
The Boost.Iterator Library Boost

Authors: David Abrahams, Jeremy Siek, Thomas Witt

Contact: dave@boost-consulting.com, jsiek@osl.iu.edu, witt@styleadvisor.com

organizations: Boost Consulting, Indiana University Open Systems Lab, Zephyr Associates, Inc.

date: $Date: 2004/01/27 04:05:33 $

copyright: Copyright David Abrahams, Jeremy Siek, Thomas Witt 2003. All rights reserved

Abstract: The Boost Iterator Library contains two parts. The first is a system of concepts which
extend the C++ standard iterator requirements. The second is a framework of components
for building iterators based on these extended concepts and includes several useful iterator
adaptors. The extended iterator concepts have been carefully designed so that so that old-style
iterators can fit in the new concepts and so that new-style iterators will be compatible with old-
style algorithms, though algorithms may need to be updated if they want to take full advantage
of the new-style iterator capabilities. Several components of this library have been accepted
into the C++ standard technical report. The components of the Boost Iterator Library replace
the older Boost Iterator Adaptor Library.

Table of Contents

New-Style Iterators

Iterator Facade and Adaptor

Specialized Adaptors

Iterator Utilities

Traits

Testing and Concept Checking

Upgrading from the old Boost Iterator Adaptor Library

History

New-Style Iterators

The iterator categories defined in C++98 are extremely limiting because they bind together two orthog-
onal concepts: traversal and element access. For example, because a random access iterator is required
to return a reference (and not a proxy) when dereferenced, it is impossible to capture the capabilities of
vector<bool>::iterator using the C++98 categories. This is the infamous “vector<bool> is not a con-
tainer, and its iterators aren’t random access iterators”, debacle about which Herb Sutter wrote two papers
for the standards comittee (n1185 and n1211), and a Guru of the Week. New-style iterators go well beyond
patching up vector<bool>, though: there are lots of other iterators already in use which can’t be adequately
represented by the existing concepts. For details about the new iterator concepts, see our

Standard Proposal For New-Style Iterators (PDF)

1

mailto:dave@boost-consulting.com
mailto:jsiek@osl.iu.edu
mailto:witt@styleadvisor.com
http://www.boost-consulting.com
http://www.osl.iu.edu
http://www.styleadvisor.com
file:../../../more/generic_programming.html#concept
http://www.gotw.ca/publications/N1185.pdf
http://www.gotw.ca/publications/N1211.pdf
http://www.gotw.ca/gotw/050.htm
file:new-iter-concepts.html

Iterator Facade and Adaptor

Writing standard-conforming iterators is tricky, but the need comes up often. In order to ease the implementation
of new iterators, the Boost.Iterator library provides the iterator facade class template, which implements
many useful defaults and compile-time checks designed to help the iterator author ensure that his iterator is
correct.

It is also common to define a new iterator that is similar to some underlying iterator or iterator-like type,
but that modifies some aspect of the underlying type’s behavior. For that purpose, the library supplies the
iterator adaptor class template, which is specially designed to take advantage of as much of the underlying
type’s behavior as possible.

The documentation for these two classes can be found at the following web pages:

• iterator facade (PDF)

• iterator adaptor (PDF)

Both iterator facade and iterator adaptor as well as many of the specialized adaptors mentioned below
have been proposed for standardization, and accepted into the first C++ technical report; see our

Standard Proposal For Iterator Facade and Adaptor (PDF)

for more details.

Specialized Adaptors

The iterator library supplies a useful suite of standard-conforming iterator templates based on the Boost iterator
facade and adaptor.

• counting iterator (PDF): an iterator over a sequence of consecutive values. Implements a “lazy se-
quence”

• filter iterator (PDF): an iterator over the subset of elements of some sequence which satisfy a given
predicate

• indirect iterator (PDF): an iterator over the objects pointed-to by the elements of some sequence.

• permutation iterator (PDF): an iterator over the elements of some random-access sequence, rearranged
according to some sequence of integer indices.

• reverse iterator (PDF): an iterator which traverses the elements of some bidirectional sequence in
reverse. Corrects many of the shortcomings of C++98’s std::reverse iterator.

