
Iterator Facade and Adaptor

Author: David Abrahams, Jeremy Siek, Thomas Witt
Contact: dave@boost-consulting.com, jsiek@osl.iu.edu, witt@styleadvisor.com
Organization: Boost Consulting, Indiana University Open Systems Lab, Zephyr Associates,

Inc.
Date: 2004-01-21
Number: This is a revised version of N1530=03-0113, which was accepted for Technical

Report 1 by the C++ standard committee’s library working group.

copyright: Copyright David Abrahams, Jeremy Siek, and Thomas Witt 2003. All rights reserved

abstract: We propose a set of class templates that help programmers build standard-conforming
iterators, both from scratch and by adapting other iterators.

Table of Contents

Motivation

Impact on the Standard

Design

Iterator Concepts

Interoperability

Iterator Facade

Usage
Iterator Core Access
operator[]

operator->

Iterator Adaptor

Specialized Adaptors

Proposed Text

Header <iterator helper> synopsis [lib.iterator.helper.synopsis]

Iterator facade [lib.iterator.facade]

Class template iterator facade

iterator facade Requirements
iterator facade operations

Iterator adaptor [lib.iterator.adaptor]

Class template iterator adaptor

iterator adaptor requirements
iterator adaptor base class parameters
iterator adaptor public operations
iterator adaptor protected member functions
iterator adaptor private member functions

Specialized adaptors [lib.iterator.special.adaptors]

Indirect iterator
Class template pointee

1

mailto:dave@boost-consulting.com
mailto:jsiek@osl.iu.edu
mailto:witt@styleadvisor.com
http://www.boost-consulting.com
http://www.osl.iu.edu
http://www.styleadvisor.com
http://www.styleadvisor.com

Class template indirect reference

Class template indirect iterator

indirect iterator requirements
indirect iterator models
indirect iterator operations

Reverse iterator
Class template reverse iterator

reverse iterator requirements
reverse iterator models
reverse iterator operations

Transform iterator
Class template transform iterator

transform iterator requirements
transform iterator models
transform iterator operations

Filter iterator
Class template filter iterator

filter iterator requirements
filter iterator models
filter iterator operations

Counting iterator
Class template counting iterator

counting iterator requirements
counting iterator models
counting iterator operations

Function output iterator
Class template function output iterator

function output iterator requirements
function output iterator models
function output iterator operations

Motivation

Iterators play an important role in modern C++ programming. The iterator is the central abstraction of the
algorithms of the Standard Library, allowing algorithms to be re-used in in a wide variety of contexts. The
C++ Standard Library contains a wide variety of useful iterators. Every one of the standard containers comes
with constant and mutable iterators [2], and also reverse versions of those same iterators which traverse the
container in the opposite direction. The Standard also supplies istream iterator and ostream iterator for
reading from and writing to streams, insert iterator, front insert iterator and back insert iterator
for inserting elements into containers, and raw storage iterator for initializing raw memory [7].

Despite the many iterators supplied by the Standard Library, obvious and useful iterators are missing, and
creating new iterator types is still a common task for C++ programmers. The literature documents several of
these, for example line iterator [3] and Constant iterator [9]. The iterator abstraction is so powerful that we
expect programmers will always need to invent new iterator types.

Although it is easy to create iterators that almost conform to the standard, the iterator requirements contain
subtleties which can make creating an iterator which actually conforms quite difficult. Further, the iterator
interface is rich, containing many operators that are technically redundant and tedious to implement. To
automate the repetitive work of constructing iterators, we propose iterator facade, an iterator base class
template which provides the rich interface of standard iterators and delegates its implementation to member
functions of the derived class. In addition to reducing the amount of code necessary to create an iterator,
the iterator facade also provides compile-time error detection. Iterator implementation mistakes that often
go unnoticed are turned into compile-time errors because the derived class implementation must match the
expectations of the iterator facade.

A common pattern of iterator construction is the adaptation of one iterator to form a new one. The
functionality of an iterator is composed of four orthogonal aspects: traversal, indirection, equality comparison

2

and distance measurement. Adapting an old iterator to create a new one often saves work because one can reuse
one aspect of functionality while redefining the other. For example, the Standard provides reverse iterator,
which adapts any Bidirectional Iterator by inverting its direction of traversal. As with plain iterators, iterator
adaptors defined outside the Standard have become commonplace in the literature:

• Checked iter[13] adds bounds-checking to an existing iterator.

• The iterators of the View Template Library[14], which adapts containers, are themselves adaptors over
the underlying iterators.

• Smart iterators [5] adapt an iterator’s dereferencing behavior by applying a function object to the object
being referenced and returning the result.

• Custom iterators [4], in which a variety of adaptor types are enumerated.

• Compound iterators [1], which access a slice out of a container of containers.

• Several iterator adaptors from the MTL [12]. The MTL contains a strided iterator, where each call to
operator++() moves the iterator ahead by some constant factor, and a scaled iterator, which multiplies
the dereferenced value by some constant.

To fulfill the need for constructing adaptors, we propose the iterator adaptor class template. Instantiations
of iterator adaptor serve as a base classes for new iterators, providing the default behavior of forwarding all
operations to the underlying iterator. The user can selectively replace these features in the derived iterator
class. This proposal also includes a number of more specialized adaptors, such as the transform iterator that
applies some user-specified function during the dereference of the iterator.

Impact on the Standard

This proposal is purely an addition to the C++ standard library. However, note that this proposal relies on
the proposal for New Iterator Concepts.

Design

Iterator Concepts

This proposal is formulated in terms of the new iterator concepts as proposed in n1550, since user-defined
and especially adapted iterators suffer from the well known categorization problems that are inherent to the
current iterator categories.

This proposal does not strictly depend on proposal n1550, as there is a direct mapping between new and
old categories. This proposal could be reformulated using this mapping if n1550 was not accepted.

Interoperability

The question of iterator interoperability is poorly addressed in the current standard. There are currently two
defect reports that are concerned with interoperability issues.

Issue 179 concerns the fact that mutable container iterator types are only required to be convertible to the
corresponding constant iterator types, but objects of these types are not required to interoperate in comparison
or subtraction expressions. This situation is tedious in practice and out of line with the way built in types work.
This proposal implements the proposed resolution to issue 179, as most standard library implementations do
nowadays. In other words, if an iterator type A has an implicit or user defined conversion to an iterator type
B, the iterator types are interoperable and the usual set of operators are available.

Issue 280 concerns the current lack of interoperability between reverse iterator types. The proposed new re-
verse iterator template fixes the issues raised in 280. It provides the desired interoperability without introducing
unwanted overloads.

