Compare commits

..

1 Commits

Author SHA1 Message Date
cafa8de7a6 This commit was manufactured by cvs2svn to create branch 'named-args'.
[SVN r9294]
2001-02-20 16:01:02 +00:00
10 changed files with 136 additions and 1663 deletions

View File

@ -1,226 +0,0 @@
// (C) Copyright David Abrahams and Jeremy Siek 2000-2001. Permission to copy,
// use, modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided "as is"
// without express or implied warranty, and with no claim as to its suitability
// for any purpose.
//
// See http://www.boost.org for most recent version including documentation.
//
// Supplies:
//
// template <class Incrementable> class counting_iterator_traits;
// template <class Incrementable> class counting_iterator_policies;
//
// Iterator traits and policies for adapted iterators whose dereferenced
// value progresses through consecutive values of Incrementable when the
// iterator is derferenced.
//
// template <class Incrementable> struct counting_iterator_generator;
//
// A "type generator" whose nested type "type" is a counting iterator as
// described above.
//
// template <class Incrementable>
// typename counting_iterator_generator<Incrementable>::type
// make_counting_iterator(Incrementable);
//
// A function which produces an adapted counting iterator over values of
// Incrementable.
//
// Revision History
// 14 Feb 2001 Removed unnecessary typedefs from counting_iterator_traits
// (Jeremy Siek)
// 11 Feb 2001 Use BOOST_STATIC_CONSTANT (Dave Abrahams)
// 11 Feb 2001 Clean up after John Maddocks's (finally effective!) Borland
// fixes (David Abrahams).
// 10 Feb 2001 Use new iterator_adaptor<> interface (David Abrahams)
// 10 Feb 2001 Rolled in supposed Borland fixes from John Maddock, but not
// seeing any improvement yet (David Abrahams)
// 09 Feb 2001 Factored out is_numeric computation. Borland still
// unhappy :( (David Abrahams)
// 08 Feb 2001 Beginning of a failed attempt to appease Borland
// (David Abrahams)
// 07 Feb 2001 rename counting_iterator() -> make_counting_iterator()
// (David Abrahams)
// 04 Feb 2001 Added counting_iterator_generator; updated comments
// (David Abrahams)
// 24 Jan 2001 initial revision, based on Jeremy Siek's
// boost/pending/integer_range.hpp (David Abrahams)
#ifndef BOOST_COUNTING_ITERATOR_HPP_DWA20000119
# define BOOST_COUNTING_ITERATOR_HPP_DWA20000119
# include <boost/config.hpp>
# include <boost/detail/iterator.hpp>
# include <boost/iterator_adaptors.hpp>
# include <boost/type_traits.hpp>
# include <boost/detail/numeric_traits.hpp>
# include <boost/static_assert.hpp>
# ifndef BOOST_NO_LIMITS
# include <limits>
# endif
namespace boost {
namespace detail {
// Template class counting_iterator_traits_select -- choose an
// iterator_category and difference_type for a counting_iterator at
// compile-time based on whether or not it wraps an integer or an iterator,
// using "poor man's partial specialization".
template <bool is_integer> struct counting_iterator_traits_select;
// Incrementable is an iterator type
template <>
struct counting_iterator_traits_select<false>
{
template <class Incrementable>
struct traits
{
private:
typedef boost::detail::iterator_traits<Incrementable> x;
public:
typedef typename x::iterator_category iterator_category;
typedef typename x::difference_type difference_type;
};
};
// Incrementable is a numeric type
template <>
struct counting_iterator_traits_select<true>
{
template <class Incrementable>
struct traits
{
typedef typename
boost::detail::numeric_traits<Incrementable>::difference_type
difference_type;
typedef std::random_access_iterator_tag iterator_category;
};
};
// Template class distance_policy_select -- choose a policy for computing the
// distance between counting_iterators at compile-time based on whether or not
// the iterator wraps an integer or an iterator, using "poor man's partial
// specialization".
template <bool is_integer> struct distance_policy_select;
// A policy for wrapped iterators
template <>
struct distance_policy_select<false>
{
template <class Distance, class Incrementable>
struct policy {
static Distance distance(Incrementable x, Incrementable y)
{ return boost::detail::distance(x, y); }
};
};
// A policy for wrapped numbers
template <>
struct distance_policy_select<true>
{
template <class Distance, class Incrementable>
struct policy {
static Distance distance(Incrementable x, Incrementable y)
{ return numeric_distance(x, y); }
};
};
// Try to detect numeric types at compile time in ways compatible with the
// limitations of the compiler and library.
template <class T>
struct is_numeric {
// For a while, this wasn't true, but we rely on it below. This is a regression assert.
BOOST_STATIC_ASSERT(::boost::is_integral<char>::value);
# ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
# if defined(ULLONG_MAX) || defined(ULONG_LONG_MAX)
BOOST_STATIC_CONSTANT(bool,
value = (
std::numeric_limits<T>::is_specialized
| boost::is_same<T,long long>::value
| boost::is_same<T,unsigned long long>::value));
# else
BOOST_STATIC_CONSTANT(bool, value = std::numeric_limits<T>::is_specialized);
# endif
# else
# if !defined(__BORLANDC__)
BOOST_STATIC_CONSTANT(bool, value = (
boost::is_convertible<int,T>::value && boost::is_convertible<T,int>::value));
# else
BOOST_STATIC_CONSTANT(bool, value = ::boost::is_arithmetic<T>::value);
# endif
# endif
};
// Compute the distance over arbitrary numeric and/or iterator types
template <class Distance, class Incrementable>
Distance any_distance(Incrementable start, Incrementable finish, Distance* = 0)
{
return distance_policy_select<(
is_numeric<Incrementable>::value)>::template
policy<Distance, Incrementable>::distance(start, finish);
}
} // namespace detail
template <class Incrementable>
struct counting_iterator_traits {
private:
typedef ::boost::detail::counting_iterator_traits_select<(
::boost::detail::is_numeric<Incrementable>::value
)> binder;
typedef typename binder::template traits<Incrementable> traits;
public:
typedef typename traits::difference_type difference_type;
typedef typename traits::iterator_category iterator_category;
};
template <class Incrementable>
struct counting_iterator_policies : public default_iterator_policies
{
template <class IteratorAdaptor>
typename IteratorAdaptor::reference dereference(const IteratorAdaptor& i) const
{ return i.base(); }
template <class Iterator1, class Iterator2>
typename Iterator1::difference_type distance(
const Iterator1& x, const Iterator2& y) const
{
typedef typename Iterator1::difference_type difference_type;
return boost::detail::any_distance<difference_type>(
x.base(), y.base());
}
};
// A type generator for counting iterators
template <class Incrementable>
struct counting_iterator_generator
{
typedef counting_iterator_traits<Incrementable> traits;
typedef iterator_adaptor<Incrementable,
counting_iterator_policies<Incrementable>,
Incrementable,
const Incrementable&,
const Incrementable*,
typename traits::iterator_category,
typename traits::difference_type
> type;
};
// Manufacture a counting iterator for an arbitrary incrementable type
template <class Incrementable>
inline typename counting_iterator_generator<Incrementable>::type
make_counting_iterator(Incrementable x)
{
typedef typename counting_iterator_generator<Incrementable>::type result_t;
return result_t(x);
}
} // namespace boost
#endif // BOOST_COUNTING_ITERATOR_HPP_DWA20000119

View File

@ -1,55 +0,0 @@
// (C) Copyright Jeremy Siek 2001. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// Revision History:
// 27 Feb 2001 Jeremy Siek
// Initial checkin.
#ifndef BOOST_FUNCTION_OUTPUT_ITERATOR_HPP
#define BOOST_FUNCTION_OUTPUT_ITERATOR_HPP
#include <iterator>
namespace boost {
template <class UnaryFunction>
class function_output_iterator {
typedef function_output_iterator self;
public:
typedef std::output_iterator_tag iterator_category;
typedef void value_type;
typedef void difference_type;
typedef void pointer;
typedef void reference;
explicit function_output_iterator(const UnaryFunction& f = UnaryFunction())
: m_f(f) {}
struct output_proxy {
output_proxy(UnaryFunction& f) : m_f(f) { }
template <class T> output_proxy& operator=(const T& value) {
m_f(value);
return *this;
}
UnaryFunction& m_f;
};
output_proxy operator*() { return output_proxy(m_f); }
self& operator++() { return *this; }
self& operator++(int) { return *this; }
private:
UnaryFunction m_f;
};
template <class UnaryFunction>
inline function_output_iterator<UnaryFunction>
make_function_output_iterator(const UnaryFunction& f = UnaryFunction()) {
return function_output_iterator<UnaryFunction>(f);
}
} // namespace boost
#endif // BOOST_FUNCTION_OUTPUT_ITERATOR_HPP

