
Iterator Adaptor

Author: David Abrahams, Jeremy Siek, Thomas Witt
Contact: dave@boost-consulting.com, jsiek@osl.iu.edu, witt@ive.uni-hannover.de
Organization: Boost Consulting, Indiana University Open Systems Lab, University of

Hanover Institute for Transport Railway Operation and Construction
Date: 2004-01-12
Copyright: Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003. All

rights reserved

abstract:

Each specialization of the iterator adaptor class template is derived from a specialization of
iterator facade. The core interface functions expected by iterator facade are implemented in
terms of the iterator adaptor’s Base template parameter. A class derived from iterator adaptor
typically redefines some of the core interface functions to adapt the behavior of the Base type. Whether
the derived class models any of the standard iterator concepts depends on the operations supported
by the Base type and which core interface functions of iterator facade are redefined in the Derived
class.

Table of Contents

Overview

Reference

iterator adaptor requirements

iterator adaptor base class parameters

iterator adaptor public operations

iterator adaptor protected member functions

iterator adaptor private member functions

Tutorial Example

Overview

The iterator adaptor class template adapts some Base [1] type to create a new iterator. Instanti-
ations of iterator adaptor are derived from a corresponding instantiation of iterator facade and
implement the core behaviors in terms of the Base type. In essence, iterator adaptor merely forwards
all operations to an instance of the Base type, which it stores as a member.

The user of iterator adaptor creates a class derived from an instantiation of iterator adaptor
and then selectively redefines some of the core member functions described in the iterator facade
core requirements table. The Base type need not meet the full requirements for an iterator; it need
only support the operations used by the core interface functions of iterator adaptor that have not
been redefined in the user’s derived class.

1

mailto:dave@boost-consulting.com
mailto:jsiek@osl.iu.edu
mailto:witt@ive.uni-hannover.de
http://www.boost-consulting.com
http://www.osl.iu.edu
http://www.ive.uni-hannover.de


Several of the template parameters of iterator adaptor default to use default. This allows
the user to make use of a default parameter even when she wants to specify a parameter later in the
parameter list. Also, the defaults for the corresponding associated types are somewhat complicated,
so metaprogramming is required to compute them, and use default can help to simplify the imple-
mentation. Finally, the identity of the use default type is not left unspecified because specification
helps to highlight that the Reference template parameter may not always be identical to the iterator’s
reference type, and will keep users from making mistakes based on that assumption.

Reference

template <
class Derived

, class Base
, class Value = use default
, class CategoryOrTraversal = use default
, class Reference = use default
, class Difference = use default

>
class iterator adaptor
: public iterator facade<Derived, V’, C’, R’, D’ > // see details

{
friend class iterator core access;

public:
iterator adaptor();
explicit iterator adaptor(Base iter);
Base const& base() const;

protected:
typedef iterator adaptor iterator adaptor ;
Base const& base reference() const;
Base& base reference();

private: // Core iterator interface for iterator facade.
typename iterator adaptor::reference dereference() const;

template <
class OtherDerived, class OtherIterator, class V, class C, class R, class D
>
bool equal(iterator adaptor<OtherDerived, OtherIterator, V, C, R, D> const& x) const;

void advance(typename iterator adaptor::difference type n);
void increment();
void decrement();

template <
class OtherDerived, class OtherIterator, class V, class C, class R, class D

>
typename iterator adaptor::difference type distance to(

iterator adaptor<OtherDerived, OtherIterator, V, C, R, D> const& y) const;

[1] The term “Base” here does not refer to a base class and is not meant to imply the use of derivation.
We have followed the lead of the standard library, which provides a base() function to access the
underlying iterator object of a reverse iterator adaptor.

2



private:
Base m iterator; // exposition only

};

iterator adaptor requirements

static cast<Derived*>(iterator adaptor*) shall be well-formed. The Base argument shall be
Assignable and Copy Constructible.

iterator adaptor base class parameters

The V’, C’, R’, and D’ parameters of the iterator facade used as a base class in the summary of
iterator adaptor above are defined as follows:

V’ = if (Value is use default)
return iterator traits<Base>::value type

else
return Value

C’ = if (CategoryOrTraversal is use default)
return iterator traversal<Base>::type

else
return CategoryOrTraversal

R’ = if (Reference is use default)
if (Value is use default)

return iterator traits<Base>::reference
else

return Value&
else

return Reference

D’ = if (Difference is use default)
return iterator traits<Base>::difference type

else
return Difference

iterator adaptor public operations

iterator adaptor();

Requires: The Base type must be Default Constructible.

Returns: An instance of iterator adaptor with m iterator default constructed.

explicit iterator adaptor(Base iter);

Returns: An instance of iterator adaptor with m iterator copy constructed from iter.

Base const& base() const;

Returns: m iterator

3



iterator adaptor protected member functions

Base const& base reference() const;

Returns: A const reference to m iterator.