[1] We use the term concept to mean a set of requirements that a type must satisfy to be used with a particular
template parameter.
[2] The term mutable iterator refers to iterators over objects that can be changed by assigning to the dereferenced
iterator, while constant iterator refers to iterators over objects that cannot be modified.

3

http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/papers/2003/n1550.html
http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/papers/2003/n1550.html
http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/papers/2003/n1550.html
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/lwg-defects.html#179
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/lwg-defects.html#179
http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/lwg-active.html#280

Iterator Facade

While the iterator interface is rich, there is a core subset of the interface that is necessary for all the functionality.
We have identified the following core behaviors for iterators:

• dereferencing

• incrementing

• decrementing

• equality comparison

• random-access motion

• distance measurement

In addition to the behaviors listed above, the core interface elements include the associated types exposed
through iterator traits: value type, reference, difference type, and iterator category.

Iterator facade uses the Curiously Recurring Template Pattern (CRTP) [Cop95] so that the user can specify
the behavior of iterator facade in a derived class. Former designs used policy objects to specify the behavior,
but that approach was discarded for several reasons:

1. the creation and eventual copying of the policy object may create overhead that can be
avoided with the current approach.

2. The policy object approach does not allow for custom constructors on the created iterator
types, an essential feature if iterator facade should be used in other library implemen-
tations.

3. Without the use of CRTP, the standard requirement that an iterator’s operator++ returns
the iterator type itself would mean that all iterators built with the library would have to
be specializations of iterator facade<...>, rather than something more descriptive like
indirect iterator<T*>. Cumbersome type generator metafunctions would be needed
to build new parameterized iterators, and a separate iterator adaptor layer would be
impossible.

Usage

The user of iterator facade derives his iterator class from a specialization of iterator facade and passes
the derived iterator class as iterator facade’s first template parameter. The order of the other template pa-
rameters have been carefully chosen to take advantage of useful defaults. For example, when defining a constant
lvalue iterator, the user can pass a const-qualified version of the iterator’s value type as iterator facade’s
Value parameter and omit the Reference parameter which follows.

The derived iterator class must define member functions implementing the iterator’s core behaviors. The
following table describes expressions which are required to be valid depending on the category of the derived
iterator type. These member functions are described briefly below and in more detail in the iterator facade
requirements.

Expression Effects
i.dereference() Access the value referred to
i.equal(j) Compare for equality with j
i.increment() Advance by one position
i.decrement() Retreat by one position
i.advance(n) Advance by n positions
i.distance to(j) Measure the distance to j

In addition to implementing the core interface functions, an iterator derived from iterator facade typically
defines several constructors. To model any of the standard iterator concepts, the iterator must at least have a
copy constructor. Also, if the iterator type X is meant to be automatically interoperate with another iterator
type Y (as with constant and mutable iterators) then there must be an implicit conversion from X to Y or from
Y to X (but not both), typically implemented as a conversion constructor. Finally, if the iterator is to model
Forward Traversal Iterator or a more-refined iterator concept, a default constructor is required.

4

Iterator Core Access

iterator facade and the operator implementations need to be able to access the core member functions in the
derived class. Making the core member functions public would expose an implementation detail to the user.
The design used here ensures that implementation details do not appear in the public interface of the derived
iterator type.

Preventing direct access to the core member functions has two advantages. First, there is no possibility for the
user to accidently use a member function of the iterator when a member of the value type was intended. This has
been an issue with smart pointer implementations in the past. The second and main advantage is that library
implementers can freely exchange a hand-rolled iterator implementation for one based on iterator facade
without fear of breaking code that was accessing the public core member functions directly.

In a naive implementation, keeping the derived class’ core member functions private would require it to
grant friendship to iterator facade and each of the seven operators. In order to reduce the burden of limiting
access, iterator core access is provided, a class that acts as a gateway to the core member functions in the
derived iterator class. The author of the derived class only needs to grant friendship to iterator core access
to make his core member functions available to the library.

iterator core access will be typically implemented as an empty class containing only private static mem-
ber functions which invoke the iterator core member functions. There is, however, no need to standardize the
gateway protocol. Note that even if iterator core access used public member functions it would not open a
safety loophole, as every core member function preserves the invariants of the iterator.

operator[]

The indexing operator for a generalized iterator presents special challenges. A random access iterator’s operator[]
is only required to return something convertible to its value type. Requiring that it return an lvalue would rule
out currently-legal random-access iterators which hold the referenced value in a data member (e.g. counting iterator),
because *(p+n) is a reference into the temporary iterator p+n, which is destroyed when operator[] returns.

Writable iterators built with iterator facade implement the semantics required by the preferred resolution
to issue 299 and adopted by proposal n1550: the result of p[n] is an object convertible to the iterator’s
value type, and p[n] = x is equivalent to *(p + n) = x (Note: This result object may be implemented as a
proxy containing a copy of p+n). This approach will work properly for any random-access iterator regardless of
the other details of its implementation. A user who knows more about the implementation of her iterator is free
to implement an operator[] that returns an lvalue in the derived iterator class; it will hide the one supplied
by iterator facade from clients of her iterator.

operator->

The reference type of a readable iterator (and today’s input iterator) need not in fact be a reference, so long
as it is convertible to the iterator’s value type. When the value type is a class, however, it must still be
possible to access members through operator->. Therefore, an iterator whose reference type is not in fact a
reference must return a proxy containing a copy of the referenced value from its operator->.

The return types for iterator facade’s operator-> and operator[] are not explicitly specified. Instead,
those types are described in terms of a set of requirements, which must be satisfied by the iterator facade
implementation.

Iterator Adaptor

The iterator adaptor class template adapts some Base [3] type to create a new iterator. Instantiations of
iterator adaptor are derived from a corresponding instantiation of iterator facade and implement the core
behaviors in terms of the Base type. In essence, iterator adaptor merely forwards all operations to an instance
of the Base type, which it stores as a member.

The user of iterator adaptor creates a class derived from an instantiation of iterator adaptor and then
selectively redefines some of the core member functions described in the table above. The Base type need

[Cop95] [Coplien, 1995] Coplien, J., Curiously Recurring Template Patterns, C++ Report, February 1995, pp.
24-27.
[3] The term “Base” here does not refer to a base class and is not meant to imply the use of derivation. We
have followed the lead of the standard library, which provides a base() function to access the underlying iterator
object of a reverse iterator adaptor.

5

http://anubis.dkuug.dk/jtc1/sc22/wg21/docs/lwg-active.html#299
http://anubis.dkuug.dk/JTC1/SC22/WG21/docs/papers/2003/n1550.html

not meet the full requirements for an iterator. It need only support the operations used by the core interface
functions of iterator adaptor that have not been redefined in the user’s derived class.

