantics. In the tables below, ``x`` is an object
 | 
					
						
							|  |  |  | of type ``X``, ``y`` is an object of type ``Y``, ``Distance`` is
 | 
					
						
							|  |  |  | ``iterator_traits<Y>::difference_type``, and ``n`` represents a
 | 
					
						
							|  |  |  | constant object of type ``Distance``.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | +-----------+-----------------------+---------------------------------------------------+
 | 
					
						
							|  |  |  | |Expression |Return Type            |Assertion/Precondition/Postcondition               |
 | 
					
						
							|  |  |  | +===========+=======================+===================================================+
 | 
					
						
							|  |  |  | |``y = x``  |``Y``                  |post: ``y == x``                                   |
 | 
					
						
							|  |  |  | +-----------+-----------------------+---------------------------------------------------+
 | 
					
						
							|  |  |  | |``Y(x)``   |``Y``                  |post: ``Y(x) == x``                                |
 | 
					
						
							|  |  |  | +-----------+-----------------------+---------------------------------------------------+
 | 
					
						
							|  |  |  | |``x == y`` |convertible to ``bool``|``==`` is an equivalence relation over its domain. |
 | 
					
						
							|  |  |  | +-----------+-----------------------+---------------------------------------------------+
 | 
					
						
							|  |  |  | |``y == x`` |convertible to ``bool``|``==`` is an equivalence relation over its domain. |
 | 
					
						
							|  |  |  | +-----------+-----------------------+---------------------------------------------------+
 | 
					
						
							|  |  |  | |``x != y`` |convertible to ``bool``|``bool(a==b) != bool(a!=b)`` over its domain.      |
 | 
					
						
							|  |  |  | +-----------+-----------------------+---------------------------------------------------+
 | 
					
						
							|  |  |  | |``y != x`` |convertible to ``bool``|``bool(a==b) != bool(a!=b)`` over its domain.      |
 | 
					
						
							|  |  |  | +-----------+-----------------------+---------------------------------------------------+
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | If ``X`` and ``Y`` both model Random Access Traversal Iterator then
 | 
					
						
							|  |  |  | the following additional requirements must be met.
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | +-----------+-----------------------+---------------------+--------------------------------------+
 | 
					
						
							|  |  |  | |Expression |Return Type            |Operational Semantics|Assertion/ Precondition               |
 | 
					
						
							|  |  |  | +===========+=======================+=====================+======================================+
 | 
					
						
							|  |  |  | |``x < y``  |convertible to ``bool``|``y - x > 0``        |``<`` is a total ordering relation    |
 | 
					
						
							|  |  |  | +-----------+-----------------------+---------------------+--------------------------------------+
 | 
					
						
							|  |  |  | |``y < x``  |convertible to ``bool``|``x - y > 0``        |``<`` is a total ordering relation    |
 | 
					
						
							|  |  |  | +-----------+-----------------------+---------------------+--------------------------------------+
 | 
					
						
							|  |  |  | |``x > y``  |convertible to ``bool``|``y < x``            |``>`` is a total ordering relation    |
 | 
					
						
							|  |  |  | +-----------+-----------------------+---------------------+--------------------------------------+
 | 
					
						
							|  |  |  | |``y > x``  |convertible to ``bool``|``x < y``            |``>`` is a total ordering relation    |
 | 
					
						
							|  |  |  | +-----------+-----------------------+---------------------+--------------------------------------+
 | 
					
						
							|  |  |  | |``x >= y`` |convertible to ``bool``|``!(x < y)``         |                                      |
 | 
					
						
							|  |  |  | +-----------+-----------------------+---------------------+--------------------------------------+
 | 
					
						
							|  |  |  | |``y >= x`` |convertible to ``bool``|``!(y < x)``         |                                      |
 | 
					
						
							|  |  |  | +-----------+-----------------------+---------------------+--------------------------------------+
 | 
					
						
							|  |  |  | |``x <= y`` |convertible to ``bool``|``!(x > y)``         |                                      |
 | 
					
						
							|  |  |  | +-----------+-----------------------+---------------------+--------------------------------------+
 | 
					
						
							|  |  |  | |``y <= x`` |convertible to ``bool``|``!(y > x)``         |                                      |
 | 
					
						
							|  |  |  | +-----------+-----------------------+---------------------+--------------------------------------+
 | 
					
						
							|  |  |  | |``y - x``  |``Distance``           |``distance(Y(x),y)`` |pre: there exists a value ``n`` of    |
 | 
					
						
							|  |  |  | |           |                       |                     |``Distance`` such that ``x + n == y``.|
 | 
					
						
							|  |  |  | |           |                       |                     |``y == x + (y - x)``.                 |
 | 
					
						
							|  |  |  | +-----------+-----------------------+---------------------+--------------------------------------+ 
 | 
					
						
							|  |  |  | |``x - y``  |``Distance``           |``distance(y,Y(x))`` |pre: there exists a value ``n`` of    |
 | 
					
						
							|  |  |  | |           |                       |                     |``Distance`` such that ``y + n == x``.|
 | 
					
						
							|  |  |  | |           |                       |                     |``x == y + (x - y)``.                 |
 | 
					
						
							|  |  |  | +-----------+-----------------------+---------------------+--------------------------------------+
 |