• transform iterator (PDF): an iterator over elements which are the result of applying some func-
tional transformation to the elements of an underlying sequence. This component also replaces the old
projection iterator adaptor.

• zip iterator (PDF): an iterator over tuples of the elements at corresponding positions of heterogeneous
underlying iterators.

Iterator Utilities

Traits

• pointee.hpp (PDF): Provides the capability to deduce the referent types of pointers, smart pointers and
iterators in generic code. Used in indirect iterator.

• iterator traits.hpp (PDF): Provides MPL-compatible metafunctions which retrieve an iterator’s traits.
Also corrects for the deficiencies of broken implementations of std::iterator traits.

Testing and Concept Checking

• iterator concepts.hpp (PDF): Concept checking classes for the new iterator concepts.

• iterator archetypes.hpp (PDF): Concept archetype classes for the new iterators concepts.

2

file:iterator_facade.html
file:iterator_adaptor.html
file:facade-and-adaptor.html
file:counting_iterator.html
file:filter_iterator.html
file:indirect_iterator.html
file:permutation_iterator.html
file:reverse_iterator.html
file:transform_iterator.html
file:zip_iterator.html
file:pointee.html
file:iterator_traits.html
file:../../mpl/doc/index.html
file:iterator_concepts.html
file:iterator_archetypes.html

Upgrading from the old Boost Iterator Adaptor Library

If you have been using the old Boost Iterator Adaptor library to implement iterators, you probably wrote a
Policies class which captures the core operations of your iterator. In the new library design, you’ll move
those same core operations into the body of the iterator class itself. If you were writing a family of iterators,
you probably wrote a type generator to build the iterator adaptor specialization you needed; in the new
library design you don’t need a type generator (though may want to keep it around as a compatibility aid for
older code) because, due to the use of the Curiously Recurring Template Pattern (CRTP) [Cop95], you can
now define the iterator class yourself and acquire functionality through inheritance from iterator facade or
iterator adaptor. As a result, you also get much finer control over how your iterator works: you can add
additional constructors, or even override the iterator functionality provided by the library.

If you’re looking for the old projection iterator component, its functionality has been merged into
transform iterator: as long as the function object’s result type (or the Reference template argument,
if explicitly specified) is a true reference type, transform iterator will behave like projection iterator
used to.

History

In 2000 Dave Abrahams was writing an iterator for a container of pointers, which would access the pointed-to
elements when dereferenced. Naturally, being a library writer, he decided to generalize the idea and the Boost
Iterator Adaptor library was born. Dave was inspired by some writings of Andrei Alexandrescu and chose a
policy based design (though he probably didn’t capture Andrei’s idea very well - there was only one policy
class for all the iterator’s orthogonal properties). Soon Jeremy Siek realized he would need the library and they
worked together to produce a “Boostified” version, which was reviewed and accepted into the library. They
wrote a paper and made several important revisions of the code.

Eventually, several shortcomings of the older library began to make the need for a rewrite apparent. Dave
and Jeremy started working at the Santa Cruz C++ committee meeting in 2002, and had quickly generated a
working prototype. At the urging of Mat Marcus, they decided to use the GenVoca/CRTP pattern approach,
and moved the policies into the iterator class itself. Thomas Witt expressed interest and became the voice of
strict compile-time checking for the project, adding uses of the SFINAE technique to eliminate false converting
constructors and operators from the overload set. He also recognized the need for a separate iterator facade,
and factored it out of iterator adaptor. Finally, after a near-complete rewrite of the prototype, they came
up with the library you see today.

[Cop95] [Coplien, 1995] Coplien, J., Curiously Recurring Template Patterns, C++ Report, February 1995, pp.
24-27.

3

file:../../../more/generic_programming.html#type_generator

	Table of Contents
	New-Style Iterators
	Iterator Facade and Adaptor
	Specialized Adaptors
	Iterator Utilities
	Traits
	Testing and Concept Checking

	Upgrading from the old Boost Iterator Adaptor Library
	History