Several of the template parameters of iterator adaptor default to use default. This allows the user
to make use of a default parameter even when she wants to specify a parameter later in the parameter list.
Also, the defaults for the corresponding associated types are somewhat complicated, so metaprogramming is
required to compute them, and use default can help to simplify the implementation. Finally, the identity
of the use default type is not left unspecified because specification helps to highlight that the Reference
template parameter may not always be identical to the iterator’s reference type, and will keep users from
making mistakes based on that assumption.

Specialized Adaptors

This proposal also contains several examples of specialized adaptors which were easily implemented using
iterator adaptor:

• indirect iterator, which iterates over iterators, pointers, or smart pointers and applies an extra level
of dereferencing.

• A new reverse iterator, which inverts the direction of a Base iterator’s motion, while allowing adapted
constant and mutable iterators to interact in the expected ways (unlike those in most implementations of
C++98).

• transform iterator, which applies a user-defined function object to the underlying values when deref-
erenced.

• filter iterator, which provides a view of an iterator range in which some elements of the underlying
range are skipped.

• counting iterator, which adapts any incrementable type (e.g. integers, iterators) so that increment-
ing/decrementing the adapted iterator and dereferencing it produces successive values of the Base type.

• function output iterator, which makes it easier to create custom output iterators.

Based on examples in the Boost library, users have generated many new adaptors, among them a permutation
adaptor which applies some permutation to a random access iterator, and a strided adaptor, which adapts a
random access iterator by multiplying its unit of motion by a constant factor. In addition, the Boost Graph
Library (BGL) uses iterator adaptors to adapt other graph libraries, such as LEDA [10] and Stanford GraphBase
[8], to the BGL interface (which requires C++ Standard compliant iterators).

Proposed Text

Header <iterator helper> synopsis [lib.iterator.helper.synopsis]

struct use default;

struct iterator core access { /* implementation detail */ };

template <
class Derived

, class Value
, class CategoryOrTraversal
, class Reference = Value&
, class Difference = ptrdiff t

>
class iterator facade;

template <
class Derived

, class Base
, class Value = use default
, class CategoryOrTraversal = use default
, class Reference = use default
, class Difference = use default

6

>
class iterator adaptor;

template <
class Iterator

, class Value = use default
, class CategoryOrTraversal = use default
, class Reference = use default
, class Difference = use default

>
class indirect iterator;

template <class Dereferenceable>
struct pointee;

template <class Dereferenceable>
struct indirect reference;

template <class Iterator>
class reverse iterator;

template <
class UnaryFunction

, class Iterator
, class Reference = use default
, class Value = use default

>
class transform iterator;

template <class Predicate, class Iterator>
class filter iterator;

template <
class Incrementable

, class CategoryOrTraversal = use default
, class Difference = use default

>
class counting iterator;

template <class UnaryFunction>
class function output iterator;

Iterator facade [lib.iterator.facade]

iterator facade is a base class template that implements the interface of standard iterators in terms of a few
core functions and associated types, to be supplied by a derived iterator class.

Class template iterator facade

template <
class Derived

, class Value
, class CategoryOrTraversal
, class Reference = Value&
, class Difference = ptrdiff t

>
class iterator facade {
public:

typedef remove const<Value>::type value type;
typedef Reference reference;

7

typedef Value* pointer;
typedef Difference difference type;
typedef /* see below */ iterator category;

reference operator*() const;
/* see below */ operator->() const;
/* see below */ operator[](difference type n) const;
Derived& operator++();
Derived operator++(int);
Derived& operator--();
Derived operator--(int);
Derived& operator+=(difference type n);
Derived& operator-=(difference type n);
Derived operator-(difference type n) const;

};

// Comparison operators
template <class Dr1, class V1, class TC1, class R1, class D1,

class Dr2, class V2, class TC2, class R2, class D2>
typename enable if interoperable<Dr1,Dr2,bool>::type // exposition
operator ==(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator !=(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator <(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator <=(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator >(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator >=(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

// Iterator difference
template <class Dr1, class V1, class TC1, class R1, class D1,

class Dr2, class V2, class TC2, class R2, class D2>
/* see below */
operator-(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

// Iterator addition

8

template <class Dr, class V, class TC, class R, class D>
Derived operator+ (iterator facade<Dr,V,TC,R,D> const&,

typename Derived::difference type n);

template <class Dr, class V, class TC, class R, class D>
Derived operator+ (typename Derived::difference type n,

iterator facade<Dr,V,TC,R,D> const&);

The iterator category member of iterator facade is

iterator-category (CategoryOrTraversal, value type, reference)

where iterator-category is defined as follows:

iterator-category (C,R,V) :=
if (C is convertible to std::input iterator tag

|| C is convertible to std::output iterator tag
)

return C

else if (C is not convertible to incrementable traversal tag)
the program is ill-formed

else return a type X satisfying the following two constraints:

1. X is convertible to X1, and not to any more-derived
type, where X1 is defined by:

if (R is a reference type
&& C is convertible to forward traversal tag)

{
if (C is convertible to random access traversal tag)

X1 = random access iterator tag
else if (C is convertible to bidirectional traversal tag)

X1 = bidirectional iterator tag
else

X1 = forward iterator tag
}
else
{

if (C is convertible to single pass traversal tag
&& R is convertible to V)
X1 = input iterator tag

else
X1 = C

}

2. category-to-traversal (X) is convertible to the most
derived traversal tag type to which X is also
convertible, and not to any more-derived traversal tag
type.

[Note: the intention is to allow iterator category to be one of the five original category tags when
convertibility to one of the traversal tags would add no information]

The enable if interoperable template used above is for exposition purposes. The member operators
should only be in an overload set provided the derived types Dr1 and Dr2 are interoperable, meaning that at
least one of the types is convertible to the other. The enable if interoperable approach uses SFINAE to
take the operators out of the overload set when the types are not interoperable. The operators should behave
as-if enable if interoperable were defined to be:

template <bool, typename> enable if interoperable impl
{};

9

file:new-iter-concepts.html#category-to-traversal

template <typename T> enable if interoperable impl<true,T>
{ typedef T type; };

template<typename Dr1, typename Dr2, typename T>
struct enable if interoperable
: enable if interoperable impl<

is convertible<Dr1,Dr2>::value || is convertible<Dr2,Dr1>::value
, T

>
{};

iterator facade Requirements

The following table describes the typical valid expressions on iterator facade’s Derived parameter, depending
on the iterator concept(s) it will model. The operations in the first column must be made accessible to member
functions of class iterator core access. In addition, static cast<Derived*>(iterator facade*) shall be
well-formed.

