This commit was manufactured by cvs2svn to create branch 'RC_1_29_0'.

[SVN r15460]
This commit is contained in:
nobody
2002-09-19 20:49:39 +00:00
48 changed files with 6433 additions and 0 deletions

105
compatibility.htm Normal file
View File

@@ -0,0 +1,105 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Smart Pointer Changes</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="middle" width="277" height="86">Smart
Pointer Changes</h1>
<p>The February 2002 change to the Boost smart pointers introduced a number
of changes. Since the previous version of the smart pointers was in use for
a long time, it's useful to have a detailed list of what changed from a library
user's point of view.</p>
<p>Note that for compilers that don't support member templates well enough,
a separate implementation is used that lacks many of the new features and is
more like the old version.</p>
<h2>Features Requiring Code Changes to Take Advantage</h2>
<ul>
<li>The smart pointer class templates now each have their own header file.
For compatibility, the
<a href="../../boost/smart_ptr.hpp">&lt;boost/smart_ptr.hpp&gt;</a>
header now includes the headers for the four classic smart pointer class templates.</li>
<li>The <b>weak_ptr</b> template was added.</li>
<li>The new <b>shared_ptr</b> and <b>shared_array</b> relax the requirement that the pointed-to object's
destructor must be visible when instantiating the <b>shared_ptr</b> destructor.
This makes it easier to have shared_ptr members in classes without explicit destructors.</li>
<li>A custom deallocator can be passed in when creating a <b>shared_ptr</b> or <b>shared_array</b>.</li>
<li><b>shared_static_cast</b> and <b>shared_dynamic_cast</b> function templates are
provided which work for <b>shared_ptr</b> and <b>weak_ptr</b> as <b>static_cast</b> and
<b>dynamic_cast</b> do for pointers.</li>
<li>The self-assignment misfeature has been removed from <b>shared_ptr::reset</b>,
although it is still present in <b>scoped_ptr</b>, and in <b>std::auto_ptr</b>.
Calling <b>reset</b> with a pointer to the object that's already owned by the
<b>shared_ptr</b> results in undefined behavior
(an assertion, or eventually a double-delete if assertions are off).</li>
<li>The <b>BOOST_SMART_PTR_CONVERSION</b> feature has been removed.</li>
<li><b>shared_ptr&lt;void&gt;</b> is now allowed.</li>
</ul>
<h2>Features That Improve Robustness</h2>
<ul>
<li>The manipulation of use counts is now <a name="threadsafe">thread safe</a> on Windows, Linux, and platforms
that support pthreads. See the
<a href="../../boost/detail/atomic_count.hpp">&lt;boost/detail/atomic_count.hpp&gt;</a>
file for details</li>
<li>The new shared_ptr will always delete the object using the pointer it was originally constructed with.
This prevents subtle problems that could happen if the last <b>shared_ptr</b> was a pointer to a sub-object
of a class that did not have a virtual destructor.</li>
</ul>
<h2>Implementation Details</h2>
<ul>
<li>Some bugs in the assignment operator implementations and in <b>reset</b>
have been fixed by using the &quot;copy and swap&quot; idiom.</li>
<li>Assertions have been added to check preconditions of various functions;
however, since these use the new
<a href="../../boost/assert.hpp">&lt;boost/assert.hpp&gt;</a>
header, the assertions are disabled by default.</li>
<li>The partial specialization of <b>std::less</b> has been replaced by <b>operator&lt;</b>
overloads which accomplish the same thing without relying on undefined behavior.</li>
<li>The incorrect overload of <b>std::swap</b> has been replaced by <b>boost::swap</b>, which
has many of the same advantages for generic programming but does not violate the C++ standard.</li>
</ul>
<hr>
<p>Revised 1 February 2002</p>
<p>Copyright 2002 Darin Adler.
Permission to copy, use,
modify, sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided &quot;as is&quot;
without express or implied warranty, and with no claim as to its suitability for
any purpose.</p>
</body>
</html>

BIN
gccspeed.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.4 KiB

View File

@@ -0,0 +1,123 @@
#ifndef BOOST_DETAIL_ATOMIC_COUNT_HPP_INCLUDED
#define BOOST_DETAIL_ATOMIC_COUNT_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/atomic_count.hpp - thread/SMP safe reference counter
//
// Copyright (c) 2001, 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// typedef <implementation-defined> boost::detail::atomic_count;
//
// atomic_count a(n);
//
// (n is convertible to long)
//
// Effects: Constructs an atomic_count with an initial value of n
//
// a;
//
// Returns: (long) the current value of a
//
// ++a;
//
// Effects: Atomically increments the value of a
// Returns: nothing
//
// --a;
//
// Effects: Atomically decrements the value of a
// Returns: (long) zero if the new value of a is zero,
// unspecified non-zero value otherwise (usually the new value)
//
// Important note: when --a returns zero, it must act as a
// read memory barrier (RMB); i.e. the calling thread must
// have a synchronized view of the memory
//
// On Intel IA-32 (x86) memory is always synchronized, so this
// is not a problem.
//
// On many architectures the atomic instructions already act as
// a memory barrier.
//
// This property is necessary for proper reference counting, since
// a thread can update the contents of a shared object, then
// release its reference, and another thread may immediately
// release the last reference causing object destruction.
//
// The destructor needs to have a synchronized view of the
// object to perform proper cleanup.
//
// Original example by Alexander Terekhov:
//
// Given:
//
// - a mutable shared object OBJ;
// - two threads THREAD1 and THREAD2 each holding
// a private smart_ptr object pointing to that OBJ.
//
// t1: THREAD1 updates OBJ (thread-safe via some synchronization)
// and a few cycles later (after "unlock") destroys smart_ptr;
//
// t2: THREAD2 destroys smart_ptr WITHOUT doing any synchronization
// with respect to shared mutable object OBJ; OBJ destructors
// are called driven by smart_ptr interface...
//
// Note: atomic_count_linux.hpp has been disabled by default; see the
// comments inside for more info.
#include <boost/config.hpp>
#ifndef BOOST_HAS_THREADS
namespace boost
{
namespace detail
{
typedef long atomic_count;
}
}
#elif defined(BOOST_USE_ASM_ATOMIC_H)
# include <boost/detail/atomic_count_linux.hpp>
#elif defined(BOOST_AC_USE_PTHREADS)
# include <boost/detail/atomic_count_pthreads.hpp>
#elif defined(WIN32) || defined(_WIN32) || defined(__WIN32__)
# include <boost/detail/atomic_count_win32.hpp>
#elif defined(__GLIBCPP__)
# include <boost/detail/atomic_count_gcc.hpp>
#elif defined(BOOST_HAS_PTHREADS)
# define BOOST_AC_USE_PTHREADS
# include <boost/detail/atomic_count_pthreads.hpp>
#else
// #warning Unrecognized platform, detail::atomic_count will not be thread safe
namespace boost
{
namespace detail
{
typedef long atomic_count;
}
}
#endif
#endif // #ifndef BOOST_DETAIL_ATOMIC_COUNT_HPP_INCLUDED

View File

@@ -0,0 +1,61 @@
#ifndef BOOST_DETAIL_ATOMIC_COUNT_GCC_HPP_INCLUDED
#define BOOST_DETAIL_ATOMIC_COUNT_GCC_HPP_INCLUDED
//
// boost/detail/atomic_count_gcc.hpp
//
// atomic_count for GNU libstdc++ v3
//
// http://gcc.gnu.org/onlinedocs/porting/Thread-safety.html
//
// Copyright (c) 2001, 2002 Peter Dimov and Multi Media Ltd.
// Copyright (c) 2002 Lars Gullik Bj<42>nnes <larsbj@lyx.org>
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <bits/atomicity.h>
namespace boost
{
namespace detail
{
class atomic_count
{
public:
explicit atomic_count(long v) : value_(v) {}
void operator++()
{
__atomic_add(&value_, 1);
}
long operator--()
{
return !__exchange_and_add(&value_, -1);
}
operator long() const
{
return __exchange_and_add(&value_, 0);
}
private:
atomic_count(atomic_count const &);
atomic_count & operator=(atomic_count const &);
_Atomic_word value_;
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_ATOMIC_COUNT_GCC_HPP_INCLUDED

View File

@@ -0,0 +1,70 @@
#ifndef BOOST_DETAIL_ATOMIC_COUNT_LINUX_HPP_INCLUDED
#define BOOST_DETAIL_ATOMIC_COUNT_LINUX_HPP_INCLUDED
//
// boost/detail/atomic_count_linux.hpp
//
// Copyright (c) 2001, 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//
// This implementation uses <asm/atomic.h>. This is a kernel header;
// using kernel headers in a user program may cause a number of problems,
// and not all flavors of Linux provide the atomic instructions.
//
// This file is only provided because the performance of this implementation
// is significantly higher than the pthreads version. Use at your own risk
// (by defining BOOST_USE_ASM_ATOMIC_H.)
//
#include <asm/atomic.h>
namespace boost
{
namespace detail
{
class atomic_count
{
public:
explicit atomic_count(long v)
{
atomic_t init = ATOMIC_INIT(v);
value_ = init;
}
void operator++()
{
atomic_inc(&value_);
}
long operator--()
{
return !atomic_dec_and_test(&value_);
}
operator long() const
{
return atomic_read(&value_);
}
private:
atomic_count(atomic_count const &);
atomic_count & operator=(atomic_count const &);
atomic_t value_;
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_ATOMIC_COUNT_LINUX_HPP_INCLUDED

View File

@@ -0,0 +1,97 @@
#ifndef BOOST_DETAIL_ATOMIC_COUNT_PTHREADS_HPP_INCLUDED
#define BOOST_DETAIL_ATOMIC_COUNT_PTHREADS_HPP_INCLUDED
//
// boost/detail/atomic_count_pthreads.hpp
//
// Copyright (c) 2001, 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <pthread.h>
//
// The generic pthread_mutex-based implementation sometimes leads to
// inefficiencies. Example: a class with two atomic_count members
// can get away with a single mutex.
//
// Users can detect this situation by checking BOOST_AC_USE_PTHREADS.
//
namespace boost
{
namespace detail
{
class atomic_count
{
private:
class scoped_lock
{
public:
scoped_lock(pthread_mutex_t & m): m_(m)
{
pthread_mutex_lock(&m_);
}
~scoped_lock()
{
pthread_mutex_unlock(&m_);
}
private:
pthread_mutex_t & m_;
};
public:
explicit atomic_count(long v): value_(v)
{
pthread_mutex_init(&mutex_, 0);
}
~atomic_count()
{
pthread_mutex_destroy(&mutex_);
}
void operator++()
{
scoped_lock lock(mutex_);
++value_;
}
long operator--()
{
scoped_lock lock(mutex_);
return --value_;
}
operator long() const
{
scoped_lock lock(mutex_);
return value_;
}
private:
atomic_count(atomic_count const &);
atomic_count & operator=(atomic_count const &);
mutable pthread_mutex_t mutex_;
long value_;
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_ATOMIC_COUNT_PTHREADS_HPP_INCLUDED

View File

@@ -0,0 +1,62 @@
#ifndef BOOST_DETAIL_ATOMIC_COUNT_WIN32_HPP_INCLUDED
#define BOOST_DETAIL_ATOMIC_COUNT_WIN32_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/atomic_count_win32.hpp
//
// Copyright (c) 2001, 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <boost/detail/winapi.hpp>
namespace boost
{
namespace detail
{
class atomic_count
{
public:
explicit atomic_count(long v): value_(v)
{
}
long operator++()
{
return winapi::InterlockedIncrement(&value_);
}
long operator--()
{
return winapi::InterlockedDecrement(&value_);
}
operator long() const
{
return value_;
}
private:
atomic_count(atomic_count const &);
atomic_count & operator=(atomic_count const &);
volatile long value_;
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_ATOMIC_COUNT_WIN32_HPP_INCLUDED

