Files
move/test/unique_ptr.cpp
Ion Gaztañaga 364ee17476 Simplified and improved unique_ptr implementation:
- No array specialization to avoid code duplication
- Constructible and assignable from literal zero
2014-08-27 23:21:36 +02:00

2022 lines
49 KiB
C++

//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Howard Hinnant 2009
// (C) Copyright Ion Gaztanaga 2014-2014.
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/move for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#include <boost/move/utility_core.hpp>
#include <boost/move/unique_ptr.hpp>
#include <boost/static_assert.hpp>
#include <boost/core/lightweight_test.hpp>
//////////////////////////////////////////////
//
// The initial implementation of these tests
// was written by Howard Hinnant.
//
// These test were later refactored grouping
// and porting them to Boost.Move.
//
// Many thanks to Howard for releasing his C++03
// unique_ptr implementation with such detailed
// test cases.
//
//////////////////////////////////////////////
namespace bml = ::boost::movelib;
//A deleter that can only default constructed
template <class T>
class def_constr_deleter
{
int state_;
def_constr_deleter(const def_constr_deleter&);
def_constr_deleter& operator=(const def_constr_deleter&);
public:
typedef typename ::boost::move_detail::remove_extent<T>::type element_type;
static const bool is_array = ::boost::move_detail::is_array<T>::value;
def_constr_deleter() : state_(5) {}
explicit def_constr_deleter(int s) : state_(s) {}
int state() const {return state_;}
void set_state(int s) {state_ = s;}
void operator()(element_type* p) const
{ is_array ? delete []p : delete p; }
void operator()(element_type* p)
{ ++state_; is_array ? delete []p : delete p; }
};
template<bool OtherIsArray, bool IsArray, class FromElementType, class ThisElementType, class Type = void>
struct enable_if_conversion_acceptable
: ::boost::move_detail::enable_if_c
< OtherIsArray && ::boost::move_detail::is_same_cvelement_and_convertible<FromElementType*, ThisElementType*>::value
, Type
>
{};
template<bool OtherIsArray, class FromElementType, class ThisElementType, class Type>
struct enable_if_conversion_acceptable<OtherIsArray, false, FromElementType, ThisElementType, Type>
: ::boost::move_detail::enable_if_c
< !OtherIsArray && ::boost::move_detail::is_convertible<FromElementType, ThisElementType>::value
, Type
>
{};
//A deleter that can be copy constructed
template <class T>
class copy_constr_deleter
{
int state_;
public:
typedef typename ::boost::move_detail::remove_extent<T>::type element_type;
static const bool is_array = ::boost::move_detail::is_array<T>::value;
copy_constr_deleter() : state_(5) {}
template<class U>
copy_constr_deleter(const copy_constr_deleter<U>&
, typename enable_if_conversion_acceptable
< copy_constr_deleter<U>::is_array
, is_array
, typename copy_constr_deleter<U>::element_type
, element_type
>::type* = 0)
{ state_ = 5; }
explicit copy_constr_deleter(int s) : state_(s) {}
template <class U>
typename enable_if_conversion_acceptable
< copy_constr_deleter<U>::is_array
, is_array
, typename copy_constr_deleter<U>::element_type
, element_type
, copy_constr_deleter&
>::type
operator=(const copy_constr_deleter<U> &d)
{
state_ = d.state();
return *this;
}
int state() const {return state_;}
void set_state(int s) {state_ = s;}
void operator()(element_type* p) const
{ is_array ? delete []p : delete p; }
void operator()(element_type* p)
{ ++state_; is_array ? delete []p : delete p; }
};
//A deleter that can be only move constructed
template <class T>
class move_constr_deleter
{
int state_;
BOOST_MOVABLE_BUT_NOT_COPYABLE(move_constr_deleter)
public:
typedef typename ::boost::move_detail::remove_extent<T>::type element_type;
static const bool is_array = ::boost::move_detail::is_array<T>::value;
move_constr_deleter() : state_(5) {}
move_constr_deleter(BOOST_RV_REF(move_constr_deleter) r)
: state_(r.state_)
{ r.state_ = 0; }
explicit move_constr_deleter(int s) : state_(s) {}
template <class U>
move_constr_deleter(BOOST_RV_REF(move_constr_deleter<U>) d
, typename enable_if_conversion_acceptable
< move_constr_deleter<U>::is_array
, is_array
, typename move_constr_deleter<U>::element_type
, element_type
>::type* = 0)
: state_(d.state())
{ d.set_state(0); }
move_constr_deleter& operator=(BOOST_RV_REF(move_constr_deleter) r)
{
state_ = r.state_;
r.state_ = 0;
return *this;
}
template <class U>
typename enable_if_conversion_acceptable
< move_constr_deleter<U>::is_array
, is_array
, typename move_constr_deleter<U>::element_type
, element_type
, move_constr_deleter&
>::type
operator=(BOOST_RV_REF(move_constr_deleter<U>) d)
{
state_ = d.state();
d.set_state(0);
return *this;
}
int state() const {return state_;}
void set_state(int s) {state_ = s;}
void operator()(element_type* p) const
{ is_array ? delete []p : delete p; }
void operator()(element_type* p)
{ ++state_; is_array ? delete []p : delete p; }
friend bool operator==(const move_constr_deleter& x, const move_constr_deleter& y)
{return x.state_ == y.state_;}
};
//A base class containing state with a static instance counter
struct A
{
int state_;
static int count;
A() : state_(999) {++count;}
explicit A(int i) : state_(i) {++count;}
A(const A& a) : state_(a.state_) {++count;}
A& operator=(const A& a) { state_ = a.state_; return *this; }
void set(int i) {state_ = i;}
virtual ~A() {--count;}
friend bool operator==(const A& x, const A& y) { return x.state_ == y.state_; }
};
int A::count = 0;
//A class derived from A with a static instance counter
struct B
: public A
{
static int count;
B() {++count;}
B(const B&) {++count;}
virtual ~B() {--count;}
};
int B::count = 0;
void reset_counters();
