mirror of
https://github.com/boostorg/iterator.git
synced 2025-07-24 09:57:17 +02:00
Doc and build fixes by Dave Abrahams.
[SVN r38154]
This commit is contained in:
@ -18,86 +18,87 @@ implement interoperable iterators.
|
||||
In the following text a simplified example of the current iterator_facade specification is used to
|
||||
illustrate the problem.
|
||||
|
||||
In the current specification binary operators are implemented in the following way:
|
||||
In the current specification binary operators are implemented in the following way::
|
||||
|
||||
template <class Derived>
|
||||
struct Facade
|
||||
{
|
||||
};
|
||||
template <class Derived>
|
||||
struct Facade
|
||||
{
|
||||
};
|
||||
|
||||
template <class T1, T2>
|
||||
struct is_interoperable :
|
||||
or_<
|
||||
is_convertible<T1, T2>
|
||||
, is_convertible<T2, T1>
|
||||
>
|
||||
{};
|
||||
template <class T1, T2>
|
||||
struct is_interoperable :
|
||||
or_<
|
||||
is_convertible<T1, T2>
|
||||
, is_convertible<T2, T1>
|
||||
>
|
||||
{};
|
||||
|
||||
template<
|
||||
class Derived1
|
||||
, class Derived2
|
||||
>
|
||||
enable_if<is_interoperable<Derived1, Derived2>, bool> operator==(
|
||||
Derived1 const& lhs
|
||||
, Derived2 const& rhs
|
||||
)
|
||||
{
|
||||
return static_cast<Derived1 const&>(lhs).equal_to(static_cast<Derived2 const&(rhs));
|
||||
}
|
||||
template<
|
||||
class Derived1
|
||||
, class Derived2
|
||||
>
|
||||
enable_if<is_interoperable<Derived1, Derived2>, bool> operator==(
|
||||
Derived1 const& lhs
|
||||
, Derived2 const& rhs
|
||||
)
|
||||
{
|
||||
return static_cast<Derived1 const&>(lhs).equal_to(static_cast<Derived2 const&(rhs));
|
||||
}
|
||||
|
||||
The problem with this is that operator== always forwards to Derived1::equal_to. The net effect is that the
|
||||
following "obvious" implementation of to interoperable types does not quite work.
|
||||
following "obvious" implementation of to interoperable types does
|
||||
not quite work. ::
|
||||
|
||||
struct Mutable : Facade<Mutable>
|
||||
{
|
||||
bool equal_to(Mutable const&);
|
||||
};
|
||||
struct Mutable : Facade<Mutable>
|
||||
{
|
||||
bool equal_to(Mutable const&);
|
||||
};
|
||||
|
||||
struct Constant : Facade<Constant>
|
||||
{
|
||||
Constant();
|
||||
Constant(Constant const&);
|
||||
Constant(Mutable const&);
|
||||
|
||||
...
|
||||
struct Constant : Facade<Constant>
|
||||
{
|
||||
Constant();
|
||||
Constant(Constant const&);
|
||||
Constant(Mutable const&);
|
||||
|
||||
bool equal_to(Constant const&);
|
||||
};
|
||||
...
|
||||
|
||||
Constant c;
|
||||
Mutable m;
|
||||
bool equal_to(Constant const&);
|
||||
};
|
||||
|
||||
c == m; // ok, dispatched to Constant::equal_to
|
||||
m == c; // !! error, dispatched to Mutable::equal_to
|
||||
Constant c;
|
||||
Mutable m;
|
||||
|
||||
Instead the following "slightly" more complicated implementation is necessary
|
||||
c == m; // ok, dispatched to Constant::equal_to
|
||||
m == c; // !! error, dispatched to Mutable::equal_to
|
||||
|
||||
struct Mutable : Facade<Mutable>
|
||||
{
|
||||
template <class T>
|
||||
enable_if<is_convertible<Mutable, T> || is_convertible<T, Mutable>, bool>::type equal_to(T const&);
|
||||
};
|
||||
Instead the following "slightly" more complicated implementation is necessary
|
||||
|
||||
struct Constant : Tag<Constant>
|
||||
{
|
||||
Constant();
|
||||
Constant(Constant const&);
|
||||
Constant(Mutable const&);
|
||||
struct Mutable : Facade<Mutable>
|
||||
{
|
||||
template <class T>
|
||||
enable_if<is_convertible<Mutable, T> || is_convertible<T, Mutable>, bool>::type equal_to(T const&);
|
||||
};
|
||||
|
||||
template <class T>
|
||||
enable_if<is_convertible<Constant, T> || is_convertible<T, Constant>, bool>::type equal_to(T const&);
|
||||
};
|
||||
struct Constant : Tag<Constant>