View File

@@ -0,0 +1,88 @@
#ifndef BOOST_DETAIL_LIGHTWEIGHT_MUTEX_HPP_INCLUDED
#define BOOST_DETAIL_LIGHTWEIGHT_MUTEX_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/lightweight_mutex.hpp - lightweight mutex
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// typedef <unspecified> boost::detail::lightweight_mutex;
//
// boost::detail::lightweight_mutex meets a subset of the Mutex concept
// requirements: http://www.boost.org/libs/thread/doc/mutex_concept.html#Mutex
//
// * Used by the smart pointer library
// * Performance oriented
// * Header-only implementation
// * Small memory footprint
// * Not a general purpose mutex, use boost::mutex, CRITICAL_SECTION or
// pthread_mutex instead.
// * Never spin in a tight lock/do-something/unlock loop, since
// lightweight_mutex does not guarantee fairness.
// * Never keep a lightweight_mutex locked for long periods.
//
// The current implementation can use a pthread_mutex, a CRITICAL_SECTION,
// or a platform-specific spinlock.
//
// You can force a particular implementation by defining BOOST_LWM_USE_PTHREADS,
// BOOST_LWM_USE_CRITICAL_SECTION, or BOOST_LWM_USE_SPINLOCK.
//
// If neither macro has been defined, the default is to use a spinlock on Win32,
// and a pthread_mutex otherwise.
//
// Note that a spinlock is not a general synchronization primitive. In particular,
// it is not guaranteed to be a memory barrier, and it is possible to "livelock"
// if a lower-priority thread has acquired the spinlock but a higher-priority
// thread is spinning trying to acquire the same lock.
//
// For these reasons, spinlocks have been disabled by default except on Windows,
// where a spinlock can be several orders of magnitude faster than a CRITICAL_SECTION.
// Note: lwm_linux.hpp has been disabled by default; see the comments
// inside for more info.
#include <boost/config.hpp>
// Note to implementors: if you write a platform-specific spinlock
// for a platform that supports pthreads, be sure to test its performance
// against the pthreads-based version using shared_ptr_timing_test.cpp and
// shared_ptr_mt_test.cpp. Custom versions are usually not worth the trouble
// _unless_ the performance gains are substantial.
//
// Be sure to compare against a "real" pthreads library;
// shared_ptr_timing_test.cpp will compile succesfully with a stub do-nothing
// pthreads library, since it doesn't create any threads.
#ifndef BOOST_HAS_THREADS
# include <boost/detail/lwm_nop.hpp>
#elif defined(BOOST_LWM_USE_SPINLOCK) && defined(BOOST_USE_ASM_ATOMIC_H)
# include <boost/detail/lwm_linux.hpp>
#elif defined(BOOST_LWM_USE_CRITICAL_SECTION)
# include <boost/detail/lwm_win32_cs.hpp>
#elif defined(BOOST_LWM_USE_PTHREADS)
# include <boost/detail/lwm_pthreads.hpp>
#elif defined(WIN32) || defined(_WIN32) || defined(__WIN32__)
# include <boost/detail/lwm_win32.hpp>
#elif defined(BOOST_LWM_USE_SPINLOCK) && defined(__sgi)
# include <boost/detail/lwm_irix.hpp>
#elif defined(BOOST_LWM_USE_SPINLOCK) && defined(__GLIBCPP__)
# include <boost/detail/lwm_gcc.hpp>
#elif defined(BOOST_HAS_PTHREADS)
# define BOOST_LWM_USE_PTHREADS
# include <boost/detail/lwm_pthreads.hpp>
#else
# include <boost/detail/lwm_nop.hpp>
#endif
#endif // #ifndef BOOST_DETAIL_LIGHTWEIGHT_MUTEX_HPP_INCLUDED

View File

@@ -0,0 +1,78 @@
#ifndef BOOST_DETAIL_LWM_GCC_HPP_INCLUDED
#define BOOST_DETAIL_LWM_GCC_HPP_INCLUDED
//
// boost/detail/lwm_gcc.hpp
//
// lightweight_mutex for GNU libstdc++ v3
//
// http://gcc.gnu.org/onlinedocs/porting/Thread-safety.html
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
// Copyright (c) 2002 Lars Gullik Bj<42>nnes <larsbj@lyx.org>
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <bits/atomicity.h>
#include <sched.h>
namespace boost
{
namespace detail
{
class lightweight_mutex
{
private:
_Atomic_word a_;
lightweight_mutex(lightweight_mutex const &);
lightweight_mutex & operator=(lightweight_mutex const &);
public:
lightweight_mutex(): a_(1)
{
}
class scoped_lock;
friend class scoped_lock;
class scoped_lock
{
private:
lightweight_mutex & m_;
scoped_lock(scoped_lock const &);
scoped_lock & operator=(scoped_lock const &);
public:
explicit scoped_lock(lightweight_mutex & m): m_(m)
{
while( !__exchange_and_add(&m_.a_, -1) )
{
__atomic_add(&m_.a_, 1);
sched_yield();
}
}
~scoped_lock()
{
__atomic_add(&m_.a_, 1);
}
};
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_LWM_GCC_HPP_INCLUDED

View File

@@ -0,0 +1,78 @@
#ifndef BOOST_DETAIL_LWM_IRIX_HPP_INCLUDED
#define BOOST_DETAIL_LWM_IRIX_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/lwm_irix.hpp
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
// Copyright (c) 2002 Dan Gohman
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <sgidefs.h>
#include <mutex.h>
#include <sched.h>
namespace boost
{
namespace detail
{
class lightweight_mutex
{
private:
__uint32_t l_;
lightweight_mutex(lightweight_mutex const &);
lightweight_mutex & operator=(lightweight_mutex const &);
public:
lightweight_mutex(): l_(0)
{
}
class scoped_lock;
friend class scoped_lock;
class scoped_lock
{
private:
lightweight_mutex & m_;
scoped_lock(scoped_lock const &);
scoped_lock & operator=(scoped_lock const &);
public:
explicit scoped_lock(lightweight_mutex & m): m_(m)
{
while( test_and_set32(&m_.l_, 1) )
{
sched_yield();
}
}
~scoped_lock()
{
m_.l_ = 0;
}
};
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_LWM_IRIX_HPP_INCLUDED

View File

@@ -0,0 +1,89 @@
#ifndef BOOST_DETAIL_LWM_LINUX_HPP_INCLUDED
#define BOOST_DETAIL_LWM_LINUX_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/lwm_linux.hpp
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//
// This implementation uses <asm/atomic.h>. This is a kernel header;
// using kernel headers in a user program may cause a number of problems,
// and not all flavors of Linux provide the atomic instructions.
//
// This file is only provided because the performance of this implementation
// is about 3.5 times higher than the pthreads version. Use at your own risk
// (by defining BOOST_USE_ASM_ATOMIC_H.)
//
#include <asm/atomic.h>
#include <sched.h>
namespace boost
{
namespace detail
{
class lightweight_mutex
{
private:
atomic_t a_;
lightweight_mutex(lightweight_mutex const &);
lightweight_mutex & operator=(lightweight_mutex const &);
public:
lightweight_mutex()
{
atomic_t a = ATOMIC_INIT(1);
a_ = a;
}
class scoped_lock;
friend class scoped_lock;
class scoped_lock
{
private:
lightweight_mutex & m_;
scoped_lock(scoped_lock const &);
scoped_lock & operator=(scoped_lock const &);
public:
explicit scoped_lock(lightweight_mutex & m): m_(m)
{
while( !atomic_dec_and_test(&m_.a_) )
{
atomic_inc(&m_.a_);
sched_yield();
}
}
~scoped_lock()
{
atomic_inc(&m_.a_);
}
};
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_LWM_LINUX_HPP_INCLUDED

View File

@@ -0,0 +1,36 @@
#ifndef BOOST_DETAIL_LWM_NOP_HPP_INCLUDED
#define BOOST_DETAIL_LWM_NOP_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/lwm_nop.hpp
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
namespace boost
{
namespace detail
{
class lightweight_mutex
{
public:
typedef lightweight_mutex scoped_lock;
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_LWM_NOP_HPP_INCLUDED

View File

@@ -0,0 +1,85 @@
#ifndef BOOST_DETAIL_LWM_PTHREADS_HPP_INCLUDED
#define BOOST_DETAIL_LWM_PTHREADS_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/lwm_pthreads.hpp
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <pthread.h>
namespace boost
{
namespace detail
{
class lightweight_mutex
{
private:
pthread_mutex_t m_;
lightweight_mutex(lightweight_mutex const &);
lightweight_mutex & operator=(lightweight_mutex const &);
public:
lightweight_mutex()
{
// HPUX 10.20 / DCE has a nonstandard pthread_mutex_init
#if defined(__hpux) && defined(_DECTHREADS_)
pthread_mutex_init(&m_, pthread_mutexattr_default);
#else
pthread_mutex_init(&m_, 0);
#endif
}
~lightweight_mutex()
{
pthread_mutex_destroy(&m_);
}
class scoped_lock;
friend class scoped_lock;
class scoped_lock
{
private:
pthread_mutex_t & m_;
scoped_lock(scoped_lock const &);
scoped_lock & operator=(scoped_lock const &);
public:
scoped_lock(lightweight_mutex & m): m_(m.m_)
{
pthread_mutex_lock(&m_);
}
~scoped_lock()
{
pthread_mutex_unlock(&m_);
}
};
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_LWM_PTHREADS_HPP_INCLUDED

View File

@@ -0,0 +1,94 @@
#ifndef BOOST_DETAIL_LWM_WIN32_HPP_INCLUDED
#define BOOST_DETAIL_LWM_WIN32_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/lwm_win32.hpp
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <boost/detail/winapi.hpp>
#ifdef __BORLANDC__
# pragma warn -8027 // Functions containing while are not expanded inline
#endif
namespace boost
{
namespace detail
{
class lightweight_mutex
{
private:
long l_;
lightweight_mutex(lightweight_mutex const &);
lightweight_mutex & operator=(lightweight_mutex const &);
public:
lightweight_mutex(): l_(0)
{
}
class scoped_lock;
friend class scoped_lock;
class scoped_lock
{
private:
lightweight_mutex & m_;
scoped_lock(scoped_lock const &);
scoped_lock & operator=(scoped_lock const &);
public:
explicit scoped_lock(lightweight_mutex & m): m_(m)
{
while( winapi::InterlockedExchange(&m_.l_, 1) )
{
// Note: changed to Sleep(1) from Sleep(0).
// According to MSDN, Sleep(0) will never yield
// to a lower-priority thread, whereas Sleep(1)
// will. Performance seems not to be affected.
winapi::Sleep(1);
}
}
~scoped_lock()
{
winapi::InterlockedExchange(&m_.l_, 0);
// Note: adding a yield here will make
// the spinlock more fair and will increase the overall
// performance of some applications substantially in
// high contention situations, but will penalize the
// low contention / single thread case up to 5x
}
};
};
} // namespace detail
} // namespace boost
#ifdef __BORLANDC__
# pragma warn .8027 // Functions containing while are not expanded inline
#endif
#endif // #ifndef BOOST_DETAIL_LWM_WIN32_HPP_INCLUDED

View File

@@ -0,0 +1,78 @@
#ifndef BOOST_DETAIL_LWM_WIN32_CS_HPP_INCLUDED
#define BOOST_DETAIL_LWM_WIN32_CS_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/lwm_win32_cs.hpp
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <boost/detail/winapi.hpp>
namespace boost
{
namespace detail
{
class lightweight_mutex
{
private:
winapi::critical_section cs_;
lightweight_mutex(lightweight_mutex const &);
lightweight_mutex & operator=(lightweight_mutex const &);
public:
lightweight_mutex()
{
winapi::InitializeCriticalSection(&cs_);
}
~lightweight_mutex()
{
winapi::DeleteCriticalSection(&cs_);
}
class scoped_lock;
friend class scoped_lock;
class scoped_lock
{
private:
lightweight_mutex & m_;
scoped_lock(scoped_lock const &);
scoped_lock & operator=(scoped_lock const &);
public:
explicit scoped_lock(lightweight_mutex & m): m_(m)
{
winapi::EnterCriticalSection(&m_.cs_);
}
~scoped_lock()
{
winapi::LeaveCriticalSection(&m_.cs_);
}
};
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_LWM_WIN32_CS_HPP_INCLUDED

View File

@@ -0,0 +1,152 @@
#ifndef BOOST_DETAIL_SHARED_ARRAY_NMT_HPP_INCLUDED
#define BOOST_DETAIL_SHARED_ARRAY_NMT_HPP_INCLUDED
//
// detail/shared_array_nmt.hpp - shared_array.hpp without member templates
//
// (C) Copyright Greg Colvin and Beman Dawes 1998, 1999.
// Copyright (c) 2001, 2002 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// See http://www.boost.org/libs/smart_ptr/shared_array.htm for documentation.
//
#include <boost/assert.hpp>
#include <boost/checked_delete.hpp>
#include <boost/throw_exception.hpp>
#include <boost/detail/atomic_count.hpp>
#include <cstddef> // for std::ptrdiff_t
#include <algorithm> // for std::swap
#include <functional> // for std::less
#include <new> // for std::bad_alloc
namespace boost
{
template<class T> class shared_array
{
private:
typedef detail::atomic_count count_type;
public:
typedef T element_type;
explicit shared_array(T * p = 0): px(p)
{
#ifndef BOOST_NO_EXCEPTIONS
try // prevent leak if new throws
{
pn = new count_type(1);
}
catch(...)
{
boost::checked_array_delete(p);
throw;
}
#else
pn = new count_type(1);
if(pn == 0)
{
boost::checked_array_delete(p);
boost::throw_exception(std::bad_alloc());
}
#endif
}
~shared_array()
{
if(--*pn == 0)
{
boost::checked_array_delete(px);
delete pn;
}
}
shared_array(shared_array const & r) : px(r.px) // never throws
{
pn = r.pn;
++*pn;
}
shared_array & operator=(shared_array const & r)
{
shared_array(r).swap(*this);
return *this;
}
void reset(T * p = 0)
{
BOOST_ASSERT(p == 0 || p != px);
shared_array(p).swap(*this);
}
T * get() const // never throws
{
return px;
}
T & operator[](std::ptrdiff_t i) const // never throws
{
BOOST_ASSERT(px != 0);
BOOST_ASSERT(i >= 0);
return px[i];
}
long use_count() const // never throws
{
return *pn;
}
bool unique() const // never throws
{
return *pn == 1;
}
void swap(shared_array<T> & other) // never throws
{
std::swap(px, other.px);
std::swap(pn, other.pn);
}
private:
T * px; // contained pointer
count_type * pn; // ptr to reference counter
}; // shared_array
template<class T, class U> inline bool operator==(shared_array<T> const & a, shared_array<U> const & b)
{
return a.get() == b.get();
}
template<class T, class U> inline bool operator!=(shared_array<T> const & a, shared_array<U> const & b)
{
return a.get() != b.get();
}
template<class T> inline bool operator<(shared_array<T> const & a, shared_array<T> const & b)
{
return std::less<T*>()(a.get(), b.get());
}
template<class T> void swap(shared_array<T> & a, shared_array<T> & b)
{
a.swap(b);
}
} // namespace boost
#endif // #ifndef BOOST_DETAIL_SHARED_ARRAY_NMT_HPP_INCLUDED