In the table below, F is iterator facade<X,V,C,R,D>, a is an object of type X, b and c are objects of
type const X, n is an object of F::difference type, y is a constant object of a single pass iterator type
interoperable with X, and z is a constant object of a random access traversal iterator type interoperable with X.

iterator facade Core Operations

Expression Return Type Assertion/Note Used to implement Itera-
tor Concept(s)

c.dereference() F::reference Readable Iterator, Writable
Iterator

c.equal(y) convertible to bool true iff c and y refer to the
same position.

Single Pass Iterator

a.increment() unused Incrementable Iterator
a.decrement() unused Bidirectional Traversal Itera-

tor
a.advance(n) unused Random Access Traversal It-

erator
c.distance to(z) convertible to

F::difference type
equivalent to distance(c,
X(z)).

Random Access Traversal It-
erator

iterator facade operations

The operations in this section are described in terms of operations on the core interface of Derived which may
be inaccessible (i.e. private). The implementation should access these operations through member functions of
class iterator core access.

reference operator*() const;

Returns: static cast<Derived const*>(this)->dereference()

operator->() const; (see below)

Returns: If reference is a reference type, an object of type pointer equal to:

&static cast<Derived const*>(this)->dereference()

Otherwise returns an object of unspecified type such that, (*static cast<Derived const*>(this))->m
is equivalent to (w = **static cast<Derived const*>(this), w.m) for some temporary ob-
ject w of type value type.

unspecified operator[](difference type n) const;

Returns: an object convertible to value type. For constant objects v of type value type, and n of
type difference type, (*this)[n] = v is equivalent to *(*this + n) = v, and static cast<value type
const&>((*this)[n]) is equivalent to static cast<value type const&>(*(*this + n))

Derived& operator++();

10

Effects: static cast<Derived*>(this)->increment();
return *static cast<Derived*>(this);

Derived operator++(int);

Effects: Derived tmp(static cast<Derived const*>(this));
++*this;
return tmp;

Derived& operator--();

Effects: static cast<Derived*>(this)->decrement();
return *static cast<Derived*>(this);

Derived operator--(int);

Effects: Derived tmp(static cast<Derived const*>(this));
--*this;
return tmp;

Derived& operator+=(difference type n);

Effects: static cast<Derived*>(this)->advance(n);
return *static cast<Derived*>(this);

Derived& operator-=(difference type n);

Effects: static cast<Derived*>(this)->advance(-n);
return *static cast<Derived*>(this);

Derived operator-(difference type n) const;

Effects: Derived tmp(static cast<Derived const*>(this));
return tmp -= n;

template <class Dr, class V, class TC, class R, class D>
Derived operator+ (iterator facade<Dr,V,TC,R,D> const&,

typename Derived::difference type n);

template <class Dr, class V, class TC, class R, class D>
Derived operator+ (typename Derived::difference type n,

iterator facade<Dr,V,TC,R,D> const&);

Effects: Derived tmp(static cast<Derived const*>(this));
return tmp += n;

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator ==(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

Returns: if is convertible<Dr2,Dr1>::value

then ((Dr1 const&)lhs).equal((Dr2 const&)rhs).
Otherwise, ((Dr2 const&)rhs).equal((Dr1 const&)lhs).

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator !=(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

Returns: if is convertible<Dr2,Dr1>::value

then !((Dr1 const&)lhs).equal((Dr2 const&)rhs).
Otherwise, !((Dr2 const&)rhs).equal((Dr1 const&)lhs).

11

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator <(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

Returns: if is convertible<Dr2,Dr1>::value

then ((Dr1 const&)lhs).distance to((Dr2 const&)rhs) < 0.
Otherwise, ((Dr2 const&)rhs).distance to((Dr1 const&)lhs) > 0.

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator <=(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

Returns: if is convertible<Dr2,Dr1>::value

then ((Dr1 const&)lhs).distance to((Dr2 const&)rhs) <= 0.
Otherwise, ((Dr2 const&)rhs).distance to((Dr1 const&)lhs) >= 0.

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator >(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

Returns: if is convertible<Dr2,Dr1>::value

then ((Dr1 const&)lhs).distance to((Dr2 const&)rhs) > 0.
Otherwise, ((Dr2 const&)rhs).distance to((Dr1 const&)lhs) < 0.

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,bool>::type
operator >=(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

Returns: if is convertible<Dr2,Dr1>::value

then ((Dr1 const&)lhs).distance to((Dr2 const&)rhs) >= 0.
Otherwise, ((Dr2 const&)rhs).distance to((Dr1 const&)lhs) <= 0.

template <class Dr1, class V1, class TC1, class R1, class D1,
class Dr2, class V2, class TC2, class R2, class D2>

typename enable if interoperable<Dr1,Dr2,difference>::type
operator -(iterator facade<Dr1,V1,TC1,R1,D1> const& lhs,

iterator facade<Dr2,V2,TC2,R2,D2> const& rhs);

Return Type: if is convertible<Dr2,Dr1>::value

then difference shall be iterator traits<Dr1>::difference type.
Otherwise difference shall be iterator traits<Dr2>::difference type

Returns: if is convertible<Dr2,Dr1>::value

then -((Dr1 const&)lhs).distance to((Dr2 const&)rhs).
Otherwise, ((Dr2 const&)rhs).distance to((Dr1 const&)lhs).

Iterator adaptor [lib.iterator.adaptor]

Each specialization of the iterator adaptor class template is derived from a specialization of iterator facade.
The core interface functions expected by iterator facade are implemented in terms of the iterator adaptor’s
Base template parameter. A class derived from iterator adaptor typically redefines some of the core interface
functions to adapt the behavior of the Base type. Whether the derived class models any of the standard
iterator concepts depends on the operations supported by the Base type and which core interface functions of
iterator facade are redefined in the Derived class.