BOOST_STATIC_ASSERT((::boost::move_detail::is_convertible<B, A>::value));
//Incomplete Type
struct I;
void check(int i);
I* get();
I* get_array(int i);
template <class T, class D = bml::default_delete<T> >
struct J
{
typedef bml::unique_ptr<T, D> unique_ptr_type;
typedef typename unique_ptr_type::element_type element_type;
bml::unique_ptr<T, D> a_;
J() {}
explicit J(element_type*a) : a_(a) {}
~J();
element_type* get() const {return a_.get();}
D& get_deleter() {return a_.get_deleter();}
};
////////////////////////////////
// pointer_type
////////////////////////////////
namespace pointer_type {
struct Deleter
{
struct pointer {};
};
// Test unique_ptr::pointer type
void test()
{
//Single unique_ptr
{
typedef bml::unique_ptr<int> P;
BOOST_STATIC_ASSERT((boost::move_detail::is_same<P::pointer, int*>::value));
}
{
typedef bml::unique_ptr<int, Deleter> P;
BOOST_STATIC_ASSERT((boost::move_detail::is_same<P::pointer, Deleter::pointer>::value));
}
//Array unique_ptr
{
typedef bml::unique_ptr<int[]> P;
BOOST_STATIC_ASSERT((boost::move_detail::is_same<P::pointer, int*>::value));
}
{
typedef bml::unique_ptr<int[], Deleter> P;
BOOST_STATIC_ASSERT((boost::move_detail::is_same<P::pointer, Deleter::pointer>::value));
}
}
} //namespace pointer_type {
////////////////////////////////
// unique_ptr_asgn_move_convert01
////////////////////////////////
namespace unique_ptr_asgn_move_convert01 {
void test()
{
//Single unique_ptr
reset_counters();
{
bml::unique_ptr<B> s(new B);
A* p = s.get();
bml::unique_ptr<A> s2(new A);
BOOST_TEST(A::count == 2);
s2 = boost::move(s);
BOOST_TEST(s2.get() == p);
BOOST_TEST(s.get() == 0);
BOOST_TEST(A::count == 1);
BOOST_TEST(B::count == 1);
}
BOOST_TEST(A::count == 0);
BOOST_TEST(B::count == 0);
reset_counters();
//Array unique_ptr, only from the same CV qualified pointers
{
bml::unique_ptr<A[]> s(new A[2]);
A* p = s.get();
bml::unique_ptr<const A[]> s2(new const A[2]);
BOOST_TEST(A::count == 4);
s2 = boost::move(s);
BOOST_TEST(s2.get() == p);
BOOST_TEST(s.get() == 0);
BOOST_TEST(A::count == 2);
}
BOOST_TEST(A::count == 0);
}
} //namespace unique_ptr_asgn_move_convert01{
////////////////////////////////
// unique_ptr_asgn_move_convert02
////////////////////////////////
namespace unique_ptr_asgn_move_convert02{
void test()
{
//Single unique_ptr
reset_counters();
{
bml::unique_ptr<B, move_constr_deleter<B> > s(new B);
A* p = s.get();
bml::unique_ptr<A, move_constr_deleter<A> > s2(new A);
BOOST_TEST(A::count == 2);
s2 = (boost::move(s));
BOOST_TEST(s2.get() == p);
BOOST_TEST(s.get() == 0);
BOOST_TEST(A::count == 1);
BOOST_TEST(B::count == 1);
BOOST_TEST(s2.get_deleter().state() == 5);
BOOST_TEST(s.get_deleter().state() == 0);
}
BOOST_TEST(A::count == 0);
BOOST_TEST(B::count == 0);
//Array unique_ptr, only from the same CV qualified pointers
reset_counters();
{
bml::unique_ptr<A[], move_constr_deleter<A[]> > s(new A[2]);
A* p = s.get();
bml::unique_ptr<const A[], move_constr_deleter<const A[]> > s2(new const A[2]);
BOOST_TEST(A::count == 4);
s2 = (boost::move(s));
BOOST_TEST(s2.get() == p);
BOOST_TEST(s.get() == 0);
BOOST_TEST(A::count == 2);
BOOST_TEST(s2.get_deleter().state() == 5);
BOOST_TEST(s.get_deleter().state() == 0);
}
BOOST_TEST(A::count == 0);
}
} //namespace unique_ptr_asgn_move_convert02{
////////////////////////////////
// unique_ptr_asgn_move_convert03
////////////////////////////////
namespace unique_ptr_asgn_move_convert03{
// test converting move assignment with reference deleters
void test()
{
//Single unique_ptr
reset_counters();
{
copy_constr_deleter<B> db(5);
bml::unique_ptr<B, copy_constr_deleter<B>&> s(new B, db);
A* p = s.get();
copy_constr_deleter<A> da(6);
bml::unique_ptr<A, copy_constr_deleter<A>&> s2(new A, da);
s2 = boost::move(s);
BOOST_TEST(s2.get() == p);
BOOST_TEST(s.get() == 0);
BOOST_TEST(A::count == 1);
BOOST_TEST(B::count == 1);
BOOST_TEST(s2.get_deleter().state() == 5);
}
BOOST_TEST(A::count == 0);
BOOST_TEST(B::count == 0);
//Array unique_ptr, only from the same CV qualified pointers
reset_counters();
{
copy_constr_deleter<A[]> db(5);
bml::unique_ptr<A[], copy_constr_deleter<A[]>&> s(new A[2], db);
A* p = s.get();
copy_constr_deleter<const A[]> da(6);
bml::unique_ptr<const A[], copy_constr_deleter<const A[]>&> s2(new const A[2], da);
BOOST_TEST(A::count == 4);
s2 = boost::move(s);
BOOST_TEST(s2.get() == p);
BOOST_TEST(s.get() == 0);
BOOST_TEST(A::count == 2);
BOOST_TEST(s2.get_deleter().state() == 5);
}
BOOST_TEST(A::count == 0);
BOOST_TEST(B::count == 0);
}
} //namespace unique_ptr_asgn_move_convert03{
////////////////////////////////
// unique_ptr_asgn_move01
////////////////////////////////
namespace unique_ptr_asgn_move01 {
void test()
{
//Single unique_ptr
reset_counters();
{
bml::unique_ptr<A> s1(new A);
A* p = s1.get();
bml::unique_ptr<A> s2(new A);
BOOST_TEST(A::count == 2);
s2 = boost::move(s1);
BOOST_TEST(A::count == 1);
BOOST_TEST(s2.get() == p);
BOOST_TEST(s1.get() == 0);
}
BOOST_TEST(A::count == 0);
{
bml::unique_ptr<A, move_constr_deleter<A> > s1(new A);
A* p = s1.get();
bml::unique_ptr<A, move_constr_deleter<A> > s2(new A);
BOOST_TEST(A::count == 2);
s2 = boost::move(s1);
BOOST_TEST(s2.get() == p);
BOOST_TEST(s1.get() == 0);
BOOST_TEST(A::count == 1);
BOOST_TEST(s2.get_deleter().state() == 5);
BOOST_TEST(s1.get_deleter().state() == 0);
}
BOOST_TEST(A::count == 0);
{
copy_constr_deleter<A> d1(5);
bml::unique_ptr<A, copy_constr_deleter<A>&> s1(new A, d1);
A* p = s1.get();
copy_constr_deleter<A> d2(6);
bml::unique_ptr<A, copy_constr_deleter<A>&> s2(new A, d2);
s2 = boost::move(s1);
BOOST_TEST(s2.get() == p);
BOOST_TEST(s1.get() == 0);
BOOST_TEST(A::count == 1);
BOOST_TEST(d1.state() == 5);
BOOST_TEST(d2.state() == 5);
}
BOOST_TEST(A::count == 0);
//Array unique_ptr
