
The Boost.Iterator Library Boost

2

Authors: David Abrahams, Jeremy Siek, Thomas Witt

Contact: dave@boost-consulting.com, jsiek@osl.iu.edu, witt@styleadvisor.com

organizations: Boost Consulting, Indiana UniversityOpen Systems Lab, Zephyr Associates, Inc.

date: $Date: 2004/01/19 18:52:48 $

copyright: Copyright David Abrahams, Jeremy Siek, Thomas Witt 2003. All rights reserved

Abstract: The Boost Iterator Library contains two parts. The first is a system ofconceptswhich
extend the C++ standard iterator requirements. The second is a framework of components
for building iterators based on these extended concepts and includes several useful iterator
adaptors. The extended iterator concepts have been carefully designed so that so that old-
style iterators can fit in the new concepts and so that new-style iterators will be compatible
with old-style algorithms, though algorithms may need to be updated if they want to take
full advantage of the new-style iterator capabilities. Several components of this library have
been accepted into the C++ standard technical report. The components of the Boost Iterator
Library replace the older Boost Iterator Adaptor Library.

Table of Contents

New-Style Iterators

Iterator Facade and Adaptor

Specialized Adaptors

Iterator Utilities

Traits

Testing and Concept Checking

Upgrading from the old Boost Iterator Adaptor Library

History

New-Style Iterators

The iterator categories defined in C++98 are extremely limiting because they bind together two orthogo-
nal concepts: traversal and element access. For example, because a random access iterator is required
to return a reference (and not a proxy) when dereferenced, it is impossible to capture the capabilities of
vector<bool>::iterator using the C++98 categories. This is the infamous “vector<bool> is not a con-
tainer, and its iterators aren’t random access iterators”, debacle about which Herb Sutter wrote two papers for
the standards comittee (n1185andn1211), and aGuru of the Week. New-style iterators go well beyond patching
upvector<bool>, though: there are lots of other iterators already in use which can’t be adequately represented
by the existing concepts. For details about the new iterator concepts, see our

Standard Proposal For New-Style Iterators(PDF)

mailto:dave@boost-consulting.com
mailto:jsiek@osl.iu.edu
mailto:witt@styleadvisor.com
http://www.boost-consulting.com
http://www.osl.iu.edu
http://www.styleadvisor.com
file:../../../more/generic_programming.html#concept
http://www.gotw.ca/publications/N1185.pdf
http://www.gotw.ca/publications/N1211.pdf
http://www.gotw.ca/gotw/050.htm
file:new-iter-concepts.html

3

Iterator Facade and Adaptor

Writing standard-conforming iterators is tricky, but the need comes up often. In order to ease the implemen-
tation of new iterators, the Boost.Iterator library provides theiterator facade class template, which imple-
ments many useful defaults and compile-time checks designed to help the iterator author ensure that his iterator
is correct.

It is also common to define a new iterator that is similar to some underlying iterator or iterator-like type,
but that modifies some aspect of the underlying type’s behavior. For that purpose, the library supplies the
iterator adaptor class template, which is specially designed to take advantage of as much of the underlying
type’s behavior as possible.

The documentation for these two classes can be found at the following web pages:

• iterator facade (PDF)

• iterator adaptor (PDF)

Bothiterator facade anditerator adaptor as well as many of thespecialized adaptorsmentioned below

file:iterator_facade.html
file:iterator_adaptor.html
file:facade-and-adaptor.html
file:counting_iterator.html
file:filter_iterator.html
file:indirect_iterator.html
file:permutation_iterator.html
file:reverse_iterator.html
file:transform_iterator.html
file:zip_iterator.html

4

Iterator Utilities

Traits

• pointee.hpp (PDF): Provides the capability to deduce the referent types of pointers, smart pointers and
iterators in generic code. Used inindirect iterator.

• iterator traits.hpp (PDF): ProvidesMPL-compatible metafunctions which retrieve an iterator’s
traits. Also corrects for the deficiencies of broken implementations ofstd::iterator traits.

• interoperable.hpp (PDF): Provides anMPL-compatible metafunction for testing iterator interoper-
ability

Testing and Concept Checking

• iterator concepts.hpp (PDF): Concept checking classes for the new iterator concepts.

• iterator archetypes.hpp (PDF): Concept archetype classes for the new iterators concepts.

Upgrading from the old Boost Iterator Adaptor Library

If you have been using the old Boost Iterator Adaptor library to implement iterators, you probably wrote a
Policies class which captures the core operations of your iterator. In the new library design, you’ll move
those same core operations into the body of the iterator class itself. If you were writing a family of iterators,
you probably wrote atype generatorto build theiterator adaptor specialization you needed; in the new
library design you don’t need a type generator (though may want to keep it around as a compatibility aid for
older code) because, due to the use of the Curiously Recurring Template Pattern (CRTP) [Cop95], you can
now define the iterator class yourself and acquire functionality through inheritance fromiterator facade or
iterator adaptor. As a result, you also get much finer control over how your iterator works: you can add
additional constructors, or even override the iterator functionality provided by the library.

If you’re looking for the oldprojection iterator component, its functionality has been merged into
transform iterator: as long as the function object’sresult type (or theReference template argument,
if explicitly specified) is a true reference type,transform iterator will behave likeprojection iterator
used to.

History

In 2000 Dave Abrahams was writing an iterator for a container of pointers, which would access the pointed-to
elements when dereferenced. Naturally, being a library writer, he decided to generalize the idea and the Boost
Iterator Adaptor library was born. Dave was inspired by some writings of Andrei Alexandrescu and chose a
policy based design (though he probably didn’t capture Andrei’s idea very well - there was only one policy
class for all the iterator’s orthogonal properties). Soon Jeremy Siek realized he would need the library and they
worked together to produce a “Boostified” version, which was reviewed and accepted into the library. They
wrote a paper and made several important revisions of the code.

Eventually, several shortcomings of the older library began to make the need for a rewrite apparent. Dave
and Jeremy started working at the Santa Cruz C++ committee meeting in 2002, and had quickly generated a
working prototype. At the urging of Mat Marcus, they decided to use the GenVoca/CRTP pattern approach,
and moved the policies into the iterator class itself. Thomas Witt expressed interest and became the voice of

file:pointee.html
file:iterator_traits.html
file:../../mpl/doc/index.html
file:interoperable.html
file:../../mpl/doc/index.html
file:iterator_concepts.html
file:iterator_archetypes.html
file:../../../more/generic_programming.html#type_generator

5

strict compile-time checking for the project, adding uses of the SFINAE technique to eliminate false converting
constructors and operators from the overload set. He also recognized the need for a separateiterator facade,
and factored it out ofiterator adaptor. Finally, after a near-complete rewrite of the prototype, they came up
with the library you see today.

[Cop95] [Coplien, 1995] Coplien, J., Curiously Recurring Template Patterns, C++ Report, February 1995, pp.
24-27.

	Table of Contents
	New-Style Iterators
	Iterator Facade and Adaptor
	Specialized Adaptors
	Iterator Utilities
	Traits
	Testing and Concept Checking

	Upgrading from the old Boost Iterator Adaptor Library
	History