12

Class template iterator adaptor

template <
class Derived

, class Base
, class Value = use default
, class CategoryOrTraversal = use default
, class Reference = use default
, class Difference = use default

>
class iterator adaptor

: public iterator facade<Derived, V’, C’, R’, D’ > // see details
{

friend class iterator core access;
public:

iterator adaptor();
explicit iterator adaptor(Base iter);
Base const& base() const;

protected:
Base const& base reference() const;
Base& base reference();

private: // Core iterator interface for iterator facade.
typename iterator adaptor::reference dereference() const;

template <
class OtherDerived, class OtherIterator, class V, class C, class R, class D
>
bool equal(iterator adaptor<OtherDerived, OtherIterator, V, C, R, D> const& x) const;

void advance(typename iterator adaptor::difference type n);
void increment();
void decrement();

template <
class OtherDerived, class OtherIterator, class V, class C, class R, class D

>
typename iterator adaptor::difference type distance to(

iterator adaptor<OtherDerived, OtherIterator, V, C, R, D> const& y) const;

private:
Base m iterator; // exposition only

};

iterator adaptor requirements

static cast<Derived*>(iterator adaptor*) shall be well-formed. The Base argument shall be Assignable
and Copy Constructible.

iterator adaptor base class parameters

The V’, C’, R’, and D’ parameters of the iterator facade used as a base class in the summary of iterator adaptor
above are defined as follows:

V’ = if (Value is use default)
return iterator traits<Base>::value type

else
return Value

C’ = if (CategoryOrTraversal is use default)
return iterator traversal<Base>::type

else

13

return CategoryOrTraversal

R’ = if (Reference is use default)
if (Value is use default)

return iterator traits<Base>::reference
else

return Value&
else

return Reference

D’ = if (Difference is use default)
return iterator traits<Base>::difference type

else
return Difference

iterator adaptor public operations

iterator adaptor();

Requires: The Base type must be Default Constructible.
Returns: An instance of iterator adaptor with m iterator default constructed.

explicit iterator adaptor(Base iter);

Returns: An instance of iterator adaptor with m iterator copy constructed from iter.

Base const& base() const;

Returns: m iterator

iterator adaptor protected member functions

Base const& base reference() const;

Returns: A const reference to m iterator.

Base& base reference();

Returns: A non-const reference to m iterator.

iterator adaptor private member functions

typename iterator adaptor::reference dereference() const;

Returns: *m iterator

template <
class OtherDerived, class OtherIterator, class V, class C, class R, class D
>
bool equal(iterator adaptor<OtherDerived, OtherIterator, V, C, R, D> const& x) const;

Returns: m iterator == x.base()

void advance(typename iterator adaptor::difference type n);

Effects: m iterator += n;

void increment();

Effects: ++m iterator;

void decrement();

Effects: --m iterator;

template <
class OtherDerived, class OtherIterator, class V, class C, class R, class D

>
typename iterator adaptor::difference type distance to(

iterator adaptor<OtherDerived, OtherIterator, V, C, R, D> const& y) const;

Returns: y.base() - m iterator

14

Specialized adaptors [lib.iterator.special.adaptors]

The enable if convertible<X,Y>::type expression used in this section is for exposition purposes. The con-
verting constructors for specialized adaptors should be only be in an overload set provided that an object of
type X is implicitly convertible to an object of type Y. The signatures involving enable if convertible should
behave as-if enable if convertible were defined to be:

template <bool> enable if convertible impl
{};

template <> enable if convertible impl<true>
{ struct type; };

template<typename From, typename To>
struct enable if convertible
: enable if convertible impl<is convertible<From,To>::value>

{};

If an expression other than the default argument is used to supply the value of a function parameter whose
type is written in terms of enable if convertible, the program is ill-formed, no diagnostic required.

[Note: The enable if convertible approach uses SFINAE to take the constructor out of the overload set
when the types are not implicitly convertible.]

Indirect iterator

indirect iterator adapts an iterator by applying an extra dereference inside of operator*(). For example,
this iterator adaptor makes it possible to view a container of pointers (e.g. list<foo*>) as if it were a container
of the pointed-to type (e.g. list<foo>). indirect iterator depends on two auxiliary traits, pointee and
indirect reference, to provide support for underlying iterators whose value type is not an iterator.

Class template pointee

template <class Dereferenceable>
struct pointee
{

typedef /* see below */ type;
};

Requires: For an object x of type Dereferenceable, *x is well-formed. If ++x is ill-formed it shall
neither be ambiguous nor shall it violate access control, and Dereferenceable::element type
shall be an accessible type. Otherwise iterator traits<Dereferenceable>::value type
shall be well formed. [Note: These requirements need not apply to explicit or partial spe-
cializations of pointee]

type is determined according to the following algorithm, where x is an object of type Dereferenceable:

if (++x is ill-formed)
{

return ‘‘Dereferenceable::element type‘‘
}
else if (‘‘*x‘‘ is a mutable reference to

std::iterator traits<Dereferenceable>::value type)
{

return iterator traits<Dereferenceable>::value type
}
else
{

return iterator traits<Dereferenceable>::value type const
}

15

Class template indirect reference

template <class Dereferenceable>
struct indirect reference
{

typedef /* see below */ type;
};

Requires: For an object x of type Dereferenceable, *x is well-formed. If ++x is ill-formed it shall
neither be ambiguous nor shall it violate access control, and pointee<Dereferenceable>::type&
shall be well-formed. Otherwise iterator traits<Dereferenceable>::reference shall be
well formed. [Note: These requirements need not apply to explicit or partial specializations of
indirect reference]

type is determined according to the following algorithm, where x is an object of type Dereferenceable:

if (++x is ill-formed)
return ‘‘pointee<Dereferenceable>::type&‘‘

else
std::iterator traits<Dereferenceable>::reference

Class template indirect iterator

template <
class Iterator

, class Value = use default
, class CategoryOrTraversal = use default
, class Reference = use default
, class Difference = use default

>
class indirect iterator
{
public:

typedef /* see below */ value type;
typedef /* see below */ reference;
typedef /* see below */ pointer;
typedef /* see below */ difference type;
typedef /* see below */ iterator category;

indirect iterator();
indirect iterator(Iterator x);

template <
class Iterator2, class Value2, class Category2

, class Reference2, class Difference2
>
indirect iterator(

indirect iterator<
Iterator2, Value2, Category2, Reference2, Difference2

> const& y
, typename enable if convertible<Iterator2, Iterator>::type* = 0 // exposition

);

Iterator const& base() const;
reference operator*() const;
indirect iterator& operator++();
indirect iterator& operator--();

private:
Iterator m iterator; // exposition

};

The member types of indirect iterator are defined according to the following pseudo-code, where V is
iterator traits<Iterator>::value type

16

if (Value is use default) then
typedef remove const<pointee<V>::type>::type value type;

else
typedef remove const<Value>::type value type;

if (Reference is use default) then
if (Value is use default) then

typedef indirect reference<V>::type reference;
else

typedef Value& reference;
else

typedef Reference reference;

if (Value is use default) then
typedef pointee<V>::type* pointer;

else
typedef Value* pointer;

if (Difference is use default)
typedef iterator traits<Iterator>::difference type difference type;

else
typedef Difference difference type;

if (CategoryOrTraversal is use default)
typedef iterator-category (

iterator traversal<Iterator>::type,‘‘reference‘‘,‘‘value type‘‘
) iterator category;

else
typedef iterator-category (

CategoryOrTraversal,‘‘reference‘‘,‘‘value type‘‘
) iterator category;

indirect iterator requirements

The expression *v, where v is an object of iterator traits<Iterator>::value type, shall be valid expression
and convertible to reference. Iterator shall model the traversal concept indicated by iterator category.
Value, Reference, and Difference shall be chosen so that value type, reference, and difference type
meet the requirements indicated by iterator category.