|
||||
{
|
||||
Constant();
|
||||
Constant(Constant const&);
|
||||
Constant(Mutable const&);
|
||||
|
||||
template <class T>
|
||||
enable_if<is_convertible<Constant, T> || is_convertible<T, Constant>, bool>::type equal_to(T const&);
|
||||
};
|
||||
|
||||
Beside the fact that the code is significantly more complex to understand and to teach there is
|
||||
a major design problem lurking here. Note that in both types equal_to is a function template with
|
||||
an unconstrained argument T. This is necessary so that further types can be made interoperable with
|
||||
Mutable or Constant. Would Mutable be defined as
|
||||
Mutable or Constant. Would Mutable be defined as ::
|
||||
|
||||
struct Mutable : Facade<Mutable>
|
||||
{
|
||||
bool equal_to(Mutable const&);
|
||||
bool equal_to(Constant const&);
|
||||
};
|
||||
struct Mutable : Facade<Mutable>
|
||||
{
|
||||
bool equal_to(Mutable const&);
|
||||
bool equal_to(Constant const&);
|
||||
};
|
||||
|
||||
Constant and Mutable would still be interoperable but no further interoperable could be added
|
||||
without changing Mutable. Even if this would be considered acceptable the current specification forces
|
||||
@ -111,44 +112,45 @@ The two way dependency can be avoided by enabling type conversion in the binary
|
||||
implementation. Note that this is the usual way interoperability betwween types is achieved
|
||||
for binary operators and one reason why binary operators are usually implemented as non-members.
|
||||
|
||||
A simple implementation of this strategy would look like this
|
||||
A simple implementation of this strategy would look like this ::
|
||||
|
||||
template<
|
||||
class T1
|
||||
, class T2
|
||||
>
|
||||
struct interoperable_base :
|
||||
if_<
|
||||
is_convertible<
|
||||
T2
|
||||
, T1
|
||||
>
|
||||
, T1
|
||||
, T2>
|
||||
{};
|
||||
template<
|
||||
class T1
|
||||
, class T2
|
||||
>
|
||||
struct interoperable_base :
|
||||
if_<
|
||||
is_convertible<
|
||||
T2
|
||||
, T1
|
||||
>
|
||||
, T1
|
||||
, T2>
|
||||
{};
|
||||
|
||||
|
||||
template<
|
||||
class Derived1
|
||||
, class Derived2
|
||||
>
|
||||
enable_if<is_interoperable<Derived1, Derived2>, bool> operator==(
|
||||
Derived1 const& lhs
|
||||
, Derived2 const& rhs
|
||||
)
|
||||
{
|
||||
typedef interoperable_base<
|
||||
Derived1
|
||||
, Derived2
|
||||
>::type Base;
|
||||
template<
|
||||
class Derived1
|
||||
, class Derived2
|
||||
>
|
||||
enable_if<is_interoperable<Derived1, Derived2>, bool> operator==(
|
||||
Derived1 const& lhs
|
||||
, Derived2 const& rhs
|
||||
)
|
||||
{
|
||||
typedef interoperable_base<
|
||||
Derived1
|
||||
, Derived2
|
||||
>::type Base;
|
||||
|
||||
return static_cast<Base const&>(lhs).equal_to(static_cast<Derived2 const&(rhs));
|
||||
}
|
||||
return static_cast<Base const&>(lhs).equal_to(static_cast<Derived2 const&(rhs));
|
||||
}
|
||||
|
||||
This way our original simple and "obvious" implementation would work again.
|
||||
This way our original simple and "obvious" implementation would
|
||||
work again. ::
|
||||
|
||||
c == m; // ok, dispatched to Constant::equal_to
|
||||
m == c; // ok, dispatched to Constant::equal_to, m converted to Constant
|
||||
c == m; // ok, dispatched to Constant::equal_to
|
||||
m == c; // ok, dispatched to Constant::equal_to, m converted to Constant
|
||||
|
||||
The backdraw of this approach is that a possibly costly conversion of iterator objects
|
||||
is forced on the user even in cases where direct comparison could be implemented
|
||||
@ -158,70 +160,71 @@ that iteration is a very basic operation this possible performance degradation i
|
||||
acceptable.
|
||||
|
||||
Luckily whe can have our cake and eat it by a slightly more clever implementation of the binary
|
||||
operators.