View File

@ -1,426 +0,0 @@
// (C) Copyright Jeremy Siek and David Abrahams 2000-2001. Permission to copy,
// use, modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided "as is"
// without express or implied warranty, and with no claim as to its suitability
// for any purpose.
//
// Revision History:
// 11 Feb 2001 Use new iterator_adaptor interface, Fixes for Borland.
// (Dave Abrahams)
// 04 Feb 2001 Support for user-defined iterator categories (Dave Abrahams)
// 30 Jan 2001 Initial Checkin (Dave Abrahams)
#ifndef BOOST_HALF_OPEN_RANGE_HPP_
# define BOOST_HALF_OPEN_RANGE_HPP_
# include <boost/counting_iterator.hpp>
# include <functional>
# include <cassert>
# include <boost/operators.hpp>
# include <string>
# include <stdexcept>
# include <iterator>
namespace boost {
namespace detail {
// Template class choose_finish -- allows us to maintain the invariant that
// start() <= finish() on half_open_range specializations that support random
// access.
#ifdef __MWERKS__
template <class T>
const T& choose_finish(const T&, const T& finish, std::input_iterator_tag)
{
return finish;
}
template <class T>
const T& choose_finish(const T&, const T& finish, std::output_iterator_tag)
{
return finish;
}
template <class T>
const T& choose_finish(const T& start, const T& finish, std::random_access_iterator_tag)
{
return finish < start ? start : finish;
}
#else
template <bool is_random_access> struct finish_chooser;
template <>
struct finish_chooser<false>
{
template <class T>
struct rebind
{
static T choose(const T&, const T& finish)
{ return finish; }
};
};
template <>
struct finish_chooser<true>
{
template <class T>
struct rebind
{
static T choose(const T& start, const T& finish)
{ return finish < start ? start : finish; }
};
};
template <class Category, class Incrementable>
struct choose_finish
{
static const Incrementable choose(const Incrementable& start, const Incrementable& finish)
{
return finish_chooser<(
::boost::is_convertible<Category*,std::random_access_iterator_tag*>::value
)>::template rebind<Incrementable>::choose(start, finish);
}
};
#endif
}
template <class Incrementable>
struct half_open_range
{
typedef typename counting_iterator_generator<Incrementable>::type iterator;
private: // utility type definitions
// Using iter_t prevents compiler confusion with boost::iterator
typedef typename counting_iterator_generator<Incrementable>::type iter_t;
typedef std::less<Incrementable> less_value;
typedef typename iter_t::iterator_category category;
typedef half_open_range<Incrementable> self;
public:
typedef iter_t const_iterator;
typedef typename counting_iterator_traits<Incrementable>::value_type value_type;
typedef typename counting_iterator_traits<Incrementable>::difference_type difference_type;
typedef typename counting_iterator_traits<Incrementable>::reference reference;
typedef typename counting_iterator_traits<Incrementable>::reference const_reference;
typedef typename counting_iterator_traits<Incrementable>::pointer pointer;
typedef typename counting_iterator_traits<Incrementable>::pointer const_pointer;
// It would be nice to select an unsigned type, but this is appropriate
// since the library makes an attempt to select a difference_type which can
// hold the difference between any two iterators.
typedef typename counting_iterator_traits<Incrementable>::difference_type size_type;
half_open_range(Incrementable start, Incrementable finish)
: m_start(start),
m_finish(
#ifndef __MWERKS__
detail::choose_finish<category,Incrementable>::choose(start, finish)
#else
detail::choose_finish(start, finish, category())
#endif
)
{}
// Implicit conversion from std::pair<Incrementable,Incrementable> allows us
// to accept the results of std::equal_range(), for example.
half_open_range(const std::pair<Incrementable,Incrementable>& x)
: m_start(x.first),
m_finish(
#ifndef __MWERKS__
detail::choose_finish<category,Incrementable>::choose(x.first, x.second)
#else
detail::choose_finish(x.first, x.second, category())
#endif
)
{}
half_open_range& operator=(const self& x)
{
m_start = x.m_start;
m_finish = x.m_finish;
return *this;
}
half_open_range& operator=(const std::pair<Incrementable,Incrementable>& x)
{
m_start = x.first;
m_finish =
#ifndef __MWERKS__
detail::choose_finish<category,Incrementable>::choose(x.first, x.second);
#else
detail::choose_finish(x.first, x.second, category();
#endif
}
iterator begin() const { return iterator(m_start); }
iterator end() const { return iterator(m_finish); }
Incrementable front() const { assert(!this->empty()); return m_start; }
Incrementable back() const { assert(!this->empty()); return boost::prior(m_finish); }
Incrementable start() const { return m_start; }
Incrementable finish() const { return m_finish; }
size_type size() const { return boost::detail::distance(begin(), end()); }
bool empty() const
{
return m_finish == m_start;
}
void swap(half_open_range& x) {
std::swap(m_start, x.m_start);
std::swap(m_finish, x.m_finish);
}
public: // functions requiring random access elements
// REQUIRES: x is reachable from this->front()
bool contains(const value_type& x) const
{
BOOST_STATIC_ASSERT((boost::is_same<category, std::random_access_iterator_tag>::value));
return !less_value()(x, m_start) && less_value()(x, m_finish);
}
bool contains(const half_open_range& x) const
{
BOOST_STATIC_ASSERT((boost::is_same<category, std::random_access_iterator_tag>::value));
return x.empty() || !less_value()(x.m_start, m_start) && !less_value()(m_finish, x.m_finish);
}
bool intersects(const half_open_range& x) const
{
BOOST_STATIC_ASSERT((boost::is_same<category, std::random_access_iterator_tag>::value));
return less_value()(
less_value()(this->m_start, x.m_start) ? x.m_start : this->m_start,
less_value()(this->m_finish, x.m_finish) ? this->m_finish : x.m_finish);
}
half_open_range& operator&=(const half_open_range& x)
{
BOOST_STATIC_ASSERT((boost::is_same<category, std::random_access_iterator_tag>::value));
if (less_value()(this->m_start, x.m_start))
this->m_start = x.m_start;
if (less_value()(x.m_finish, this->m_finish))
this->m_finish = x.m_finish;
if (less_value()(this->m_finish, this->m_start))
this->m_start = this->m_finish;
return *this;
}
half_open_range& operator|=(const half_open_range& x)
{
BOOST_STATIC_ASSERT((boost::is_same<category, std::random_access_iterator_tag>::value));
if (!x.empty())
{
if (this->empty())
{
*this = x;
}
else
{
if (less_value()(x.m_start, this->m_start))
this->m_start = x.m_start;
if (less_value()(this->m_finish, x.m_finish))
this->m_finish = x.m_finish;
}
}
return *this;
}
// REQUIRES: x is reachable from this->front()
const_iterator find(const value_type& x) const
{
BOOST_STATIC_ASSERT((boost::is_same<category, std::random_access_iterator_tag>::value));
return const_iterator(this->contains(x) ? x : m_finish);
}
// REQUIRES: index >= 0 && index < size()
value_type operator[](size_type index) const
{
assert(index >= 0 && index < size());
return m_start + index;
}
value_type at(size_type index) const
{
if (index < 0 || index >= size())
throw std::out_of_range(std::string("half_open_range"));
return m_start + index;
}
private: // data members
Incrementable m_start, m_finish;
};
template <class Incrementable>
half_open_range<Incrementable> operator|(
half_open_range<Incrementable> x,
const half_open_range<Incrementable>& y)
{
return x |= y;
}
template <class Incrementable>
half_open_range<Incrementable> operator&(
half_open_range<Incrementable> x,
const half_open_range<Incrementable>& y)
{
return x &= y;
}
template <class Incrementable>
inline bool operator==(
const half_open_range<Incrementable>& x,
const half_open_range<Incrementable>& y)
{
const bool y_empty = y.empty();
return x.empty() ? y_empty : !y_empty && x.start() == y.start() && x.finish() == y.finish();
}
template <class Incrementable>
inline bool operator!=(
const half_open_range<Incrementable>& x,
const half_open_range<Incrementable>& y)
{
return !(x == y);
}
template <class Incrementable>
inline half_open_range<Incrementable>
make_half_open_range(Incrementable first, Incrementable last)
{
return half_open_range<Incrementable>(first, last);
}
template <class Incrementable>
bool intersects(
const half_open_range<Incrementable>& x,
const half_open_range<Incrementable>& y)
{
return x.intersects(y);
}
template <class Incrementable>
bool contains(
const half_open_range<Incrementable>& x,
const half_open_range<Incrementable>& y)
{
return x.contains(y);
}
} // namespace boost
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
namespace std {
template <class Incrementable> struct less<boost::half_open_range<Incrementable> >
: binary_function<
boost::half_open_range<Incrementable>,
boost::half_open_range<Incrementable>,bool>
{
bool operator()(
const boost::half_open_range<Incrementable>& x,
const boost::half_open_range<Incrementable>& y) const
{
less<Incrementable> cmp;
return !y.empty() && (
cmp(x.start(), y.start())
|| !cmp(y.start(), x.start())
&& cmp(x.finish(), y.finish()));
}
};
template <class Incrementable> struct less_equal<boost::half_open_range<Incrementable> >
: binary_function<
boost::half_open_range<Incrementable>,
boost::half_open_range<Incrementable>,bool>
{
bool operator()(
const boost::half_open_range<Incrementable>& x,
const boost::half_open_range<Incrementable>& y) const
{
typedef boost::half_open_range<Incrementable> range;
less<range> cmp;
return !cmp(y,x);
}
};
template <class Incrementable> struct greater<boost::half_open_range<Incrementable> >
: binary_function<
boost::half_open_range<Incrementable>,
boost::half_open_range<Incrementable>,bool>
{
bool operator()(
const boost::half_open_range<Incrementable>& x,
const boost::half_open_range<Incrementable>& y) const
{
typedef boost::half_open_range<Incrementable> range;
less<range> cmp;
return cmp(y,x);
}
};
template <class Incrementable> struct greater_equal<boost::half_open_range<Incrementable> >
: binary_function<
boost::half_open_range<Incrementable>,
boost::half_open_range<Incrementable>,bool>
{
bool operator()(
const boost::half_open_range<Incrementable>& x,
const boost::half_open_range<Incrementable>& y) const
{
typedef boost::half_open_range<Incrementable> range;
less<range> cmp;
return !cmp(x,y);
}
};
} // namespace std
#else
namespace boost {
// Can't partially specialize std::less et al, so we must provide the operators
template <class Incrementable>
bool operator<(const half_open_range<Incrementable>& x,
const half_open_range<Incrementable>& y)
{
return !y.empty() && (
x.empty() || std::less<Incrementable>()(x.start(), y.start())
|| !std::less<Incrementable>()(y.start(), x.start())
&& std::less<Incrementable>()(x.finish(), y.finish()));
}
template <class Incrementable>
bool operator>(const half_open_range<Incrementable>& x,
const half_open_range<Incrementable>& y)
{
return y < x;
}
template <class Incrementable>
bool operator<=(const half_open_range<Incrementable>& x,
const half_open_range<Incrementable>& y)
{
return !(y < x);
}
template <class Incrementable>
bool operator>=(const half_open_range<Incrementable>& x,
const half_open_range<Incrementable>& y)
{
return !(x < y);
}
} // namespace boost
#endif
#endif // BOOST_HALF_OPEN_RANGE_HPP_