[Note: there are further requirements on the iterator traits<Iterator>::value type if the Value pa-
rameter is not use default, as implied by the algorithm for deducing the default for the value type member.]

indirect iterator models

In addition to the concepts indicated by iterator category and by iterator traversal<indirect iterator>::type,
a specialization of indirect iterator models the following concepts, Where v is an object of iterator traits<Iterator>::value type:

• Readable Iterator if reference(*v) is convertible to value type.

• Writable Iterator if reference(*v) = t is a valid expression (where t is an object of type
indirect iterator::value type)

• Lvalue Iterator if reference is a reference type.

indirect iterator<X,V1,C1,R1,D1> is interoperable with indirect iterator<Y,V2,C2,R2,D2> if and
only if X is interoperable with Y.

indirect iterator operations

In addition to the operations required by the concepts described above, specializations of indirect iterator
provide the following operations.

indirect iterator();

Requires: Iterator must be Default Constructible.

17

Effects: Constructs an instance of indirect iterator with a default-constructed m iterator.

indirect iterator(Iterator x);

Effects: Constructs an instance of indirect iterator with m iterator copy constructed from x.

template <
class Iterator2, class Value2, unsigned Access, class Traversal

, class Reference2, class Difference2
>
indirect iterator(

indirect iterator<
Iterator2, Value2, Access, Traversal, Reference2, Difference2

> const& y
, typename enable if convertible<Iterator2, Iterator>::type* = 0 // exposition

);

Requires: Iterator2 is implicitly convertible to Iterator.

Effects: Constructs an instance of indirect iterator whose m iterator subobject is constructed
from y.base().

Iterator const& base() const;

Returns: m iterator

reference operator*() const;

Returns: **m iterator

indirect iterator& operator++();

Effects: ++m iterator

Returns: *this

indirect iterator& operator--();

Effects: --m iterator

Returns: *this

Reverse iterator

The reverse iterator adaptor iterates through the adapted iterator range in the opposite direction.

Class template reverse iterator

template <class Iterator>
class reverse iterator
{
public:
typedef iterator traits<Iterator>::value type value type;
typedef iterator traits<Iterator>::reference reference;
typedef iterator traits<Iterator>::pointer pointer;
typedef iterator traits<Iterator>::difference type difference type;
typedef /* see below */ iterator category;

reverse iterator() {}
explicit reverse iterator(Iterator x) ;

template<class OtherIterator>
reverse iterator(

reverse iterator<OtherIterator> const& r
, typename enable if convertible<OtherIterator, Iterator>::type* = 0 // exposition

);
Iterator const& base() const;

18

reference operator*() const;
reverse iterator& operator++();
reverse iterator& operator--();

private:
Iterator m iterator; // exposition

};

If Iterator models Random Access Traversal Iterator and Readable Lvalue Iterator, then iterator category
is convertible to random access iterator tag. Otherwise, if Iterator models Bidirectional Traversal Itera-
tor and Readable Lvalue Iterator, then iterator category is convertible to bidirectional iterator tag.
Otherwise, iterator category is convertible to input iterator tag.

reverse iterator requirements

Iterator must be a model of Bidirectional Traversal Iterator. The type iterator traits<Iterator>::reference
must be the type of *i, where i is an object of type Iterator.

reverse iterator models

A specialization of reverse iterator models the same iterator traversal and iterator access concepts modeled
by its Iterator argument. In addition, it may model old iterator concepts specified in the following table:

If I models then reverse iterator<I> models
Readable Lvalue Iterator, Bidirectional Traversal
Iterator

Bidirectional Iterator

Writable Lvalue Iterator, Bidirectional Traversal
Iterator

Mutable Bidirectional Iterator

Readable Lvalue Iterator, Random Access Traver-
sal Iterator

Random Access Iterator

Writable Lvalue Iterator, Random Access Traver-
sal Iterator

Mutable Random Access Iterator

reverse iterator<X> is interoperable with reverse iterator<Y> if and only if X is interoperable with Y.

reverse iterator operations

In addition to the operations required by the concepts modeled by reverse iterator, reverse iterator
provides the following operations.

reverse iterator();

Requires: Iterator must be Default Constructible.

Effects: Constructs an instance of reverse iterator with m iterator default constructed.

explicit reverse iterator(Iterator x);

Effects: Constructs an instance of reverse iterator with m iterator copy constructed from x.

template<class OtherIterator>
reverse iterator(

reverse iterator<OtherIterator> const& r
, typename enable if convertible<OtherIterator, Iterator>::type* = 0 // exposition

);

Requires: OtherIterator is implicitly convertible to Iterator.

Effects: Constructs instance of reverse iterator whose m iterator subobject is constructed from
y.base().

Iterator const& base() const;

Returns: m iterator

reference operator*() const;

Effects:

19

Iterator tmp = m iterator;
return *--tmp;

reverse iterator& operator++();

Effects: --m iterator

Returns: *this

reverse iterator& operator--();

Effects: ++m iterator

Returns: *this

Transform iterator

The transform iterator adapts an iterator by modifying the operator* to apply a function object to the result
of dereferencing the iterator and returning the result.

Class template transform iterator

template <class UnaryFunction,
class Iterator,
class Reference = use default,
class Value = use default>

class transform iterator
{
public:
typedef /* see below */ value type;
typedef /* see below */ reference;
typedef /* see below */ pointer;
typedef iterator traits<Iterator>::difference type difference type;
typedef /* see below */ iterator category;

transform iterator();
transform iterator(Iterator const& x, UnaryFunction f);

template<class F2, class I2, class R2, class V2>
transform iterator(

transform iterator<F2, I2, R2, V2> const& t
, typename enable if convertible<I2, Iterator>::type* = 0 // exposition only
, typename enable if convertible<F2, UnaryFunction>::type* = 0 // exposition only

);
UnaryFunction functor() const;
Iterator const& base() const;
reference operator*() const;
transform iterator& operator++();
transform iterator& operator--();

private:
Iterator m iterator; // exposition only
UnaryFunction m f; // exposition only

};

If Reference is use default then the reference member of transform iterator is result of<UnaryFunction(iterator traits<Iterator>::reference)>::type.
Otherwise, reference is Reference.