View File

@@ -0,0 +1,445 @@
#ifndef BOOST_DETAIL_SHARED_COUNT_HPP_INCLUDED
#define BOOST_DETAIL_SHARED_COUNT_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// detail/shared_count.hpp
//
// Copyright (c) 2001, 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <boost/config.hpp>
#ifndef BOOST_NO_AUTO_PTR
# include <memory>
#endif
#include <boost/checked_delete.hpp>
#include <boost/throw_exception.hpp>
#include <boost/detail/lightweight_mutex.hpp>
#include <functional> // for std::less
#include <exception> // for std::exception
#include <new> // for std::bad_alloc
#ifdef __BORLANDC__
# pragma warn -8026 // Functions with excep. spec. are not expanded inline
# pragma warn -8027 // Functions containing try are not expanded inline
#endif
namespace boost
{
// The standard library that comes with Borland C++ 5.5.1
// defines std::exception and its members as having C calling
// convention (-pc). When the definition of use_count_is_zero
// is compiled with -ps, the compiler issues an error.
// Hence, the temporary #pragma option -pc below. The version
// check is deliberately conservative.
#if defined(__BORLANDC__) && __BORLANDC__ == 0x551
# pragma option push -pc
#endif
class use_count_is_zero: public std::exception
{
public:
virtual char const * what() const throw()
{
return "boost::use_count_is_zero";
}
};
#if defined(__BORLANDC__) && __BORLANDC__ == 0x551
# pragma option pop
#endif
class counted_base
{
private:
typedef detail::lightweight_mutex mutex_type;
public:
counted_base():
use_count_(0), weak_count_(0)
{
}
// pre: initial_use_count <= initial_weak_count
explicit counted_base(long initial_use_count, long initial_weak_count):
use_count_(initial_use_count), weak_count_(initial_weak_count)
{
}
virtual ~counted_base() // nothrow
{
}
// dispose() is called when use_count_ drops to zero, to release
// the resources managed by *this.
//
// counted_base doesn't manage any resources except itself, and
// the default implementation is a no-op.
//
// dispose() is not pure virtual since weak_ptr instantiates a
// counted_base in its default constructor.
virtual void dispose() // nothrow
{
}
// destruct() is called when weak_count_ drops to zero.
virtual void destruct() // nothrow
{
delete this;
}
void add_ref()
{
#ifdef BOOST_HAS_THREADS
mutex_type::scoped_lock lock(mtx_);
#endif
if(use_count_ == 0 && weak_count_ != 0) boost::throw_exception(boost::use_count_is_zero());
++use_count_;
++weak_count_;
}
void release() // nothrow
{
long new_use_count;
long new_weak_count;
{
#ifdef BOOST_HAS_THREADS
mutex_type::scoped_lock lock(mtx_);
#endif
new_use_count = --use_count_;
new_weak_count = --weak_count_;
}
if(new_use_count == 0)
{
dispose();
}
if(new_weak_count == 0)
{
destruct();
}
}
void weak_add_ref() // nothrow
{
#ifdef BOOST_HAS_THREADS
mutex_type::scoped_lock lock(mtx_);
#endif
++weak_count_;
}
void weak_release() // nothrow
{
long new_weak_count;
{
#ifdef BOOST_HAS_THREADS
mutex_type::scoped_lock lock(mtx_);
#endif
new_weak_count = --weak_count_;
}
if(new_weak_count == 0)
{
destruct();
}
}
long use_count() const // nothrow
{
#ifdef BOOST_HAS_THREADS
mutex_type::scoped_lock lock(mtx_);
#endif
return use_count_;
}
private:
counted_base(counted_base const &);
counted_base & operator= (counted_base const &);
// inv: use_count_ <= weak_count_
long use_count_;
long weak_count_;
#ifdef BOOST_HAS_THREADS
mutable mutex_type mtx_;
#endif
};
inline void intrusive_ptr_add_ref(counted_base * p)
{
p->add_ref();
}
inline void intrusive_ptr_release(counted_base * p)
{
p->release();
}
namespace detail
{
//
// Borland's Codeguard trips up over the -Vx- option here:
//
#ifdef __CODEGUARD__
#pragma option push -Vx-
#endif
template<class P, class D> class counted_base_impl: public counted_base
{
private:
P ptr; // copy constructor must not throw
D del; // copy constructor must not throw
counted_base_impl(counted_base_impl const &);
counted_base_impl & operator= (counted_base_impl const &);
public:
// pre: initial_use_count <= initial_weak_count, d(p) must not throw
counted_base_impl(P p, D d, long initial_use_count, long initial_weak_count):
counted_base(initial_use_count, initial_weak_count), ptr(p), del(d)
{
}
virtual void dispose() // nothrow
{
del(ptr);
}
};
class weak_count;
class shared_count
{
private:
counted_base * pi_;
friend class weak_count;
template<class P, class D> shared_count(P, D, counted_base const *);
public:
shared_count(): pi_(new counted_base(1, 1))
{
}
explicit shared_count(counted_base * pi): pi_(pi) // never throws
{
pi_->add_ref();
}
template<class P, class D> shared_count(P p, D d, void const * = 0): pi_(0)
{
#ifndef BOOST_NO_EXCEPTIONS
try
{
pi_ = new counted_base_impl<P, D>(p, d, 1, 1);
}
catch(...)
{
d(p); // delete p
throw;
}
#else
pi_ = new counted_base_impl<P, D>(p, d, 1, 1);
if(pi_ == 0)
{
d(p); // delete p
boost::throw_exception(std::bad_alloc());
}
#endif
}
template<class P, class D> shared_count(P, D, counted_base * pi): pi_(pi)
{
pi_->add_ref();
}
#ifndef BOOST_NO_AUTO_PTR
// auto_ptr<Y> is special cased to provide the strong guarantee
template<typename Y>
explicit shared_count(std::auto_ptr<Y> & r): pi_(new counted_base_impl< Y *, checked_deleter<Y> >(r.get(), checked_deleter<Y>(), 1, 1))
{
r.release();
}
#endif
~shared_count() // nothrow
{
pi_->release();
}
shared_count(shared_count const & r): pi_(r.pi_) // nothrow
{
pi_->add_ref();
}
explicit shared_count(weak_count const & r); // throws use_count_is_zero when r.use_count() == 0
shared_count & operator= (shared_count const & r) // nothrow
{
counted_base * tmp = r.pi_;
tmp->add_ref();
pi_->release();
pi_ = tmp;
return *this;
}
void swap(shared_count & r) // nothrow
{
counted_base * tmp = r.pi_;
r.pi_ = pi_;
pi_ = tmp;
}
long use_count() const // nothrow
{
return pi_->use_count();
}
bool unique() const // nothrow
{
return pi_->use_count() == 1;
}
friend inline bool operator==(shared_count const & a, shared_count const & b)
{
return a.pi_ == b.pi_;
}
friend inline bool operator<(shared_count const & a, shared_count const & b)
{
return std::less<counted_base *>()(a.pi_, b.pi_);
}
};
#ifdef __CODEGUARD__
#pragma option pop
#endif
class weak_count
{
private:
counted_base * pi_;
friend class shared_count;
public:
weak_count(): pi_(new counted_base(0, 1)) // can throw
{
}
weak_count(shared_count const & r): pi_(r.pi_) // nothrow
{
pi_->weak_add_ref();
}
weak_count(weak_count const & r): pi_(r.pi_) // nothrow
{
pi_->weak_add_ref();
}
~weak_count() // nothrow
{
pi_->weak_release();
}
weak_count & operator= (shared_count const & r) // nothrow
{
counted_base * tmp = r.pi_;
tmp->weak_add_ref();
pi_->weak_release();
pi_ = tmp;
return *this;
}
weak_count & operator= (weak_count const & r) // nothrow
{
counted_base * tmp = r.pi_;
tmp->weak_add_ref();
pi_->weak_release();
pi_ = tmp;
return *this;
}
void swap(weak_count & r) // nothrow
{
counted_base * tmp = r.pi_;
r.pi_ = pi_;
pi_ = tmp;
}
long use_count() const // nothrow
{
return pi_->use_count();
}
friend inline bool operator==(weak_count const & a, weak_count const & b)
{
return a.pi_ == b.pi_;
}
friend inline bool operator<(weak_count const & a, weak_count const & b)
{
return std::less<counted_base *>()(a.pi_, b.pi_);
}
};
inline shared_count::shared_count(weak_count const & r): pi_(r.pi_)
{
pi_->add_ref();
}
} // namespace detail
} // namespace boost
#ifdef __BORLANDC__
# pragma warn .8027 // Functions containing try are not expanded inline
# pragma warn .8026 // Functions with excep. spec. are not expanded inline
#endif
#endif // #ifndef BOOST_DETAIL_SHARED_COUNT_HPP_INCLUDED

View File

@@ -0,0 +1,183 @@
#ifndef BOOST_DETAIL_SHARED_PTR_NMT_HPP_INCLUDED
#define BOOST_DETAIL_SHARED_PTR_NMT_HPP_INCLUDED
//
// detail/shared_ptr_nmt.hpp - shared_ptr.hpp without member templates
//
// (C) Copyright Greg Colvin and Beman Dawes 1998, 1999.
// Copyright (c) 2001, 2002 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// See http://www.boost.org/libs/smart_ptr/shared_ptr.htm for documentation.
//
#include <boost/assert.hpp>
#include <boost/checked_delete.hpp>
#include <boost/throw_exception.hpp>
#include <boost/detail/atomic_count.hpp>
#ifndef BOOST_NO_AUTO_PTR
# include <memory> // for std::auto_ptr
#endif
#include <algorithm> // for std::swap
#include <functional> // for std::less
#include <new> // for std::bad_alloc
namespace boost
{
template<class T> class shared_ptr
{
private:
typedef detail::atomic_count count_type;
public:
typedef T element_type;
typedef T value_type;
explicit shared_ptr(T * p = 0): px(p)
{
#ifndef BOOST_NO_EXCEPTIONS
try // prevent leak if new throws
{
pn = new count_type(1);
}
catch(...)
{
boost::checked_delete(p);
throw;
}
#else
pn = new count_type(1);
if(pn == 0)
{
boost::checked_delete(p);
boost::throw_exception(std::bad_alloc());
}
#endif
}
~shared_ptr()
{
if(--*pn == 0)
{
boost::checked_delete(px);
delete pn;
}
}
shared_ptr(shared_ptr const & r): px(r.px) // never throws
{
pn = r.pn;
++*pn;
}
shared_ptr & operator=(shared_ptr const & r)
{
shared_ptr(r).swap(*this);
return *this;
}
#ifndef BOOST_NO_AUTO_PTR
explicit shared_ptr(std::auto_ptr<T> & r)
{
pn = new count_type(1); // may throw
px = r.release(); // fix: moved here to stop leak if new throws
}
shared_ptr & operator=(std::auto_ptr<T> & r)
{
shared_ptr(r).swap(*this);
return *this;
}
#endif
void reset(T * p = 0)
{
BOOST_ASSERT(p == 0 || p != px);
shared_ptr(p).swap(*this);
}
T & operator*() const // never throws
{
BOOST_ASSERT(px != 0);
return *px;
}
T * operator->() const // never throws
{
BOOST_ASSERT(px != 0);
return px;
}
T * get() const // never throws
{
return px;
}
long use_count() const // never throws
{
return *pn;
}
bool unique() const // never throws
{
return *pn == 1;
}
void swap(shared_ptr<T> & other) // never throws
{
std::swap(px, other.px);
std::swap(pn, other.pn);
}
private:
T * px; // contained pointer
count_type * pn; // ptr to reference counter
};
template<class T, class U> inline bool operator==(shared_ptr<T> const & a, shared_ptr<U> const & b)
{
return a.get() == b.get();
}
template<class T, class U> inline bool operator!=(shared_ptr<T> const & a, shared_ptr<U> const & b)
{
return a.get() != b.get();
}
template<class T> inline bool operator<(shared_ptr<T> const & a, shared_ptr<T> const & b)
{
return std::less<T*>()(a.get(), b.get());
}
template<class T> void swap(shared_ptr<T> & a, shared_ptr<T> & b)
{
a.swap(b);
}
// get_pointer() enables boost::mem_fn to recognize shared_ptr
template<class T> inline T * get_pointer(shared_ptr<T> const & p)
{
return p.get();
}
} // namespace boost
#endif // #ifndef BOOST_DETAIL_SHARED_PTR_NMT_HPP_INCLUDED

