
pointee and indirect reference

Author: David Abrahams
Contact: dave@boost-consulting.com
Organization: Boost Consulting
Date: 2004-01-13
Copyright: Copyright David Abrahams 2004. All rights reserved

abstract: Provides the capability to deduce the referent types of pointers, smart pointers and
iterators in generic code.

Overview

Have you ever wanted to write a generic function that can operate on any kind of dereferenceable object? If
you have, you’ve probably run into the problem of how to determine the type that the object “points at”:

template <class Dereferenceable>
void f(Dereferenceable p)
{

what-goes-here? value = *p;
...

}

pointee

It turns out to be impossible to come up with a fully-general algorithm to do determine what-goes-here directly,
but it is possible to require that pointee<Dereferenceable>::type is correct. Naturally, pointee has the
same difficulty: it can’t determine the appropriate ::type reliably for all Dereferenceables, but it makes very
good guesses (it works for all pointers, standard and boost smart pointers, and iterators), and when it guesses
wrongly, it can be specialized as neccessary:

namespace boost
{
template <class T>
struct pointee<third party lib::smart pointer<T> >
{

typedef T type;
};

}

indirect reference

indirect reference<T>::type is rather more specialized than pointee, and is meant to be used to forward
the result of dereferencing an object of its argument type. Most dereferenceable types just return a reference
to their pointee, but some return proxy references or return the pointee by value. When that information is
needed, call on indirect reference.

Both of these templates are essential to the correct functioning of indirect iterator.

Reference

pointee

template <class Dereferenceable>

1

mailto:dave@boost-consulting.com
http://www.boost-consulting.com
file:indirect_iterator.html

struct pointee
{

typedef /* see below */ type;
};

Requires: For an object x of type Dereferenceable, *x is well-formed. If ++x is ill-formed it shall
neither be ambiguous nor shall it violate access control, and Dereferenceable::element type
shall be an accessible type. Otherwise iterator traits<Dereferenceable>::value type
shall be well formed. [Note: These requirements need not apply to explicit or partial spe-
cializations of pointee]

type is determined according to the following algorithm, where x is an object of type Dereferenceable:

if (++x is ill-formed)
{

return ‘‘Dereferenceable::element type‘‘
}
else if (‘‘*x‘‘ is a mutable reference to

std::iterator traits<Dereferenceable>::value type)
{

return iterator traits<Dereferenceable>::value type
}
else
{

return iterator traits<Dereferenceable>::value type const
}

indirect reference

template <class Dereferenceable>
struct indirect reference
{

typedef /* see below */ type;
};

Requires: For an object x of type Dereferenceable, *x is well-formed. If ++x is ill-formed it shall
neither be ambiguous nor shall it violate access control, and pointee<Dereferenceable>::type&
shall be well-formed. Otherwise iterator traits<Dereferenceable>::reference shall be
well formed. [Note: These requirements need not apply to explicit or partial specializations of
indirect reference]

type is determined according to the following algorithm, where x is an object of type Dereferenceable:

if (++x is ill-formed)
return ‘‘pointee<Dereferenceable>::type&‘‘

else
std::iterator traits<Dereferenceable>::reference

2

	Overview
	pointee
	indirect_reference

	Reference
	pointee
	indirect_reference

