
Iterator Facade and Adaptor

2

Author : David Abrahams, Jeremy Siek, Thomas Witt

Contact: dave@boost-consulting.com, jsiek@osl.iu.edu, witt@styleadvisor.com

Organization: Boost Consulting, Indiana UniversityOpen Systems Lab, Zephyr Associates,
Inc.

Date: 2004-01-21

Number: This is a revised version of N1530=03-0113, which was accepted for Technical
Report 1 by the C++ standard committee’s library working group.

copyright: Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003. All rights reserved

abstract: We propose a set of class templates that help programmers build standard-conforming
iterators, both from scratch and by adapting other iterators.

Table of Contents

Motivation

Impact on the Standard

Design

Iterator Concepts

Interoperability

Iterator Facade

Usage

Iterator Core Access

operator[]

operator->

Iterator Adaptor

Specialized Adaptors

Proposed Text

Header<iterator helper> synopsis [lib.iterator.helper.synopsis]

Iterator facade [lib.iterator.facade]

Class templateiterator facade

iterator facade Requirements

iterator facade operations

Iterator adaptor [lib.iterator.adaptor]

Class templateiterator adaptor

iterator adaptor requirements

iterator adaptor base class parameters

iterator adaptor public operations

iterator adaptor protected member functions

iterator adaptor private member functions

Specialized adaptors [lib.iterator.special.adaptors]

Indirect iterator

mailto:dave@boost-consulting.com
mailto:jsiek@osl.iu.edu
mailto:witt@styleadvisor.com
http://www.boost-consulting.com
http://www.osl.iu.edu
http://www.styleadvisor.com
http://www.styleadvisor.com

3

Class templatepointee

Class templateindirect reference

Class templateindirect iterator

indirect iterator requirements

indirect iterator models

indirect iterator operations

Reverse iterator

Class templatereverse iterator

reverse iterator requirements

reverse iterator models

reverse iterator operations

Transform iterator

Class templatetransform iterator

transform iterator requirements

transform iterator models

transform iterator operations

Filter iterator

Class templatefilter iterator

filter iterator requirements

filter iterator models

filter iterator operations

Counting iterator

Class templatecounting iterator

counting iterator requirements

counting iterator models

counting iterator operations

Function output iterator

Class templatefunction output iterator

function output iterator requirements

function output iterator models

function output iterator operations

Motivation

Iterators play an important role in modern C++ programming. The iterator is the central abstraction of the
algorithms of the Standard Library, allowing algorithms to be re-used in in a wide variety of contexts. The C++
Standard Library contains a wide variety of useful iterators. Every one of the standard containers comes with
constant and mutable iterators [2], and also reverse versions of those same iterators which traverse the container
in the opposite direction. The Standard also suppliesistream iterator andostream iterator for reading
from and writing to streams,insert iterator, front insert iterator andback insert iterator for
inserting elements into containers, andraw storage iterator for initializing raw memory [7].

Despite the many iterators supplied by the Standard Library, obvious and useful iterators are missing, and
creating new iterator types is still a common task for C++ programmers. The literature documents several of
these, for example lineiterator [3] and Constantiterator [9]. The iterator abstraction is so powerful that we
expect programmers will always need to invent new iterator types.

4

Although it is easy to create iterators thatalmostconform to the standard, the iterator requirements contain
subtleties which can make creating an iterator whichactually conforms quite difficult. Further, the itera-
tor interface is rich, containing many operators that are technically redundant and tedious to implement. To
automate the repetitive work of constructing iterators, we proposeiterator facade, an iterator base class
template which provides the rich interface of standard iterators and delegates its implementation to member
functions of the derived class. In addition to reducing the amount of code necessary to create an iterator, the
iterator facade also provides compile-time error detection. Iterator implementation mistakes that often go
unnoticed are turned into compile-time errors because the derived class implementation must match the expec-
tations of theiterator facade.

A common pattern of iterator construction is the adaptation of one iterator to form a new one. The functionality
of an iterator is composed of four orthogonal aspects: traversal, indirection, equality comparison and distance
measurement. Adapting an old iterator to create a new one often saves work because one can reuse one aspect of
functionality while redefining the other. For example, the Standard providesreverse iterator, which adapts
any Bidirectional Iterator by inverting its direction of traversal. As with plain iterators, iterator adaptors defined
outside the Standard have become commonplace in the literature:

• Checked iter[13] adds bounds-checking to an existing iterator.

• The iterators of the View Template Library[14], which adapts containers, are themselves adaptors over
the underlying iterators.

• Smart iterators [5] adapt an iterator’s dereferencing behavior by applying a function object to the object
being referenced and returning the result.

• Custom iterators [4], in which a variety of adaptor types are enumerated.

• Compound iterators [1], which access a slice out of a container of containers.

• Several iterator adaptors from the MTL [12]. The MTL contains a strided iterator, where each call to
operator++() moves the iterator ahead by some constant factor, and a scaled iterator, which multiplies
the dereferenced value by some constant.

To fulfill the need for constructing adaptors, we propose theiterator adaptor class template. Instantiations
of iterator adaptor serve as a base classes for new iterators, providing the default behavior of forwarding
all operations to the underlying iterator. The user can selectively replace these features in the derived iterator
class. This proposal also includes a number of more specialized adaptors, such as thetransform iterator
that applies some user-specified function during the dereference of the iterator.

Impact on the Standard

This proposal is purely an addition to the C++ standard library. However, note that this proposal relies on the
proposal for New Iterator Concepts.

[1] We use the term concept to mean a set of requirements that a type must satisfy to be used with a particular
template parameter.

[2] The term mutable iterator refers to iterators over objects that can be changed by assigning to the dereferenced
iterator, while constant iterator refers to iterators over objects that cannot be modified.

5

Design

Iterator Concepts

This proposal is formulated in terms of the newiterator concepts as proposed inn1550, since user-defined
and especially adapted iterators suffer from the well known categorization problems that are inherent to the
current iterator categories.

This proposal does not strictly depend on proposaln1550, as there is a direct mapping between new and old
categories. This proposal could be reformulated using this mapping ifn1550was not accepted.

Interoperability

The question of iterator interoperability is poorly addressed in the current standard. There are currently two
defect reports that are concerned with interoperability issues.

Issue179 concerns the fact that mutable container iterator types are only required to be convertible to the
corresponding constant iterator types, but objects of these types are not required to interoperate in comparison
or subtraction expressions. This situation is tedious in practice and out of line with the way built in types work.
This proposal implements the proposed resolution to issue179, as most standard library implementations do
nowadays. In other words, if an iterator type A has an implicit or user defined conversion to an iterator type B,
the iterator types are interoperable and the usual set of operators are available.