|
||||
operators. ::
|
||||
|
||||
template<
|
||||
class Derived1
|
||||
, class Derived2
|
||||
>
|
||||
enable_if<is_convertible<Derived2, Derived1>, bool> operator==(
|
||||
Derived1 const& lhs
|
||||
, Derived2 const& rhs
|
||||
)
|
||||
{
|
||||
return static_cast<Derived1 const&>(lhs).equal_to(static_cast<Derived2 const&(rhs));
|
||||
}
|
||||
template<
|
||||
class Derived1
|
||||
, class Derived2
|
||||
>
|
||||
enable_if<is_convertible<Derived2, Derived1>, bool> operator==(
|
||||
Derived1 const& lhs
|
||||
, Derived2 const& rhs
|
||||
)
|
||||
{
|
||||
return static_cast<Derived1 const&>(lhs).equal_to(static_cast<Derived2 const&(rhs));
|
||||
}
|
||||
|
||||
template<
|
||||
class Derived1
|
||||
, class Derived2
|
||||
>
|
||||
enable_if<is_convertible<Derived1, Derived2>, bool> operator==(
|
||||
Derived1 const& lhs
|
||||
, Derived2 const& rhs
|
||||
)
|
||||
{
|
||||
return static_cast<Derived2 const&>(rhs).equal_to(static_cast<Derived1 const&(lhs));
|
||||
}
|
||||
template<
|
||||
class Derived1
|
||||
, class Derived2
|
||||
>
|
||||
enable_if<is_convertible<Derived1, Derived2>, bool> operator==(
|
||||
Derived1 const& lhs
|
||||
, Derived2 const& rhs
|
||||
)
|
||||
{
|
||||
return static_cast<Derived2 const&>(rhs).equal_to(static_cast<Derived1 const&(lhs));
|
||||
}
|
||||
|
||||
Given our simple and obvious definition of Mutable and Constant nothing has changed yet.
|
||||
Given our simple and obvious definition of Mutable and Constant nothing has changed yet. ::
|
||||
|
||||
c == m; // ok, dispatched to Constant::equal_to, m converted to Constant
|
||||
m == c; // ok, dispatched to Constant::equal_to, m converted to Constant
|
||||
c == m; // ok, dispatched to Constant::equal_to, m converted to Constant
|
||||
m == c; // ok, dispatched to Constant::equal_to, m converted to Constant
|
||||
|
||||
But now the user can avoid the type conversion by supplying the appropriate overload in Constant
|
||||
But now the user can avoid the type conversion by supplying the
|
||||
appropriate overload in Constant ::
|
||||
|
||||
struct Constant : Facade<Constant>
|
||||
{
|
||||
Constant();
|
||||
Constant(Constant const&);
|
||||
Constant(Mutable const&);
|
||||
|
||||
...
|
||||
struct Constant : Facade<Constant>
|
||||
{
|
||||
Constant();
|
||||
Constant(Constant const&);
|
||||
Constant(Mutable const&);
|
||||
|
||||
bool equal_to(Constant const&);
|
||||
bool equal_to(Mutable const&);
|
||||
};
|
||||
...
|
||||
|
||||
c == m; // ok, dispatched to Constant::equal_to(Mutable const&), no conversion
|
||||
m == c; // ok, dispatched to Constant::equal_to(Mutable const&), no conversion
|
||||
bool equal_to(Constant const&);
|
||||
bool equal_to(Mutable const&);
|
||||
};
|
||||
|
||||
c == m; // ok, dispatched to Constant::equal_to(Mutable const&), no conversion
|
||||
m == c; // ok, dispatched to Constant::equal_to(Mutable const&), no conversion
|
||||
|
||||
This definition of operator== introduces a possible ambiguity when both types are convertible
|
||||
to each other. I don't think this is a problem as this behaviour is the same with concrete types.
|
||||
I.e.
|
||||
I.e. ::
|
||||
|
||||
struct A {};
|
||||
struct A {};
|
||||
|
||||
bool operator==(A, A);
|
||||
bool operator==(A, A);
|
||||
|
||||
struct B { B(A); };
|
||||
struct B { B(A); };
|
||||
|
||||
bool operator==(B, B);
|
||||
bool operator==(B, B);
|
||||
|
||||
A a;
|
||||
B b(a);
|
||||
A a;
|
||||
B b(a);
|
||||
|
||||
a == b; // error, ambiguous overload
|
||||
a == b; // error, ambiguous overload
|
||||
|
||||
Effect
|
||||
======
|
||||
|
Reference in New Issue
Block a user