reset_counters();
{
bml::unique_ptr<A[]> s1(new A[2]);
A* p = s1.get();
bml::unique_ptr<A[]> s2(new A[2]);
BOOST_TEST(A::count == 4);
s2 = boost::move(s1);
BOOST_TEST(A::count == 2);
BOOST_TEST(s2.get() == p);
BOOST_TEST(s1.get() == 0);
}
BOOST_TEST(A::count == 0);
{
bml::unique_ptr<A[], move_constr_deleter<A[]> > s1(new A[2]);
A* p = s1.get();
bml::unique_ptr<A[], move_constr_deleter<A[]> > s2(new A[2]);
BOOST_TEST(A::count == 4);
s2 = boost::move(s1);
BOOST_TEST(s2.get() == p);
BOOST_TEST(s1.get() == 0);
BOOST_TEST(A::count == 2);
BOOST_TEST(s2.get_deleter().state() == 5);
BOOST_TEST(s1.get_deleter().state() == 0);
}
BOOST_TEST(A::count == 0);
{
copy_constr_deleter<A[]> d1(5);
bml::unique_ptr<A[], copy_constr_deleter<A[]>&> s1(new A[2], d1);
A* p = s1.get();
copy_constr_deleter<A[]> d2(6);
bml::unique_ptr<A[], copy_constr_deleter<A[]>&> s2(new A[2], d2);
BOOST_TEST(A::count == 4);
s2 = boost::move(s1);
BOOST_TEST(s2.get() == p);
BOOST_TEST(s1.get() == 0);
BOOST_TEST(A::count == 2);
BOOST_TEST(d1.state() == 5);
BOOST_TEST(d2.state() == 5);
}
BOOST_TEST(A::count == 0);
}
} //unique_ptr_asgn_move01
////////////////////////////////
// unique_ptr_zero
////////////////////////////////
namespace unique_ptr_zero {
// test initialization/assignment from zero
void test()
{
//Single unique_ptr
reset_counters();
{
bml::unique_ptr<A> s2(0);
BOOST_TEST(A::count == 0);
}
BOOST_TEST(A::count == 0);
{
bml::unique_ptr<A> s2(new A);
BOOST_TEST(A::count == 1);
s2 = 0;
BOOST_TEST(A::count == 0);
BOOST_TEST(s2.get() == 0);
}
BOOST_TEST(A::count == 0);
//Array unique_ptr
{
bml::unique_ptr<A[]> s2(0);
BOOST_TEST(A::count == 0);
}
BOOST_TEST(A::count == 0);
{
bml::unique_ptr<A[]> s2(new A[2]);
BOOST_TEST(A::count == 2);
s2 = 0;
BOOST_TEST(A::count == 0);
BOOST_TEST(s2.get() == 0);
}
BOOST_TEST(A::count == 0);
}
} //namespace unique_ptr_zero {
////////////////////////////////
// unique_ptr_ctor_default01
////////////////////////////////
namespace unique_ptr_ctor_default01{
// default unique_ptr ctor should only require default deleter ctor
void test()
{
//Single unique_ptr
{
bml::unique_ptr<int> p;
BOOST_TEST(p.get() == 0);
}
{
bml::unique_ptr<int, def_constr_deleter<int> > p;
BOOST_TEST(p.get() == 0);
BOOST_TEST(p.get_deleter().state() == 5);
}
//Array unique_ptr
{
bml::unique_ptr<int[]> p;
BOOST_TEST(p.get() == 0);
}
{
bml::unique_ptr<int[], def_constr_deleter<int[]> > p;
BOOST_TEST(p.get() == 0);
BOOST_TEST(p.get_deleter().state() == 5);
}
}
} //namespace unique_ptr_ctor_default01{
////////////////////////////////
// unique_ptr_ctor_default02
////////////////////////////////
namespace unique_ptr_ctor_default02{
// default unique_ptr ctor shouldn't require complete type
void test()
{
//Single unique_ptr
reset_counters();
{
J<I> s;
BOOST_TEST(s.get() == 0);
}
check(0);
{
J<I, def_constr_deleter<I> > s;
BOOST_TEST(s.get() == 0);
BOOST_TEST(s.get_deleter().state() == 5);
}
check(0);
//Array unique_ptr
reset_counters();
{
J<I[]> s;
BOOST_TEST(s.get() == 0);
}
check(0);
{
J<I[], def_constr_deleter<I[]> > s;
BOOST_TEST(s.get() == 0);
BOOST_TEST(s.get_deleter().state() == 5);
}
check(0);
}
} //namespace unique_ptr_ctor_default02{
////////////////////////////////
// unique_ptr_ctor_move_convert01
////////////////////////////////
namespace unique_ptr_ctor_move_convert01{
// test converting move ctor. Should only require a MoveConstructible deleter, or if
// deleter is a reference, not even that.
// Explicit version
void test()
{
//Single unique_ptr
reset_counters();
{
bml::unique_ptr<B> s(new B);
A* p = s.get();
bml::unique_ptr<A> s2(boost::move(s));
BOOST_TEST(s2.get() == p);
BOOST_TEST(s.get() == 0);
BOOST_TEST(A::count == 1);
BOOST_TEST(B::count == 1);
}
BOOST_TEST(A::count == 0);
BOOST_TEST(B::count == 0);
//Array unique_ptr, only from the same CV qualified pointers
reset_counters();
{
bml::unique_ptr<A[]> s(new A[2]);
A* p = s.get();
bml::unique_ptr<const volatile A[]> s2(boost::move(s));
BOOST_TEST(s2.get() == p);
BOOST_TEST(s.get() == 0);
BOOST_TEST(A::count == 2);
}
BOOST_TEST(A::count == 0);
}
} //namespace unique_ptr_ctor_move_convert01{
////////////////////////////////
// unique_ptr_ctor_move_convert02
////////////////////////////////
namespace unique_ptr_ctor_move_convert02{
// test converting move ctor. Should only require a MoveConstructible deleter, or if
// deleter is a reference, not even that.
// Explicit version
void test()
{
//Single unique_ptr
reset_counters();
BOOST_STATIC_ASSERT((boost::move_detail::is_convertible<B, A>::value));
{
bml::unique_ptr<B, move_constr_deleter<B> > s(new B);
A* p = s.get();
bml::unique_ptr<A, move_constr_deleter<A> > s2(boost::move(s));
BOOST_TEST(s2.get() == p);
BOOST_TEST(s.get() == 0);
BOOST_TEST(A::count == 1);
BOOST_TEST(B::count == 1);
BOOST_TEST(s2.get_deleter().state() == 5);
BOOST_TEST(s.get_deleter().state() == 0);
}
BOOST_TEST(A::count == 0);
BOOST_TEST(B::count == 0);
//Array unique_ptr, only from the same CV qualified pointers
reset_counters();
{
bml::unique_ptr<const A[], move_constr_deleter<const A[]> > s(new const A[2]);
const A* p = s.get();
bml::unique_ptr<const volatile A[], move_constr_deleter<const volatile A[]> > s2(boost::move(s));
BOOST_TEST(s2.get() == p);
BOOST_TEST(s.get() == 0);
BOOST_TEST(A::count == 2);
BOOST_TEST(s2.get_deleter().state() == 5);
BOOST_TEST(s.get_deleter().state() == 0);
}
BOOST_TEST(A::count == 0);
BOOST_TEST(B::count == 0);
}
} //namespace unique_ptr_ctor_move_convert02{
////////////////////////////////
// unique_ptr_ctor_move_convert03
////////////////////////////////
namespace unique_ptr_ctor_move_convert03{
// test converting move ctor. Should only require a MoveConstructible deleter, or if
// deleter is a reference, not even that.