View File

@ -1,60 +0,0 @@
// interator.hpp workarounds for non-conforming standard libraries ---------//
// (C) Copyright Boost.org 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 12 Jan 01 added <cstddef> for std::ptrdiff_t (Jens Maurer)
// 28 Jun 00 Workarounds to deal with known MSVC bugs (David Abrahams)
// 26 Jun 00 Initial version (Jeremy Siek)
#ifndef BOOST_ITERATOR_HPP
#define BOOST_ITERATOR_HPP
#include <iterator>
#include <cstddef> // std::ptrdiff_t
#include <boost/config.hpp>
namespace boost
{
# if defined(BOOST_NO_STD_ITERATOR) && !defined(BOOST_MSVC_STD_ITERATOR)
template <class Category, class T,
class Distance = std::ptrdiff_t,
class Pointer = T*, class Reference = T&>
struct iterator
{
typedef T value_type;
typedef Distance difference_type;
typedef Pointer pointer;
typedef Reference reference;
typedef Category iterator_category;
};
# else
// declare iterator_base in namespace detail to work around MSVC bugs which
// prevent derivation from an identically-named class in a different namespace.
namespace detail {
template <class Category, class T, class Distance, class Pointer, class Reference>
# if !defined(BOOST_MSVC_STD_ITERATOR)
struct iterator_base : std::iterator<Category, T, Distance, Pointer, Reference> {};
# else
struct iterator_base : std::iterator<Category, T, Distance>
{
typedef Reference reference;
typedef Pointer pointer;
typedef Distance difference_type;
};
# endif
}
template <class Category, class T, class Distance = std::ptrdiff_t,
class Pointer = T*, class Reference = T&>
struct iterator : detail::iterator_base<Category, T, Distance, Pointer, Reference> {};
# endif
} // namespace boost
#endif // BOOST_ITERATOR_HPP

