
Zip Iterator

Author: David Abrahams, Thomas Becker
Contact: dave@boost-consulting.com, thomas@styleadvisor.com
Organization: Boost Consulting, Zephyr Associates, Inc.
Date: 2004-01-27
Copyright: Copyright David Abrahams and Thomas Becker 2003. All rights re-

served

abstract: The zip iterator provides the ability to parallel-iterate over several controlled se-
quences simultaneously. A zip iterator is constructed from a tuple of iterators. Moving
the zip iterator moves all the iterators in parallel. Dereferencing the zip iterator returns
a tuple that contains the results of dereferencing the individual iterators.

Table of Contents

zip iterator synopsis

zip iterator requirements

zip iterator models

zip iterator operations

Examples

zip iterator synopsis

template<typename IteratorTuple>
class zip iterator
{

public:
typedef /* see below */ reference;
typedef reference value type;
typedef value type* pointer;
typedef /* see below */ difference type;
typedef /* see below */ iterator category;

zip iterator();
zip iterator(IteratorTuple iterator tuple);

template<typename OtherIteratorTuple>
zip iterator(

const zip iterator<OtherIteratorTuple>& other
, typename enable if convertible<

1

mailto:dave@boost-consulting.com
mailto:thomas@styleadvisor.com
http://www.boost-consulting.com
http://www.styleadvisor.com


OtherIteratorTuple
, IteratorTuple>::type* = 0 // exposition only

);

const IteratorTuple& get iterator tuple() const;

private:
IteratorTuple m iterator tuple; // exposition only

};

template<typename IteratorTuple>
zip iterator<IteratorTuple>
make zip iterator(IteratorTuple t);

The reference member of zip iterator is the type of the tuple made of the reference types of
the iterator types in the IteratorTuple argument.

The difference type member of zip iterator is the difference type of the first of the iterator
types in the IteratorTuple argument.

The iterator category member of zip iterator is convertible to the minimum of the traversal
categories of the iterator types in the IteratorTuple argument. For example, if the zip iterator holds
only vector iterators, then iterator category is convertible to boost::random access traversal tag.
If you add a list iterator, then iterator category will be convertible to boost::bidirectional traversal tag,
but no longer to boost::random access traversal tag.

zip iterator requirements

All iterator types in the argument IteratorTuple shall model Readable Iterator.

zip iterator models

The resulting zip iterator models Readable Iterator.
The fact that the zip iterator models only Readable Iterator does not prevent you from modifying

the values that the individual iterators point to. The tuple returned by the zip iterator’s operator* is
a tuple constructed from the reference types of the individual iterators, not their value types. For exam-
ple, if zip it is a zip iterator whose first member iterator is an std::vector<double>::iterator,
then the following line will modify the value which the first member iterator of zip it currently points
to:

zip it->get<0>() = 42.0;

Consider the set of standard traversal concepts obtained by taking the most refined standard traver-
sal concept modeled by each individual iterator type in the IteratorTuple argument.The zip iterator
models the least refined standard traversal concept in this set.

zip iterator<IteratorTuple1> is interoperable with zip iterator<IteratorTuple2> if and only
if IteratorTuple1 is interoperable with IteratorTuple2.

zip iterator operations

In addition to the operations required by the concepts modeled by zip iterator, zip iterator pro-
vides the following operations.

zip iterator();

Returns: An instance of zip iterator with m iterator tuple default constructed.

2



zip iterator(IteratorTuple iterator tuple);

Returns: An instance of zip iterator with m iterator tuple initialized to iterator tuple.

template<typename OtherIteratorTuple>
zip iterator(

const zip iterator<OtherIteratorTuple>& other
, typename enable if convertible<

OtherIteratorTuple
, IteratorTuple>::type* = 0 // exposition only

);

Returns: An instance of zip iterator that is a copy of other.

Requires: OtherIteratorTuple is implicitly convertible to IteratorTuple.

const IteratorTuple& get iterator tuple() const;

Returns: m iterator tuple

reference operator*() const;

Returns: A tuple consisting of the results of dereferencing all iterators in m iterator tuple.

zip iterator& operator++();

Effects: Increments each iterator in m iterator tuple.

Returns: *this

zip iterator& operator--();

Effects: Decrements each iterator in m iterator tuple.

Returns: *this

template<typename IteratorTuple>
zip iterator<IteratorTuple>
make zip iterator(IteratorTuple t);

Returns: An instance of zip iterator<IteratorTuple> with m iterator tuple initial-
ized to t.

template<typename IteratorTuple>
zip iterator<IteratorTuple>
make zip iterator(IteratorTuple t);

Returns: An instance of zip iterator<IteratorTuple> with m iterator tuple initial-
ized to t.

Examples

There are two main types of applications of the zip iterator. The first one concerns runtime efficiency:
If one has several controlled sequences of the same length that must be somehow processed, e.g., with
the for each algorithm, then it is more efficient to perform just one parallel-iteration rather than
several individual iterations. For an example, assume that vect of doubles and vect of ints are
two vectors of equal length containing doubles and ints, respectively, and consider the following two
iterations:

3



std::vector<double>::const iterator beg1 = vect of doubles.begin();
std::vector<double>::const iterator end1 = vect of doubles.end();
std::vector<int>::const iterator beg2 = vect of ints.begin();
std::vector<int>::const iterator end2 = vect of ints.end();

std::for each(beg1, end1, func 0());
std::for each(beg2, end2, func 1());

These two iterations can now be replaced with a single one as follows:

std::for each(
boost::make zip iterator(
boost::make tuple(beg1, beg2)
),

boost::make zip iterator(
boost::make tuple(end1, end2)
),

zip func()
);

A non-generic implementation of zip func could look as follows:

struct zip func :
public std::unary function<const boost::tuple<const double&, const int&>&, void>

{
void operator()(const boost::tuple<const double&, const int&>& t) const
{
m f0(t.get<0>());
m f1(t.get<1>());

}

private:
func 0 m f0;
func 1 m f1;

};

The second important application of the zip iterator is as a building block to make combining
iterators. A combining iterator is an iterator that parallel-iterates over several controlled sequences
and, upon dereferencing, returns the result of applying a functor to the values of the sequences at the
respective positions. This can now be achieved by using the zip iterator in conjunction with the
transform iterator.

Suppose, for example, that you have two vectors of doubles, say vect 1 and vect 2, and you need
to expose to a client a controlled sequence containing the products of the elements of vect 1 and
vect 2. Rather than placing these products in a third vector, you can use a combining iterator that
calculates the products on the fly. Let us assume that tuple multiplies is a functor that works
like std::multiplies, except that it takes its two arguments packaged in a tuple. Then the two
iterators it begin and it end defined below delimit a controlled sequence containing the products of
the elements of vect 1 and vect 2:

typedef boost::tuple<
std::vector<double>::const iterator,
std::vector<double>::const iterator
> the iterator tuple;

typedef boost::zip iterator<

4



the iterator tuple
> the zip iterator;

typedef boost::transform iterator<
tuple multiplies<double>,
the zip iterator
> the transform iterator;

the transform iterator it begin(
the zip iterator(
the iterator tuple(
vect 1.begin(),
vect 2.begin()
)

),
tuple multiplies<double>()
);

the transform iterator it end(
the zip iterator(
the iterator tuple(
vect 1.end(),
vect 2.end()
)

),
tuple multiplies<double>()
);

The source code for these examples can be found here.

5

file:../example/zip_iterator_examples.cpp

	Table of Contents
	zip_iterator synopsis
	zip_iterator requirements
	zip_iterator models
	zip_iterator operations
	Examples