Issue280 concerns the current lack of interoperability between reverse iterator types. The proposed new re-
verseiterator template fixes the issues raised in 280. It provides the desired interoperability without introducing
unwanted overloads.

Iterator Facade

While the iterator interface is rich, there is a core subset of the interface that is necessary for all the functionality.
We have identified the following core behaviors for iterators:

• dereferencing

• incrementing

• decrementing

• equality comparison

• random-access motion

• distance measurement

In addition to the behaviors listed above, the core interface elements include the associated types exposed
through iterator traits:value type, reference, difference type, anditerator category.

Iterator facade uses the Curiously Recurring Template Pattern (CRTP) [Cop95] so that the user can specify the
behavior ofiterator facade in a derived class. Former designs used policy objects to specify the behavior,
but that approach was discarded for several reasons:

1. the creation and eventual copying of the policy object may create overhead that can be
avoided with the current approach.

2. The policy object approach does not allow for custom constructors on the created it-
erator types, an essential feature ifiterator facade should be used in other library
implementations.

http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/papers/2003/n1550.html
http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/papers/2003/n1550.html
http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/papers/2003/n1550.html
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/lwg-defects.html#179
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/lwg-defects.html#179
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/lwg-active.html#280

6

3. Without the use of CRTP, the standard requirement that an iterator’soperator++ returns
the iterator type itself would mean that all iterators built with the library would have to
be specializations ofiterator facade<...>, rather than something more descriptive
like indirect iterator<T*>. Cumbersome type generator metafunctions would be
needed to build new parameterized iterators, and a separateiterator adaptor layer
would be impossible.

Usage

The user ofiterator facade derives his iterator class from a specialization ofiterator facade and passes
the derived iterator class asiterator facade’s first template parameter. The order of the other template pa-
rameters have been carefully chosen to take advantage of useful defaults. For example, when defining a constant
lvalue iterator, the user can pass a const-qualified version of the iterator’svalue type asiterator facade’s
Value parameter and omit theReference parameter which follows.

The derived iterator class must define member functions implementing the iterator’s core behaviors. The fol-
lowing table describes expressions which are required to be valid depending on the category of the derived
iterator type. These member functions are described briefly below and in more detail in the iterator facade
requirements.

Expression Effects
i.dereference() Access the value referred to

i.equal(j) Compare for equality withj

i.increment() Advance by one position

i.decrement() Retreat by one position

i.advance(n) Advance byn positions

i.distance to(j) Measure the distance toj

In addition to implementing the core interface functions, an iterator derived fromiterator facade typically
defines several constructors. To model any of the standard iterator concepts, the iterator must at least have a
copy constructor. Also, if the iterator typeX is meant to be automatically interoperate with another iterator type
Y (as with constant and mutable iterators) then there must be an implicit conversion fromX to Y or from Y to X
(but not both), typically implemented as a conversion constructor. Finally, if the iterator is to model Forward
Traversal Iterator or a more-refined iterator concept, a default constructor is required.

Iterator Core Access

iterator facade and the operator implementations need to be able to access the core member functions in
the derived class. Making the core member functions public would expose an implementation detail to the user.
The design used here ensures that implementation details do not appear in the public interface of the derived
iterator type.

Preventing direct access to the core member functions has two advantages. First, there is no possibility for the
user to accidently use a member function of the iterator when a member of the valuetype was intended. This
has been an issue with smart pointer implementations in the past. The second and main advantage is that library
implementers can freely exchange a hand-rolled iterator implementation for one based oniterator facade
without fear of breaking code that was accessing the public core member functions directly.

7

In a naive implementation, keeping the derived class’ core member functions private would require it to grant
friendship toiterator facade and each of the seven operators. In order to reduce the burden of limiting
access,iterator core access is provided, a class that acts as a gateway to the core member functions in the
derived iterator class. The author of the derived class only needs to grant friendship toiterator core access
to make his core member functions available to the library.

iterator core access will be typically implemented as an empty class containing only private static member
functions which invoke the iterator core member functions. There is, however, no need to standardize the
gateway protocol. Note that even ifiterator core access used public member functions it would not open
a safety loophole, as every core member function preserves the invariants of the iterator.

operator[]

The indexing operator for a generalized iterator presents special challenges. A random access iterator’s
operator[] is only required to return something convertible to itsvalue type. Requiring that it return an
lvalue would rule out currently-legal random-access iterators which hold the referenced value in a data member
(e.g.counting iterator), because*(p+n) is a reference into the temporary iteratorp+n, which is destroyed
whenoperator[] returns.

Writable iterators built withiterator facade implement the semantics required by the preferred resolution
to issue 299and adopted by proposaln1550: the result ofp[n] is an object convertible to the iterator’s
value type, andp[n] = x is equivalent to*(p + n) = x (Note: This result object may be implemented
as a proxy containing a copy ofp+n). This approach will work properly for any random-access iterator re-
gardless of the other details of its implementation. A user who knows more about the implementation of her
iterator is free to implement anoperator[] that returns an lvalue in the derived iterator class; it will hide the
one supplied byiterator facade from clients of her iterator.

operator->

Thereference type of a readable iterator (and today’s input iterator) need not in fact be a reference, so long as
it is convertible to the iterator’svalue type. When thevalue type is a class, however, it must still be possible
to access members throughoperator->. Therefore, an iterator whosereference type is not in fact a reference
must return a proxy containing a copy of the referenced value from itsoperator->.

The return types foriterator facade’s operator-> andoperator[] are not explicitly specified. Instead,
those types are described in terms of a set of requirements, which must be satisfied by theiterator facade
implementation.

Iterator Adaptor

The iterator adaptor class template adapts someBase [3] type to create a new iterator. Instantiations of
iterator adaptor are derived from a corresponding instantiation ofiterator facade and implement the
core behaviors in terms of theBase type. In essence,iterator adaptor merely forwards all operations to an
instance of theBase type, which it stores as a member.

The user ofiterator adaptor creates a class derived from an instantiation ofiterator adaptor and then
selectively redefines some of the core member functions described in the table above. TheBase type need

[Cop95] [Coplien, 1995] Coplien, J., Curiously Recurring Template Patterns, C++ Report, February 1995, pp.
24-27.
[3] The term “Base” here does not refer to a base class and is not meant to imply the use of derivation. We
have followed the lead of the standard library, which provides a base() function to access the underlying iterator
object of areverse iterator adaptor.

http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/lwg-active.html#299
http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/papers/2003/n1550.html

8

not meet the full requirements for an iterator. It need only support the operations used by the core interface
functions ofiterator adaptor that have not been redefined in the user’s derived class.