View File

@ -12,18 +12,6 @@
//
// Revision History:
// 03 Nov 2001 Jeremy Siek
// Changed the named template parameter interface and internal.
// 04 Oct 2001 Jeremy Siek
// Changed projection_iterator to not rely on the default reference,
// working around a limitation of detail::iterator_traits.
// 04 Oct 2001 David Abrahams
// Applied indirect_iterator patch from George A. Heintzelman <georgeh@aya.yale.edu>
// Changed name of "bind" to "select" to avoid problems with MSVC.
// 26 Sep 2001 David Abrahams
// Added borland bug fix
// 08 Mar 2001 Jeremy Siek
// Added support for optional named template parameters.
// 19 Feb 2001 David Abrahams
// Rolled back reverse_iterator_pair_generator again, as it doesn't
// save typing on a conforming compiler.
@ -147,7 +135,7 @@ struct TrivialIteratorPoliciesConcept
const_constraints();
}
void const_constraints() const {
Reference r = p.dereference(x);
Reference r = p.dereference(type<Reference>(), x);
b = p.equal(x, x);
ignore_unused_variable_warning(r);
}
@ -209,7 +197,8 @@ struct RandomAccessIteratorPoliciesConcept
ignore_unused_variable_warning(t);
}
void const_constraints() const {
n = p.distance(x, x);
n = p.distance(type<DifferenceType>(), x, x);
b = p.less(x, x);
}
Policies p;
Adapted x;
@ -231,30 +220,34 @@ struct default_iterator_policies
void initialize(Base&)
{ }
template <class IteratorAdaptor>
typename IteratorAdaptor::reference dereference(const IteratorAdaptor& x) const
{ return *x.base(); }
template <class Reference, class Base>
Reference dereference(type<Reference>, const Base& x) const
{ return *x; }
template <class IteratorAdaptor>
void increment(IteratorAdaptor& x)
{ ++x.base(); }
template <class Base>
void increment(Base& x)
{ ++x; }
template <class IteratorAdaptor>
void decrement(IteratorAdaptor& x)
{ --x.base(); }
template <class Base>
void decrement(Base& x)
{ --x; }
template <class IteratorAdaptor, class DifferenceType>
void advance(IteratorAdaptor& x, DifferenceType n)
{ x.base() += n; }
template <class Base, class DifferenceType>
void advance(Base& x, DifferenceType n)
{ x += n; }
template <class IteratorAdaptor1, class IteratorAdaptor2>
typename IteratorAdaptor1::difference_type
distance(const IteratorAdaptor1& x, const IteratorAdaptor2& y) const
{ return y.base() - x.base(); }
template <class Difference, class Iterator1, class Iterator2>
Difference distance(type<Difference>, const Iterator1& x,
const Iterator2& y) const
{ return y - x; }
template <class IteratorAdaptor1, class IteratorAdaptor2>
bool equal(const IteratorAdaptor1& x, const IteratorAdaptor2& y) const
{ return x.base() == y.base(); }
template <class Iterator1, class Iterator2>
bool equal(const Iterator1& x, const Iterator2& y) const
{ return x == y; }
template <class Iterator1, class Iterator2>
bool less(const Iterator1& x, const Iterator2& y) const
{ return x < y; }
};
// putting the comparisons in a base class avoids the g++
@ -270,7 +263,7 @@ inline bool operator==(const iterator_comparisons<D1,Base1>& xb,
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return x.policies().equal(x, y);
return x.policies().equal(x.iter(), y.iter());
}
template <class D1, class D2, class Base1, class Base2>
@ -279,7 +272,7 @@ inline bool operator!=(const iterator_comparisons<D1,Base1>& xb,
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return !x.policies().equal(x, y);
return !x.policies().equal(x.iter(), y.iter());
}
template <class D1, class D2, class Base1, class Base2>
@ -288,7 +281,7 @@ inline bool operator<(const iterator_comparisons<D1,Base1>& xb,
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return x.policies().distance(y, x) < 0;
return x.policies().less(x.iter(), y.iter());
}
template <class D1, class D2, class Base1, class Base2>
@ -297,7 +290,7 @@ inline bool operator>(const iterator_comparisons<D1,Base1>& xb,
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return x.policies().distance(y, x) > 0;
return x.policies().less(y.iter(), x.iter());
}
template <class D1, class D2, class Base1, class Base2>
@ -306,7 +299,7 @@ inline bool operator>=(const iterator_comparisons<D1,Base1>& xb,
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return x.policies().distance(y, x) >= 0;
return !x.policies().less(x.iter(), y.iter());
}
template <class D1, class D2, class Base1, class Base2>
@ -315,7 +308,7 @@ inline bool operator<=(const iterator_comparisons<D1,Base1>& xb,
{
const D1& x = static_cast<const D1&>(xb);
const D2& y = static_cast<const D2&>(yb);
return x.policies().distance(y, x) <= 0;
return !x.policies().less(y.iter(), x.iter());
}
#endif
@ -340,8 +333,11 @@ namespace detail {
template <class Iter>
inline operator_arrow_proxy<typename Iter::value_type>
operator_arrow(const Iter& i, std::input_iterator_tag) {
typedef typename Iter::value_type value_t; // VC++ needs this typedef
return operator_arrow_proxy<value_t>(*i);
return operator_arrow_proxy<
#ifndef BOOST_MSVC
typename
#endif
Iter::value_type>(*i);
}
template <class Iter>
@ -354,6 +350,7 @@ namespace detail {
struct operator_arrow_result_generator
{
typedef operator_arrow_proxy<Value> proxy;
// Borland chokes unless it's an actual enum (!)
enum { is_input_iter
= (boost::is_convertible<Category*,std::input_iterator_tag*>::value
@ -406,7 +403,7 @@ namespace detail {
{
BOOST_STATIC_CONSTANT(bool, is_ptr = boost::is_pointer<Iterator>::value);
typedef typename iterator_defaults_select<is_ptr>::template traits<Iterator,Value> traits;
typedef iterator_defaults_select<is_ptr>::template traits<Iterator,Value> traits;
typedef typename traits::pointer pointer;
typedef typename traits::reference reference;
};
@ -432,303 +429,8 @@ namespace detail {
};
# endif
//===========================================================================
// Specify the defaults for iterator_adaptor's template parameters
struct default_argument { };
// This class template is a workaround for MSVC.
struct dummy_default_gen {
template <class Base, class Traits>
struct select { typedef default_argument type; };
};
// This class template is a workaround for MSVC.
template <class Gen> struct default_generator {
typedef dummy_default_gen type;
};
struct default_value_type {
template <class Base, class Traits>
struct select {
typedef typename boost::detail::iterator_traits<Base>::value_type type;
};
};
template <> struct default_generator<default_value_type>
{ typedef default_value_type type; }; // VC++ workaround
struct default_difference_type {
template <class Base, class Traits>
struct select {
typedef typename boost::detail::iterator_traits<Base>::difference_type type;
};
};
template <> struct default_generator<default_difference_type>
{ typedef default_difference_type type; }; // VC++ workaround
struct default_iterator_category {
template <class Base, class Traits>
struct select {
typedef typename boost::detail::iterator_traits<Base>::iterator_category type;
};
};
template <> struct default_generator<default_iterator_category>
{ typedef default_iterator_category type; }; // VC++ workaround
struct default_pointer {
template <class Base, class Traits>
struct select {
typedef typename Traits::value_type Value;
typedef typename boost::detail::iterator_defaults<Base,Value>::pointer
type;
};
};
template <> struct default_generator<default_pointer>
{ typedef default_pointer type; }; // VC++ workaround
struct default_reference {
template <class Base, class Traits>
struct select {
typedef typename Traits::value_type Value;
typedef typename boost::detail::iterator_defaults<Base,Value>::reference
type;
};
};
template <> struct default_generator<default_reference>
{ typedef default_reference type; }; // VC++ workaround
} // namespace detail
//===========================================================================
// Support for named template parameters
struct named_template_param_base { };
namespace detail {
struct value_type_tag { };
struct reference_tag { };
struct pointer_tag { };
struct difference_type_tag { };
struct iterator_category_tag { };
// avoid using std::pair because A or B might be a reference type, and g++
// complains about forming references to references inside std::pair
template <class A, class B>
struct cons_type {
typedef A first_type;
typedef B second_type;
};
} // namespace detail
template <class Value> struct value_type_is : public named_template_param_base
{
typedef detail::cons_type<detail::value_type_tag, Value> type;
};
template <class Reference> struct reference_is : public named_template_param_base
{
typedef detail::cons_type<detail::reference_tag, Reference> type;
};
template <class Pointer> struct pointer_is : public named_template_param_base
{
typedef detail::cons_type<detail::pointer_tag, Pointer> type;
};
template <class Difference> struct difference_type_is
: public named_template_param_base
{
typedef detail::cons_type<detail::difference_type_tag, Difference> type;
};
template <class IteratorCategory> struct iterator_category_is
: public named_template_param_base
{
typedef detail::cons_type<detail::iterator_category_tag, IteratorCategory> type;
};
namespace detail {
struct end_of_list { };
// Given an associative list, find the value with the matching key.
// An associative list is a list of key-value pairs. The list is
// built out of cons_type's and is terminated by end_of_list.
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) || defined(__BORLANDC__)
template <class AssocList, class Key>
struct find_param;
struct find_param_continue {
template <class AssocList, class Key2> struct select {
typedef typename AssocList::first_type Head;
typedef typename Head::first_type Key1;
typedef typename Head::second_type Value;
typedef typename if_true<(is_same<Key1, Key2>::value)>::template
then<Value,
typename find_param<typename AssocList::second_type, Key2>::type
>::type type;
};
};
struct find_param_end {
template <class AssocList, class Key>
struct select { typedef detail::default_argument type; };
};
template <class AssocList> struct find_param_helper1
{ typedef find_param_continue type; };
template <> struct find_param_helper1<end_of_list>
{ typedef find_param_end type; };
template <class AssocList, class Key>
struct find_param {
typedef typename find_param_helper1<AssocList>::type select1;
typedef typename select1::template select<AssocList, Key>::type type;
};
#else
template <class AssocList, class Key> struct find_param;
template <class Key>
struct find_param<end_of_list, Key> { typedef default_argument type; };
// Found a matching Key, return the associated Value
template <class Key, class Value, class Rest>
struct find_param<detail::cons_type< detail::cons_type<Key, Value>, Rest>, Key> {
typedef Value type;
};
// Non-matching keys, continue the search
template <class Key1, class Value, class Rest, class Key2>
struct find_param<detail::cons_type< detail::cons_type<Key1, Value>, Rest>, Key2> {
typedef typename find_param<Rest, Key2>::type type;