If Value is use default then the value type member is remove cv<remove reference<reference> >::type.
Otherwise, value type is Value.

If Iterator models Readable Lvalue Iterator and if Iterator models Random Access Traversal Iterator,
then iterator category is convertible to random access iterator tag. Otherwise, if Iterator models Bidi-
rectional Traversal Iterator, then iterator category is convertible to bidirectional iterator tag. Oth-
erwise iterator category is convertible to forward iterator tag. If Iterator does not model Readable
Lvalue Iterator then iterator category is convertible to input iterator tag.

20

transform iterator requirements

The type UnaryFunction must be Assignable, Copy Constructible, and the expression f(*i) must be valid
where f is an object of type UnaryFunction, i is an object of type Iterator, and where the type of f(*i)
must be result of<UnaryFunction(iterator traits<Iterator>::reference)>::type.

The argument Iterator shall model Readable Iterator.

transform iterator models

The resulting transform iterator models the most refined of the following that is also modeled by Iterator.

• Writable Lvalue Iterator if transform iterator::reference is a non-const reference.

• Readable Lvalue Iterator if transform iterator::reference is a const reference.

• Readable Iterator otherwise.

The transform iterator models the most refined standard traversal concept that is modeled by the
Iterator argument.

If transform iterator is a model of Readable Lvalue Iterator then it models the following original iterator
concepts depending on what the Iterator argument models.

If Iterator models then transform iterator models
Single Pass Iterator Input Iterator
Forward Traversal Iterator Forward Iterator
Bidirectional Traversal Iterator Bidirectional Iterator
Random Access Traversal Iterator Random Access Iterator

If transform iterator models Writable Lvalue Iterator then it is a mutable iterator (as defined in the old
iterator requirements).

transform iterator<F1, X, R1, V1> is interoperable with transform iterator<F2, Y, R2, V2> if and
only if X is interoperable with Y.

transform iterator operations

In addition to the operations required by the concepts modeled by transform iterator, transform iterator
provides the following operations.

transform iterator();

Returns: An instance of transform iterator with m f and m iterator default constructed.

transform iterator(Iterator const& x, UnaryFunction f);

Returns: An instance of transform iterator with m f initialized to f and m iterator initialized
to x.

template<class OtherIterator, class R2, class V2>
transform iterator(

transform iterator<UnaryFunction, OtherIterator, R2, V2> const& t
, typename enable if convertible<OtherIterator, Iterator>::type* = 0 // exposition

);

Returns: An instance of transform iterator that is a copy of t.

Requires: OtherIterator is implicitly convertible to Iterator.

UnaryFunction functor() const;

Returns: m f

Iterator const& base() const;

Returns: m iterator

reference operator*() const;

Returns: m f(*m iterator)

21

transform iterator& operator++();

Effects: ++m iterator

Returns: *this

transform iterator& operator--();

Effects: --m iterator

Returns: *this

Filter iterator

The filter iterator adaptor creates a view of an iterator range in which some elements of the range are skipped.
A predicate function object controls which elements are skipped. When the predicate is applied to an element,
if it returns true then the element is retained and if it returns false then the element is skipped over. When
skipping over elements, it is necessary for the filter adaptor to know when to stop so as to avoid going past the
end of the underlying range. A filter iterator is therefore constructed with pair of iterators indicating the range
of elements in the unfiltered sequence to be traversed.

Class template filter iterator

template <class Predicate, class Iterator>
class filter iterator
{
public:

typedef iterator traits<Iterator>::value type value type;
typedef iterator traits<Iterator>::reference reference;
typedef iterator traits<Iterator>::pointer pointer;
typedef iterator traits<Iterator>::difference type difference type;
typedef /* see below */ iterator category;

filter iterator();
filter iterator(Predicate f, Iterator x, Iterator end = Iterator());
filter iterator(Iterator x, Iterator end = Iterator());
template<class OtherIterator>
filter iterator(

filter iterator<Predicate, OtherIterator> const& t
, typename enable if convertible<OtherIterator, Iterator>::type* = 0 // exposition
);

Predicate predicate() const;
Iterator end() const;
Iterator const& base() const;
reference operator*() const;
filter iterator& operator++();

private:
Predicate m pred; // exposition only
Iterator m iter; // exposition only
Iterator m end; // exposition only

};

If Iterator models Readable Lvalue Iterator and Forward Traversal Iterator then iterator category is
convertible to std::forward iterator tag. Otherwise iterator category is convertible to std::input iterator tag.

filter iterator requirements

The Iterator argument shall meet the requirements of Readable Iterator and Single Pass Iterator or it shall
meet the requirements of Input Iterator.

The Predicate argument must be Assignable, Copy Constructible, and the expression p(x) must be valid
where p is an object of type Predicate, x is an object of type iterator traits<Iterator>::value type, and
where the type of p(x) must be convertible to bool.

22

filter iterator models

The concepts that filter iterator models are dependent on which concepts the Iterator argument models,
as specified in the following tables.

If Iterator models then filter iterator models
Single Pass Iterator Single Pass Iterator
Forward Traversal Iterator Forward Traversal Iterator

If Iterator models then filter iterator models
Readable Iterator Readable Iterator
Writable Iterator Writable Iterator
Lvalue Iterator Lvalue Iterator

If Iterator models then filter iterator models
Readable Iterator, Single Pass Iterator Input Iterator
Readable Lvalue Iterator, Forward Traversal Iterator Forward Iterator
Writable Lvalue Iterator, Forward Traversal Iterator Mutable Forward Iterator

filter iterator<P1, X> is interoperable with filter iterator<P2, Y> if and only if X is interoperable
with Y.

filter iterator operations

In addition to those operations required by the concepts that filter iterator models, filter iterator
provides the following operations.

filter iterator();

Requires: Predicate and Iterator must be Default Constructible.

Effects: Constructs a filter iterator whose“m pred“, m iter, and m end members are a default
constructed.

filter iterator(Predicate f, Iterator x, Iterator end = Iterator());

Effects: Constructs a filter iterator where m iter is either the first position in the range
[x,end) such that f(*m iter) == true or else“m iter == end“. The member m pred is con-
structed from f and m end from end.

filter iterator(Iterator x, Iterator end = Iterator());

Requires: Predicate must be Default Constructible and Predicate is a class type (not a function
pointer).

Effects: Constructs a filter iterator where m iter is either the first position in the range
[x,end) such that m pred(*m iter) == true or else“m iter == end“. The member m pred is
default constructed.

template <class OtherIterator>
filter iterator(

filter iterator<Predicate, OtherIterator> const& t
, typename enable if convertible<OtherIterator, Iterator>::type* = 0 // exposition
);‘‘

Requires: OtherIterator is implicitly convertible to Iterator.