// Explicit version
void test()
{
//Single unique_ptr
reset_counters();
{
def_constr_deleter<A> d;
bml::unique_ptr<B, def_constr_deleter<A>&> s(new B, d);
A* p = s.get();
bml::unique_ptr<A, def_constr_deleter<A>&> s2(boost::move(s));
BOOST_TEST(s2.get() == p);
BOOST_TEST(s.get() == 0);
BOOST_TEST(A::count == 1);
BOOST_TEST(B::count == 1);
d.set_state(6);
BOOST_TEST(s2.get_deleter().state() == d.state());
BOOST_TEST(s.get_deleter().state() == d.state());
}
BOOST_TEST(A::count == 0);
BOOST_TEST(B::count == 0);
//Array unique_ptr, only from the same CV qualified pointers
reset_counters();
{
def_constr_deleter<volatile A[]> d;
bml::unique_ptr<A[], def_constr_deleter<volatile A[]>&> s(new A[2], d);
A* p = s.get();
bml::unique_ptr<volatile A[], def_constr_deleter<volatile A[]>&> s2(boost::move(s));
BOOST_TEST(s2.get() == p);
BOOST_TEST(s.get() == 0);
BOOST_TEST(A::count == 2);
d.set_state(6);
BOOST_TEST(s2.get_deleter().state() == d.state());
BOOST_TEST(s.get_deleter().state() == d.state());
}
BOOST_TEST(A::count == 0);
}
} //namespace unique_ptr_ctor_move_convert03{
////////////////////////////////
// unique_ptr_ctor_move_convert04
////////////////////////////////
namespace unique_ptr_ctor_move_convert04{
// test converting move ctor. Should only require a MoveConstructible deleter, or if
// deleter is a reference, not even that.
// implicit version
void test()
{
//Single unique_ptr
reset_counters();
{
bml::unique_ptr<B> s(new B);
A* p = s.get();
bml::unique_ptr<A> s2(boost::move(s));
BOOST_TEST(s2.get() == p);
BOOST_TEST(s.get() == 0);
BOOST_TEST(A::count == 1);
BOOST_TEST(B::count == 1);
}
BOOST_TEST(A::count == 0);
BOOST_TEST(B::count == 0);
//Array unique_ptr, only from the same CV qualified pointers
reset_counters();
{
bml::unique_ptr<A[]> s(new A[2]);
A* p = s.get();
bml::unique_ptr<const A[]> s2(boost::move(s));
BOOST_TEST(s2.get() == p);
BOOST_TEST(s.get() == 0);
BOOST_TEST(A::count == 2);
}
BOOST_TEST(A::count == 0);
}
} //namespace unique_ptr_ctor_move_convert04{
////////////////////////////////
// unique_ptr_ctor_move_convert05
////////////////////////////////
namespace unique_ptr_ctor_move_convert05{
// test converting move ctor. Should only require a MoveConstructible deleter, or if
// deleter is a reference, not even that.
// Implicit version
void test()
{
//Single unique_ptr
reset_counters();
{
bml::unique_ptr<B, move_constr_deleter<B> > s(new B);
A* p = s.get();
bml::unique_ptr<A, move_constr_deleter<A> > s2(boost::move(s));
BOOST_TEST(s2.get() == p);
BOOST_TEST(s.get() == 0);
BOOST_TEST(A::count == 1);
BOOST_TEST(B::count == 1);
BOOST_TEST(s2.get_deleter().state() == 5);
BOOST_TEST(s.get_deleter().state() == 0);
}
BOOST_TEST(A::count == 0);
BOOST_TEST(B::count == 0);
//Array unique_ptr, only from the same CV qualified pointers
reset_counters();
{
bml::unique_ptr<const A[], move_constr_deleter<const A[]> > s(new const A[2]);
const A* p = s.get();
bml::unique_ptr<const volatile A[], move_constr_deleter<const volatile A[]> > s2(boost::move(s));
BOOST_TEST(s2.get() == p);
BOOST_TEST(s.get() == 0);
BOOST_TEST(A::count == 2);
BOOST_TEST(s2.get_deleter().state() == 5);
BOOST_TEST(s.get_deleter().state() == 0);
}
BOOST_TEST(A::count == 0);
}
} //namespace unique_ptr_ctor_move_convert05{
////////////////////////////////
// unique_ptr_ctor_move_convert06
////////////////////////////////
namespace unique_ptr_ctor_move_convert06{
// test converting move ctor. Should only require a MoveConstructible deleter, or if
// deleter is a reference, not even that.
// Implicit version
void test()
{
//Single unique_ptr
reset_counters();
{
def_constr_deleter<A> d;
bml::unique_ptr<B, def_constr_deleter<A>&> s(new B, d);
A* p = s.get();
bml::unique_ptr<A, def_constr_deleter<A>&> s2(boost::move(s));
BOOST_TEST(s2.get() == p);
BOOST_TEST(s.get() == 0);
BOOST_TEST(A::count == 1);
BOOST_TEST(B::count == 1);
d.set_state(6);
BOOST_TEST(s2.get_deleter().state() == d.state());
BOOST_TEST(s.get_deleter().state() == d.state());
}
BOOST_TEST(A::count == 0);
BOOST_TEST(B::count == 0);
//Array unique_ptr, only from the same CV qualified pointers
reset_counters();
{
def_constr_deleter<const volatile A[]> d;
bml::unique_ptr<volatile A[], def_constr_deleter<const volatile A[]>&> s(new volatile A[2], d);
volatile A* p = s.get();
bml::unique_ptr<const volatile A[], def_constr_deleter<const volatile A[]>&> s2(boost::move(s));
BOOST_TEST(s2.get() == p);
BOOST_TEST(s.get() == 0);
BOOST_TEST(A::count == 2);
d.set_state(6);
BOOST_TEST(s2.get_deleter().state() == d.state());
BOOST_TEST(s.get_deleter().state() == d.state());
}
BOOST_TEST(A::count == 0);
}
} //namespace unique_ptr_ctor_move_convert06{
////////////////////////////////
// unique_ptr_ctor_move01
////////////////////////////////
namespace unique_ptr_ctor_move01{
// test converting move ctor. Should only require a MoveConstructible deleter, or if
// deleter is a reference, not even that.
// Implicit version
void test()
{
//Single unique_ptr
reset_counters();
{
bml::unique_ptr<A> s(new A);
A* p = s.get();
bml::unique_ptr<A> s2 = boost::move(s);
BOOST_TEST(s2.get() == p);
BOOST_TEST(s.get() == 0);
BOOST_TEST(A::count == 1);
}
BOOST_TEST(A::count == 0);
{
bml::unique_ptr<A, move_constr_deleter<A> > s(new A);
A* p = s.get();
bml::unique_ptr<A, move_constr_deleter<A> > s2 = boost::move(s);
BOOST_TEST(s2.get() == p);
BOOST_TEST(s.get() == 0);
BOOST_TEST(A::count == 1);
BOOST_TEST(s2.get_deleter().state() == 5);
BOOST_TEST(s.get_deleter().state() == 0);
}
BOOST_TEST(A::count == 0);
{
def_constr_deleter<A> d;
bml::unique_ptr<A, def_constr_deleter<A>&> s(new A, d);
A* p = s.get();
bml::unique_ptr<A, def_constr_deleter<A>&> s2 = boost::move(s);
BOOST_TEST(s2.get() == p);
BOOST_TEST(s.get() == 0);
BOOST_TEST(A::count == 1);
d.set_state(6);
BOOST_TEST(s2.get_deleter().state() == d.state());
BOOST_TEST(s.get_deleter().state() == d.state());
}
BOOST_TEST(A::count == 0);
//Array unique_ptr
reset_counters();
{
bml::unique_ptr<A[]> s(new A[2]);
A* p = s.get();
bml::unique_ptr<A[]> s2 = boost::move(s);
BOOST_TEST(s2.get() == p);
BOOST_TEST(s.get() == 0);
BOOST_TEST(A::count == 2);
}
BOOST_TEST(A::count == 0);
{
bml::unique_ptr<A[], move_constr_deleter<A[]> > s(new A[2]);
A* p = s.get();
bml::unique_ptr<A[], move_constr_deleter<A[]> > s2 = boost::move(s);
BOOST_TEST(s2.get() == p);
BOOST_TEST(s.get() == 0);
BOOST_TEST(A::count == 2);
BOOST_TEST(s2.get_deleter().state() == 5);
BOOST_TEST(s.get_deleter().state() == 0);
}
BOOST_TEST(A::count == 0);
{
def_constr_deleter<A[]> d;
bml::unique_ptr<A[], def_constr_deleter<A[]>&> s(new A[2], d);
A* p = s.get();
bml::unique_ptr<A[], def_constr_deleter<A[]>&> s2 = boost::move(s);
BOOST_TEST(s2.get() == p);
BOOST_TEST(s.get() == 0);
BOOST_TEST(A::count == 2);
d.set_state(6);
BOOST_TEST(s2.get_deleter().state() == d.state());
BOOST_TEST(s.get_deleter().state() == d.state());
}
BOOST_TEST(A::count == 0);
}
} //namespace unique_ptr_ctor_move01{
////////////////////////////////
// unique_ptr_ctor_move02
////////////////////////////////
namespace unique_ptr_ctor_move02{
// test move ctor. Should only require a MoveConstructible deleter, or if
// deleter is a reference, not even that.