};
#endif
struct make_named_arg {
template <class Key, class Value>
struct select { typedef typename Value::type type; };
};
struct make_key_value {
template <class Key, class Value>
struct select { typedef detail::cons_type<Key, Value> type; };
};
template <class Value>
struct is_named_parameter
{
enum { value = is_convertible<Value, named_template_param_base>::value };
};
#if defined(__MWERKS__) && __MWERKS__ <= 0x2405 // workaround for broken is_convertible implementation
template <class T> struct is_named_parameter<value_type_is<T> > { enum { value = true }; };
template <class T> struct is_named_parameter<reference_is<T> > { enum { value = true }; };
template <class T> struct is_named_parameter<pointer_is<T> > { enum { value = true }; };
template <class T> struct is_named_parameter<difference_type_is<T> > { enum { value = true }; };
template <class T> struct is_named_parameter<iterator_category_is<T> > { enum { value = true }; };
#endif
template <class Key, class Value>
struct make_arg {
#ifdef __BORLANDC__
// Borland C++ doesn't like the extra indirection of is_named_parameter
typedef typename
if_true<(is_convertible<Value,named_template_param_base>::value)>::
template then<make_named_arg, make_key_value>::type Make;
#else
enum { is_named = is_named_parameter<Value>::value };
typedef typename if_true<(is_named)>::template
then<make_named_arg, make_key_value>::type Make;
#endif
typedef typename Make::template select<Key, Value>::type type;
};
// Mechanism for resolving the default argument for a template parameter.
template <class T> struct is_default { typedef type_traits::no_type type; };
template <> struct is_default<default_argument>
{ typedef type_traits::yes_type type; };
struct choose_default {
template <class Arg, class DefaultGen, class Base, class Traits>
struct select {
typedef typename default_generator<DefaultGen>::type Gen;
typedef typename Gen::template select<Base,Traits>::type type;
};
};
struct choose_arg {
template <class Arg, class DefaultGen, class Base, class Traits>
struct select {
typedef Arg type;
};
};
template <class UseDefault>
struct choose_arg_or_default { typedef choose_arg type; };
template <> struct choose_arg_or_default<type_traits::yes_type> {
typedef choose_default type;
};
template <class Arg, class DefaultGen, class Base, class Traits>
class resolve_default {
typedef typename choose_arg_or_default<typename is_default<Arg>::type>::type
Selector;
public:
typedef typename Selector
::template select<Arg, DefaultGen, Base, Traits>::type type;
};
template <class Base, class Value, class Reference, class Pointer,
class Category, class Distance>
class iterator_adaptor_traits_gen
{
// Form an associative list out of the template parameters
// If the argument is a normal parameter (not named) then make_arg
// creates a key-value pair. If the argument is a named parameter,
// then make_arg extracts the key-value pair defined inside the
// named parameter.
typedef detail::cons_type< typename make_arg<value_type_tag, Value>::type,
detail::cons_type<typename make_arg<reference_tag, Reference>::type,
detail::cons_type<typename make_arg<pointer_tag, Pointer>::type,
detail::cons_type<typename make_arg<iterator_category_tag, Category>::type,
detail::cons_type<typename make_arg<difference_type_tag, Distance>::type,
end_of_list> > > > > ArgList;
// Search the list for particular parameters
typedef typename find_param<ArgList, value_type_tag>::type Val;
typedef typename find_param<ArgList, difference_type_tag>::type Diff;
typedef typename find_param<ArgList, iterator_category_tag>::type Cat;
typedef typename find_param<ArgList, pointer_tag>::type Ptr;
typedef typename find_param<ArgList, reference_tag>::type Ref;
typedef boost::iterator<Category, Value, Distance, Pointer, Reference>
Traits0;
// Compute the defaults if necessary
typedef typename resolve_default<Val, default_value_type, Base, Traits0>::type
value_type;
// if getting default value type from iterator_traits, then it won't be const
typedef typename resolve_default<Diff, default_difference_type, Base,
Traits0>::type difference_type;
typedef typename resolve_default<Cat, default_iterator_category, Base,
Traits0>::type iterator_category;
typedef boost::iterator<iterator_category, value_type, difference_type,
Pointer, Reference> Traits1;
// Compute the defaults for pointer and reference. This is done as a
// separate step because the defaults for pointer and reference depend
// on value_type.
typedef typename resolve_default<Ptr, default_pointer, Base, Traits1>::type
pointer;
typedef typename resolve_default<Ref, default_reference, Base, Traits1>::type
reference;
public:
typedef boost::iterator<iterator_category,
typename remove_const<value_type>::type,
difference_type, pointer, reference> type;
};
} // namespace detail
// This macro definition is only temporary in this file
# if !defined(BOOST_MSVC)
# define BOOST_ARG_DEPENDENT_TYPENAME typename
@ -767,33 +469,29 @@ template <class T> struct undefined;
// Distance - the difference_type of the resulting iterator. If not
// supplied, iterator_traits<Base>::difference_type is used.
template <class Base, class Policies,
class Value = detail::default_argument,
class Reference = detail::default_argument,
class Pointer = detail::default_argument,
class Category = detail::default_argument,
class Distance = detail::default_argument
class Value = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<Base>::value_type,
class Reference = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_defaults<Base,Value>::reference,
class Pointer = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_defaults<Base,Value>::pointer,
class Category = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<Base>::iterator_category,
class Distance = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<Base>::difference_type
>
struct iterator_adaptor :
#ifdef BOOST_RELOPS_AMBIGUITY_BUG
iterator_comparisons<
iterator_adaptor<Base,Policies,Value,Reference,Pointer,Category,Distance>,
typename detail::iterator_adaptor_traits_gen<Base,Value,Reference,Pointer,Category, Distance>::type
>
#else
detail::iterator_adaptor_traits_gen<Base,Value,Reference,Pointer,Category,Distance>::type
#endif
boost::iterator<Category,Value,Distance,Pointer,Reference>
#ifdef BOOST_RELOPS_AMBIGUITY_BUG
>
#endif
{
typedef iterator_adaptor<Base,Policies,Value,Reference,Pointer,Category,Distance> self;
public:
typedef detail::iterator_adaptor_traits_gen<Base,Value,Reference,Pointer,Category,Distance> TraitsGen;
typedef typename TraitsGen::type Traits;
typedef typename Traits::difference_type difference_type;
typedef typename Traits::value_type value_type;
typedef typename Traits::pointer pointer;
typedef typename Traits::reference reference;
typedef typename Traits::iterator_category iterator_category;
typedef Distance difference_type;
typedef typename boost::remove_const<Value>::type value_type;
typedef Pointer pointer;
typedef Reference reference;
typedef Category iterator_category;
typedef Base base_type;
typedef Policies policies_type;
@ -805,57 +503,53 @@ struct iterator_adaptor :
// Iterators should satisfy one of the known categories
BOOST_STATIC_ASSERT(is_input_or_output_iter);
#if !defined(BOOST_MSVC)
// Iterators >= ForwardIterator must produce real references
// as required by the C++ standard requirements in Table 74.
// Iterators >= ForwardIterator must produce real references.
BOOST_STATIC_CONSTANT(bool, forward_iter_with_real_reference =
(!boost::is_convertible<iterator_category*,std::forward_iterator_tag*>::value
|| boost::is_same<reference,value_type&>::value
|| boost::is_same<reference,const value_type&>::value));
// This check gives incorrect results in iter_traits_gen_test.cpp
BOOST_STATIC_ASSERT(forward_iter_with_real_reference);
#endif
public:
iterator_adaptor() { }
explicit
iterator_adaptor(const Base& it, const Policies& p = Policies())
: m_iter_p(it, p) {
policies().initialize(base());
policies().initialize(iter());
}
template <class Iter2, class Value2, class Pointer2, class Reference2>
iterator_adaptor (
const iterator_adaptor<Iter2,Policies,Value2,Reference2,Pointer2,Category,Distance>& src)
: m_iter_p(src.base(), src.policies())
: m_iter_p(src.iter(), src.policies())
{
policies().initialize(base());
policies().initialize(iter());
}
#if defined(BOOST_MSVC) || defined(__BORLANDC__)
#ifdef BOOST_MSVC
// This is required to prevent a bug in how VC++ generates
// the assignment operator for compressed_pairv
// the assignment operator for compressed_pair.
iterator_adaptor& operator= (const iterator_adaptor& x) {
m_iter_p = x.m_iter_p;
return *this;
}
#endif
reference operator*() const {
return policies().dereference(*this);
return policies().dereference(type<reference>(), iter());
}
#ifdef BOOST_MSVC
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning( disable : 4284 )
#endif
typename boost::detail::operator_arrow_result_generator<iterator_category,value_type,pointer>::type
typename boost::detail::operator_arrow_result_generator<Category,value_type,Pointer>::type
operator->() const
{ return detail::operator_arrow(*this, iterator_category()); }
{ return detail::operator_arrow(*this, Category()); }
#ifdef BOOST_MSVC
#ifdef _MSC_VER
# pragma warning(pop)
#endif
@ -863,12 +557,12 @@ struct iterator_adaptor :
{ return *(*this + n); }
self& operator++() {
#if !defined(__MWERKS__) || __MWERKS__ >= 0x2405
policies().increment(*this);
#else
#ifdef __MWERKS__
// Odd bug, MWERKS couldn't deduce the type for the member template
// Workaround by explicitly specifying the type.
policies().increment<self>(*this);
policies().increment<Base>(iter());
#else
policies().increment(iter());
#endif
return *this;
}
@ -876,39 +570,37 @@ struct iterator_adaptor :
self operator++(int) { self tmp(*this); ++*this; return tmp; }
self& operator--() {
#if !defined(__MWERKS__) || __MWERKS__ >= 0x2405
policies().decrement(*this);
#else
policies().decrement<self>(*this);
#endif
policies().decrement(iter());
return *this;
}
self operator--(int) { self tmp(*this); --*this; return tmp; }
self& operator+=(difference_type n) {
policies().advance(*this, n);
policies().advance(iter(), n);
return *this;
}
self& operator-=(difference_type n) {
policies().advance(*this, -n);
policies().advance(iter(), -n);
return *this;
}
base_type const& base() const { return m_iter_p.first(); }
base_type base() const { return m_iter_p.first(); }
// Moved from global scope to avoid ambiguity with the operator-() which
// subtracts iterators from one another.
self operator-(difference_type x) const
self operator-(Distance x) const
{ self result(*this); return result -= x; }
private:
compressed_pair<Base,Policies> m_iter_p;
public: // implementation details (too many compilers have trouble when these are private).
base_type& base() { return m_iter_p.first(); }