Several of the template parameters ofiterator adaptor default touse default. This allows the user to
make use of a default parameter even when she wants to specify a parameter later in the parameter list. Also,
the defaults for the corresponding associated types are somewhat complicated, so metaprogramming is re-
quired to compute them, anduse default can help to simplify the implementation. Finally, the identity of
theuse default type is not left unspecified because specification helps to highlight that theReference tem-
plate parameter may not always be identical to the iterator’sreference type, and will keep users from making
mistakes based on that assumption.

Specialized Adaptors

This proposal also contains several examples of specialized adaptors which were easily implemented using
iterator adaptor:

• indirect iterator, which iterates over iterators, pointers, or smart pointers and applies an extra level
of dereferencing.

• A new reverse iterator, which inverts the direction of a Base iterator’s motion, while allowing
adapted constant and mutable iterators to interact in the expected ways (unlike those in most imple-
mentations of C++98).

• transform iterator, which applies a user-defined function object to the underlying values when deref-
erenced.

• filter iterator, which provides a view of an iterator range in which some elements of the underlying
range are skipped.

• counting iterator, which adapts any incrementable type (e.g. integers, iterators) so that increment-
ing/decrementing the adapted iterator and dereferencing it produces successive values of the Base type.

• function output iterator, which makes it easier to create custom output iterators.

Based on examples in the Boost library, users have generated many new adaptors, among them a permutation
adaptor which applies some permutation to a random access iterator, and a strided adaptor, which adapts a
random access iterator by multiplying its unit of motion by a constant factor. In addition, the Boost Graph
Library (BGL) uses iterator adaptors to adapt other graph libraries, such as LEDA [10] and Stanford GraphBase
[8], to the BGL interface (which requires C++ Standard compliant iterators).

Proposed Text

Header<iterator helper> synopsis [lib.iterator.helper.synopsis]

struct use default;

struct iterator core access { /* implementation detail */ };

template <
class Derived

, class Value
, class CategoryOrTraversal

9

, class Reference = Value&
, class Difference = ptrdiff t

>
class iterator facade;

template <
class Derived

, class Base
, class Value = use default
, class CategoryOrTraversal = use default
, class Reference = use default
, class Difference = use default

>
class iterator adaptor;

template <
class Iterator

, class Value = use default
, class CategoryOrTraversal = use default
, class Reference = use default
, class Difference = use default

>
class indirect iterator;

template <class Dereferenceable>
struct pointee;

template <class Dereferenceable>
struct indirect reference;

template <class Iterator>
class reverse iterator;

template <
class UnaryFunction

, class Iterator
, class Reference = use default
, class Value = use default

>
class transform iterator;

template <class Predicate, class Iterator>
class filter iterator;

template <
class Incrementable

, class CategoryOrTraversal = use default
, class Difference = use default

>
class counting iterator;

template <class UnaryFunction>
class function output iterator;

10

Iterator facade [lib.iterator.facade]

iterator facade is a base class template that implements the interface of standard iterators in terms of a few
core functions and associated types, to be supplied by a derived iterator class.

Class templateiterator facade

template <
class Derived

, class Value
, class CategoryOrTraversal
, class Reference = Value&
, class Difference = ptrdiff t

>
class iterator facade {
public:

typedef remove const<Value>::type value type;
typedef Reference reference;
typedef Value* pointer;
typedef Difference difference type;
typedef /* see below */ iterator category;

reference operator*() const;
/* see below */ operator->() const;
/* see below */ operator[](difference type n) const;
Derived& operator++();
Derived operator++(int);
Derived& operator--();
Derived operator--(int);
Derived& operator+=(difference type n);
Derived& operator-=(difference type n);
Derived operator-(difference type n) const;

};

// Comparison operators
template <class Dr1, class V1, class TC1, class R1, class D1,

class Dr2, class V2, class TC2, class R2, class D2>
typename enable if interoperable<Dr1,Dr2,bool>::type // exposition
operator ==(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator !=(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator <(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

11

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator <=(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator >(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator >=(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

// Iterator difference
template <class Dr1, class V1, class TC1, class R1, class D1,

class Dr2, class V2, class TC2, class R2, class D2>
/* see below */
operator-(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

// Iterator addition
template <class Dr, class V, class TC, class R, class D>
Derived operator+ (iterator facade<Dr,V,TC,R,D> const&,

typename Derived::difference type n);

template <class Dr, class V, class TC, class R, class D>
Derived operator+ (typename Derived::difference type n,

iterator facade<Dr,V,TC,R,D> const&);

Theiterator category member ofiterator facade is

iterator-category (CategoryOrTraversal, value type, reference)

whereiterator-categoryis defined as follows:

iterator-category (C,R,V) :=
if (C is convertible to std::input iterator tag

|| C is convertible to std::output iterator tag
)

return C

else if (C is not convertible to incrementable traversal tag)
the program is ill-formed

else return a type X satisfying the following two constraints:

1. X is convertible to X1, and not to any more-derived
type, where X1 is defined by:

12

if (R is a reference type
&& C is convertible to forward traversal tag)

{
if (C is convertible to random access traversal tag)

X1 = random access iterator tag
else if (C is convertible to bidirectional traversal tag)

X1 = bidirectional iterator tag
else

X1 = forward iterator tag
}
else
{

if (C is convertible to single pass traversal tag
&& R is convertible to V)
X1 = input iterator tag

else
X1 = C

}

2. category-to-traversal (X) is convertible to the most
derived traversal tag type to which X is also
convertible, and not to any more-derived traversal tag
type.