bml::unique_ptr<A> source1()
{ return bml::unique_ptr<A>(new A); }
bml::unique_ptr<A[]> source1_array()
{ return bml::unique_ptr<A[]> (new A[2]); }
void sink1(bml::unique_ptr<A>)
{}
void sink1_array(bml::unique_ptr<A[]>)
{}
bml::unique_ptr<A, move_constr_deleter<A> > source2()
{ return bml::unique_ptr<A, move_constr_deleter<A> > (new A); }
bml::unique_ptr<A[], move_constr_deleter<A[]> > source2_array()
{ return bml::unique_ptr<A[], move_constr_deleter<A[]> >(new A[2]); }
void sink2(bml::unique_ptr<A, move_constr_deleter<A> >)
{}
void sink2_array(bml::unique_ptr<A[], move_constr_deleter<A[]> >)
{}
bml::unique_ptr<A, def_constr_deleter<A>&> source3()
{
static def_constr_deleter<A> d;
return bml::unique_ptr<A, def_constr_deleter<A>&>(new A, d);
}
bml::unique_ptr<A[], def_constr_deleter<A[]>&> source3_array()
{
static def_constr_deleter<A[]> d;
return bml::unique_ptr<A[], def_constr_deleter<A[]>&>(new A[2], d);
}
void sink3(bml::unique_ptr<A, def_constr_deleter<A>&> )
{}
void sink3_array(bml::unique_ptr<A[], def_constr_deleter<A[]>&> )
{}
void test()
{
//Single unique_ptr
reset_counters();
sink1(source1());
sink2(source2());
sink3(source3());
BOOST_TEST(A::count == 0);
//Array unique_ptr
reset_counters();
sink1_array(source1_array());
sink2_array(source2_array());
sink3_array(source3_array());
BOOST_TEST(A::count == 0);
}
} //namespace unique_ptr_ctor_move02{
////////////////////////////////
// unique_ptr_ctor_pointer_deleter01
////////////////////////////////
namespace unique_ptr_ctor_pointer_deleter01{
// test move ctor. Should only require a MoveConstructible deleter, or if
// deleter is a reference, not even that.
// unique_ptr(pointer, deleter()) only requires MoveConstructible deleter
void test()
{
//Single unique_ptr
reset_counters();
{
A* p = new A;
BOOST_TEST(A::count == 1);
move_constr_deleter<A> d;
bml::unique_ptr<A, move_constr_deleter<A> > s(p, ::boost::move(d));
BOOST_TEST(s.get() == p);
BOOST_TEST(s.get_deleter().state() == 5);
}
BOOST_TEST(A::count == 0);
//Array unique_ptr
reset_counters();
{
A* p = new A[2];
BOOST_TEST(A::count == 2);
move_constr_deleter<A[]> d;
bml::unique_ptr<A[], move_constr_deleter<A[]> > s(p, ::boost::move(d));
BOOST_TEST(s.get() == p);
BOOST_TEST(s.get_deleter().state() == 5);
}
BOOST_TEST(A::count == 0);
}
} //namespace unique_ptr_ctor_pointer_deleter01{
////////////////////////////////
// unique_ptr_ctor_pointer_deleter02
////////////////////////////////
namespace unique_ptr_ctor_pointer_deleter02{
// unique_ptr(pointer, d) requires CopyConstructible deleter
void test()
{
//Single unique_ptr
reset_counters();
{
A* p = new A;
BOOST_TEST(A::count == 1);
copy_constr_deleter<A> d;
bml::unique_ptr<A, copy_constr_deleter<A> > s(p, d);
BOOST_TEST(s.get() == p);
BOOST_TEST(s.get_deleter().state() == 5);
d.set_state(6);
BOOST_TEST(s.get_deleter().state() == 5);
}
BOOST_TEST(A::count == 0);
//Array unique_ptr
reset_counters();
{
A* p = new A[2];
BOOST_TEST(A::count == 2);
copy_constr_deleter<A[]> d;
bml::unique_ptr<A, copy_constr_deleter<A[]> > s(p, d);
BOOST_TEST(s.get() == p);
BOOST_TEST(s.get_deleter().state() == 5);
d.set_state(6);
BOOST_TEST(s.get_deleter().state() == 5);
}
BOOST_TEST(A::count == 0);
}
} //namespace unique_ptr_ctor_pointer_deleter02{
////////////////////////////////
// unique_ptr_ctor_pointer_deleter03
////////////////////////////////
namespace unique_ptr_ctor_pointer_deleter03{
// unique_ptr<T, D&>(pointer, d) does not requires CopyConstructible deleter
void test()
{
//Single unique_ptr
reset_counters();
{
A* p = new A;
BOOST_TEST(A::count == 1);
def_constr_deleter<A> d;
bml::unique_ptr<A, def_constr_deleter<A>&> s(p, d);
BOOST_TEST(s.get() == p);
BOOST_TEST(s.get_deleter().state() == 5);
d.set_state(6);
BOOST_TEST(s.get_deleter().state() == 6);
}
BOOST_TEST(A::count == 0);
//Array unique_ptr
reset_counters();
{
A* p = new A[2];
BOOST_TEST(A::count == 2);
def_constr_deleter<A[]> d;
bml::unique_ptr<A[], def_constr_deleter<A[]>&> s(p, d);
BOOST_TEST(s.get() == p);
BOOST_TEST(s.get_deleter().state() == 5);
d.set_state(6);
BOOST_TEST(s.get_deleter().state() == 6);
}
BOOST_TEST(A::count == 0);
}
} //namespace unique_ptr_ctor_pointer_deleter03{
////////////////////////////////
// unique_ptr_ctor_pointer_deleter04
////////////////////////////////
namespace unique_ptr_ctor_pointer_deleter04{
// unique_ptr<T, const D&>(pointer, d) does not requires CopyConstructible deleter
void test()
{
//Single unique_ptr
reset_counters();
{
A* p = new A;
BOOST_TEST(A::count == 1);
def_constr_deleter<A> d;
bml::unique_ptr<A, const def_constr_deleter<A>&> s(p, d);
BOOST_TEST(s.get() == p);
BOOST_TEST(s.get_deleter().state() == 5);
}
BOOST_TEST(A::count == 0);
//Array unique_ptr
reset_counters();
{
A* p = new A[2];
BOOST_TEST(A::count == 2);
def_constr_deleter<A[]> d;
bml::unique_ptr<A[], const def_constr_deleter<A[]>&> s(p, d);
BOOST_TEST(s.get() == p);
BOOST_TEST(s.get_deleter().state() == 5);
}
BOOST_TEST(A::count == 0);
}
} //namespace unique_ptr_ctor_pointer_deleter04{
////////////////////////////////
// unique_ptr_ctor_pointer_deleter05
////////////////////////////////
namespace unique_ptr_ctor_pointer_deleter05{
// unique_ptr(pointer, deleter) should work with derived pointers