Policies& policies() { return m_iter_p.second(); }
const Policies& policies() const { return m_iter_p.second(); }
Base& iter() { return m_iter_p.first(); }
const Base& iter() const { return m_iter_p.first(); }
};
template <class Base, class Policies, class Value, class Reference, class Pointer,
@ -934,14 +626,11 @@ operator+(
template <class Iterator1, class Iterator2, class Policies, class Value1, class Value2,
class Reference1, class Reference2, class Pointer1, class Pointer2, class Category,
class Distance>
typename iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>::difference_type
operator-(
Distance operator-(
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator2,Policies,Value2,Reference2,Pointer2,Category,Distance>& y)
{
typedef typename iterator_adaptor<Iterator1,Policies,Value1,Reference1,
Pointer1,Category,Distance>::difference_type difference_type;
return x.policies().distance(y, x);
return x.policies().distance(type<Distance>(), y.iter(), x.iter());
}
#ifndef BOOST_RELOPS_AMBIGUITY_BUG
@ -953,7 +642,7 @@ operator==(
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator2,Policies,Value2,Reference2,Pointer2,Category,Distance>& y)
{
return x.policies().equal(x, y);
return x.policies().equal(x.iter(), y.iter());
}
template <class Iterator1, class Iterator2, class Policies, class Value1, class Value2,
@ -964,7 +653,7 @@ operator<(
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator2,Policies,Value2,Reference2,Pointer2,Category,Distance>& y)
{
return x.policies().distance(y, x) < 0;
return x.policies().less(x.iter(), y.iter());
}
template <class Iterator1, class Iterator2, class Policies, class Value1, class Value2,
@ -975,7 +664,7 @@ operator>(
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator2,Policies,Value2,Reference2,Pointer2,Category,Distance>& y)
{
return x.policies().distance(y, x) > 0;
return x.policies().less(y.iter(), x.iter());
}
template <class Iterator1, class Iterator2, class Policies, class Value1, class Value2,
@ -986,7 +675,7 @@ operator>=(
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator2,Policies,Value2,Reference2,Pointer2,Category,Distance>& y)
{
return x.policies().distance(y, x) >= 0;
return !x.policies().less(x.iter(), y.iter());
}
template <class Iterator1, class Iterator2, class Policies, class Value1, class Value2,
@ -997,7 +686,7 @@ operator<=(
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator2,Policies,Value2,Reference2,Pointer2,Category,Distance>& y)
{
return x.policies().distance(y, x) <= 0;
return !x.policies().less(y.iter(), x.iter());
}
template <class Iterator1, class Iterator2, class Policies, class Value1, class Value2,
@ -1008,7 +697,7 @@ operator!=(
const iterator_adaptor<Iterator1,Policies,Value1,Reference1,Pointer1,Category,Distance>& x,
const iterator_adaptor<Iterator2,Policies,Value2,Reference2,Pointer2,Category,Distance>& y)
{
return !x.policies().equal(x, y);
return !x.policies().equal(x.iter(), y.iter());
}
#endif
@ -1024,10 +713,9 @@ struct transform_iterator_policies : public default_iterator_policies
transform_iterator_policies() { }
transform_iterator_policies(const AdaptableUnaryFunction& f) : m_f(f) { }
template <class IteratorAdaptor>
typename IteratorAdaptor::reference
dereference(const IteratorAdaptor& iter) const
{ return m_f(*iter.base()); }
template <class Reference, class Iterator>
Reference dereference(type<Reference>, const Iterator& iter) const
{ return m_f(*iter); }
AdaptableUnaryFunction m_f;
};
@ -1070,19 +758,17 @@ make_transform_iterator(
struct indirect_iterator_policies : public default_iterator_policies
{
template <class IteratorAdaptor>
typename IteratorAdaptor::reference dereference(const IteratorAdaptor& x) const
{ return **x.base(); }
template <class Reference, class Iterator>
Reference dereference(type<Reference>, const Iterator& x) const
{ return **x; }
};
namespace detail {
# if !defined(BOOST_MSVC) // stragely instantiated even when unused! Maybe try a recursive template someday ;-)
template <class T>
struct traits_of_value_type {
struct value_type_of_value_type {
typedef typename boost::detail::iterator_traits<T>::value_type outer_value;
typedef typename boost::detail::iterator_traits<outer_value>::value_type value_type;
typedef typename boost::detail::iterator_traits<outer_value>::reference reference;
typedef typename boost::detail::iterator_traits<outer_value>::pointer pointer;
typedef typename boost::detail::iterator_traits<outer_value>::value_type type;
};
# endif
}
@ -1090,25 +776,11 @@ namespace detail {
template <class OuterIterator, // Mutable or Immutable, does not matter
class Value
#if !defined(BOOST_MSVC)
= BOOST_ARG_DEPENDENT_TYPENAME detail::traits_of_value_type<
OuterIterator>::value_type
#endif
, class Reference
#if !defined(BOOST_MSVC)
= BOOST_ARG_DEPENDENT_TYPENAME detail::traits_of_value_type<
OuterIterator>::reference
#else
= Value &
#endif
, class Category = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<
OuterIterator>::iterator_category
, class Pointer
#if !defined(BOOST_MSVC)
= BOOST_ARG_DEPENDENT_TYPENAME detail::traits_of_value_type<
OuterIterator>::pointer
#else
= Value*
= BOOST_ARG_DEPENDENT_TYPENAME detail::value_type_of_value_type<OuterIterator>::type
#endif
, class Reference = Value&
, class Category = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<OuterIterator>::iterator_category
, class Pointer = Value*
>
struct indirect_iterator_generator
{
@ -1119,26 +791,12 @@ struct indirect_iterator_generator
template <class OuterIterator, // Mutable or Immutable, does not matter
class Value
#if !defined(BOOST_MSVC)
= BOOST_ARG_DEPENDENT_TYPENAME detail::traits_of_value_type<
OuterIterator>::value_type
#endif
, class Reference
#if !defined(BOOST_MSVC)
= BOOST_ARG_DEPENDENT_TYPENAME detail::traits_of_value_type<
OuterIterator>::reference
#else
= Value &
= BOOST_ARG_DEPENDENT_TYPENAME detail::value_type_of_value_type<OuterIterator>::type
#endif
, class Reference = Value&
, class ConstReference = const Value&
, class Category = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<
OuterIterator>::iterator_category
, class Pointer
#if !defined(BOOST_MSVC)
= BOOST_ARG_DEPENDENT_TYPENAME detail::traits_of_value_type<
OuterIterator>::pointer
#else
= Value*
#endif
, class Category = BOOST_ARG_DEPENDENT_TYPENAME boost::detail::iterator_traits<OuterIterator>::iterator_category
, class Pointer = Value*
, class ConstPointer = const Value*
>
struct indirect_iterator_pair_generator
@ -1165,30 +823,34 @@ make_indirect_iterator(OuterIterator base)
struct reverse_iterator_policies : public default_iterator_policies
{
template <class IteratorAdaptor>
typename IteratorAdaptor::reference dereference(const IteratorAdaptor& x) const
{ return *boost::prior(x.base()); }
template <class Reference, class BidirectionalIterator>
Reference dereference(type<Reference>, const BidirectionalIterator& x) const
{ return *boost::prior(x); }
template <class BidirectionalIterator>
void increment(BidirectionalIterator& x) const
{ --x.base(); }
{ --x; }
template <class BidirectionalIterator>
void decrement(BidirectionalIterator& x) const
{ ++x.base(); }
{ ++x; }
template <class BidirectionalIterator, class DifferenceType>
void advance(BidirectionalIterator& x, DifferenceType n) const
{ x.base() -= n; }
{ x -= n; }
template <class Iterator1, class Iterator2>
typename Iterator1::difference_type distance(
const Iterator1& x, const Iterator2& y) const
{ return x.base() - y.base(); }
template <class Difference, class Iterator1, class Iterator2>
Difference distance(type<Difference>, const Iterator1& x,
const Iterator2& y) const
{ return x - y; }
template <class Iterator1, class Iterator2>
bool equal(const Iterator1& x, const Iterator2& y) const
{ return x.base() == y.base(); }
{ return x == y; }
template <class Iterator1, class Iterator2>
bool less(const Iterator1& x, const Iterator2& y) const
{ return y < x; }
};
template <class BidirectionalIterator,
@ -1221,9 +883,9 @@ struct projection_iterator_policies : public default_iterator_policies
projection_iterator_policies() { }
projection_iterator_policies(const AdaptableUnaryFunction& f) : m_f(f) { }
template <class IteratorAdaptor>
typename IteratorAdaptor::reference dereference(IteratorAdaptor const& iter) const {
return m_f(*iter.base());
template <class Reference, class Iterator>
Reference dereference (type<Reference>, Iterator const& iter) const {
return m_f(*iter);
}
AdaptableUnaryFunction m_f;
@ -1234,7 +896,7 @@ class projection_iterator_generator {
typedef typename AdaptableUnaryFunction::result_type value_type;
typedef projection_iterator_policies<AdaptableUnaryFunction> policies;
public:
typedef iterator_adaptor<Iterator,policies,value_type,value_type&,value_type*> type;
typedef iterator_adaptor<Iterator,policies,value_type> type;
};
template <class AdaptableUnaryFunction, class Iterator>
@ -1290,36 +952,30 @@ public:
// The Iter template argument is neccessary for compatibility with a MWCW
// bug workaround
template <class IteratorAdaptor>
void increment(IteratorAdaptor& x) {
++x.base();
satisfy_predicate(x.base());
template <class Iter>
void increment(Iter& x) {
++x;
satisfy_predicate(x);
}
template <class IteratorAdaptor>
typename IteratorAdaptor::reference dereference(const IteratorAdaptor& x) const
{ return *x.base(); }
template <class Reference, class Iter>
Reference dereference(type<Reference>, const Iter& x) const
{ return *x; }
template <class IteratorAdaptor1, class IteratorAdaptor2>
bool equal(const IteratorAdaptor1& x, const IteratorAdaptor2& y) const
{ return x.base() == y.base(); }
template <class Iterator1, class Iterator2>
bool equal(const Iterator1& x, const Iterator2& y) const
{ return x == y; }
private:
void satisfy_predicate(Iterator& iter);
void satisfy_predicate(Iterator& iter)
{
while (m_end != iter && !m_predicate(*iter))
++iter;
}
Predicate m_predicate;
Iterator m_end;
};
template <class Predicate, class Iterator>
void filter_iterator_policies<Predicate,Iterator>::satisfy_predicate(
Iterator& iter)
{
while (m_end != iter && !m_predicate(*iter))
++iter;
}
namespace detail {
// A type generator returning Base if T is derived from Base, and T otherwise.
template <class Base, class T>
@ -1335,7 +991,7 @@ namespace detail {
template <class Iterator>
struct non_bidirectional_category
{
# if !defined(__MWERKS__) || __MWERKS__ > 0x2405
# if !defined(__MWERKS__) || __MWERKS__ > 0x4000
typedef typename reduce_to_base_class<
std::forward_iterator_tag,
typename iterator_traits<Iterator>::iterator_category
@ -1349,7 +1005,6 @@ namespace detail {
# else
// is_convertible doesn't work with MWERKS
typedef typename iterator_traits<Iterator>::iterator_category input_category;
public:
typedef typename if_true<(
boost::is_same<input_category,std::random_access_iterator_tag>::value
|| boost::is_same<input_category,std::bidirectional_iterator_tag>::value