[Note: the intention is to allowiterator category to be one of the five original category tags when convert-
ibility to one of the traversal tags would add no information]

Theenable if interoperable template used above is for exposition purposes. The member operators should
only be in an overload set provided the derived typesDr1 andDr2 are interoperable, meaning that at least one
of the types is convertible to the other. Theenable if interoperable approach uses SFINAE to take the
operators out of the overload set when the types are not interoperable. The operators should behaveas-if
enable if interoperable were defined to be:

template <bool, typename> enable if interoperable impl
{};

template <typename T> enable if interoperable impl<true,T>
{ typedef T type; };

template<typename Dr1, typename Dr2, typename T>
struct enable if interoperable
: enable if interoperable impl<

is convertible<Dr1,Dr2>::value || is convertible<Dr2,Dr1>::value
, T

>
{};

iterator facade Requirements

The following table describes the typical valid expressions oniterator facade’s Derived parameter, depend-
ing on the iterator concept(s) it will model. The operations in the first column must be made accessible to mem-
ber functions of classiterator core access. In addition,static cast<Derived*>(iterator facade*)
shall be well-formed.

file:new-iter-concepts.html#category-to-traversal

13

In the table below,F is iterator facade<X,V,C,R,D>, a is an object of typeX, b andc are objects of type
const X, n is an object ofF::difference type, y is a constant object of a single pass iterator type interoper-
able withX, andz is a constant object of a random access traversal iterator type interoperable withX.

iterator facade Core Operations

Expression Return Type Assertion/Note Used to implement Iterator
Concept(s)

c.dereference() F::reference Readable Iterator, Writable It-
erator

c.equal(y) convertible to bool true iff c andy refer to the
same position.

Single Pass Iterator

a.increment() unused Incrementable Iterator

a.decrement() unused Bidirectional Traversal Itera-
tor

a.advance(n) unused Random Access Traversal It-
erator

c.distance to(z) convertible to
F::difference type

equivalent todistance(c,
X(z)).

Random Access Traversal It-
erator

iterator facade operations

The operations in this section are described in terms of operations on the core interface ofDerived which may
be inaccessible (i.e. private). The implementation should access these operations through member functions of
classiterator core access.

reference operator*() const;

Returns: static cast<Derived const*>(this)->dereference()

operator->() const; (seebelow)

Returns: If reference is a reference type, an object of typepointer equal to:

&static cast<Derived const*>(this)->dereference()

Otherwise returns an object of unspecified type such that,(*static cast<Derived
const*>(this))->m is equivalent to(w = **static cast<Derived const*>(this),
w.m) for some temporary objectw of typevalue type.

unspecifiedoperator[](difference type n) const;

Returns: an object convertible tovalue type. For constant objectsv of type value type,
and n of type difference type, (*this)[n] = v is equivalent to *(*this +
n) = v, and static cast<value type const&>((*this)[n]) is equivalent to
static cast<value type const&>(*(*this + n))

Derived& operator++();

Effects: static cast<Derived*>(this)->increment();
return *static cast<Derived*>(this);

14

Derived operator++(int);

Effects: Derived tmp(static cast<Derived const*>(this));
++*this;
return tmp;

Derived& operator--();

Effects: static cast<Derived*>(this)->decrement();
return *static cast<Derived*>(this);

Derived operator--(int);

Effects: Derived tmp(static cast<Derived const*>(this));
--*this;
return tmp;

Derived& operator+=(difference type n);

Effects: static cast<Derived*>(this)->advance(n);
return *static cast<Derived*>(this);

Derived& operator-=(difference type n);

Effects: static cast<Derived*>(this)->advance(-n);
return *static cast<Derived*>(this);

Derived operator-(difference type n) const;

Effects: Derived tmp(static cast<Derived const*>(this));
return tmp -= n;

template <class Dr, class V, class TC, class R, class D>
Derived operator+ (iterator facade<Dr,V,TC,R,D> const&,

typename Derived::difference type n);

template <class Dr, class V, class TC, class R, class D>
Derived operator+ (typename Derived::difference type n,

iterator facade<Dr,V,TC,R,D> const&);

Effects: Derived tmp(static cast<Derived const*>(this));
return tmp += n;

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator ==(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

Returns: if is convertible<Dr2,Dr1>::value

then ((Dr1 const&)lhs).equal((Dr2 const&)rhs).
Otherwise, ((Dr2 const&)rhs).equal((Dr1 const&)lhs).

15

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator !=(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

Returns: if is convertible<Dr2,Dr1>::value

then !((Dr1 const&)lhs).equal((Dr2 const&)rhs).

Otherwise, !((Dr2 const&)rhs).equal((Dr1 const&)lhs).

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator <(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

Returns: if is convertible<Dr2,Dr1>::value

then ((Dr1 const&)lhs).distance to((Dr2 const&)rhs) < 0.

Otherwise, ((Dr2 const&)rhs).distance to((Dr1 const&)lhs) > 0.

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator <=(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

Returns: if is convertible<Dr2,Dr1>::value

then ((Dr1 const&)lhs).distance to((Dr2 const&)rhs) <= 0.

Otherwise, ((Dr2 const&)rhs).distance to((Dr1 const&)lhs) >= 0.

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator >(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

Returns: if is convertible<Dr2,Dr1>::value

then ((Dr1 const&)lhs).distance to((Dr2 const&)rhs) > 0.

Otherwise, ((Dr2 const&)rhs).distance to((Dr1 const&)lhs) < 0.

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator >=(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

Returns: if is convertible<Dr2,Dr1>::value

then ((Dr1 const&)lhs).distance to((Dr2 const&)rhs) >= 0.

Otherwise, ((Dr2 const&)rhs).distance to((Dr1 const&)lhs) <= 0.

16

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,difference>::type
operator -(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

Return Type: if is convertible<Dr2,Dr1>::value

then difference shall beiterator traits<Dr1>::difference type.
Otherwise difference shall beiterator traits<Dr2>::difference type

Returns: if is convertible<Dr2,Dr1>::value

then -((Dr1 const&)lhs).distance to((Dr2 const&)rhs).
Otherwise, ((Dr2 const&)rhs).distance to((Dr1 const&)lhs).

Iterator adaptor [lib.iterator.adaptor]

Each specialization of theiterator adaptor class template is derived from a specialization of
iterator facade. The core interface functions expected byiterator facade are implemented in terms
of theiterator adaptor’s Base template parameter. A class derived fromiterator adaptor typically re-
defines some of the core interface functions to adapt the behavior of theBase type. Whether the derived class
models any of the standard iterator concepts depends on the operations supported by theBase type and which
core interface functions ofiterator facade are redefined in theDerived class.

