Files
optional/include/boost/optional.hpp

593 lines
18 KiB
C++
Raw Normal View History

2003-01-23 16:29:30 +00:00
// (C) 2003, Fernando Luis Cacciola Carballal.
2003-01-22 17:54:11 +00:00
//
// This material is provided "as is", with absolutely no warranty expressed
// or implied. Any use is at your own risk.
//
// Permission to use or copy this software for any purpose is hereby granted
// without fee, provided the above notices are retained on all copies.
// Permission to modify the code and to distribute modified code is granted,
// provided the above notices are retained, and a notice that the code was
// modified is included with the above copyright notice.
//
// See http://www.boost.org/lib/optional for documentation.
//
// You are welcome to contact the author at:
// fernando_cacciola@hotmail.com
//
#ifndef BOOST_OPTIONAL_FLC_19NOV2002_HPP
#define BOOST_OPTIONAL_FLC_19NOV2002_HPP
#include<new>
#include<algorithm>
2003-01-27 13:54:57 +00:00
#include "boost/config.hpp"
2003-01-22 17:54:11 +00:00
#include "boost/assert.hpp"
2003-09-10 15:39:30 +00:00
#include "boost/type.hpp"
2003-01-22 17:54:11 +00:00
#include "boost/type_traits/alignment_of.hpp"
#include "boost/type_traits/type_with_alignment.hpp"
2003-09-10 15:39:30 +00:00
#include "boost/type_traits/remove_reference.hpp"
#include "boost/type_traits/is_reference.hpp"
#include "boost/mpl/if.hpp"
#include "boost/mpl/bool.hpp"
#include "boost/mpl/not.hpp"
#include "boost/detail/reference_content.hpp"
2003-01-22 17:54:11 +00:00
#if BOOST_WORKAROUND(BOOST_MSVC, == 1200)
// VC6.0 has the following bug:
// When a templated assignment operator exist, an implicit conversion
// constructing an optional<T> is used when assigment of the form:
// optional<T> opt ; opt = T(...);
// is compiled.
// However, optional's ctor is _explicit_ and the assignemt shouldn't compile.
// Therefore, for VC6.0 templated assignment is disabled.
//
#define BOOST_OPTIONAL_NO_CONVERTING_ASSIGNMENT
#endif
#if BOOST_WORKAROUND(BOOST_MSVC, == 1300)
// VC7.0 has the following bug:
// When both a non-template and a template copy-ctor exist
// and the templated version is made 'explicit', the explicit is also
// given to the non-templated version, making the class non-implicitely-copyable.
//
#define BOOST_OPTIONAL_NO_CONVERTING_COPY_CTOR
#endif
2003-09-10 15:39:30 +00:00
namespace boost {
class InPlaceFactoryBase ;
namespace optional_detail {
template <class T>
class aligned_storage
2003-01-22 17:54:11 +00:00
{
2003-09-10 15:39:30 +00:00
// Borland ICEs if unnamed unions are used for this!