// or same (cv aside) types for array unique_ptrs
void test()
{
//Single unique_ptr
reset_counters();
{
B* p = new B;
BOOST_TEST(A::count == 1);
BOOST_TEST(B::count == 1);
bml::unique_ptr<A, copy_constr_deleter<A> > s(p, copy_constr_deleter<A>());
BOOST_TEST(s.get() == p);
BOOST_TEST(s.get_deleter().state() == 5);
}
BOOST_TEST(A::count == 0);
BOOST_TEST(B::count == 0);
//Array unique_ptr
reset_counters();
{
A* p = new A[2];
BOOST_TEST(A::count == 2);
bml::unique_ptr<const A[], copy_constr_deleter<const A[]> > s(p, copy_constr_deleter<const A[]>());
BOOST_TEST(s.get() == p);
BOOST_TEST(s.get_deleter().state() == 5);
}
BOOST_TEST(A::count == 0);
BOOST_TEST(B::count == 0);
}
} //namespace unique_ptr_ctor_pointer_deleter05{
////////////////////////////////
// unique_ptr_ctor_pointer_deleter06
////////////////////////////////
namespace unique_ptr_ctor_pointer_deleter06{
// unique_ptr(pointer, deleter) should work with function pointers
// unique_ptr<void> should work
bool my_free_called = false;
void my_free(void*)
{
my_free_called = true;
}
void test()
{
{
int i = 0;
bml::unique_ptr<void, void (*)(void*)> s(&i, my_free);
BOOST_TEST(s.get() == &i);
BOOST_TEST(s.get_deleter() == my_free);
BOOST_TEST(!my_free_called);
}
BOOST_TEST(my_free_called);
}
} //namespace unique_ptr_ctor_pointer_deleter06{
////////////////////////////////
// unique_ptr_ctor_pointer01
////////////////////////////////
namespace unique_ptr_ctor_pointer01{
// unique_ptr(pointer) ctor should only require default deleter ctor
void test()
{
//Single unique_ptr
reset_counters();
{
A* p = new A;
BOOST_TEST(A::count == 1);
bml::unique_ptr<A> s(p);
BOOST_TEST(s.get() == p);
}
BOOST_TEST(A::count == 0);
{
A* p = new A;
BOOST_TEST(A::count == 1);
bml::unique_ptr<A, def_constr_deleter<A> > s(p);
BOOST_TEST(s.get() == p);
BOOST_TEST(s.get_deleter().state() == 5);
}
BOOST_TEST(A::count == 0);
//Array unique_ptr
reset_counters();
{
A* p = new A[2];
BOOST_TEST(A::count == 2);
bml::unique_ptr<A[]> s(p);
BOOST_TEST(s.get() == p);
}
BOOST_TEST(A::count == 0);
{
A* p = new A[2];
BOOST_TEST(A::count == 2);
bml::unique_ptr<A[], def_constr_deleter<A[]> > s(p);
BOOST_TEST(s.get() == p);
BOOST_TEST(s.get_deleter().state() == 5);
}
BOOST_TEST(A::count == 0);
}
} //namespace unique_ptr_ctor_pointer01{
////////////////////////////////
// unique_ptr_ctor_pointer02
////////////////////////////////
namespace unique_ptr_ctor_pointer02{
// unique_ptr(pointer) ctor shouldn't require complete type
void test()
{
//Single unique_ptr
reset_counters();
{
I* p = get();
check(1);
J<I> s(p);
BOOST_TEST(s.get() == p);
}
check(0);
{
I* p = get();
check(1);
J<I, def_constr_deleter<I> > s(p);
BOOST_TEST(s.get() == p);
BOOST_TEST(s.get_deleter().state() == 5);
}
check(0);
//Array unique_ptr
reset_counters();
{
I* p = get_array(2);
check(2);
J<I[]> s(p);
BOOST_TEST(s.get() == p);
}
check(0);
{
I* p = get_array(2);
check(2);
J<I[], def_constr_deleter<I[]> > s(p);
BOOST_TEST(s.get() == p);
BOOST_TEST(s.get_deleter().state() == 5);
}
check(0);
}
} //namespace unique_ptr_ctor_pointer02{
////////////////////////////////
// unique_ptr_ctor_pointer03
////////////////////////////////
namespace unique_ptr_ctor_pointer03{
// unique_ptr(pointer) ctor should work with derived pointers
// or same types (cv aside) for unique_ptr<arrays>
void test()
{
//Single unique_ptr
reset_counters();
{
B* p = new B;
BOOST_TEST(A::count == 1);
BOOST_TEST(B::count == 1);
bml::unique_ptr<A> s(p);
BOOST_TEST(s.get() == p);
}
BOOST_TEST(A::count == 0);
BOOST_TEST(B::count == 0);
{
B* p = new B;
BOOST_TEST(A::count == 1);
BOOST_TEST(B::count == 1);
bml::unique_ptr<A, def_constr_deleter<A> > s(p);
BOOST_TEST(s.get() == p);
BOOST_TEST(s.get_deleter().state() == 5);
}
BOOST_TEST(A::count == 0);
BOOST_TEST(B::count == 0);
//Array unique_ptr
reset_counters();
{
A* p = new A[2];
BOOST_TEST(A::count == 2);
bml::unique_ptr<const A[]> s(p);
BOOST_TEST(s.get() == p);
}
BOOST_TEST(A::count == 0);
{
const A* p = new const A[2];
BOOST_TEST(A::count == 2);
bml::unique_ptr<const volatile A[], def_constr_deleter<const volatile A[]> > s(p);
BOOST_TEST(s.get() == p);
BOOST_TEST(s.get_deleter().state() == 5);
}
BOOST_TEST(A::count == 0);
}
} //namespace unique_ptr_ctor_pointer03{
////////////////////////////////
// unique_ptr_dtor_null
////////////////////////////////
namespace unique_ptr_dtor_null{
// The deleter is not called if get() == 0
void test()
{
//Single unique_ptr
def_constr_deleter<int> d;
BOOST_TEST(d.state() == 5);
{
bml::unique_ptr<int, def_constr_deleter<int>&> p(0, d);
BOOST_TEST(p.get() == 0);
BOOST_TEST(&p.get_deleter() == &d);
}
BOOST_TEST(d.state() == 5);
}
} //namespace unique_ptr_dtor_null{
////////////////////////////////
// unique_ptr_modifiers_release
////////////////////////////////
namespace unique_ptr_modifiers_release{
void test()
{
//Single unique_ptr
{
bml::unique_ptr<int> p(new int(3));
int* i = p.get();
int* j = p.release();
BOOST_TEST(p.get() == 0);
BOOST_TEST(i == j);
}
//Array unique_ptr
{
bml::unique_ptr<int[]> p(new int[2]);
int* i = p.get();
int* j = p.release();
BOOST_TEST(p.get() == 0);
BOOST_TEST(i == j);
}
}
} //namespace unique_ptr_modifiers_release{
////////////////////////////////
// unique_ptr_modifiers_reset1