Class templateiterator adaptor

template <
class Derived

, class Base
, class Value = use default
, class CategoryOrTraversal = use default
, class Reference = use default
, class Difference = use default

>
class iterator adaptor
: public iterator facade<Derived, V’ , C’ , R’ , D’ > // see details

{
friend class iterator core access;

public:
iterator adaptor();
explicit iterator adaptor(Base iter);
Base const& base() const;

protected:
Base const& base reference() const;
Base& base reference();

private: // Core iterator interface for iterator facade.
typename iterator adaptor::reference dereference() const;

template <
class OtherDerived, class OtherIterator, class V, class C, class R, class D
>
bool equal(iterator adaptor<OtherDerived, OtherIterator, V, C, R, D> const& x) const;

17

void advance(typename iterator adaptor::difference type n);
void increment();
void decrement();

template <
class OtherDerived, class OtherIterator, class V, class C, class R, class D

>
typename iterator adaptor::difference type distance to(

iterator adaptor<OtherDerived, OtherIterator, V, C, R, D> const& y) const;

private:
Base m iterator; // exposition only

};

iterator adaptor requirements

static cast<Derived*>(iterator adaptor*) shall be well-formed. TheBase argument shall be
Assignable and Copy Constructible.

iterator adaptor base class parameters

The V’, C’, R’, and D’ parameters of theiterator facade used as a base class in the summary of
iterator adaptor above are defined as follows:

V’ = if (Value is use default)
return iterator traits<Base>::value type

else
return Value

C’ = if (CategoryOrTraversal is use default)
return iterator traversal<Base>::type

else
return CategoryOrTraversal

R’ = if (Reference is use default)
if (Value is use default)

return iterator traits<Base>::reference
else

return Value&
else

return Reference

D’ = if (Difference is use default)
return iterator traits<Base>::difference type

else
return Difference

iterator adaptor public operations

iterator adaptor();

18

Requires: TheBase type must be Default Constructible.

Returns: An instance ofiterator adaptor with m iterator default constructed.

explicit iterator adaptor(Base iter);

Returns: An instance ofiterator adaptor with m iterator copy constructed fromiter.

Base const& base() const;

Returns: m iterator

iterator adaptor protected member functions

Base const& base reference() const;

Returns: A const reference tom iterator.

Base& base reference();

Returns: A non-const reference tom iterator.

iterator adaptor private member functions

typename iterator adaptor::reference dereference() const;

Returns: *m iterator

template <
class OtherDerived, class OtherIterator, class V, class C, class R, class D
>
bool equal(iterator adaptor<OtherDerived, OtherIterator, V, C, R, D> const& x) const;

Returns: m iterator == x.base()

void advance(typename iterator adaptor::difference type n);

Effects: m iterator += n;

void increment();

Effects: ++m iterator;

void decrement();

Effects: --m iterator;

template <
class OtherDerived, class OtherIterator, class V, class C, class R, class D

>
typename iterator adaptor::difference type distance to(

iterator adaptor<OtherDerived, OtherIterator, V, C, R, D> const& y) const;

Returns: y.base() - m iterator

19

Specialized adaptors [lib.iterator.special.adaptors]

The enable if convertible<X,Y>::type expression used in this section is for exposition purposes. The
converting constructors for specialized adaptors should be only be in an overload set provided that an object
of type X is implicitly convertible to an object of typeY. The signatures involvingenable if convertible
should behaveas-if enable if convertible were defined to be:

template <bool> enable if convertible impl
{};

template <> enable if convertible impl<true>
{ struct type; };

template<typename From, typename To>
struct enable if convertible

: enable if convertible impl<is convertible<From,To>::value>
{};

If an expression other than the default argument is used to supply the value of a function parameter whose type
is written in terms ofenable if convertible, the program is ill-formed, no diagnostic required.

[Note: The enable if convertible approach uses SFINAE to take the constructor out of the overload set
when the types are not implicitly convertible.]

Indirect iterator

indirect iterator adapts an iterator by applying anextradereference inside ofoperator*(). For example,
this iterator adaptor makes it possible to view a container of pointers (e.g.list<foo*>) as if it were a container
of the pointed-to type (e.g.list<foo>). indirect iterator depends on two auxiliary traits,pointee and
indirect reference, to provide support for underlying iterators whosevalue type is not an iterator.

Class templatepointee

template <class Dereferenceable>
struct pointee
{

typedef /* see below */ type;
};

Requires: For an object x of type Dereferenceable, *x is well-formed. If ++x
is ill-formed it shall neither be ambiguous nor shall it violate access control,
and Dereferenceable::element type shall be an accessible type. Otherwise
iterator traits<Dereferenceable>::value type shall be well formed. [Note: These
requirements need not apply to explicit or partial specializations ofpointee]

type is determined according to the following algorithm, wherex is an object of typeDereferenceable:

if (++x is ill-formed)
{

return ‘‘Dereferenceable::element type‘‘
}
else if (‘‘*x‘‘ is a mutable reference to

20

std::iterator traits<Dereferenceable>::value type)
{

return iterator traits<Dereferenceable>::value type
}
else
{

return iterator traits<Dereferenceable>::value type const
}

Class templateindirect reference

template <class Dereferenceable>
struct indirect reference
{

typedef /* see below */ type;
};

Requires: For an object x of type Dereferenceable, *x is well-formed. If ++x
is ill-formed it shall neither be ambiguous nor shall it violate access control,
and pointee<Dereferenceable>::type& shall be well-formed. Otherwise
iterator traits<Dereferenceable>::reference shall be well formed. [Note: These
requirements need not apply to explicit or partial specializations ofindirect reference]

type is determined according to the following algorithm, wherex is an object of typeDereferenceable:

if (++x is ill-formed)
return ‘‘pointee<Dereferenceable>::type&‘‘

else
std::iterator traits<Dereferenceable>::reference

Class templateindirect iterator

template <
class Iterator

, class Value = use default
, class CategoryOrTraversal = use default
, class Reference = use default
, class Difference = use default

>
class indirect iterator
{
public:

typedef /* see below */ value type;
typedef /* see below */ reference;
typedef /* see below */ pointer;
typedef /* see below */ difference type;
typedef /* see below */ iterator category;

indirect iterator();
indirect iterator(Iterator x);

template <

21

class Iterator2, class Value2, class Category2
, class Reference2, class Difference2

>
indirect iterator(

indirect iterator<
Iterator2, Value2, Category2, Reference2, Difference2

> const& y
, typename enable if convertible<Iterator2, Iterator>::type* = 0 // exposition

);

Iterator const& base() const;
reference operator*() const;
indirect iterator& operator++();
indirect iterator& operator--();

private:
Iterator m iterator; // exposition

};

The member types ofindirect iterator are defined according to the following pseudo-code, whereV is
iterator traits<Iterator>::value type

if (Value is use default) then
typedef remove const<pointee<V>::type>::type value type;

else
typedef remove const<Value>::type value type;

if (Reference is use default) then
if (Value is use default) then

typedef indirect reference<V>::type reference;
else

typedef Value& reference;
else

typedef Reference reference;

if (Value is use default) then
typedef pointee<V>::type* pointer;

else
typedef Value* pointer;

if (Difference is use default)
typedef iterator traits<Iterator>::difference type difference type;

else
typedef Difference difference type;

if (CategoryOrTraversal is use default)
typedef iterator-category (

iterator traversal<Iterator>::type,‘‘reference‘‘,‘‘value type‘‘
) iterator category;

else
typedef iterator-category (

CategoryOrTraversal,‘‘reference‘‘,‘‘value type‘‘
) iterator category;

22

indirect iterator requirements

The expression*v, where v is an object ofiterator traits<Iterator>::value type, shall be valid
expression and convertible toreference. Iterator shall model the traversal concept indicated by
iterator category. Value, Reference, andDifference shall be chosen so thatvalue type, reference,
anddifference type meet the requirements indicated byiterator category.