union dummy_u
2003-01-22 17:54:11 +00:00
{
2003-09-10 15:39:30 +00:00
char data[ sizeof(T) ];
BOOST_DEDUCED_TYPENAME type_with_alignment<
::boost::alignment_of<T>::value >::type aligner_;
} dummy_ ;
public:
void const* address() const { return &dummy_.data[0]; }
void * address() { return &dummy_.data[0]; }
} ;
2003-01-22 17:54:11 +00:00
template<class T>
struct types_when_isnt_ref
2003-01-22 17:54:11 +00:00
{
2003-09-10 15:39:30 +00:00
typedef T const& reference_const_type ;
typedef T & reference_type ;
typedef T const* pointer_const_type ;
typedef T * pointer_type ;
typedef T const& argument_type ;
} ;
template<class T>
struct types_when_is_ref
2003-09-10 15:39:30 +00:00
{
typedef BOOST_DEDUCED_TYPENAME remove_reference<T>::type raw_type ;
typedef raw_type& reference_const_type ;
typedef raw_type& reference_type ;
typedef raw_type* pointer_const_type ;
typedef raw_type* pointer_type ;
typedef raw_type& argument_type ;
} ;
template<class T>
class optional_base
{
private :
typedef BOOST_DEDUCED_TYPENAME detail::make_reference_content<T>::type internal_type ;
typedef aligned_storage<internal_type> storage_type ;
2003-01-22 17:54:11 +00:00
2003-09-10 15:39:30 +00:00
typedef types_when_isnt_ref<T> types_when_not_ref ;
typedef types_when_is_ref<T> types_when_ref ;
2003-01-22 17:54:11 +00:00
2003-09-10 15:39:30 +00:00
typedef optional_base<T> this_type ;
protected :
typedef mpl::true_ is_reference_tag ;
typedef mpl::false_ is_not_reference_tag ;
typedef BOOST_DEDUCED_TYPENAME is_reference<T>::type is_reference_predicate ;
2003-09-10 15:39:30 +00:00
typedef BOOST_DEDUCED_TYPENAME mpl::if_<is_reference_predicate,types_when_ref,types_when_not_ref>::type types ;
2003-09-10 15:39:30 +00:00
typedef bool (this_type::*unspecified_bool_type)() const;
2003-01-22 17:54:11 +00:00
2003-09-10 15:39:30 +00:00
typedef BOOST_DEDUCED_TYPENAME types::reference_type reference_type ;
typedef BOOST_DEDUCED_TYPENAME types::reference_const_type reference_const_type ;
typedef BOOST_DEDUCED_TYPENAME types::pointer_type pointer_type ;
typedef BOOST_DEDUCED_TYPENAME types::pointer_const_type pointer_const_type ;
typedef BOOST_DEDUCED_TYPENAME types::argument_type argument_type ;
2003-01-22 17:54:11 +00:00
// Creates an optional<T> uninitialized.
// No-throw
2003-09-10 15:39:30 +00:00
optional_base ()
2003-01-22 17:54:11 +00:00
:
m_initialized(false) {}
// Creates an optional<T> initialized with 'val'.
// Can throw if T::T(T const&) does
2003-09-10 15:39:30 +00:00
optional_base ( argument_type val )
2003-01-22 17:54:11 +00:00
:
m_initialized(false)
{
construct(val);
}
2003-09-10 15:39:30 +00:00
// Creates a deep copy of another optional<T>
// Can throw if T::T(T const&) does
optional_base ( optional_base const& rhs )
:
m_initialized(false)
{
if ( rhs.is_initialized() )
construct(rhs.get_impl());
}
template<class Expr>
explicit optional_base ( Expr const& expr, Expr const* tag )
:
m_initialized(false)
{
construct(expr,tag);
}
// No-throw (assuming T::~T() doesn't)
~optional_base() { destroy(is_reference_predicate()) ; }
// Assigns from another optional<T> (deep-copies the rhs value)
// Basic Guarantee: If T::T( T const& ) throws, this is left UNINITIALIZED
optional_base& operator= ( optional_base const& rhs )
{
destroy(is_reference_predicate()); // no-throw
if ( rhs.is_initialized() )
{
// An exception can be thrown here.
// It it happens, THIS will be left uninitialized.
assign(rhs.get_impl(), is_reference_predicate() );
}
return *this ;
}
// Assigns from a T (deep-copies the rhs value)
// Basic Guarantee: If T::( T const& ) throws, this is left UNINITIALIZED
optional_base& operator= ( argument_type val )
{
destroy(is_reference_predicate()); // no-throw
// An exception can be thrown here.
// It it happens, THIS will be left uninitialized.
assign(val, is_reference_predicate() );
return *this ;
}
public :
// Destroys the current value, if any, leaving this UNINITIALIZED
// No-throw (assuming T::~T() doesn't)
void reset()
{
destroy(is_reference_predicate());
}
// Replaces the current value -if any- with 'val'
// Basic Guarantee: If T::T( T const& ) throws this is left UNINITIALIZED.
void reset ( argument_type val )
{
destroy(is_reference_predicate());
assign(val, is_reference_predicate() );
}
// Returns a pointer to the value if this is initialized, otherwise,
// returns NULL.