View File

@@ -0,0 +1,106 @@
#ifndef BOOST_DETAIL_WINAPI_HPP_INCLUDED
#define BOOST_DETAIL_WINAPI_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/winapi.hpp - a lightweight version of <windows.h>
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
namespace boost
{
namespace detail
{
namespace winapi
{
typedef long long_type;
typedef unsigned long dword_type;
typedef void * handle_type;
#if defined(_WIN64)
typedef __int64 int_ptr_type;
typedef unsigned __int64 uint_ptr_type;
typedef __int64 long_ptr_type;
typedef unsigned __int64 ulong_ptr_type;
#else
typedef int int_ptr_type;
typedef unsigned int uint_ptr_type;
typedef long long_ptr_type;
typedef unsigned long ulong_ptr_type;
#endif
struct critical_section
{
struct critical_section_debug * DebugInfo;
long_type LockCount;
long_type RecursionCount;
handle_type OwningThread;
handle_type LockSemaphore;
ulong_ptr_type SpinCount;
};
#if defined(_WIN64)
// Intel 6.0 on Win64 version, posted by Tim Fenders to [boost-users]
extern "C" long_type __cdecl _InterlockedIncrement(long_type volatile *);
extern "C" long_type __cdecl _InterlockedDecrement(long_type volatile *);
extern "C" long_type __cdecl _InterlockedExchange(long_type volatile *, long_type);
#pragma intrinsic(_InterlockedIncrement)
#pragma intrinsic(_InterlockedDecrement)
#pragma intrinsic(_InterlockedExchange)
inline long_type InterlockedIncrement(long_type volatile * lp)
{
return _InterlockedIncrement(lp);
}
inline long_type InterlockedDecrement(long_type volatile* lp)
{
return _InterlockedDecrement(lp);
}
inline long_type InterlockedExchange(long_type volatile* lp, long_type l)
{
return _InterlockedExchange(lp, l);
}
#else
extern "C" __declspec(dllimport) long_type __stdcall InterlockedIncrement(long_type volatile *);
extern "C" __declspec(dllimport) long_type __stdcall InterlockedDecrement(long_type volatile *);
extern "C" __declspec(dllimport) long_type __stdcall InterlockedExchange(long_type volatile *, long_type);
#endif
extern "C" __declspec(dllimport) void __stdcall Sleep(dword_type);
extern "C" __declspec(dllimport) void __stdcall InitializeCriticalSection(critical_section *);
extern "C" __declspec(dllimport) void __stdcall EnterCriticalSection(critical_section *);
extern "C" __declspec(dllimport) void __stdcall LeaveCriticalSection(critical_section *);
extern "C" __declspec(dllimport) void __stdcall DeleteCriticalSection(critical_section *);
} // namespace winapi
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_WINAPI_HPP_INCLUDED

View File

@@ -0,0 +1,202 @@
#ifndef BOOST_INTRUSIVE_PTR_HPP_INCLUDED
#define BOOST_INTRUSIVE_PTR_HPP_INCLUDED
//
// intrusive_ptr.hpp
//
// Copyright (c) 2001, 2002 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// See http://www.boost.org/libs/smart_ptr/intrusive_ptr.html for documentation.
//
#ifdef BOOST_MSVC // moved here to work around VC++ compiler crash
# pragma warning(push)
# pragma warning(disable:4284) // odd return type for operator->
#endif
#include <functional> // std::less
namespace boost
{
//
// intrusive_ptr
//
// A smart pointer that uses intrusive reference counting.
//
// Relies on unqualified calls to
//
// void intrusive_ptr_add_ref(T * p);
// void intrusive_ptr_release(T * p);
//
// (p != 0)
//
// The object is responsible for destroying itself.
//
template<class T> class intrusive_ptr
{
private:
typedef intrusive_ptr this_type;
public:
intrusive_ptr(): p_(0)
{
}
intrusive_ptr(T * p): p_(p)
{
if(p_ != 0) intrusive_ptr_add_ref(p_);
}
~intrusive_ptr()
{
if(p_ != 0) intrusive_ptr_release(p_);
}
#if !defined(BOOST_NO_MEMBER_TEMPLATES) || defined(BOOST_MSVC6_MEMBER_TEMPLATES)
template<class U> intrusive_ptr(intrusive_ptr<U> const & rhs): p_(rhs.get())
{
if(p_ != 0) intrusive_ptr_add_ref(p_);
}
#endif
intrusive_ptr(intrusive_ptr const & rhs): p_(rhs.p_)
{
if(p_ != 0) intrusive_ptr_add_ref(p_);
}
#if !defined(BOOST_NO_MEMBER_TEMPLATES) || defined(BOOST_MSVC6_MEMBER_TEMPLATES)
template<class U> intrusive_ptr & operator=(intrusive_ptr<U> const & rhs)
{
this_type(rhs).swap(*this);
return *this;
}
#endif
intrusive_ptr & operator=(intrusive_ptr const & rhs)
{
this_type(rhs).swap(*this);
return *this;
}
intrusive_ptr & operator=(T * rhs)
{
this_type(rhs).swap(*this);
return *this;
}
void swap(intrusive_ptr & rhs)
{
T * tmp = p_;
p_ = rhs.p_;
rhs.p_ = tmp;
}
T * get() const
{
return p_;
}
T & operator*() const
{
return *p_;
}
T * operator->() const
{
return p_;
}
bool empty() const
{
return p_ == 0;
}
typedef bool (intrusive_ptr::*bool_type) () const;
operator bool_type () const
{
return p_ == 0? 0: &intrusive_ptr::empty;
}
private:
T * p_;
};
template<class T> void swap(intrusive_ptr<T> & lhs, intrusive_ptr<T> & rhs)
{
lhs.swap(rhs);
}
template<class T, class U> intrusive_ptr<T> shared_dynamic_cast(intrusive_ptr<U> const & p)
{
return dynamic_cast<T *>(p.get());
}
template<class T, class U> intrusive_ptr<T> shared_static_cast(intrusive_ptr<U> const & p)
{
return static_cast<T *>(p.get());
}
template<class T, class U> inline bool operator==(intrusive_ptr<T> const & a, intrusive_ptr<U> const & b)
{
return a.get() == b.get();
}
template<class T, class U> inline bool operator!=(intrusive_ptr<T> const & a, intrusive_ptr<U> const & b)
{
return a.get() != b.get();
}
template<class T> inline bool operator<(intrusive_ptr<T> const & a, intrusive_ptr<T> const & b)
{
return std::less<T *>(a.get(), b.get());
}
template<class T> inline bool operator==(intrusive_ptr<T> const & a, T * b)
{
return a.get() == b;
}
template<class T> inline bool operator!=(intrusive_ptr<T> const & a, T * b)
{
return a.get() != b;
}
template<class T> inline bool operator==(T * a, intrusive_ptr<T> const & b)
{
return a == b.get();
}
template<class T> inline bool operator!=(T * a, intrusive_ptr<T> const & b)
{
return a != b.get();
}
// mem_fn support
template<class T> T * get_pointer(intrusive_ptr<T> const & p)
{
return p.get();
}
} // namespace boost
#ifdef BOOST_MSVC
# pragma warning(pop)
#endif
#endif // #ifndef BOOST_INTRUSIVE_PTR_HPP_INCLUDED

View File

@@ -0,0 +1,102 @@
#ifndef BOOST_SCOPED_ARRAY_HPP_INCLUDED
#define BOOST_SCOPED_ARRAY_HPP_INCLUDED
// (C) Copyright Greg Colvin and Beman Dawes 1998, 1999.
// Copyright (c) 2001, 2002 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// See http://www.boost.org/libs/smart_ptr/scoped_array.htm for documentation.
//
#include <boost/assert.hpp>
#include <boost/checked_delete.hpp>
#include <boost/config.hpp> // in case ptrdiff_t not in std
#include <cstddef> // for std::ptrdiff_t
namespace boost
{
// scoped_array extends scoped_ptr to arrays. Deletion of the array pointed to
// is guaranteed, either on destruction of the scoped_array or via an explicit
// reset(). Use shared_array or std::vector if your needs are more complex.
template<typename T> class scoped_array // noncopyable
{
private:
T * ptr;
scoped_array(scoped_array const &);
scoped_array & operator=(scoped_array const &);
typedef scoped_array<T> this_type;
public:
typedef T element_type;
explicit scoped_array(T * p = 0) : ptr(p) // never throws
{
}
~scoped_array() // never throws
{
checked_array_delete(ptr);
}
void reset(T * p = 0) // never throws
{
if (ptr != p)
{
checked_array_delete(ptr);
ptr = p;
}
}
T & operator[](std::ptrdiff_t i) const // never throws
{
BOOST_ASSERT(ptr != 0);
BOOST_ASSERT(i >= 0);
return ptr[i];
}
T * get() const // never throws
{
return ptr;
}
// implicit conversion to "bool"
typedef T * (this_type::*unspecified_bool_type)() const;
operator unspecified_bool_type() const // never throws
{
return ptr == 0? 0: &this_type::get;
}
bool operator! () const // never throws
{
return ptr == 0;
}
void swap(scoped_array & b) // never throws
{
T * tmp = b.ptr;
b.ptr = ptr;
ptr = tmp;
}
};
template<class T> inline void swap(scoped_array<T> & a, scoped_array<T> & b) // never throws
{
a.swap(b);
}
} // namespace boost
#endif // #ifndef BOOST_SCOPED_ARRAY_HPP_INCLUDED

View File

@@ -0,0 +1,123 @@
#ifndef BOOST_SCOPED_PTR_HPP_INCLUDED
#define BOOST_SCOPED_PTR_HPP_INCLUDED
// (C) Copyright Greg Colvin and Beman Dawes 1998, 1999.
// Copyright (c) 2001, 2002 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// See http://www.boost.org/libs/smart_ptr/scoped_ptr.htm for documentation.
//
#include <boost/assert.hpp>
#include <boost/checked_delete.hpp>
#ifndef BOOST_NO_AUTO_PTR
# include <memory> // for std::auto_ptr
#endif
namespace boost
{
// scoped_ptr mimics a built-in pointer except that it guarantees deletion
// of the object pointed to, either on destruction of the scoped_ptr or via
// an explicit reset(). scoped_ptr is a simple solution for simple needs;
// use shared_ptr or std::auto_ptr if your needs are more complex.
template<typename T> class scoped_ptr // noncopyable
{
private:
T * ptr;
scoped_ptr(scoped_ptr const &);
scoped_ptr & operator=(scoped_ptr const &);
typedef scoped_ptr<T> this_type;
public:
typedef T element_type;
explicit scoped_ptr(T * p = 0): ptr(p) // never throws
{
}
#ifndef BOOST_NO_AUTO_PTR
explicit scoped_ptr(std::auto_ptr<T> p): ptr(p.release()) // never throws
{
}
#endif
~scoped_ptr() // never throws
{
checked_delete(ptr);
}
void reset(T * p = 0) // never throws
{
if(ptr != p)
{
this_type(p).swap(*this);
}
}
T & operator*() const // never throws
{
BOOST_ASSERT(ptr != 0);
return *ptr;
}
T * operator->() const // never throws
{
BOOST_ASSERT(ptr != 0);
return ptr;
}
T * get() const // never throws
{
return ptr;
}
// implicit conversion to "bool"
typedef T * (this_type::*unspecified_bool_type)() const;
operator unspecified_bool_type() const // never throws
{
return ptr == 0? 0: &this_type::get;
}
bool operator! () const // never throws
{
return ptr == 0;
}
void swap(scoped_ptr & b) // never throws
{
T * tmp = b.ptr;
b.ptr = ptr;
ptr = tmp;
}
};
template<typename T> inline void swap(scoped_ptr<T> & a, scoped_ptr<T> & b) // never throws
{
a.swap(b);
}
// get_pointer(p) is a generic way to say p.get()
template<typename T> inline T * get_pointer(scoped_ptr<T> const & p)
{
return p.get();
}
} // namespace boost
#endif // #ifndef BOOST_SCOPED_PTR_HPP_INCLUDED