////////////////////////////////
namespace unique_ptr_modifiers_reset1{
void test()
{
//Single unique_ptr
reset_counters();
{ //reset()
bml::unique_ptr<A> p(new A);
BOOST_TEST(A::count == 1);
A* i = p.get();
(void)i;
p.reset();
BOOST_TEST(A::count == 0);
BOOST_TEST(p.get() == 0);
}
BOOST_TEST(A::count == 0);
{ //reset(p)
bml::unique_ptr<A> p(new A);
BOOST_TEST(A::count == 1);
A* i = p.get();
(void)i;
p.reset(new A);
BOOST_TEST(A::count == 1);
}
BOOST_TEST(A::count == 0);
{ //reset(0)
bml::unique_ptr<A> p(new A);
BOOST_TEST(A::count == 1);
A* i = p.get();
(void)i;
p.reset(0);
BOOST_TEST(A::count == 0);
BOOST_TEST(p.get() == 0);
}
BOOST_TEST(A::count == 0);
//Array unique_ptr
reset_counters();
{ //reset()
bml::unique_ptr<A[]> p(new A[2]);
BOOST_TEST(A::count == 2);
A* i = p.get();
(void)i;
p.reset();
BOOST_TEST(A::count == 0);
BOOST_TEST(p.get() == 0);
}
BOOST_TEST(A::count == 0);
{ //reset(p)
bml::unique_ptr<A[]> p(new A[2]);
BOOST_TEST(A::count == 2);
A* i = p.get();
(void)i;
p.reset(new A[3]);
BOOST_TEST(A::count == 3);
}
BOOST_TEST(A::count == 0);
{ //reset(0)
bml::unique_ptr<A[]> p(new A[2]);
BOOST_TEST(A::count == 2);
A* i = p.get();
(void)i;
p.reset(0);
BOOST_TEST(A::count == 0);
BOOST_TEST(p.get() == 0);
}
BOOST_TEST(A::count == 0);
}
} //namespace unique_ptr_modifiers_reset1{
////////////////////////////////
// unique_ptr_modifiers_reset2
////////////////////////////////
namespace unique_ptr_modifiers_reset2{
void test()
{
//Single unique_ptr
reset_counters();
{
bml::unique_ptr<A> p(new A);
BOOST_TEST(A::count == 1);
BOOST_TEST(B::count == 0);
A* i = p.get();
(void)i;
p.reset(new B);
BOOST_TEST(A::count == 1);
BOOST_TEST(B::count == 1);
}
BOOST_TEST(A::count == 0);
BOOST_TEST(B::count == 0);
{
bml::unique_ptr<A> p(new B);
BOOST_TEST(A::count == 1);
BOOST_TEST(B::count == 1);
A* i = p.get();
(void)i;
p.reset(new B);
BOOST_TEST(A::count == 1);
BOOST_TEST(B::count == 1);
}
BOOST_TEST(A::count == 0);
BOOST_TEST(B::count == 0);
//Array unique_ptr
reset_counters();
{
bml::unique_ptr<const volatile A[]> p(new const A[2]);
BOOST_TEST(A::count == 2);
const volatile A* i = p.get();
(void)i;
p.reset(new volatile A[3]);
BOOST_TEST(A::count == 3);
}
BOOST_TEST(A::count == 0);
{
bml::unique_ptr<const A[]> p(new A[2]);
BOOST_TEST(A::count == 2);
const A* i = p.get();
(void)i;
p.reset(new const A[3]);
BOOST_TEST(A::count == 3);
}
BOOST_TEST(A::count == 0);
}
} //unique_ptr_modifiers_reset2
////////////////////////////////
// unique_ptr_modifiers
////////////////////////////////
namespace unique_ptr_modifiers_swap{
// test swap
void test()
{
//Single unique_ptr
reset_counters();
{
A* p1 = new A(1);
move_constr_deleter<A> d1(1);
bml::unique_ptr<A, move_constr_deleter<A> > s1(p1, ::boost::move(d1));
A* p2 = new A(2);
move_constr_deleter<A> d2(2);
bml::unique_ptr<A, move_constr_deleter<A> > s2(p2, ::boost::move(d2));
BOOST_TEST(s1.get() == p1);
BOOST_TEST(*s1 == A(1));
BOOST_TEST(s1.get_deleter().state() == 1);
BOOST_TEST(s2.get() == p2);
BOOST_TEST(*s2 == A(2));
BOOST_TEST(s2.get_deleter().state() == 2);
swap(s1, s2);
BOOST_TEST(s1.get() == p2);
BOOST_TEST(*s1 == A(2));
BOOST_TEST(s1.get_deleter().state() == 2);
BOOST_TEST(s2.get() == p1);
BOOST_TEST(*s2 == A(1));
BOOST_TEST(s2.get_deleter().state() == 1);
}
//Array unique_ptr
reset_counters();
{
A* p1 = new A[2];
p1[0].set(1);
p1[1].set(2);
move_constr_deleter<A[]> d1(1);
bml::unique_ptr<A[], move_constr_deleter<A[]> > s1(p1, ::boost::move(d1));
A* p2 = new A[2];
p2[0].set(3);
p2[1].set(4);
move_constr_deleter<A[]> d2(2);
bml::unique_ptr<A[], move_constr_deleter<A[]> > s2(p2, ::boost::move(d2));
BOOST_TEST(s1.get() == p1);
BOOST_TEST(s1[0] == A(1));
BOOST_TEST(s1[1] == A(2));
BOOST_TEST(s1.get_deleter().state() == 1);
BOOST_TEST(s2.get() == p2);
BOOST_TEST(s2[0] == A(3));
BOOST_TEST(s2[1] == A(4));
BOOST_TEST(s2.get_deleter().state() == 2);
swap(s1, s2);
BOOST_TEST(s1.get() == p2);
BOOST_TEST(s1[0] == A(3));
BOOST_TEST(s1[1] == A(4));
BOOST_TEST(s1.get_deleter().state() == 2);
BOOST_TEST(s2.get() == p1);
BOOST_TEST(s2[0] == A(1));
BOOST_TEST(s2[1] == A(2));
BOOST_TEST(s2.get_deleter().state() == 1);
}
}
} //namespace unique_ptr_modifiers_swap{
////////////////////////////////
// unique_ptr_observers_dereference
////////////////////////////////
namespace unique_ptr_observers_dereference{
void test()
{
//Single unique_ptr
{
bml::unique_ptr<int> p(new int(3));
BOOST_TEST(*p == 3);
}
//Array unique_ptr
{
int *pi = new int[2];
pi[0] = 3;
pi[1] = 4;
bml::unique_ptr<int[]> p(pi);
BOOST_TEST(p[0] == 3);
BOOST_TEST(p[1] == 4);
}
}
} //namespace unique_ptr_observers_dereference{
////////////////////////////////
// unique_ptr_observers_dereference
////////////////////////////////
namespace unique_ptr_observers_explicit_bool{
void test()
{
//Single unique_ptr
{
bml::unique_ptr<int> p(new int(3));
if (p)
;
else
BOOST_TEST(false);
if (!p)
BOOST_TEST(false);
}
{
bml::unique_ptr<int> p;
if (!p)
;
else
BOOST_TEST(false);
if (p)
BOOST_TEST(false);
}
//Array unique_ptr
{
bml::unique_ptr<int[]> p(new int[2]);
if (p)
;
else
BOOST_TEST(false);
if (!p)
BOOST_TEST(false);
}
{
bml::unique_ptr<int[]> p;
if (!p)
;
else
BOOST_TEST(false);
if (p)
BOOST_TEST(false);
}
}
} //namespace unique_ptr_observers_explicit_bool{