// No-throw
pointer_const_type get_ptr() const { return m_initialized ? get_ptr_impl() : 0 ; }
pointer_type get_ptr() { return m_initialized ? get_ptr_impl() : 0 ; }
bool is_initialized() const { return m_initialized ; }
protected :
void construct ( argument_type val )
{
new (m_storage.address()) internal_type(val) ;
m_initialized = true ;
}
template<class Expr>
void construct ( Expr const& expr, void const* )
{
new (m_storage.address()) internal_type(expr) ;
m_initialized = true ;
}
template<class Expr>
void construct ( Expr const& factory, InPlaceFactoryBase const* )
{
BOOST_STATIC_ASSERT ( mpl::not_<is_reference_predicate>::value ) ;
boost::type<T> selector ;
factory(selector,m_storage.address()) ;
m_initialized = true ;
}
// NOTE: If T is of reference type, assignment must be disallowed, but optional's assignment uses T's copy-ctor
// so the following overload is needed to filter out the case of T being a reference and issue an error.
void assign ( argument_type val, is_not_reference_tag )
{
new (m_storage.address()) internal_type(val) ;
m_initialized = true ;
}
void destroy( is_not_reference_tag )
{
if ( m_initialized )
{
get_impl().~T() ;
m_initialized = false ;
}
}
void destroy( is_reference_tag )
{
m_initialized = false ;
}
unspecified_bool_type safe_bool() const { return m_initialized ? &this_type::is_initialized : 0 ; }
reference_const_type get_impl() const { return dereference(get_object(), is_reference_predicate() ) ; }
reference_type get_impl() { return dereference(get_object(), is_reference_predicate() ) ; }
pointer_const_type get_ptr_impl() const { return cast_ptr(get_object(), is_reference_predicate() ) ; }
pointer_type get_ptr_impl() { return cast_ptr(get_object(), is_reference_predicate() ) ; }
private :
// internal_type can be either T or reference_content<T>
internal_type const* get_object() const { return static_cast<internal_type const*>(m_storage.address()); }
internal_type * get_object() { return static_cast<internal_type *> (m_storage.address()); }
// reference_content<T> lacks an implicit conversion to T&, so the following is needed to obtain a proper reference.
reference_const_type dereference( internal_type const* p, is_not_reference_tag ) const { return *p ; }
reference_type dereference( internal_type* p, is_not_reference_tag ) { return *p ; }
reference_const_type dereference( internal_type const* p, is_reference_tag ) const { return p->get() ; }
reference_type dereference( internal_type* p, is_reference_tag ) { return p->get() ; }
// If T is of reference type, trying to get a pointer to the held value must result in a compile-time error.
// Decent compilers should disallow conversions from reference_content<T>* to T*, but just in case,
// the following olverloads are used to filter out the case and guarantee an error in case of T being a reference.
pointer_const_type cast_ptr( internal_type const* p, is_not_reference_tag ) const { return p ; }
pointer_type cast_ptr( internal_type * p, is_not_reference_tag ) { return p ; }
bool m_initialized ;
storage_type m_storage ;
} ;
} // namespace optional_detail
template<class T>
class optional : public optional_detail::optional_base<T>
{
typedef optional_detail::optional_base<T> base ;
typedef BOOST_DEDUCED_TYPENAME base::unspecified_bool_type unspecified_bool_type ;
public :
typedef optional<T> this_type ;
typedef T value_type ;
typedef BOOST_DEDUCED_TYPENAME base::reference_type reference_type ;
typedef BOOST_DEDUCED_TYPENAME base::reference_const_type reference_const_type ;
typedef BOOST_DEDUCED_TYPENAME base::pointer_type pointer_type ;
typedef BOOST_DEDUCED_TYPENAME base::pointer_const_type pointer_const_type ;
typedef BOOST_DEDUCED_TYPENAME base::argument_type argument_type ;
typedef BOOST_DEDUCED_TYPENAME base::is_reference_predicate is_reference_predicate ;
// Creates an optional<T> uninitialized.