[Note: there are further requirements on theiterator traits<Iterator>::value type if the Value param-
eter is notuse default, as implied by the algorithm for deducing the default for thevalue type member.]

indirect iterator models

In addition to the concepts indicated by iterator category and by
iterator traversal<indirect iterator>::type, a specialization of indirect iterator models
the following concepts, Wherev is an object ofiterator traits<Iterator>::value type:

• Readable Iterator ifreference(*v) is convertible tovalue type.

• Writable Iterator ifreference(*v) = t is a valid expression (wheret is an object of type
indirect iterator::value type)

• Lvalue Iterator ifreference is a reference type.

indirect iterator<X,V1,C1,R1,D1> is interoperable withindirect iterator<Y,V2,C2,R2,D2> if and
only if X is interoperable withY.

indirect iterator operations

In addition to the operations required by the concepts described above, specializations ofindirect iterator
provide the following operations.

indirect iterator();

Requires: Iterator must be Default Constructible.

Effects: Constructs an instance ofindirect iterator with a default-constructedm iterator.

indirect iterator(Iterator x);

Effects: Constructs an instance ofindirect iterator with m iterator copy constructed from
x.

template <
class Iterator2, class Value2, unsigned Access, class Traversal

, class Reference2, class Difference2
>
indirect iterator(

indirect iterator<
Iterator2, Value2, Access, Traversal, Reference2, Difference2

> const& y
, typename enable if convertible<Iterator2, Iterator>::type* = 0 // exposition

);

Requires: Iterator2 is implicitly convertible toIterator.

23

Effects: Constructs an instance ofindirect iterator whosem iterator subobject is con-
structed fromy.base().

Iterator const& base() const;

Returns: m iterator

reference operator*() const;

Returns: **m iterator

indirect iterator& operator++();

Effects: ++m iterator

Returns: *this

indirect iterator& operator--();

Effects: --m iterator

Returns: *this

Reverse iterator

The reverse iterator adaptor iterates through the adapted iterator range in the opposite direction.

Class templatereverse iterator

template <class Iterator>
class reverse iterator
{
public:

typedef iterator traits<Iterator>::value type value type;
typedef iterator traits<Iterator>::reference reference;
typedef iterator traits<Iterator>::pointer pointer;
typedef iterator traits<Iterator>::difference type difference type;
typedef /* see below */ iterator category;

reverse iterator() {}
explicit reverse iterator(Iterator x) ;

template<class OtherIterator>
reverse iterator(

reverse iterator<OtherIterator> const& r
, typename enable if convertible<OtherIterator, Iterator>::type* = 0 // exposition

);
Iterator const& base() const;
reference operator*() const;
reverse iterator& operator++();
reverse iterator& operator--();

private:
Iterator m iterator; // exposition

};

24

If Iterator models Random Access Traversal Iterator and Readable Lvalue Iterator, theniterator category
is convertible torandom access iterator tag. Otherwise, ifIterator models Bidirectional Traversal Iter-
ator and Readable Lvalue Iterator, theniterator category is convertible tobidirectional iterator tag.
Otherwise,iterator category is convertible toinput iterator tag.

reverse iterator requirements

Iterator must be a model of Bidirectional Traversal Iterator. The type
iterator traits<Iterator>::reference must be the type of*i, wherei is an object of typeIterator.

reverse iterator models

A specialization ofreverse iterator models the same iterator traversal and iterator access concepts modeled
by itsIterator argument. In addition, it may model old iterator concepts specified in the following table:

If I models then reverse iterator<I> models
Readable Lvalue Iterator, Bidirectional Traversal
Iterator

Bidirectional Iterator

Writable Lvalue Iterator, Bidirectional Traversal
Iterator

Mutable Bidirectional Iterator

Readable Lvalue Iterator, Random Access Traver-
sal Iterator

Random Access Iterator

Writable Lvalue Iterator, Random Access Traver-
sal Iterator

Mutable Random Access Iterator

reverse iterator<X> is interoperable withreverse iterator<Y> if and only if X is interoperable withY.

reverse iterator operations

In addition to the operations required by the concepts modeled byreverse iterator, reverse iterator
provides the following operations.

reverse iterator();

Requires: Iterator must be Default Constructible.

Effects: Constructs an instance ofreverse iterator with m iterator default constructed.

explicit reverse iterator(Iterator x);

Effects: Constructs an instance ofreverse iterator with m iterator copy constructed from
x.

template<class OtherIterator>
reverse iterator(

reverse iterator<OtherIterator> const& r
, typename enable if convertible<OtherIterator, Iterator>::type* = 0 // exposition

);

Requires: OtherIterator is implicitly convertible toIterator.

25

Effects: Constructs instance ofreverse iterator whosem iterator subobject is constructed
from y.base().

Iterator const& base() const;

Returns: m iterator

reference operator*() const;

Effects:

Iterator tmp = m iterator;
return *--tmp;

reverse iterator& operator++();

Effects: --m iterator

Returns: *this

reverse iterator& operator--();

Effects: ++m iterator

Returns: *this

Transform iterator

The transform iterator adapts an iterator by modifying theoperator* to apply a function object to the result of
dereferencing the iterator and returning the result.

Class templatetransform iterator

template <class UnaryFunction,
class Iterator,
class Reference = use default,
class Value = use default>

class transform iterator
{
public:

typedef /* see below */ value type;
typedef /* see below */ reference;
typedef /* see below */ pointer;
typedef iterator traits<Iterator>::difference type difference type;
typedef /* see below */ iterator category;

transform iterator();
transform iterator(Iterator const& x, UnaryFunction f);

template<class F2, class I2, class R2, class V2>
transform iterator(

transform iterator<F2, I2, R2, V2> const& t

26

, typename enable if convertible<I2, Iterator>::type* = 0 // exposition only
, typename enable if convertible<F2, UnaryFunction>::type* = 0 // exposition only

);
UnaryFunction functor() const;
Iterator const& base() const;
reference operator*() const;
transform iterator& operator++();
transform iterator& operator--();

private:
Iterator m iterator; // exposition only
UnaryFunction m f; // exposition only

};

If Reference is use default then the reference member of transform iterator is
result of<UnaryFunction(iterator traits<Iterator>::reference)>::type. Otherwise,reference
is Reference.