View File

@@ -0,0 +1,156 @@
#ifndef BOOST_SHARED_ARRAY_HPP_INCLUDED
#define BOOST_SHARED_ARRAY_HPP_INCLUDED
//
// shared_array.hpp
//
// (C) Copyright Greg Colvin and Beman Dawes 1998, 1999.
// Copyright (c) 2001, 2002 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// See http://www.boost.org/libs/smart_ptr/shared_array.htm for documentation.
//
#include <boost/config.hpp> // for broken compiler workarounds
#if defined(BOOST_NO_MEMBER_TEMPLATES) && !defined(BOOST_MSVC6_MEMBER_TEMPLATES)
#include <boost/detail/shared_array_nmt.hpp>
#else
#include <boost/assert.hpp>
#include <boost/checked_delete.hpp>
#include <boost/detail/shared_count.hpp>
#include <cstddef> // for std::ptrdiff_t
#include <algorithm> // for std::swap
#include <functional> // for std::less
namespace boost
{
//
// shared_array
//
// shared_array extends shared_ptr to arrays.
// The array pointed to is deleted when the last shared_array pointing to it
// is destroyed or reset.
//
template<typename T> class shared_array
{
private:
// Borland 5.5.1 specific workarounds
typedef checked_array_deleter<T> deleter;
typedef shared_array<T> this_type;
public:
typedef T element_type;
explicit shared_array(T * p = 0): px(p), pn(p, deleter())
{
}
//
// Requirements: D's copy constructor must not throw
//
// shared_array will release p by calling d(p)
//
template<typename D> shared_array(T * p, D d): px(p), pn(p, d)
{
}
// generated copy constructor, assignment, destructor are fine
void reset(T * p = 0)
{
BOOST_ASSERT(p == 0 || p != px);
this_type(p).swap(*this);
}
template <typename D> void reset(T * p, D d)
{
this_type(p, d).swap(*this);
}
T & operator[] (std::ptrdiff_t i) const // never throws
{
BOOST_ASSERT(px != 0);
BOOST_ASSERT(i >= 0);
return px[i];
}
T * get() const // never throws
{
return px;
}
// implicit conversion to "bool"
typedef T * (this_type::*unspecified_bool_type)() const;
operator unspecified_bool_type() const // never throws
{
return px == 0? 0: &this_type::get;
}
bool operator! () const // never throws
{
return px == 0;
}
bool unique() const // never throws
{
return pn.unique();
}
long use_count() const // never throws
{
return pn.use_count();
}
void swap(shared_array<T> & other) // never throws
{
std::swap(px, other.px);
pn.swap(other.pn);
}
private:
T * px; // contained pointer
detail::shared_count pn; // reference counter
}; // shared_array
template<typename T> inline bool operator==(shared_array<T> const & a, shared_array<T> const & b) // never throws
{
return a.get() == b.get();
}
template<typename T> inline bool operator!=(shared_array<T> const & a, shared_array<T> const & b) // never throws
{
return a.get() != b.get();
}
template<typename T> inline bool operator<(shared_array<T> const & a, shared_array<T> const & b) // never throws
{
return std::less<T*>()(a.get(), b.get());
}
template<typename T> void swap(shared_array<T> & a, shared_array<T> & b) // never throws
{
a.swap(b);
}
} // namespace boost
#endif // #if defined(BOOST_NO_MEMBER_TEMPLATES) && !defined(BOOST_MSVC6_MEMBER_TEMPLATES)
#endif // #ifndef BOOST_SHARED_ARRAY_HPP_INCLUDED

View File

@@ -0,0 +1,356 @@
#ifndef BOOST_SHARED_PTR_HPP_INCLUDED
#define BOOST_SHARED_PTR_HPP_INCLUDED
//
// shared_ptr.hpp
//
// (C) Copyright Greg Colvin and Beman Dawes 1998, 1999.
// Copyright (c) 2001, 2002 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// See http://www.boost.org/libs/smart_ptr/shared_ptr.htm for documentation.
//
#include <boost/config.hpp> // for broken compiler workarounds
#if defined(BOOST_NO_MEMBER_TEMPLATES) && !defined(BOOST_MSVC6_MEMBER_TEMPLATES)
#include <boost/detail/shared_ptr_nmt.hpp>
#else
#include <boost/assert.hpp>
#include <boost/checked_delete.hpp>
#include <boost/throw_exception.hpp>
#include <boost/detail/shared_count.hpp>
#include <memory> // for std::auto_ptr
#include <algorithm> // for std::swap
#include <functional> // for std::less
#include <typeinfo> // for std::bad_cast
#ifdef BOOST_MSVC // moved here to work around VC++ compiler crash
# pragma warning(push)
# pragma warning(disable:4284) // odd return type for operator->
#endif
namespace boost
{
namespace detail
{
struct static_cast_tag {};
struct dynamic_cast_tag {};
struct polymorphic_cast_tag {};
template<typename T> struct shared_ptr_traits
{
typedef T & reference;
};
template<> struct shared_ptr_traits<void>
{
typedef void reference;
};
#if !defined(BOOST_NO_CV_VOID_SPECIALIZATIONS)
template<> struct shared_ptr_traits<void const>
{
typedef void reference;
};
#endif
} // namespace detail
//
// shared_ptr
//
// An enhanced relative of scoped_ptr with reference counted copy semantics.
// The object pointed to is deleted when the last shared_ptr pointing to it
// is destroyed or reset.
//
template<typename T> class weak_ptr;
template<typename T> class intrusive_ptr;
template<typename T> class shared_ptr
{
private:
// Borland 5.5.1 specific workarounds
// typedef checked_deleter<T> deleter;
typedef shared_ptr<T> this_type;
public:
typedef T element_type;
typedef T value_type;
shared_ptr(): px(0), pn()
{
}
template<typename Y>
explicit shared_ptr(Y * p): px(p), pn(p, checked_deleter<Y>(), p) // Y must be complete
{
}
//
// Requirements: D's copy constructor must not throw
//
// shared_ptr will release p by calling d(p)
//
template<typename Y, typename D> shared_ptr(Y * p, D d): px(p), pn(p, d)
{
}
// generated copy constructor, assignment, destructor are fine
template<typename Y>
explicit shared_ptr(weak_ptr<Y> const & r): px(r.px), pn(r.pn) // may throw
{
}
template<typename Y>
shared_ptr(shared_ptr<Y> const & r): px(r.px), pn(r.pn) // never throws
{
}
template<typename Y>
shared_ptr(intrusive_ptr<Y> const & r): px(r.get()), pn(r.get()) // never throws
{
}
template<typename Y>
shared_ptr(shared_ptr<Y> const & r, detail::static_cast_tag): px(static_cast<element_type *>(r.px)), pn(r.pn)
{
}
template<typename Y>
shared_ptr(shared_ptr<Y> const & r, detail::dynamic_cast_tag): px(dynamic_cast<element_type *>(r.px)), pn(r.pn)
{
if (px == 0) // need to allocate new counter -- the cast failed
{
pn = detail::shared_count();
}
}
template<typename Y>
shared_ptr(shared_ptr<Y> const & r, detail::polymorphic_cast_tag): px(dynamic_cast<element_type *>(r.px)), pn(r.pn)
{
if (px == 0)
{
boost::throw_exception(std::bad_cast());
}
}
#ifndef BOOST_NO_AUTO_PTR
template<typename Y>
explicit shared_ptr(std::auto_ptr<Y> & r): px(r.get()), pn(r)
{
}
#endif
#if !defined(BOOST_MSVC) || (BOOST_MSVC > 1200)
template<typename Y>
shared_ptr & operator=(shared_ptr<Y> const & r) // never throws
{
px = r.px;
pn = r.pn; // shared_count::op= doesn't throw
return *this;
}
#endif
#ifndef BOOST_NO_AUTO_PTR
template<typename Y>
shared_ptr & operator=(std::auto_ptr<Y> & r)
{
this_type(r).swap(*this);
return *this;
}
#endif
void reset()
{
this_type().swap(*this);
}
template<typename Y> void reset(Y * p) // Y must be complete
{
BOOST_ASSERT(p == 0 || p != px); // catch self-reset errors
this_type(p).swap(*this);
}
template<typename Y, typename D> void reset(Y * p, D d)
{
this_type(p, d).swap(*this);
}
typename detail::shared_ptr_traits<T>::reference operator* () const // never throws
{
BOOST_ASSERT(px != 0);
return *px;
}
T * operator-> () const // never throws
{
BOOST_ASSERT(px != 0);
return px;
}
T * get() const // never throws
{
return px;
}
// implicit conversion to "bool"
typedef T * (this_type::*unspecified_bool_type)() const;
operator unspecified_bool_type() const // never throws
{
return px == 0? 0: &this_type::get;
}
bool operator! () const // never throws
{
return px == 0;
}
bool unique() const // never throws
{
return pn.unique();
}
long use_count() const // never throws
{
return pn.use_count();
}
void swap(shared_ptr<T> & other) // never throws
{
std::swap(px, other.px);
pn.swap(other.pn);
}
// Tasteless as this may seem, making all members public allows member templates
// to work in the absence of member template friends. (Matthew Langston)
#ifndef BOOST_NO_MEMBER_TEMPLATE_FRIENDS
private:
template<typename Y> friend class shared_ptr;
template<typename Y> friend class weak_ptr;
#endif
T * px; // contained pointer
detail::shared_count pn; // reference counter
}; // shared_ptr
template<typename T, typename U> inline bool operator==(shared_ptr<T> const & a, shared_ptr<U> const & b)
{
return a.get() == b.get();
}
template<typename T, typename U> inline bool operator!=(shared_ptr<T> const & a, shared_ptr<U> const & b)
{
return a.get() != b.get();
}
#if __GNUC__ == 2 && __GNUC_MINOR__ <= 96
// Resolve the ambiguity between our op!= and the one in rel_ops
template<typename T> inline bool operator!=(shared_ptr<T> const & a, shared_ptr<T> const & b)
{
return a.get() != b.get();
}
#endif
template<typename T> inline bool operator<(shared_ptr<T> const & a, shared_ptr<T> const & b)
{
return std::less<T*>()(a.get(), b.get());
}
template<typename T> inline void swap(shared_ptr<T> & a, shared_ptr<T> & b)
{
a.swap(b);
}
template<typename T, typename U> shared_ptr<T> shared_static_cast(shared_ptr<U> const & r)
{
return shared_ptr<T>(r, detail::static_cast_tag());
}
template<typename T, typename U> shared_ptr<T> shared_dynamic_cast(shared_ptr<U> const & r)
{
return shared_ptr<T>(r, detail::dynamic_cast_tag());
}
template<typename T, typename U> shared_ptr<T> shared_polymorphic_cast(shared_ptr<U> const & r)
{
return shared_ptr<T>(r, detail::polymorphic_cast_tag());
}
template<typename T, typename U> shared_ptr<T> shared_polymorphic_downcast(shared_ptr<U> const & r)
{
BOOST_ASSERT(dynamic_cast<T *>(r.get()) == r.get());
return shared_static_cast<T>(r);
}
// get_pointer() enables boost::mem_fn to recognize shared_ptr
template<typename T> inline T * get_pointer(shared_ptr<T> const & p)
{
return p.get();
}
// shared_from_this() creates a shared_ptr from a raw pointer (usually 'this')
namespace detail
{
inline void sp_assert_counted_base(boost::counted_base const *)
{
}
template<class T> inline T * sp_remove_const(T const * p)
{
return const_cast<T *>(p);
}
} // namespace detail
template<class T> shared_ptr<T> shared_from_this(T * p)
{
detail::sp_assert_counted_base(p);
return shared_ptr<T>(detail::sp_remove_const(p));
}
} // namespace boost
#ifdef BOOST_MSVC
# pragma warning(pop)
#endif
#endif // #if defined(BOOST_NO_MEMBER_TEMPLATES) && !defined(BOOST_MSVC6_MEMBER_TEMPLATES)
#endif // #ifndef BOOST_SHARED_PTR_HPP_INCLUDED

View File

@@ -0,0 +1,9 @@
// Boost smart_ptr.hpp header file -----------------------------------------//
// For compatibility, this header includes the header for the four "classic"
// smart pointer class templates.
#include <boost/scoped_ptr.hpp>
#include <boost/scoped_array.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/shared_array.hpp>