// No-throw
optional() : base() {}
// Creates an optional<T> initialized with 'val'.
// Can throw if T::T(T const&) does
optional ( argument_type val ) : base(val) {}
#ifndef BOOST_OPTIONAL_NO_CONVERTING_COPY_CTOR
// NOTE: MSVC needs templated versions first
// Creates a deep copy of another convertible optional<U>
// Requires a valid conversion from U to T.
// Can throw if T::T(U const&) does
template<class U>
explicit optional ( optional<U> const& rhs )
2003-01-22 17:54:11 +00:00
:
2003-09-10 15:39:30 +00:00
base()
2003-01-22 17:54:11 +00:00
{
2003-09-10 15:39:30 +00:00
BOOST_STATIC_ASSERT ( mpl::not_<is_reference_predicate>::value ) ;
if ( rhs.is_initialized() )
construct(rhs.get());
2003-01-22 17:54:11 +00:00
}
#endif
2003-01-22 17:54:11 +00:00
// Creates a deep copy of another optional<T>
// Can throw if T::T(T const&) does
2003-09-10 15:39:30 +00:00
optional ( optional const& rhs ) : base(rhs) {}
template<class Expr>
explicit optional ( Expr const& expr ) : base(expr,&expr) {}
2003-01-22 17:54:11 +00:00
// No-throw (assuming T::~T() doesn't)
2003-09-10 15:39:30 +00:00
~optional() {}
2003-01-22 17:54:11 +00:00
#ifndef BOOST_OPTIONAL_NO_CONVERTING_ASSIGNMENT
// Assigns from another convertible optional<U> (converts && deep-copies the rhs value)
// Requires a valid conversion from U to T.
// Basic Guarantee: If T::T( U const& ) throws, this is left UNINITIALIZED
template<class U>
optional& operator= ( optional<U> const& rhs )
2003-01-22 17:54:11 +00:00
{
2003-09-10 15:39:30 +00:00
BOOST_STATIC_ASSERT ( mpl::not_<is_reference_predicate>::value ) ;
2003-01-22 17:54:11 +00:00
2003-09-10 15:39:30 +00:00
destroy(is_reference_predicate()); // no-throw
if ( rhs.is_initialized() )
2003-01-22 17:54:11 +00:00
{
// An exception can be thrown here.
// It it happens, THIS will be left uninitialized.
2003-09-10 15:39:30 +00:00
assign(rhs.get(), is_reference_predicate() );
2003-01-22 17:54:11 +00:00
}
return *this ;
}
#endif
2003-01-22 17:54:11 +00:00
// Assigns from another optional<T> (deep-copies the rhs value)
// Basic Guarantee: If T::T( T const& ) throws, this is left UNINITIALIZED
optional& operator= ( optional const& rhs )
2003-01-22 17:54:11 +00:00
{
2003-09-10 15:39:30 +00:00
this->base::operator= ( rhs ) ;
2003-01-22 17:54:11 +00:00
return *this ;
}
2003-09-10 15:39:30 +00:00
// Assigns from a T (deep-copies the rhs value)
// Basic Guarantee: If T::( T const& ) throws, this is left UNINITIALIZED
optional& operator= ( argument_type val )
2003-01-22 17:54:11 +00:00
{
2003-09-10 15:39:30 +00:00
this->base::operator= ( val ) ;
return *this ;
2003-01-22 17:54:11 +00:00
}
2003-09-10 15:39:30 +00:00
// Returns a reference to the value if this is initialized, otherwise,
// the behaviour is UNDEFINED
2003-01-22 17:54:11 +00:00
// No-throw
2003-09-10 15:39:30 +00:00
reference_const_type get() const { BOOST_ASSERT(this->is_initialized()) ; return this->get_impl(); }
reference_type get() { BOOST_ASSERT(this->is_initialized()) ; return this->get_impl(); }