////////////////////////////////
// unique_ptr_observers_get
////////////////////////////////
namespace unique_ptr_observers_get{
void test()
{
//Single unique_ptr
{
int* p = new int;
bml::unique_ptr<int> s(p);
BOOST_TEST(s.get() == p);
}
//Array unique_ptr
{
int* p = new int[2];
bml::unique_ptr<int[]> s(p);
BOOST_TEST(s.get() == p);
}
}
} //namespace unique_ptr_observers_get{
////////////////////////////////
// unique_ptr_observers_get_deleter
////////////////////////////////
namespace unique_ptr_observers_get_deleter{
struct Deleter
{
void operator()(void*) {}
int test() {return 5;}
int test() const {return 6;}
};
void test()
{
//Single unique_ptr
{
bml::unique_ptr<int, Deleter> p;
BOOST_TEST(p.get_deleter().test() == 5);
}
{
const bml::unique_ptr<int, Deleter> p;
BOOST_TEST(p.get_deleter().test() == 6);
}
//Array unique_ptr
{
bml::unique_ptr<int[], Deleter> p;
BOOST_TEST(p.get_deleter().test() == 5);
}
{
const bml::unique_ptr<int[], Deleter> p;
BOOST_TEST(p.get_deleter().test() == 6);
}
}
} //namespace unique_ptr_observers_get_deleter{
////////////////////////////////
// unique_ptr_observers_op_arrow
////////////////////////////////
namespace unique_ptr_observers_op_arrow{
void test()
{
//Single unique_ptr
{
bml::unique_ptr<A> p(new A);
BOOST_TEST(p->state_ == 999);
}
}
} //namespace unique_ptr_observers_op_arrow{
namespace unique_ptr_observers_op_index{
void test()
{
//Single unique_ptr
{
A *pa = new A[2];
//pa[0] is left default constructed
pa[1].set(888);
bml::unique_ptr<A[]> p(pa);
BOOST_TEST(p[0].state_ == 999);
BOOST_TEST(p[1].state_ == 888);
}
}
} //namespace unique_ptr_observers_op_index{
////////////////////////////////
// unique_ptr_nullptr
////////////////////////////////
namespace unique_ptr_nullptr{
void test()
{
#if !defined(BOOST_NO_CXX11_NULLPTR)
//Single unique_ptr
reset_counters();
{
bml::unique_ptr<A> p(new A);
BOOST_TEST(A::count == 1);
A* i = p.get();
(void)i;
p.reset(nullptr);
BOOST_TEST(A::count == 0);
BOOST_TEST(p.get() == 0);
}
BOOST_TEST(A::count == 0);
{
bml::unique_ptr<A> p(new A);
BOOST_TEST(A::count == 1);
A* i = p.get();
(void)i;
p = nullptr;
BOOST_TEST(A::count == 0);
BOOST_TEST(p.get() == 0);
}
BOOST_TEST(A::count == 0);
{
bml::unique_ptr<A> pi(nullptr);
BOOST_TEST(pi.get() == nullptr);
BOOST_TEST(pi.get() == 0);
}
BOOST_TEST(A::count == 0);
{
bml::unique_ptr<A> pi(nullptr, bml::unique_ptr<A>::deleter_type());
BOOST_TEST(pi.get() == nullptr);
BOOST_TEST(pi.get() == 0);
}
BOOST_TEST(A::count == 0);
//Array unique_ptr
reset_counters();
{
bml::unique_ptr<A[]> p(new A[2]);
BOOST_TEST(A::count == 2);
A* i = p.get();
(void)i;
p.reset(nullptr);
BOOST_TEST(A::count == 0);
BOOST_TEST(p.get() == 0);
}
BOOST_TEST(A::count == 0);
{
bml::unique_ptr<A[]> p(new A[2]);
BOOST_TEST(A::count == 2);
A* i = p.get();
(void)i;
p = nullptr;
BOOST_TEST(A::count == 0);
BOOST_TEST(p.get() == 0);
}
BOOST_TEST(A::count == 0);
{
bml::unique_ptr<A[]> pi(nullptr);
BOOST_TEST(pi.get() == nullptr);
BOOST_TEST(pi.get() == 0);
}
BOOST_TEST(A::count == 0);
{
bml::unique_ptr<A[]> pi(nullptr, bml::unique_ptr<A[]>::deleter_type());
BOOST_TEST(pi.get() == nullptr);
BOOST_TEST(pi.get() == 0);
}
BOOST_TEST(A::count == 0);
//Array element
#endif
}
} //namespace unique_ptr_nullptr{
////////////////////////////////
// main
////////////////////////////////
int main()
{
//General
pointer_type::test();
//Assignment
unique_ptr_asgn_move_convert01::test();
unique_ptr_asgn_move_convert02::test();
unique_ptr_asgn_move_convert03::test();
unique_ptr_asgn_move01::test();
//Constructor
unique_ptr_ctor_default01::test();
unique_ptr_ctor_default02::test();
unique_ptr_ctor_move_convert01::test();
unique_ptr_ctor_move_convert02::test();
unique_ptr_ctor_move_convert03::test();
unique_ptr_ctor_move_convert04::test();
unique_ptr_ctor_move_convert05::test();
unique_ptr_ctor_move_convert06::test();
unique_ptr_ctor_move01::test();
unique_ptr_ctor_move02::test();
unique_ptr_ctor_pointer_deleter01::test();
unique_ptr_ctor_pointer_deleter02::test();
unique_ptr_ctor_pointer_deleter03::test();
unique_ptr_ctor_pointer_deleter04::test();
unique_ptr_ctor_pointer_deleter05::test();
unique_ptr_ctor_pointer_deleter06::test();
unique_ptr_ctor_pointer01::test();
unique_ptr_ctor_pointer02::test();
unique_ptr_ctor_pointer03::test();
//Destructor
unique_ptr_dtor_null::test();
//Modifiers
unique_ptr_modifiers_release::test();
unique_ptr_modifiers_reset1::test();
unique_ptr_modifiers_reset2::test();
unique_ptr_modifiers_swap::test();
//Observers
unique_ptr_observers_dereference::test();
unique_ptr_observers_explicit_bool::test();
unique_ptr_observers_get::test();
unique_ptr_observers_get_deleter::test();
unique_ptr_observers_op_arrow::test();
unique_ptr_observers_op_index::test();
//nullptr
unique_ptr_zero::test();
unique_ptr_nullptr::test();
//Test results
return boost::report_errors();
}
//Define the incomplete I type and out of line functions
struct I
{
static int count;
I() {++count;}
I(const A&) {++count;}
~I() {--count;}
};
int I::count = 0;
I* get() {return new I;}
I* get_array(int i) {return new I[i];}
void check(int i)
{
BOOST_TEST(I::count == i);
}
template <class T, class D>
J<T, D>::~J() {}
void reset_counters()
{ A::count = 0; B::count = 0; I::count = 0; }