181
include/boost/weak_ptr.hpp Normal file
View File

@@ -0,0 +1,181 @@
#ifndef BOOST_WEAK_PTR_HPP_INCLUDED
#define BOOST_WEAK_PTR_HPP_INCLUDED
//
// weak_ptr.hpp
//
// Copyright (c) 2001, 2002 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// See http://www.boost.org/libs/smart_ptr/weak_ptr.htm for documentation.
//
#include <boost/shared_ptr.hpp>
#ifdef BOOST_MSVC // moved here to work around VC++ compiler crash
# pragma warning(push)
# pragma warning(disable:4284) // odd return type for operator->
#endif
namespace boost
{
template<typename T> class weak_ptr
{
private:
// Borland 5.5.1 specific workarounds
typedef weak_ptr<T> this_type;
public:
typedef T element_type;
weak_ptr(): px(0), pn()
{
}
// generated copy constructor, assignment, destructor are fine
template<typename Y>
weak_ptr(weak_ptr<Y> const & r): px(r.px), pn(r.pn) // never throws
{
}
template<typename Y>
weak_ptr(shared_ptr<Y> const & r): px(r.px), pn(r.pn) // never throws
{
}
#if !defined(BOOST_MSVC) || (BOOST_MSVC > 1200)
template<typename Y>
weak_ptr & operator=(weak_ptr<Y> const & r) // never throws
{
px = r.px;
pn = r.pn;
return *this;
}
template<typename Y>
weak_ptr & operator=(shared_ptr<Y> const & r) // never throws
{
px = r.px;
pn = r.pn;
return *this;
}
#endif
void reset()
{
this_type().swap(*this);
}
T * get() const // never throws; deprecated, removal pending, don't use
{
return pn.use_count() == 0? 0: px;
}
long use_count() const // never throws
{
return pn.use_count();
}
bool expired() const // never throws
{
return pn.use_count() == 0;
}
void swap(this_type & other) // never throws
{
std::swap(px, other.px);
pn.swap(other.pn);
}
bool less(this_type const & rhs) const // implementation detail, never throws
{
return pn < rhs.pn;
}
// Tasteless as this may seem, making all members public allows member templates
// to work in the absence of member template friends. (Matthew Langston)
#ifndef BOOST_NO_MEMBER_TEMPLATE_FRIENDS
private:
template<typename Y> friend class weak_ptr;
template<typename Y> friend class shared_ptr;
#endif
T * px; // contained pointer
detail::weak_count pn; // reference counter
}; // weak_ptr
template<class T, class U> inline bool operator==(weak_ptr<T> const & a, weak_ptr<U> const & b)
{
return a.get() == b.get();
}
template<class T, class U> inline bool operator!=(weak_ptr<T> const & a, weak_ptr<U> const & b)
{
return a.get() != b.get();
}
#if __GNUC__ == 2 && __GNUC_MINOR__ <= 96
// Resolve the ambiguity between our op!= and the one in rel_ops
template<typename T> inline bool operator!=(weak_ptr<T> const & a, weak_ptr<T> const & b)
{
return a.get() != b.get();
}
#endif
template<class T> inline bool operator<(weak_ptr<T> const & a, weak_ptr<T> const & b)
{
return a.less(b);
}
template<class T> void swap(weak_ptr<T> & a, weak_ptr<T> & b)
{
a.swap(b);
}
template<class T> shared_ptr<T> make_shared(weak_ptr<T> const & r) // never throws
{
// optimization: avoid throw overhead
if(r.use_count() == 0)
{
return shared_ptr<T>();
}
try
{
return shared_ptr<T>(r);
}
catch(use_count_is_zero const &)
{
return shared_ptr<T>();
}
}
// Note: there is no get_pointer overload for weak_ptr.
// This is intentional. Even get() will disappear in a
// future release; these accessors are too error-prone.
} // namespace boost
#ifdef BOOST_MSVC
# pragma warning(pop)
#endif
#endif // #ifndef BOOST_WEAK_PTR_HPP_INCLUDED

47
index.htm Normal file
View File

@@ -0,0 +1,47 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>Boost Smart Pointer Library</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<table border="1" bgcolor="#007F7F" cellpadding="2">
<tr>
<td bgcolor="#FFFFFF"><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" width="277" height="86"></td>
<td><a href="../../index.htm"><font face="Arial" color="#FFFFFF"><big>Home</big></font></a></td>
<td><a href="../libraries.htm"><font face="Arial" color="#FFFFFF"><big>Libraries</big></font></a></td>
<td><a href="../../people/people.htm"><font face="Arial" color="#FFFFFF"><big>People</big></font></a></td>
<td><a href="../../more/faq.htm"><font face="Arial" color="#FFFFFF"><big>FAQ</big></font></a></td>
<td><a href="../../more/index.htm"><font face="Arial" color="#FFFFFF"><big>More</big></font></a></td>
</tr>
</table>
<h1>Smart Pointer Library</h1>
<p>The smart pointer library includes five smart pointer class templates. Smart
pointers ease the management of memory dynamically allocated with C++ <b>new</b>
expressions. In addition, <b>scoped_ptr</b> can ease the management of memory
dynamically allocated in other ways.</p>
<ul>
<li><a href="smart_ptr.htm">Documentation</a> (HTML).</li>
<li>Header <a href="../../boost/scoped_ptr.hpp">scoped_ptr.hpp</a>.</li>
<li>Header <a href="../../boost/scoped_array.hpp">scoped_array.hpp</a>.</li>
<li>Header <a href="../../boost/shared_ptr.hpp">shared_ptr.hpp</a>.</li>
<li>Header <a href="../../boost/shared_array.hpp">shared_array.hpp</a>.</li>
<li>Header <a href="../../boost/weak_ptr.hpp">weak_ptr.hpp</a>.</li>
<li>Test program <a href="smart_ptr_test.cpp">smart_ptr_test.cpp</a>.</li>
<li>Originally submitted by
<a href="../../people/greg_colvin.htm">Greg Colvin</a> and
<a href="../../people/beman_dawes.html">Beman Dawes</a>,
currently maintained by
<a href="../../people/peter_dimov.htm">Peter Dimov</a> and
<a href="../../people/darin_adler.htm">Darin Adler</a>.</li>
</ul>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B %Y" startspan -->1 February 2002<!--webbot bot="Timestamp" endspan i-checksum="14885" -->.</p>
</body>
</html>

BIN
msvcspeed.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.0 KiB

111
scoped_array.htm Normal file
View File

@@ -0,0 +1,111 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>scoped_array</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body bgcolor="#ffffff" text="#000000">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="middle" width="277" height="86"><a name="scoped_array">scoped_array</a>
class template</h1>
<p>The <b>scoped_array</b> class template stores a pointer to a dynamically
allocated array. (Dynamically allocated arrays are allocated with the C++ <b>new[]</b>
expression.) The array pointed to is guaranteed to be deleted, either on
destruction of the <b>scoped_array</b>, or via an explicit <b>reset</b>.</p>
<p>The <b>scoped_array</b> template is a simple solution for simple needs. It
supplies a basic "resource acquisition is initialization" facility, without
shared-ownership or transfer-of-ownership semantics. Both its name and
enforcement of semantics (by being <a href="../utility/utility.htm#class noncopyable">
noncopyable</a>) signal its intent to retain ownership solely within the
current scope. Because it is <a href="../utility/utility.htm#class noncopyable">noncopyable</a>,
it is safer than <b>shared_array</b> for pointers which should not be copied.</p>
<p>Because <b>scoped_array</b> is so simple, in its usual implementation every
operation is as fast as a built-in array pointer and it has no more space
overhead that a built-in array pointer.</p>
<p>It cannot be used in C++ standard library containers. See <a href="shared_array.htm">
<b>shared_array</b></a> if <b>scoped_array</b> does not meet your needs.</p>
<p>It cannot correctly hold a pointer to a single object. See <a href="scoped_ptr.htm"><b>scoped_ptr</b></a>
for that usage.</p>
<p>A <b>std::vector</b> is an alternative to a <b>scoped_array</b> that is a bit
heavier duty but far more flexible. A <b>boost::array</b> is an alternative
that does not use dynamic allocation.</p>
<p>The class template is parameterized on <b>T</b>, the type of the object pointed
to. <b>T</b> must meet the smart pointer <a href="smart_ptr.htm#Common requirements">
common requirements</a>.</p>
<h2>Synopsis</h2>
<pre>namespace boost {
template&lt;typename T&gt; class scoped_array : <a href="../utility/utility.htm#noncopyable">noncopyable</a> {
public:
typedef T <a href="#element_type">element_type</a>;
explicit <a href="#ctor">scoped_array</a>(T * p = 0); // never throws
<a href="#~scoped_array">~scoped_array</a>(); // never throws
void <a href="#reset">reset</a>(T * p = 0); // never throws
T &amp; <a href="#operator[]">operator[]</a>(std::ptrdiff_t i) const; // never throws
T * <a href="#get">get</a>() const; // never throws
void <a href="#swap">swap</a>(scoped_array &amp; b); // never throws
};
template&lt;typename T&gt; void <a href="#free-swap">swap</a>(scoped_array&lt;T&gt; &amp; a, scoped_array&lt;T&gt; &amp; b); // never throws
}</pre>
<h2>Members</h2>
<h3>
<a name="element_type">element_type</a></h3>
<pre>typedef T element_type;</pre>
<p>Provides the type of the stored pointer.</p>
<h3><a name="ctor">constructors</a></h3>
<pre>explicit scoped_array(T * p = 0); // never throws</pre>
<p>Constructs a <b>scoped_array</b>, storing a copy of <b>p</b>, which must have
been allocated via a C++ <b>new</b>[] expression or be 0. <b>T</b> is not
required be a complete type. See the smart pointer <a href="smart_ptr.htm#Common requirements">
common requirements</a>.</p>
<h3><a name="~scoped_array">destructor</a></h3>
<pre>~scoped_array(); // never throws</pre>
<p>Deletes the array pointed to by the stored pointer. Note that <b>delete[]</b> on
a pointer with a value of 0 is harmless. The guarantee that this does not throw
exceptions depends on the requirement that the deleted array's objects'
destructors do not throw exceptions. See the smart pointer <a href="smart_ptr.htm#Common requirements">
common requirements</a>.</p>
<h3><a name="reset">reset</a></h3>
<pre>void reset(T * p = 0); // never throws</pre>
<p>If p is not equal to the stored pointer, deletes the array pointed to by the
stored pointer and then stores a copy of p, which must have been allocated via
a C++ <b>new[]</b> expression or be 0. The guarantee that this does not throw
exceptions depends on the requirement that the deleted array's objects'
destructors do not throw exceptions. See the smart pointer <a href="smart_ptr.htm#Common requirements">
common requirements</a>.</p>
<h3><a name="operator[]">subscripting</a></h3>
<pre>T &amp; operator[](std::ptrdiff_t i) const; // never throws</pre>
<p>Returns a reference to element <b>i</b> of the array pointed to by the stored
pointer. Behavior is undefined and almost certainly undesirable if the stored
pointer is 0, or if <b>i</b> is less than 0 or is greater than or equal to the
number of elements in the array.</p>
<h3><a name="get">get</a></h3>
<pre>T * get() const; // never throws</pre>
<p>Returns the stored pointer. <b>T</b> need not be a complete type. See the smart
pointer <a href="smart_ptr.htm#Common requirements">common requirements</a>.</p>
<h3><a name="swap">swap</a></h3>
<pre>void swap(scoped_array &amp; b); // never throws</pre>
<p>Exchanges the contents of the two smart pointers. <b>T</b> need not be a
complete type. See the smart pointer <a href="smart_ptr.htm#Common requirements">common
requirements</a>.</p>
<h2><a name="functions">Free Functions</a></h2>
<h3><a name="free-swap">swap</a></h3>
<pre>template&lt;typename T&gt; void swap(scoped_array&lt;T&gt; &amp; a, scoped_array&lt;T&gt; &amp; b); // never throws</pre>
<p>Equivalent to <b>a.swap(b)</b>. Matches the interface of <b>std::swap</b>.
Provided as an aid to generic programming.</p>
<hr>
<p>Revised <!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B %Y" startspan-->
1 February 2002<!--webbot bot="Timestamp" endspan i-checksum="13964"--></p>
<p>Copyright 1999 Greg Colvin and Beman Dawes. Copyright 2002 Darin Adler.
Permission to copy, use, modify, sell and distribute this document is granted
provided this copyright notice appears in all copies. This document is provided
"as is" without express or implied warranty, and with no claim as to its
suitability for any purpose.</p>
</body>
</html>