2003-01-22 17:54:11 +00:00
// Returns a pointer to the value if this is initialized, otherwise,
// the behaviour is UNDEFINED
// No-throw
2003-09-10 15:39:30 +00:00
pointer_const_type operator->() const { BOOST_ASSERT(this->is_initialized()) ; return this->get_ptr_impl() ; }
pointer_type operator->() { BOOST_ASSERT(this->is_initialized()) ; return this->get_ptr_impl() ; }
2003-01-22 17:54:11 +00:00
// Returns a reference to the value if this is initialized, otherwise,
// the behaviour is UNDEFINED
// No-throw
2003-09-10 15:39:30 +00:00
reference_const_type operator *() const { return this->get() ; }
reference_type operator *() { return this->get() ; }
2003-01-22 17:54:11 +00:00
// implicit conversion to "bool"
// No-throw
2003-09-10 15:39:30 +00:00
operator unspecified_bool_type() const { return this->safe_bool() ; }
2003-01-22 17:54:11 +00:00
// This is provided for those compilers which don't like the conversion to bool
// on some contexts.
2003-09-10 15:39:30 +00:00
bool operator!() const { return !this->is_initialized() ; }
} ;
2003-01-22 17:54:11 +00:00
2003-09-10 15:39:30 +00:00
// Returns a reference to the value if this is initialized, otherwise, the behaviour is UNDEFINED.
// No-throw
template<class T>
inline
BOOST_DEDUCED_TYPENAME optional<T>::reference_const_type
get ( optional<T> const& opt )
{
return opt.get() ;
}
2003-01-22 17:54:11 +00:00
2003-09-10 15:39:30 +00:00
template<class T>
inline
BOOST_DEDUCED_TYPENAME optional<T>::reference_type
get ( optional<T>& opt )
{
return opt.get() ;
}
2003-01-22 17:54:11 +00:00
2003-09-10 15:39:30 +00:00
// Returns a pointer to the value if this is initialized, otherwise, returns NULL.
// No-throw
template<class T>
inline
BOOST_DEDUCED_TYPENAME optional<T>::pointer_const_type
get ( optional<T> const* opt )
{
return opt->get_ptr() ;
}
2003-01-22 17:54:11 +00:00
2003-09-10 15:39:30 +00:00
template<class T>
inline
BOOST_DEDUCED_TYPENAME optional<T>::pointer_type
get ( optional<T>* opt )
{
return opt->get_ptr() ;
}
2003-01-22 17:54:11 +00:00
// Returns a pointer to the value if this is initialized, otherwise, returns NULL.
// No-throw
template<class T>
inline
2003-09-10 15:39:30 +00:00
BOOST_DEDUCED_TYPENAME optional<T>::pointer_const_type
get_pointer ( optional<T> const& opt )
2003-01-22 17:54:11 +00:00
{
2003-09-10 15:39:30 +00:00
return opt.get_ptr() ;
2003-01-22 17:54:11 +00:00
}
template<class T>
inline
2003-09-10 15:39:30 +00:00
BOOST_DEDUCED_TYPENAME optional<T>::pointer_type
get_pointer ( optional<T>& opt )
2003-01-22 17:54:11 +00:00
{
2003-09-10 15:39:30 +00:00
return opt.get_ptr() ;
2003-01-22 17:54:11 +00:00
}
2003-09-10 15:39:30 +00:00
2003-01-22 17:54:11 +00:00
// template<class OP> bool equal_pointees(OP const& x, OP const& y);
//
// Being OP a model of OptionalPointee (either a pointer or an optional):
//
// If both x and y have valid pointees, returns the result of (*x == *y)
// If only one has a valid pointee, returns false.
// If none have valid pointees, returns true.