If Value is use default then thevalue type member isremove cv<remove reference<reference>
>::type. Otherwise,value type is Value.

If Iterator models Readable Lvalue Iterator and ifIterator models Random Access Traversal Iterator, then
iterator category is convertible torandom access iterator tag. Otherwise, ifIterator models Bidi-
rectional Traversal Iterator, theniterator category is convertible tobidirectional iterator tag. Oth-
erwiseiterator category is convertible toforward iterator tag. If Iterator does not model Readable
Lvalue Iterator theniterator category is convertible toinput iterator tag.

transform iterator requirements

The typeUnaryFunction must be Assignable, Copy Constructible, and the expressionf(*i) must be valid
wheref is an object of typeUnaryFunction, i is an object of typeIterator, and where the type off(*i)
must beresult of<UnaryFunction(iterator traits<Iterator>::reference)>::type.

The argumentIterator shall model Readable Iterator.

transform iterator models

The resultingtransform iteratormodels the most refined of the following that is also modeled byIterator.

• Writable Lvalue Iterator iftransform iterator::reference is a non-const reference.

• Readable Lvalue Iterator iftransform iterator::reference is a const reference.

• Readable Iterator otherwise.

Thetransform iterator models the most refined standard traversal concept that is modeled by theIterator
argument.

If transform iterator is a model of Readable Lvalue Iterator then it models the following original iterator
concepts depending on what theIterator argument models.

If Iterator models then transform iterator models
Single Pass Iterator Input Iterator

Forward Traversal Iterator Forward Iterator

Bidirectional Traversal Iterator Bidirectional Iterator

Random Access Traversal Iterator Random Access Iterator

27

If transform iterator models Writable Lvalue Iterator then it is a mutable iterator (as defined in the old
iterator requirements).

transform iterator<F1, X, R1, V1> is interoperable withtransform iterator<F2, Y, R2, V2> if
and only ifX is interoperable withY.

transform iterator operations

In addition to the operations required by the concepts modeled bytransform iterator,
transform iterator provides the following operations.

transform iterator();

Returns: An instance oftransform iterator with m f andm iterator default constructed.

transform iterator(Iterator const& x, UnaryFunction f);

Returns: An instance oftransform iterator with m f initialized tof andm iterator initial-
ized tox.

template<class OtherIterator, class R2, class V2>
transform iterator(

transform iterator<UnaryFunction, OtherIterator, R2, V2> const& t
, typename enable if convertible<OtherIterator, Iterator>::type* = 0 // exposition

);

Returns: An instance oftransform iterator that is a copy oft.

Requires: OtherIterator is implicitly convertible toIterator.

UnaryFunction functor() const;

Returns: m f

Iterator const& base() const;

Returns: m iterator

reference operator*() const;

Returns: m f(*m iterator)

transform iterator& operator++();

Effects: ++m iterator

Returns: *this

transform iterator& operator--();

Effects: --m iterator

Returns: *this

28

Filter iterator

The filter iterator adaptor creates a view of an iterator range in which some elements of the range are skipped.
A predicate function object controls which elements are skipped. When the predicate is applied to an element,
if it returnstrue then the element is retained and if it returnsfalse then the element is skipped over. When
skipping over elements, it is necessary for the filter adaptor to know when to stop so as to avoid going past the
end of the underlying range. A filter iterator is therefore constructed with pair of iterators indicating the range
of elements in the unfiltered sequence to be traversed.

Class templatefilter iterator

template <class Predicate, class Iterator>
class filter iterator
{
public:

typedef iterator traits<Iterator>::value type value type;
typedef iterator traits<Iterator>::reference reference;
typedef iterator traits<Iterator>::pointer pointer;
typedef iterator traits<Iterator>::difference type difference type;
typedef /* see below */ iterator category;

filter iterator();
filter iterator(Predicate f, Iterator x, Iterator end = Iterator());
filter iterator(Iterator x, Iterator end = Iterator());
template<class OtherIterator>
filter iterator(

filter iterator<Predicate, OtherIterator> const& t
, typename enable if convertible<OtherIterator, Iterator>::type* = 0 // exposition
);

Predicate predicate() const;
Iterator end() const;
Iterator const& base() const;
reference operator*() const;
filter iterator& operator++();

private:
Predicate m pred; // exposition only
Iterator m iter; // exposition only
Iterator m end; // exposition only

};

If Iterator models Readable Lvalue Iterator and Forward Traversal Iterator theniterator category
is convertible to std::forward iterator tag. Otherwise iterator category is convertible to
std::input iterator tag.

filter iterator requirements

TheIterator argument shall meet the requirements of Readable Iterator and Single Pass Iterator or it shall
meet the requirements of Input Iterator.

The Predicate argument must be Assignable, Copy Constructible, and the expressionp(x) must be valid
wherep is an object of typePredicate, x is an object of typeiterator traits<Iterator>::value type,
and where the type ofp(x) must be convertible tobool.

29

filter iterator models

The concepts thatfilter iterator models are dependent on which concepts theIterator argument models,
as specified in the following tables.

If Iterator models then filter iterator models
Single Pass Iterator Single Pass Iterator

Forward Traversal Iterator Forward Traversal Iterator

If Iterator models then filter iterator models
Readable Iterator Readable Iterator

Writable Iterator Writable Iterator

Lvalue Iterator Lvalue Iterator

If Iterator models then filter iterator models
Readable Iterator, Single Pass Iterator Input Iterator

Readable Lvalue Iterator, Forward Traversal Iterator Forward Iterator

Writable Lvalue Iterator, Forward Traversal Iterator Mutable Forward Iterator

filter iterator<P1, X> is interoperable withfilter iterator<P2, Y> if and only if X is interoperable
with Y.

filter iterator operations

In addition to those operations required by the concepts thatfilter iterator models,filter iterator
provides the following operations.

filter iterator();

Requires: Predicate andIterator must be Default Constructible.