176
scoped_ptr.htm Normal file
View File

@@ -0,0 +1,176 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>scoped_ptr</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body bgcolor="#ffffff" text="#000000">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="middle" width="277" height="86"><a name="scoped_ptr">scoped_ptr</a>
class template</h1>
<p>The <b>scoped_ptr</b> class template stores a pointer to a dynamically allocated
object. (Dynamically allocated objects are allocated with the C++ <b>new</b> expression.)
The object pointed to is guaranteed to be deleted, either on destruction of the <b>scoped_ptr</b>,
or via an explicit <b>reset</b>. See the <a href="#example">example</a>.</p>
<p>The <b>scoped_ptr</b> template is a simple solution for simple needs. It
supplies a basic "resource acquisition is initialization" facility, without
shared-ownership or transfer-of-ownership semantics. Both its name and
enforcement of semantics (by being <a href="../utility/utility.htm#class noncopyable">
noncopyable</a>) signal its intent to retain ownership solely within the
current scope. Because it is <a href="../utility/utility.htm#class noncopyable">noncopyable</a>,
it is safer than <b>shared_ptr</b> or <b>std::auto_ptr</b> for pointers which
should not be copied.</p>
<p>Because <b>scoped_ptr</b> is simple, in its usual implementation every operation
is as fast as for a built-in pointer and it has no more space overhead that a
built-in pointer.</p>
<p><STRONG>scoped_ptr</STRONG> cannot be used in C++ Standard Library containers.
Use <a href="shared_ptr.htm"><b>shared_ptr</b></a> if you need a smart pointer
that can.</p>
<p><STRONG>scoped_ptr</STRONG> cannot correctly hold a pointer to a dynamically
allocated array. See <a href="scoped_array.htm"><b>scoped_array</b></a> for
that usage.</p>
<p>The class template is parameterized on <b>T</b>, the type of the object pointed
to. <b>T</b> must meet the smart pointer <a href="smart_ptr.htm#Common requirements">
common requirements</a>.</p>
<h2>Synopsis</h2>
<pre>namespace boost {
template&lt;typename T&gt; class scoped_ptr : <a href="../utility/utility.htm#class noncopyable">noncopyable</a> {
public:
typedef T <a href="#element_type">element_type</a>;
explicit <a href="#constructors">scoped_ptr</a>(T * p = 0); // never throws
<a href="#destructor">~scoped_ptr</a>(); // never throws
void <a href="#reset">reset</a>(T * p = 0); // never throws
T &amp; <a href="#indirection">operator*</a>() const; // never throws
T * <a href="#indirection">operator-&gt;</a>() const; // never throws
T * <a href="#get">get</a>() const; // never throws
void <a href="#swap">swap</a>(scoped_ptr &amp; b); // never throws
};
template&lt;typename T&gt; void <a href="#free-swap">swap</a>(scoped_ptr&lt;T&gt; &amp; a, scoped_ptr&lt;T&gt; &amp; b); // never throws
}</pre>
<h2>Members</h2>
<h3><a name="element_type">element_type</a></h3>
<pre>typedef T element_type;</pre>
<p>Provides the type of the stored pointer.</p>
<h3><a name="constructors">constructors</a></h3>
<pre>explicit scoped_ptr(T * p = 0); // never throws</pre>
<p>Constructs a <b>scoped_ptr</b>, storing a copy of <b>p</b>, which must have been
allocated via a C++ <b>new</b> expression or be 0. <b>T</b> is not required be
a complete type. See the smart pointer <a href="smart_ptr.htm#Common requirements">common
requirements</a>.</p>
<h3><a name="destructor">destructor</a></h3>
<pre>~scoped_ptr(); // never throws</pre>
<p>Destroys the object pointed to by the stored pointer, if any, as if by using <tt>delete
this-&gt;get()</tt>.</p>
<P>
The guarantee that this does not throw exceptions depends on the requirement
that the deleted object's destructor does not throw exceptions. See the smart
pointer <a href="smart_ptr.htm#Common requirements">common requirements</a>.</P>
<h3><a name="reset">reset</a></h3>
<pre>void reset(T * p = 0); // never throws</pre>
<p>If p is not equal to the stored pointer, deletes the object pointed to by the
stored pointer and then stores a copy of p, which must have been allocated via
a C++ <b>new</b> expression or be 0. The guarantee that this does not throw
exceptions depends on the requirement that the deleted object's destructor does
not throw exceptions. See the smart pointer <a href="smart_ptr.htm#Common requirements">
common requirements</a>.</p>
<h3><a name="indirection">indirection</a></h3>
<pre>T &amp; operator*() const; // never throws</pre>
<p>Returns a reference to the object pointed to by the stored pointer. Behavior is
undefined if the stored pointer is 0.</p>
<pre>T * operator-&gt;() const; // never throws</pre>
<p>Returns the stored pointer. Behavior is undefined if the stored pointer is 0.</p>
<h3><a name="get">get</a></h3>
<pre>T * get() const; // never throws</pre>
<p>Returns the stored pointer. <b>T</b> need not be a complete type. See the smart
pointer <a href="smart_ptr.htm#Common requirements">common requirements</a>.</p>
<h3><a name="swap">swap</a></h3>
<pre>void swap(scoped_ptr &amp; b); // never throws</pre>
<p>Exchanges the contents of the two smart pointers. <b>T</b> need not be a
complete type. See the smart pointer <a href="smart_ptr.htm#Common requirements">common
requirements</a>.</p>
<h2><a name="functions">Free Functions</a></h2>
<h3><a name="free-swap">swap</a></h3>
<pre>template&lt;typename T&gt; void swap(scoped_ptr&lt;T&gt; &amp; a, scoped_ptr&lt;T&gt; &amp; b); // never throws</pre>
<p>Equivalent to <b>a.swap(b)</b>. Matches the interface of <b>std::swap</b>.
Provided as an aid to generic programming.</p>
<h2><a name="example">Example</a></h2>
<p>Here's an example that uses <b>scoped_ptr</b>.</p>
<blockquote>
<pre>#include &lt;boost/scoped_ptr.hpp&gt;
#include &lt;iostream&gt;
struct Shoe { ~Shoe() { std::cout &lt;&lt; "Buckle my shoe\n"; } };
class MyClass {
boost::scoped_ptr&lt;int&gt; ptr;
public:
MyClass() : ptr(new int) { *ptr = 0; }
int add_one() { return ++*ptr; }
};
void main()
{
boost::scoped_ptr&lt;Shoe&gt; x(new Shoe);
MyClass my_instance;
std::cout &lt;&lt; my_instance.add_one() &lt;&lt; '\n';
std::cout &lt;&lt; my_instance.add_one() &lt;&lt; '\n';
}</pre>
</blockquote>
<p>The example program produces the beginning of a child's nursery rhyme:</p>
<blockquote>
<pre>1
2
Buckle my shoe</pre>
</blockquote>
<h2>Rationale</h2>
<p>The primary reason to use <b>scoped_ptr</b> rather than <b>auto_ptr</b> is to
let readers of your code know that you intend "resource acquisition is
initialization" to be applied only for the current scope, and have no intent to
transfer ownership.</p>
<p>A secondary reason to use <b>scoped_ptr</b> is to prevent a later maintenance
programmer from adding a function that transfers ownership by returning the <b>auto_ptr</b>,
because the maintenance programmer saw <b>auto_ptr</b>, and assumed ownership
could safely be transferred.</p>
<p>Think of <b>bool</b> vs <b>int</b>. We all know that under the covers <b>bool</b>
is usually just an <b>int</b>. Indeed, some argued against including <b>bool</b>
in the C++ standard because of that. But by coding <b>bool</b> rather than <b>int</b>,
you tell your readers what your intent is. Same with <b>scoped_ptr</b>; by
using it you are signaling intent.</p>
<p>It has been suggested that <b>scoped_ptr&lt;T&gt;</b> is equivalent to <b>std::auto_ptr&lt;T&gt;
const</b>. Ed Brey pointed out, however, that <b>reset</b> will not work on
a <b>std::auto_ptr&lt;T&gt; const.</b></p>
<h2><a name="Handle/Body">Handle/Body</a> Idiom</h2>
<p>One common usage of <b>scoped_ptr</b> is to implement a handle/body (also called
pimpl) idiom which avoids exposing the body (implementation) in the header
file.</p>
<p>The <a href="scoped_ptr_example_test.cpp">scoped_ptr_example_test.cpp</a> sample
program includes a header file, <a href="scoped_ptr_example.hpp">scoped_ptr_example.hpp</a>,
which uses a <b>scoped_ptr&lt;&gt;</b> to an incomplete type to hide the
implementation. The instantiation of member functions which require a complete
type occurs in the <a href="scoped_ptr_example.cpp">scoped_ptr_example.cpp</a> implementation
file.</p>
<h2>Frequently Asked Questions</h2>
<p><b>Q</b>. Why doesn't <b>scoped_ptr</b> have a release() member?<br>
<b>A</b>. When reading source code, it is valuable to be able to draw
conclusions about program behavior based on the types being used. If <STRONG>scoped_ptr</STRONG>
had a release() member, it would become possible to transfer ownership of the
held pointer, weakening its role as a way of limiting resource lifetime to a
given context. Use <STRONG>std::auto_ptr</STRONG> where transfer of ownership
is required. (supplied by Dave Abrahams)</p>
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B %Y" startspan -->
17 September 2002<!--webbot bot="Timestamp" endspan i-checksum="15110" --></p>
<p>Copyright 1999 Greg Colvin and Beman Dawes. Copyright 2002 Darin Adler.
Copyright 2002 Peter Dimov. Permission to copy, use, modify, sell and
distribute this document is granted provided this copyright notice appears in
all copies. This document is provided "as is" without express or implied
warranty, and with no claim as to its suitability for any purpose.</p>
</body>
</html>

16
scoped_ptr_example.cpp Normal file
View File

@@ -0,0 +1,16 @@
// Boost scoped_ptr_example implementation file -----------------------------//
#include "scoped_ptr_example.hpp"
#include <iostream>
class example::implementation
{
public:
~implementation() { std::cout << "destroying implementation\n"; }
};
example::example() : _imp( new implementation ) {}
void example::do_something() { std::cout << "did something\n"; }
example::~example() {}

22
scoped_ptr_example.hpp Normal file
View File

@@ -0,0 +1,22 @@
// Boost scoped_ptr_example header file ------------------------------------//
#include <boost/utility.hpp>
#include <boost/scoped_ptr.hpp>
// The point of this example is to prove that even though
// example::implementation is an incomplete type in translation units using
// this header, scoped_ptr< implementation > is still valid because the type
// is complete where it counts - in the inplementation translation unit where
// destruction is actually instantiated.
class example : private boost::noncopyable
{
public:
example();
~example();
void do_something();
private:
class implementation;
boost::scoped_ptr< implementation > _imp; // hide implementation details
};

View File

@@ -0,0 +1,10 @@
// Boost scoped_ptr_example_test main program -------------------------------//
#include "scoped_ptr_example.hpp"
int main()
{
example my_example;
my_example.do_something();
return 0;
}