// No-throw
template<class OptionalPointee>
inline
bool equal_pointees ( OptionalPointee const& x, OptionalPointee const& y )
{
return (!x) != (!y) ? false : ( !x ? true : (*x) == (*y) ) ;
}
2003-09-10 15:39:30 +00:00
// template<class OP> bool less_pointees(OP const& x, OP const& y);
//
// Being OP a model of OptionalPointee (either a pointer or an optional):
//
// If y has not a valid pointee, returns false.
// ElseIf x has not a valid pointee, returns true.
// ElseIf both x and y have valid pointees, returns the result of (*x < *y)
// No-throw
template<class OptionalPointee>
inline
bool less_pointees ( OptionalPointee const& x, OptionalPointee const& y )
{
return !y ? false : ( !x ? true : (*x) < (*y) ) ;
}
// optional's relational operators ( ==, !=, <, >, <=, >= ) have deep-semantics (compare values).
// WARNING: This is UNLIKE pointers. Use equal_pointees()/less_pointess() in generic code instead.
2003-01-22 17:54:11 +00:00
template<class T>
inline
bool operator == ( optional<T> const& x, optional<T> const& y )
{ return equal_pointees(x,y); }
2003-09-10 15:39:30 +00:00
template<class T>
inline
bool operator < ( optional<T> const& x, optional<T> const& y )
{ return less_pointees(x,y); }
2003-01-22 17:54:11 +00:00
template<class T>
inline
bool operator != ( optional<T> const& x, optional<T> const& y )
{ return !( x == y ) ; }
2003-09-10 15:39:30 +00:00
template<class T>
inline
bool operator > ( optional<T> const& x, optional<T> const& y )
{ return y < x ; }
template<class T>
inline
bool operator <= ( optional<T> const& x, optional<T> const& y )
{ return !( y < x ) ; }
template<class T>
inline
bool operator >= ( optional<T> const& x, optional<T> const& y )
{ return !( x < y ) ; }
2003-01-28 15:18:50 +00:00
//
// The following swap implementation follows the GCC workaround as found in
// "boost/detail/compressed_pair.hpp"
//
namespace optional_detail {
2003-09-10 15:39:30 +00:00
// GCC <= 3.2 gets the using declaration at namespace scope (FLC)
#if BOOST_WORKAROUND(__GNUC__, <= 3) && __GNUC_MINOR__ <= 2
// workaround for GCC (JM):
2003-01-28 15:18:50 +00:00
using std::swap;
2003-09-10 15:39:30 +00:00
#define BOOST_OPTIONAL_STD_SWAP_INTRODUCED_AT_NS_SCOPE
2003-01-28 15:18:50 +00:00
#endif
2003-01-22 17:54:11 +00:00
// optional's swap:
// If both are initialized, calls swap(T&, T&), with whatever exception guarantess are given there.
// If only one is initialized, calls I.reset() and U.reset(*I), with the Basic Guarantee
// If both are uninitialized, do nothing (no-throw)
template<class T>
inline
2003-01-28 15:18:50 +00:00
void optional_swap ( optional<T>& x, optional<T>& y )
2003-01-22 17:54:11 +00:00
{
if ( !x && !!y )
{
x.reset(*y); // Basic guarantee.
y.reset();
}
else if ( !!x && !y )
{
y.reset(*x); // Basic guarantee.
x.reset();
}
else if ( !!x && !!y )
{
2003-09-10 15:39:30 +00:00
// GCC > 3.2 and all other compilers have the using declaration at function scope (FLC)
#ifndef BOOST_OPTIONAL_STD_SWAP_INTRODUCED_AT_NS_SCOPE
// allow for Koenig lookup
2003-01-22 17:54:11 +00:00
using std::swap ;
2003-01-28 15:18:50 +00:00
#endif
2003-01-22 17:54:11 +00:00
swap(*x,*y);
}
}
2003-01-28 15:18:50 +00:00
} // namespace optional_detail
template<class T> inline void swap ( optional<T>& x, optional<T>& y )
{
optional_detail::optional_swap(x,y);
}
2003-01-22 17:54:11 +00:00
} // namespace boost
#endif