Effects: Constructs afilter iterator whose“mpred“, m iter, andm end members are a de-
fault constructed.

filter iterator(Predicate f, Iterator x, Iterator end = Iterator());

Effects: Constructs afilter iterator wherem iter is either the first position in the range
[x,end) such thatf(*m iter) == true or else“miter == end“. The memberm pred is
constructed fromf andm end from end.

filter iterator(Iterator x, Iterator end = Iterator());

Requires: Predicatemust be Default Constructible andPredicate is a class type (not a function
pointer).

Effects: Constructs afilter iterator wherem iter is either the first position in the range
[x,end) such thatm pred(*m iter) == true or else“miter == end“. The memberm pred
is default constructed.

30

template <class OtherIterator>
filter iterator(

filter iterator<Predicate, OtherIterator> const& t
, typename enable if convertible<OtherIterator, Iterator>::type* = 0 // exposition
);‘‘

Requires: OtherIterator is implicitly convertible toIterator.

Effects: Constructs a filter iterator whose members are copied fromt.

Predicate predicate() const;

Returns: m pred

Iterator end() const;

Returns: m end

Iterator const& base() const;

Returns: m iterator

reference operator*() const;

Returns: *m iter

filter iterator& operator++();

Effects: Incrementsm iter and then continues to incrementm iter until eitherm iter == m end
or m pred(*m iter) == true.

Returns: *this

Counting iterator

counting iterator adapts an object by adding anoperator* that returns the current value of the object. All
other iterator operations are forwarded to the adapted object.

Class templatecounting iterator

template <
class Incrementable

, class CategoryOrTraversal = use default
, class Difference = use default

>
class counting iterator
{
public:

typedef Incrementable value type;
typedef const Incrementable& reference;
typedef const Incrementable* pointer;
typedef /* see below */ difference type;

31

typedef /* see below */ iterator category;

counting iterator();
counting iterator(counting iterator const& rhs);
explicit counting iterator(Incrementable x);
Incrementable const& base() const;
reference operator*() const;
counting iterator& operator++();
counting iterator& operator--();

private:
Incrementable m inc; // exposition

};

If the Difference argument isuse default thendifference type is an unspecified signed integral type.
Otherwisedifference type is Difference.

iterator category is determined according to the following algorithm:

if (CategoryOrTraversal is not use default)
return CategoryOrTraversal

else if (numeric limits<Incrementable>::is specialized)
return iterator-category (

random access traversal tag, Incrementable, const Incrementable&)
else

return iterator-category (
iterator traversal<Incrementable>::type,
Incrementable, const Incrementable&)

[Note: implementers are encouraged to provide an implementation ofoperator-
and a difference type that avoids overflows in the cases where
std::numeric limits<Incrementable>::is specialized is true.]

counting iterator requirements

TheIncrementable argument shall be Copy Constructible and Assignable.

If iterator category is convertible toforward iterator tag or forward traversal tag, the following
must be well-formed:

Incrementable i, j;
++i; // pre-increment
i == j; // operator equal

If iterator category is convertible tobidirectional iterator tag or bidirectional traversal tag,
the following expression must also be well-formed:

--i

If iterator category is convertible torandom access iterator tag or random access traversal tag,
the following must must also be valid:

counting iterator::difference type n;
i += n;
n = i - j;
i < j;

32

counting iterator models

Specializations of counting iterator model Readable Lvalue Iterator. In addition, they
model the concepts corresponding to the iterator tags to which theiriterator category is
convertible. Also, if CategoryOrTraversal is not use default then counting iterator
models the concept corresponding to the iterator tagCategoryOrTraversal. Otherwise, if
numeric limits<Incrementable>::is specialized, then counting iterator models Random Ac-
cess Traversal Iterator. Otherwise,counting iterator models the same iterator traversal concepts modeled
by Incrementable.

counting iterator<X,C1,D1> is interoperable withcounting iterator<Y,C2,D2> if and only if X is inter-
operable withY.

counting iterator operations

In addition to the operations required by the concepts modeled bycounting iterator, counting iterator
provides the following operations.

counting iterator();

Requires: Incrementable is Default Constructible.

Effects: Default construct the memberm inc.

counting iterator(counting iterator const& rhs);

Effects: Construct memberm inc from rhs.m inc.

explicit counting iterator(Incrementable x);

Effects: Construct memberm inc from x.

reference operator*() const;

Returns: m inc

counting iterator& operator++();

Effects: ++m inc

Returns: *this

counting iterator& operator--();

Effects: --m inc

Returns: *this

Incrementable const& base() const;

Returns: m inc

33

Function output iterator

The function output iterator adaptor makes it easier to create custom output iterators. The adaptor takes a
unary function and creates a model of Output Iterator. Each item assigned to the output iterator is passed as an
argument to the unary function. The motivation for this iterator is that creating a conforming output iterator is
non-trivial, particularly because the proper implementation usually requires a proxy object.

Class templatefunction output iterator

template <class UnaryFunction>
class function output iterator {
public:

typedef std::output iterator tag iterator category;
typedef void value type;
typedef void difference type;
typedef void pointer;
typedef void reference;

explicit function output iterator();

explicit function output iterator(const UnaryFunction& f);

/* see below */ operator*();
function output iterator& operator++();
function output iterator& operator++(int);

private:
UnaryFunction m f; // exposition only

};

function output iterator requirements

UnaryFunction must be Assignable and Copy Constructible.

function output iterator models

function output iterator is a model of the Writable and Incrementable Iterator concepts.

function output iterator operations

explicit function output iterator(const UnaryFunction& f = UnaryFunction());

Effects: Constructs an instance offunction output iterator with m f constructed fromf.

operator*();

Returns: An objectr of unspecified type such thatr = t is equivalent tom f(t) for all t.

function output iterator& operator++();

Returns: *this

function output iterator& operator++(int);

Returns: *this

	Table of Contents
	Motivation
	Impact on the Standard
	Design
	Iterator Concepts
	Interoperability
	Iterator Facade
	Usage
	Iterator Core Access
	operator[]
	operator->

	Iterator Adaptor
	Specialized Adaptors

	Proposed Text
	Header <iterator_helper> synopsis [lib.iterator.helper.synopsis]
	Iterator facade [lib.iterator.facade]
	Class template iterator_facade
	iterator_facade Requirements
	iterator_facade operations

	Iterator adaptor [lib.iterator.adaptor]
	Class template iterator_adaptor
	iterator_adaptor requirements
	iterator_adaptor base class parameters
	iterator_adaptor public operations
	iterator_adaptor protected member functions
	iterator_adaptor private member functions

	Specialized adaptors [lib.iterator.special.adaptors]
	Indirect iterator
	Reverse iterator
	Transform iterator
	Filter iterator
	Counting iterator
	Function output iterator