Base& base reference();

Returns: A non-const reference to m iterator.

iterator adaptor private member functions

typename iterator adaptor::reference dereference() const;

Returns: *m iterator

template <
class OtherDerived, class OtherIterator, class V, class C, class R, class D
>
bool equal(iterator adaptor<OtherDerived, OtherIterator, V, C, R, D> const& x) const;

Returns: m iterator == x.base()

void advance(typename iterator adaptor::difference type n);

Effects: m iterator += n;

void increment();

Effects: ++m iterator;

void decrement();

Effects: --m iterator;

template <
class OtherDerived, class OtherIterator, class V, class C, class R, class D

>
typename iterator adaptor::difference type distance to(

iterator adaptor<OtherDerived, OtherIterator, V, C, R, D> const& y) const;

Returns: y.base() - m iterator

Tutorial Example

In this section we’ll further refine the node iter class template we developed in the iterator facade
tutorial. If you haven’t already read that material, you should go back now and check it out because
we’re going to pick up right where it left off.

node base* really is an iterator
It’s not really a very interesting iterator, since node base is an abstract class: a pointer to a
node base just points at some base subobject of an instance of some other class, and incrementing
a node base* moves it past this base subobject to who-knows-where? The most we can do with
that incremented position is to compare another node base* to it. In other words, the original
iterator traverses a one-element array.

4

file:iterator_facade.html#tutorial-example
file:iterator_facade.html#tutorial-example


You probably didn’t think of it this way, but the node base* object that underlies node iterator is
itself an iterator, just like all other pointers. If we examine that pointer closely from an iterator perspec-
tive, we can see that it has much in common with the node iterator we’re building. First, they share
most of the same associated types (value type, reference, pointer, and difference type). Second,
even some of the core functionality is the same: operator* and operator== on the node iterator
return the result of invoking the same operations on the underlying pointer, via the node iterator’s
dereference and equal member functions). The only real behavioral difference between node base*
and node iterator can be observed when they are incremented: node iterator follows the m next
pointer, while node base* just applies an address offset.

It turns out that the pattern of building an iterator on another iterator-like type (the Base [1] type)
while modifying just a few aspects of the underlying type’s behavior is an extremely common one, and
it’s the pattern addressed by iterator adaptor. Using iterator adaptor is very much like using
iterator facade, but because iterator adaptor tries to mimic as much of the Base type’s behavior as
possible, we neither have to supply a Value argument, nor implement any core behaviors other than
increment. The implementation of node iter is thus reduced to:

template <class Value>
class node iter

: public boost::iterator adaptor<
node iter<Value> // Derived

, Value* // Base
, boost::use default // Value
, boost::forward traversal tag // CategoryOrTraversal

>
{
private:

struct enabler {}; // a private type avoids misuse

public:
node iter()
: node iter::iterator adaptor (0) {}

explicit node iter(Value* p)
: node iter::iterator adaptor (p) {}

template <class OtherValue>
node iter(

node iter<OtherValue> const& other
, typename boost::enable if<

boost::is convertible<OtherValue*,Value*>
, enabler

>::type = enabler()
)
: node iter::iterator adaptor (other.base()) {}

private:
friend class boost::iterator core access;
void increment() { this->base reference() = this->base()->next(); }

};

Note the use of node iter::iterator adaptor here: because iterator adaptor defines a nested
iterator adaptor type that refers to itself, that gives us a convenient way to refer to the complicated
base class type of node iter<Value>. [Note: this technique is known not to work with Borland C++
5.6.4 and Metrowerks CodeWarrior versions prior to 9.0]

5

file:iterator_facade.html#implementing-the-core-operations


You can see an example program that exercises this version of the node iterators here.
In the case of node iter, it’s not very compelling to pass boost::use default as iterator adaptor’s

Value argument; we could have just passed node iter’s Value along to iterator adaptor, and that’d
even be shorter! Most iterator class templates built with iterator adaptor are parameterized on an-
other iterator type, rather than on its value type. For example, boost::reverse iterator takes
an iterator type argument and reverses its direction of traversal, since the original iterator and the
reversed one have all the same associated types, iterator adaptor’s delegation of default types to its
Base saves the implementor of boost::reverse iterator from writing:

std::iterator traits<Iterator>::some-associated-type

at least four times.
We urge you to review the documentation and implementations of reverse iterator and the other

Boost specialized iterator adaptors to get an idea of the sorts of things you can do with iterator adaptor.
In particular, have a look at transform iterator, which is perhaps the most straightforward adaptor,
and also counting iterator, which demonstrates that iterator adaptor’s Base type needn’t be an
iterator.

6

file:../example/node_iterator3.cpp
file:reverse_iterator.html
file:index.html#specialized-adaptors
file:transform_iterator.html
file:counting_iterator.html

	Table of Contents
	Overview
	Reference
	iterator_adaptor requirements
	iterator_adaptor base class parameters
	iterator_adaptor public operations
	iterator_adaptor protected member functions
	iterator_adaptor private member functions

	Tutorial Example

