pointee and indirect_reference

Author: David Abrahams

Contact: dave@boost-consulting.com

Organization: Boost Consulting

Date: 2004-01-13

Copyright: Copyright David Abrahams 2004. All rights reserved

abstract: Provides the capability to deduce the referent types of pointers, smart pointers and
iterators in generic code.

Overview

Have you ever wanted to write a generic function that can operate on any kind of dereferenceable object? If
you have, you’'ve probably run into the problem of how to determine the type that the object “points at”:

template <class Dereferenceable>
void f(Dereferenceable p)

{

what-goes—here? value = *p;

pointee

It turns out to be impossible to come up with a fully-general algorithm to do determine what-goes-here directly,
but it is possible to require that pointee<Dereferenceable>: :type is correct. Naturally, pointee has the
same difficulty: it can’t determine the appropriate : : type reliably for all Dereferenceables, but it makes very
good guesses (it works for all pointers, standard and boost smart pointers, and iterators), and when it guesses
wrongly, it can be specialized as neccessary:

namespace boost

{

template <class T>
struct pointee<third party_lib::smart_pointer<T> >

{

};
}

typedef T type;

indirect_reference

indirect_reference<T>: :type is rather more specialized than pointee, and is meant to be used to forward
the result of dereferencing an object of its argument type. Most dereferenceable types just return a reference
to their pointee, but some return proxy references or return the pointee by value. When that information is
needed, call on indirect_reference.

Both of these templates are essential to the correct functioning of indirect_iterator.

Reference

pointee

template <class Dereferenceable>

mailto:dave@boost-consulting.com
http://www.boost-consulting.com
file:indirect_iterator.html

struct pointee

{
s

typedef /* see below */ type;

Requires: For an object x of type Dereferenceable, *x is well-formed. If ++x is ill-formed it shall
neither be ambiguous nor shall it violate access control, and Dereferenceable: :element_type
shall be an accessible type. Otherwise iterator_traits<Dereferenceable>::value_type
shall be well formed. [Note: These requirements need not apply to explicit or partial spe-
cializations of pointee]

type is determined according to the following algorithm, where x is an object of type Dereferenceable:

if (++x is ill-formed)

{
}

else if (‘‘*x‘‘ is a mutable reference to
std::iterator_traits<Dereferenceable>::value_type)

}

else

{
}

return ¢ ‘Dereferenceable::element_type‘*

return iterator_traits<Dereferenceable>::value_type

return iterator_traits<Dereferenceable>::value_type const

indirect_reference

template <class Dereferenceable>
struct indirect_reference

{
s

typedef /* see below */ type;

Requires: For an object x of type Dereferenceable, *x is well-formed. If ++x is ill-formed it shall
neither be ambiguous nor shall it violate access control, and pointee<Dereferenceable>: : type&
shall be well-formed. Otherwise iterator_traits<Dereferenceable>::reference shall be
well formed. [Note: These requirements need not apply to explicit or partial specializations of
indirect_reference]

type is determined according to the following algorithm, where x is an object of type Dereferenceable:

if (++x is ill-formed)
return ¢ ‘pointee<Dereferenceable>::type&‘*

else
std::iterator_traits<Dereferenceable>: :reference

	Overview
	pointee
	indirect_reference

	Reference
	pointee
	indirect_reference