View File

@ -1,75 +0,0 @@
// (C) Copyright Jeremy Siek 1999. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#ifndef BOOST_INT_ITERATOR_H
#define BOOST_INT_ITERATOR_H
#include <boost/iterator.hpp>
#if !defined BOOST_MSVC
#include <boost/operators.hpp>
#endif
#include <iostream>
//using namespace std;
#ifndef BOOST_NO_OPERATORS_IN_NAMESPACE
namespace boost {
#endif
// this should use random_access_iterator_helper but I've had
// VC++ portablility problems with that. -JGS
template <class IntT>
class int_iterator
{
typedef int_iterator self;
public:
typedef std::random_access_iterator_tag iterator_category;
typedef IntT value_type;
typedef IntT& reference;
typedef IntT* pointer;
typedef std::ptrdiff_t difference_type;
inline int_iterator() : _i(0) { }
inline int_iterator(IntT i) : _i(i) { }
inline int_iterator(const self& x) : _i(x._i) { }
inline self& operator=(const self& x) { _i = x._i; return *this; }
inline IntT operator*() { return _i; }
inline IntT operator[](IntT n) { return _i + n; }
inline self& operator++() { ++_i; return *this; }
inline self operator++(int) { self t = *this; ++_i; return t; }
inline self& operator+=(IntT n) { _i += n; return *this; }
inline self operator+(IntT n) { self t = *this; t += n; return t; }
inline self& operator--() { --_i; return *this; }
inline self operator--(int) { self t = *this; --_i; return t; }
inline self& operator-=(IntT n) { _i -= n; return *this; }
inline IntT operator-(const self& x) const { return _i - x._i; }
inline bool operator==(const self& x) const { return _i == x._i; }
// vc++ had a problem finding != in random_access_iterator_helper
// need to look into this... for now implementing everything here -JGS
inline bool operator!=(const self& x) const { return _i != x._i; }
inline bool operator<(const self& x) const { return _i < x._i; }
inline bool operator<=(const self& x) const { return _i <= x._i; }
inline bool operator>(const self& x) const { return _i > x._i; }
inline bool operator>=(const self& x) const { return _i >= x._i; }
protected:
IntT _i;
};
template <class IntT>
inline int_iterator<IntT>
operator+(IntT n, int_iterator<IntT> t) { t += n; return t; }
#ifndef BOOST_NO_OPERATORS_IN_NAMESPACE
} /* namespace boost */
#endif
#ifdef BOOST_NO_OPERATORS_IN_NAMESPACE
namespace boost {
using ::int_iterator;
}
#endif
#endif /* BOOST_INT_ITERATOR_H */

View File

@ -1,59 +0,0 @@
// (C) Copyright David Abrahams and Jeremy Siek 2000-2001. Permission to copy,
// use, modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided "as is"
// without express or implied warranty, and with no claim as to its suitability
// for any purpose.
//
// Revision History:
// 04 Jan 2001 Factored counting_iterator stuff into
// boost/counting_iterator.hpp (David Abrahams)
#ifndef BOOST_INTEGER_RANGE_HPP_
#define BOOST_INTEGER_RANGE_HPP_
#include <boost/config.hpp>
#include <boost/counting_iterator.hpp>
namespace boost {
//=============================================================================
// Counting Iterator and Integer Range Class
template <class IntegerType>
struct integer_range {
typedef typename counting_iterator_generator<IntegerType>::type iterator;
typedef iterator const_iterator;
typedef IntegerType value_type;
typedef std::ptrdiff_t difference_type;
typedef IntegerType reference;
typedef IntegerType const_reference;
typedef const IntegerType* pointer;
typedef const IntegerType* const_pointer;
typedef IntegerType size_type;
integer_range(IntegerType start, IntegerType finish)
: m_start(start), m_finish(finish) { }
iterator begin() const { return iterator(m_start); }
iterator end() const { return iterator(m_finish); }
size_type size() const { return m_finish - m_start; }
bool empty() const { return m_finish == m_start; }
void swap(integer_range& x) {
std::swap(m_start, x.m_start);
std::swap(m_finish, x.m_finish);
}
protected:
IntegerType m_start, m_finish;
};
template <class IntegerType>
inline integer_range<IntegerType>
make_integer_range(IntegerType first, IntegerType last)
{
return integer_range<IntegerType>(first, last);
}
} // namespace boost
#endif // BOOST_INTEGER_RANGE_HPP_