Effects: Constructs a filter iterator whose members are copied from t.

Predicate predicate() const;

Returns: m pred

Iterator end() const;

Returns: m end

23

Iterator const& base() const;

Returns: m iterator

reference operator*() const;

Returns: *m iter

filter iterator& operator++();

Effects: Increments m iter and then continues to increment m iter until either m iter == m end
or m pred(*m iter) == true.

Returns: *this

Counting iterator

counting iterator adapts an object by adding an operator* that returns the current value of the object. All
other iterator operations are forwarded to the adapted object.

Class template counting iterator

template <
class Incrementable

, class CategoryOrTraversal = use default
, class Difference = use default

>
class counting iterator
{
public:

typedef Incrementable value type;
typedef const Incrementable& reference;
typedef const Incrementable* pointer;
typedef /* see below */ difference type;
typedef /* see below */ iterator category;

counting iterator();
counting iterator(counting iterator const& rhs);
explicit counting iterator(Incrementable x);
Incrementable const& base() const;
reference operator*() const;
counting iterator& operator++();
counting iterator& operator--();

private:
Incrementable m inc; // exposition

};

If the Difference argument is use default then difference type is an unspecified signed integral type.
Otherwise difference type is Difference.

iterator category is determined according to the following algorithm:

if (CategoryOrTraversal is not use default)
return CategoryOrTraversal

else if (numeric limits<Incrementable>::is specialized)
return iterator-category (

random access traversal tag, Incrementable, const Incrementable&)
else

return iterator-category (
iterator traversal<Incrementable>::type,
Incrementable, const Incrementable&)

[Note: implementers are encouraged to provide an implementation of operator- and a difference type
that avoids overflows in the cases where std::numeric limits<Incrementable>::is specialized is
true.]

24

counting iterator requirements

The Incrementable argument shall be Copy Constructible and Assignable.
If iterator category is convertible to forward iterator tag or forward traversal tag, the following

must be well-formed:

Incrementable i, j;
++i; // pre-increment
i == j; // operator equal

If iterator category is convertible to bidirectional iterator tag or bidirectional traversal tag,
the following expression must also be well-formed:

--i

If iterator category is convertible to random access iterator tag or random access traversal tag,
the following must must also be valid:

counting iterator::difference type n;
i += n;
n = i - j;
i < j;

counting iterator models

Specializations of counting iterator model Readable Lvalue Iterator. In addition, they model the concepts
corresponding to the iterator tags to which their iterator category is convertible. Also, if CategoryOrTraversal
is not use default then counting iterator models the concept corresponding to the iterator tag CategoryOrTraversal.
Otherwise, if numeric limits<Incrementable>::is specialized, then counting iterator models Random
Access Traversal Iterator. Otherwise, counting iterator models the same iterator traversal concepts modeled
by Incrementable.

counting iterator<X,C1,D1> is interoperable with counting iterator<Y,C2,D2> if and only if X is inter-
operable with Y.

counting iterator operations

In addition to the operations required by the concepts modeled by counting iterator, counting iterator
provides the following operations.

counting iterator();

Requires: Incrementable is Default Constructible.

Effects: Default construct the member m inc.

counting iterator(counting iterator const& rhs);

Effects: Construct member m inc from rhs.m inc.

explicit counting iterator(Incrementable x);

Effects: Construct member m inc from x.

reference operator*() const;

Returns: m inc

counting iterator& operator++();

Effects: ++m inc

Returns: *this

counting iterator& operator--();

Effects: --m inc

Returns: *this

Incrementable const& base() const;

Returns: m inc

25

Function output iterator

The function output iterator adaptor makes it easier to create custom output iterators. The adaptor takes a
unary function and creates a model of Output Iterator. Each item assigned to the output iterator is passed
as an argument to the unary function. The motivation for this iterator is that creating a conforming output
iterator is non-trivial, particularly because the proper implementation usually requires a proxy object.

Class template function output iterator

template <class UnaryFunction>
class function output iterator {
public:
typedef std::output iterator tag iterator category;
typedef void value type;
typedef void difference type;
typedef void pointer;
typedef void reference;

explicit function output iterator();

explicit function output iterator(const UnaryFunction& f);

/* see below */ operator*();
function output iterator& operator++();
function output iterator& operator++(int);

private:
UnaryFunction m f; // exposition only

};

function output iterator requirements

UnaryFunction must be Assignable and Copy Constructible.

function output iterator models

function output iterator is a model of the Writable and Incrementable Iterator concepts.

function output iterator operations

explicit function output iterator(const UnaryFunction& f = UnaryFunction());

Effects: Constructs an instance of function output iterator with m f constructed from f.

operator*();

Returns: An object r of unspecified type such that r = t is equivalent to m f(t) for all t.

function output iterator& operator++();

Returns: *this

function output iterator& operator++(int);

Returns: *this

26

	Table of Contents
	Motivation
	Impact on the Standard
	Design
	Iterator Concepts
	Interoperability
	Iterator Facade
	Usage
	Iterator Core Access
	operator[]
	operator->

	Iterator Adaptor
	Specialized Adaptors

	Proposed Text
	Header <iterator_helper> synopsis [lib.iterator.helper.synopsis]
	Iterator facade [lib.iterator.facade]
	Class template iterator_facade
	iterator_facade Requirements
	iterator_facade operations

	Iterator adaptor [lib.iterator.adaptor]
	Class template iterator_adaptor
	iterator_adaptor requirements
	iterator_adaptor base class parameters
	iterator_adaptor public operations
	iterator_adaptor protected member functions
	iterator_adaptor private member functions

	Specialized adaptors [lib.iterator.special.adaptors]
	Indirect iterator
	Class template pointee
	Class template indirect_reference
	Class template indirect_iterator
	indirect_iterator requirements
	indirect_iterator models
	indirect_iterator operations

	Reverse iterator
	Class template reverse_iterator
	reverse_iterator requirements
	reverse_iterator models
	reverse_iterator operations

	Transform iterator
	Class template transform_iterator
	transform_iterator requirements
	transform_iterator models
	transform_iterator operations

	Filter iterator
	Class template filter_iterator
	filter_iterator requirements
	filter_iterator models
	filter_iterator operations

	Counting iterator
	Class template counting_iterator
	counting_iterator requirements
	counting_iterator models
	counting_iterator operations

	Function output iterator
	Class template function_output_iterator
	function_output_iterator requirements
	function_output_iterator models
	function_output_iterator operations