View File

@ -1 +0,0 @@
#include <boost/iterator_adaptors.hpp>

View File

@ -1,214 +0,0 @@
#ifndef BOOST_ITERATOR_TESTS_HPP
# define BOOST_ITERATOR_TESTS_HPP
// This is meant to be the beginnings of a comprehensive, generic
// test suite for STL concepts such as iterators and containers.
//
// Revision History:
// 08 Feb 2001 Fixed bidirectional iterator test so that
// --i is no longer a precondition.
// (Jeremy Siek)
// 04 Feb 2001 Added lvalue test, corrected preconditions
// (David Abrahams)
# include <iterator>
# include <assert.h>
# include <boost/type_traits.hpp>
# include <boost/static_assert.hpp>
# include <boost/concept_archetype.hpp> // for detail::dummy_constructor
namespace boost {
// use this for the value type
struct dummyT {
dummyT() { }
dummyT(detail::dummy_constructor) { }
dummyT(int x) : m_x(x) { }
int foo() const { return m_x; }
bool operator==(const dummyT& d) const { return m_x == d.m_x; }
int m_x;
};
// Tests whether type Iterator satisfies the requirements for a
// TrivialIterator.
// Preconditions: i != j, *i == val
template <class Iterator, class T>
void trivial_iterator_test(const Iterator i, const Iterator j, T val)
{
Iterator k;
assert(i == i);
assert(j == j);
assert(i != j);
#ifdef BOOST_NO_STD_ITERATOR_TRAITS
T v = *i;
#else
typename std::iterator_traits<Iterator>::value_type v = *i;
#endif
assert(v == val);
#if 0
// hmm, this will give a warning for transform_iterator... perhaps
// this should be separated out into a stand-alone test since there
// are several situations where it can't be used, like for
// integer_range::iterator.
assert(v == i->foo());
#endif
k = i;
assert(k == k);
assert(k == i);
assert(k != j);
assert(*k == val);
}
// Preconditions: i != j
template <class Iterator, class T>
void mutable_trivial_iterator_test(const Iterator i, const Iterator j, T val)
{
*i = val;
trivial_iterator_test(i, j, val);
}
// Preconditions: *i == v1, *++i == v2
template <class Iterator, class T>
void input_iterator_test(Iterator i, T v1, T v2)
{
Iterator i1 = i, i2 = i;
assert(i == i1++);
assert(i != ++i2);
trivial_iterator_test(i, i1, v1);
trivial_iterator_test(i, i2, v1);
++i;
assert(i == i1);
assert(i == i2);
++i1;
++i2;
trivial_iterator_test(i, i1, v2);
trivial_iterator_test(i, i2, v2);
}
// how to test output iterator?
template <bool is_pointer> struct lvalue_test
{
template <class Iterator> static void check(Iterator)
{
# ifndef BOOST_NO_STD_ITERATOR_TRAITS
typedef typename std::iterator_traits<Iterator>::reference reference;
typedef typename std::iterator_traits<Iterator>::value_type value_type;
# else
typedef typename Iterator::reference reference;
typedef typename Iterator::value_type value_type;
# endif
BOOST_STATIC_ASSERT(boost::is_reference<reference>::value);
BOOST_STATIC_ASSERT((boost::is_same<reference,value_type&>::value
|| boost::is_same<reference,const value_type&>::value
));
}
};
# ifdef BOOST_NO_STD_ITERATOR_TRAITS
template <> struct lvalue_test<true> {
template <class T> static void check(T) {}
};
#endif
template <class Iterator, class T>
void forward_iterator_test(Iterator i, T v1, T v2)
{
input_iterator_test(i, v1, v2);
// borland doesn't allow non-type template parameters
# if !defined(__BORLANDC__) || (__BORLANDC__ > 0x551)
lvalue_test<(boost::is_pointer<Iterator>::value)>::check(i);
#endif
}
// Preconditions: *i == v1, *++i == v2
template <class Iterator, class T>
void bidirectional_iterator_test(Iterator i, T v1, T v2)
{
forward_iterator_test(i, v1, v2);
++i;
Iterator i1 = i, i2 = i;
assert(i == i1--);
assert(i != --i2);
trivial_iterator_test(i, i1, v2);
trivial_iterator_test(i, i2, v2);
--i;
assert(i == i1);
assert(i == i2);
++i1;
++i2;
trivial_iterator_test(i, i1, v1);
trivial_iterator_test(i, i2, v1);
}
// mutable_bidirectional_iterator_test
// Preconditions: [i,i+N) is a valid range
template <class Iterator, class TrueVals>
void random_access_iterator_test(Iterator i, int N, TrueVals vals)
{
bidirectional_iterator_test(i, vals[0], vals[1]);
const Iterator j = i;
int c;
for (c = 0; c < N-1; ++c) {
assert(i == j + c);
assert(*i == vals[c]);
assert(*i == j[c]);
assert(*i == *(j + c));
assert(*i == *(c + j));
++i;
assert(i > j);
assert(i >= j);
assert(j <= i);
assert(j < i);
}
Iterator k = j + N - 1;
for (c = 0; c < N-1; ++c) {
assert(i == k - c);
assert(*i == vals[N - 1 - c]);
assert(*i == j[N - 1 - c]);
Iterator q = k - c;
assert(*i == *q);
assert(i > j);
assert(i >= j);
assert(j <= i);
assert(j < i);
--i;
}
}
// Precondition: i != j
template <class Iterator, class ConstIterator>
void const_nonconst_iterator_test(Iterator i, ConstIterator j)
{
assert(i != j);
assert(j != i);
ConstIterator k(i);
assert(k == i);
assert(i == k);
k = i;
assert(k == i);
assert(i == k);
}
} // namespace boost
#endif // BOOST_ITERATOR_TESTS_HPP

View File

@ -1,66 +0,0 @@
// (C) Copyright Toon Knapen 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
//
#include <boost/iterator_adaptors.hpp>
namespace boost {
template < typename IndexIterator >
struct permutation_iterator_policies : public default_iterator_policies
{
permutation_iterator_policies() {}
permutation_iterator_policies(IndexIterator order_it)
: order_it_( order_it )
{}
template <class IteratorAdaptor>
typename IteratorAdaptor::reference dereference(const IteratorAdaptor& x) const
{ return *(x.base() + *order_it_); }
template <class IteratorAdaptor>
void increment(IteratorAdaptor&)
{ ++order_it_; }
template <class IteratorAdaptor>
void decrement(IteratorAdaptor&)
{ --order_it_; }
template <class IteratorAdaptor, class DifferenceType>
void advance(IteratorAdaptor& x, DifferenceType n)
{ std::advance( order_it_, n ); }
template <class IteratorAdaptor1, class IteratorAdaptor2>
typename IteratorAdaptor1::difference_type
distance(const IteratorAdaptor1& x, const IteratorAdaptor2& y) const
{ return std::distance( x.policies().order_it_, y.policies().order_it_ ); }
template <class IteratorAdaptor1, class IteratorAdaptor2>
bool equal(const IteratorAdaptor1& x, const IteratorAdaptor2& y) const
{ return x.policies().order_it_ == y.policies().order_it_; }
IndexIterator order_it_;
};
template < typename ElementIterator, typename IndexIterator >
struct permutation_iterator_generator
{
typedef boost::iterator_adaptor
< ElementIterator,
permutation_iterator_policies< IndexIterator >
> type;
};
template < class IndexIterator, class ElementIterator >
inline typename permutation_iterator_generator< ElementIterator, IndexIterator >::type
make_permutation_iterator(ElementIterator base, IndexIterator order)
{
typedef typename permutation_iterator_generator< ElementIterator, IndexIterator >::type result_t;
return result_t( base, order );
}
} // namespace boost