179
shared_array.htm Normal file
View File

@@ -0,0 +1,179 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>shared_array</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body bgcolor="#ffffff" text="#000000">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="middle" width="277" height="86">shared_array
class template</h1>
<p>The <b>shared_array</b> class template stores a pointer to a dynamically
allocated array. (Dynamically allocated array are allocated with the C++ <b>new[]</b>
expression.) The object pointed to is guaranteed to be deleted when the last <b>shared_array</b>
pointing to it is destroyed or reset.</p>
<p>Every <b>shared_array</b> meets the <b>CopyConstructible</b> and <b>Assignable</b>
requirements of the C++ Standard Library, and so can be used in standard
library containers. Comparison operators are supplied so that <b>shared_array</b>
works with the standard library's associative containers.</p>
<p>Normally, a <b>shared_array</b> cannot correctly hold a pointer to an object
that has been allocated with the non-array form of <STRONG>new</STRONG>. See <a href="shared_ptr.htm">
<b>shared_ptr</b></a> for that usage.</p>
<p>Because the implementation uses reference counting, cycles of <b>shared_array</b>
instances will not be reclaimed. For example, if <b>main()</b> holds a <b>shared_array</b>
to <b>A</b>, which directly or indirectly holds a <b>shared_array</b> back to <b>A</b>,
<b>A</b>'s use count will be 2. Destruction of the original <b>shared_array</b>
will leave <b>A</b> dangling with a use count of 1.</p>
<p>A <b>shared_ptr</b> to a <b>std::vector</b> is an alternative to a <b>shared_array</b>
that is a bit heavier duty but far more flexible.</p>
<p>The class template is parameterized on <b>T</b>, the type of the object pointed
to. <b>T</b> must meet the smart pointer <a href="smart_ptr.htm#Common requirements">
common requirements</a>.</p>
<h2>Synopsis</h2>
<pre>namespace boost {
template&lt;typename T&gt; class shared_array {
public:
typedef T <a href="#element_type">element_type</a>;
explicit <a href="#constructors">shared_array</a>(T * p = 0);
template&lt;typename D&gt; <a href="#constructors">shared_array</a>(T * p, D d);
<a href="#destructor">~shared_array</a>(); // never throws
<a href="#constructors">shared_array</a>(shared_array const &amp; r); // never throws
shared_array &amp; <a href="#assignment">operator=</a>(shared_array const &amp; r); // never throws
void <a href="#reset">reset</a>(T * p = 0);
template&lt;typename D&gt; void <a href="#reset">reset</a>(T * p, D d);
T &amp; <a href="#indexing">operator[]</a>(std::ptrdiff_t i) const() const; // never throws
T * <a href="#get">get</a>() const; // never throws
bool <a href="#unique">unique</a>() const; // never throws
long <a href="#use_count">use_count</a>() const; // never throws
void <a href="#swap">swap</a>(shared_array&lt;T&gt; &amp; b); // never throws
};
template&lt;typename T&gt;
bool <a href="#comparison">operator==</a>(shared_array&lt;T&gt; const &amp; a, shared_array&lt;T&gt; const &amp; b); // never throws
template&lt;typename T&gt;
bool <a href="#comparison">operator!=</a>(shared_array&lt;T&gt; const &amp; a, shared_array&lt;T&gt; const &amp; b); // never throws
template&lt;typename T&gt;
bool <a href="#comparison">operator&lt;</a>(shared_array&lt;T&gt; const &amp; a, shared_array&lt;T&gt; const &amp; b); // never throws
template&lt;typename T&gt; void <a href="#free-swap">swap</a>(shared_array&lt;T&gt; &amp; a, shared_array&lt;T&gt; &amp; b); // never throws
}</pre>
<h2>Members</h2>
<h3><a name="element_type">element_type</a></h3>
<pre>typedef T element_type;</pre>
<p>Provides the type of the stored pointer.</p>
<h3><a name="constructors">constructors</a></h3>
<pre>explicit shared_array(T * p = 0);</pre>
<p>Constructs a <b>shared_array</b>, storing a copy of <b>p</b>, which must be a
pointer to an array that was allocated via a C++ <b>new[]</b> expression or be
0. Afterwards, the <a href="#use_count">use count</a> is 1 (even if p == 0; see <a href="#destructor">
~shared_array</a>). The only exception which may be thrown by this
constructor is <b>std::bad_alloc</b>. If an exception is thrown, <b>delete[] p</b>
is called.</p>
<pre>template&lt;typename D&gt; shared_array(T * p, D d);</pre>
<p>Constructs a <b>shared_array</b>, storing a copy of <b>p</b> and of <b>d</b>.
Afterwards, the <a href="#use_count">use count</a> is 1. <b>D</b>'s copy
constructor and destructor must not throw. When the the time comes to delete
the array pointed to by <b>p</b>, the object <b>d</b> is used in the statement <b>d(p)</b>.
Invoking the object <b>d</b> with parameter <b>p</b> in this way must not
throw. The only exception which may be thrown by this constructor is <b>std::bad_alloc</b>.
If an exception is thrown, <b>d(p)</b> is called.</p>
<pre>shared_array(shared_array const &amp; r); // never throws</pre>
<p>Constructs a <b>shared_array</b>, as if by storing a copy of the pointer stored
in <b>r</b>. Afterwards, the <a href="#use_count">use count</a> for all copies
is 1 more than the initial use count.</p>
<h3><a name="destructor">destructor</a></h3>
<pre>~shared_array(); // never throws</pre>
<p>Decrements the <a href="#use_count">use count</a>. Then, if the use count is 0,
deletes the array pointed to by the stored pointer. Note that <b>delete[]</b> on
a pointer with a value of 0 is harmless. <b>T</b> need not be a complete type.
The guarantee that this does not throw exceptions depends on the requirement
that the deleted object's destructor does not throw exceptions. See the smart
pointer <a href="smart_ptr.htm#Common requirements">common requirements</a>.</p>
<h3><a name="operator=">assignment</a></h3>
<pre>shared_array &amp; <a href="#assignment">operator=</a>(shared_array const &amp; r); // never throws</pre>
<p>Constructs a new <b>shared_array</b> as described <a href="#constructors">above</a>,
then replaces this <b>shared_array</b> with the new one, destroying the
replaced object.</p>
<h3><a name="reset">reset</a></h3>
<pre>void reset(T * p = 0);</pre>
<p>Constructs a new <b>shared_array</b> as described <a href="#constructors">above</a>,
then replaces this <b>shared_array</b> with the new one, destroying the
replaced object. The only exception which may be thrown is <b>std::bad_alloc</b>.
If an exception is thrown, <b>delete[] p</b> is called.</p>
<pre>template&lt;typename D&gt; void reset(T * p, D d);</pre>
<p>Constructs a new <b>shared_array</b> as described <a href="#constructors">above</a>,
then replaces this <b>shared_array</b> with the new one, destroying the
replaced object. <b>D</b>'s copy constructor must not throw. The only exception
which may be thrown is <b>std::bad_alloc</b>. If an exception is thrown, <b>d(p)</b>
is called.</p>
<h3><a name="indirection">indexing</a></h3>
<pre>T &amp; operator[](std::ptrdiff_t i) const; // never throws</pre>
<p>Returns a reference to element <b>i</b> of the array pointed to by the stored
pointer. Behavior is undefined and almost certainly undesirable if the stored
pointer is 0, or if <b>i</b> is less than 0 or is greater than or equal to the
number of elements in the array.</p>
<h3><a name="get">get</a></h3>
<pre>T * get() const; // never throws</pre>
<p>Returns the stored pointer. <b>T</b> need not be a complete type. See the smart
pointer <a href="smart_ptr.htm#Common requirements">common requirements</a>.</p>
<h3><a name="unique">unique</a></h3>
<pre>bool unique() const; // never throws</pre>
<p>Returns true if no other <b>shared_array</b> is sharing ownership of the stored
pointer, false otherwise. <b>T</b> need not be a complete type. See the smart
pointer <a href="smart_ptr.htm#Common requirements">common requirements</a>.</p>
<h3><a name="use_count">use_count</a></h3>
<pre>long use_count() const; // never throws</pre>
<p>Returns the number of <b>shared_array</b> objects sharing ownership of the
stored pointer. <b>T</b> need not be a complete type. See the smart pointer <a href="smart_ptr.htm#Common requirements">
common requirements</a>.</p>
<p>Because <b>use_count</b> is not necessarily efficient to implement for
implementations of <b>shared_array</b> that do not use an explicit reference
count, it might be removed from some future version. Thus it should be used for
debugging purposes only, and not production code.</p>
<h3><a name="swap">swap</a></h3>
<pre>void swap(shared_ptr &amp; b); // never throws</pre>
<p>Exchanges the contents of the two smart pointers. <b>T</b> need not be a
complete type. See the smart pointer <a href="smart_ptr.htm#Common requirements">common
requirements</a>.</p>
<h2><a name="functions">Free Functions</a></h2>
<h3><a name="comparison">comparison</a></h3>
<pre>template&lt;typename T&gt;
bool operator==(shared_array&lt;T&gt; const &amp; a, shared_array&lt;T&gt; const &amp; b); // never throws
template&lt;typename T&gt;
bool operator!=(shared_array&lt;T&gt; const &amp; a, shared_array&lt;T&gt; const &amp; b); // never throws
template&lt;typename T&gt;
bool operator&lt;(shared_array&lt;T&gt; const &amp; a, shared_array&lt;T&gt; const &amp; b); // never throws</pre>
<p>Compares the stored pointers of the two smart pointers. <b>T</b> need not be a
complete type. See the smart pointer <a href="smart_ptr.htm#Common requirements">common
requirements</a>.</p>
<p>The <b>operator&lt;</b> overload is provided to define an ordering so that <b>shared_array</b>
objects can be used in associative containers such as <b>std::map</b>. The
implementation uses <b>std::less&lt;T *&gt;</b> to perform the comparison. This
ensures that the comparison is handled correctly, since the standard mandates
that relational operations on pointers are unspecified (5.9 [expr.rel]
paragraph 2) but <b>std::less&lt;&gt;</b> on pointers is well-defined (20.3.3
[lib.comparisons] paragraph 8).</p>
<h3><a name="free-swap">swap</a></h3>
<pre>template&lt;typename T&gt;
void swap(shared_array&lt;T&gt; &amp; a, shared_array&lt;T&gt; &amp; b) // never throws</pre>
<p>Equivalent to <b>a.swap(b)</b>. Matches the interface of <b>std::swap</b>.
Provided as an aid to generic programming.</p>
<hr>
<p>Revised <!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B %Y" startspan -->
8 February 2002<!--webbot bot="Timestamp" i-checksum="38439" endspan --></p>
<p>Copyright 1999 Greg Colvin and Beman Dawes. Copyright 2002 Darin Adler.
Permission to copy, use, modify, sell and distribute this document is granted
provided this copyright notice appears in all copies. This document is provided
"as is" without express or implied warranty, and with no claim as to its
suitability for any purpose.</p>
</body>
</html>

670
shared_ptr.htm Normal file
View File

@@ -0,0 +1,670 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>shared_ptr</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body text="#000000" bgColor="#ffffff">
<h1><IMG height="86" alt="c++boost.gif (8819 bytes)" src="../../c++boost.gif" width="277" align="middle">shared_ptr
class template</h1>
<p><A href="#Introduction">Introduction</A><br>
<a href="#BestPractices">Best Practices</a><br>
<A href="#Synopsis">Synopsis</A><br>
<A href="#Members">Members</A><br>
<A href="#functions">Free Functions</A><br>
<A href="#example">Example</A><br>
<A href="#Handle/Body">Handle/Body Idiom</A><br>
<a href="#ThreadSafety">Thread Safety</a><br>
<A href="#FAQ">Frequently Asked Questions</A><br>
<A href="smarttests.htm">Smart Pointer Timings</A></p>
<h2><a name="Introduction">Introduction</a></h2>
<p>The <b>shared_ptr</b> class template stores a pointer to a dynamically allocated
object, typically with a C++ <EM>new-expression</EM> . The object pointed to is
guaranteed to be deleted when the last <b>shared_ptr</b> pointing to it is
destroyed or reset. See the <A href="#example">example</A>.</p>
<p>Every <b>shared_ptr</b> meets the <b>CopyConstructible</b> and <b>Assignable</b>
requirements of the C++ Standard Library, and so can be used in standard
library containers. Comparison operators are supplied so that <b>shared_ptr</b>
works with the standard library's associative containers.</p>
<p>Normally, a <b>shared_ptr</b> cannot correctly hold a pointer to a dynamically
allocated array. See <A href="shared_array.htm"><b>shared_array</b></A> for
that usage.</p>
<p>Because the implementation uses reference counting, cycles of <b>shared_ptr</b> instances
will not be reclaimed. For example, if <b>main()</b> holds a <b>shared_ptr</b> to
<b>A</b>, which directly or indirectly holds a <b>shared_ptr</b> back to <b>A</b>,
<b>A</b>'s use count will be 2. Destruction of the original <b>shared_ptr</b> will
leave <b>A</b> dangling with a use count of 1. Use <A href="weak_ptr.htm">weak_ptr</A>
to "break cycles."</p>
<p>The class template is parameterized on <b>T</b>, the type of the object pointed
to. <STRONG>shared_ptr</STRONG> and most of its member functions place no
requirements on <STRONG>T</STRONG>; it is allowed to be an incomplete type, or <STRONG>
void</STRONG>. Member functions that do place additional requirements (<A href="#constructors">constructors</A>,
<A href="#reset">reset</A>) are explicitly documented below.</p>
<P><STRONG>shared_ptr&lt;T&gt;</STRONG> can be implicitly converted to <STRONG>shared_ptr&lt;U&gt;</STRONG>
whenever <STRONG>T*</STRONG> can be implicitly converted to <STRONG>U*</STRONG>.
In particular, <STRONG>shared_ptr&lt;T&gt;</STRONG> is implicitly convertible
to <STRONG>shared_ptr&lt;T const&gt;</STRONG>, to <STRONG>shared_ptr&lt;U&gt;</STRONG>
where <STRONG>U</STRONG> is an accessible base of <STRONG>T</STRONG>, and to <STRONG>
shared_ptr&lt;void&gt;</STRONG>.</P>
<h2><a name="BestPractices">Best Practices</a></h2>
<P>A simple guideline that nearly eliminates&nbsp;the possibility of memory leaks
is: always use a named smart pointer variable to hold the result of <STRONG>new. </STRONG>
Every occurence of the <STRONG>new</STRONG> keyword in the code should have the
form:</P>
<PRE>shared_ptr&lt;T&gt; p(new Y);</PRE>
<P>It is, of course, acceptable to use another smart pointer in place of <STRONG>shared_ptr</STRONG>
above; having <STRONG>T</STRONG> and <STRONG>Y</STRONG> be the same type, or
passing arguments to <STRONG>Y</STRONG>'s constructor&nbsp;is also OK.</P>
<P>If you observe this guideline, it naturally follows that you will have no
explicit <STRONG>delete</STRONG>s; <STRONG>try/catch</STRONG> constructs will
be rare.</P>
<P>Avoid using unnamed <STRONG>shared_ptr</STRONG> temporaries to save typing; to
see why this is dangerous, consider this example:</P>
<PRE>
void f(shared_ptr&lt;int&gt;, int);
int g();
void ok()
{
shared_ptr&lt;int&gt; p(new int(2));
f(p, g());
}
void bad()
{
f(shared_ptr&lt;int&gt;(new int(2)), g());
}
</PRE>
<P>The function <STRONG>ok</STRONG> follows the guideline to the letter, whereas <STRONG>
bad</STRONG> constructs the temporary <STRONG>shared_ptr</STRONG> in place,
admitting the possibility of a memory leak. Since function arguments are
evaluated in unspecified order, it is possible for <STRONG>new int(2)</STRONG> to
be evaluated first, <STRONG>g()</STRONG> second, and we may never get to the <STRONG>
shared_ptr </STRONG>constructor if <STRONG>g</STRONG> throws an exception.
See <A href="http://www.gotw.ca/gotw/056.htm">Herb Sutter's treatment</A> of
the issue for more information.</P>
<h2><a name="Synopsis">Synopsis</a></h2>
<pre>namespace boost {
class use_count_is_zero: public std::exception;
template&lt;typename T&gt; class <A href="weak_ptr.htm" >weak_ptr</A>;
template&lt;typename T&gt; class shared_ptr {
public:
typedef T <A href="#element_type" >element_type</A>;
<A href="#constructors" >shared_ptr</A>();
template&lt;typename Y&gt; explicit <A href="#constructors" >shared_ptr</A>(Y * p);
template&lt;typename Y, typename D&gt; <A href="#constructors" >shared_ptr</A>(Y * p, D d);
<A href="#destructor" >~shared_ptr</A>(); // never throws
<A href="#constructors" >shared_ptr</A>(shared_ptr const &amp; r); // never throws
template&lt;typename Y&gt; <A href="#constructors" >shared_ptr</A>(shared_ptr&lt;Y&gt; const &amp; r); // never throws
explicit <A href="#constructors" >shared_ptr</A>(<A href="weak_ptr.htm" >weak_ptr</A> const &amp; r);
template&lt;typename Y&gt; <A href="#constructors" >shared_ptr</A>(std::auto_ptr&lt;Y&gt; &amp; r);
shared_ptr &amp; <A href="#assignment" >operator=</A>(shared_ptr const &amp; r); // never throws
template&lt;typename Y&gt; shared_ptr &amp; <A href="#assignment" >operator=</A>(shared_ptr&lt;Y&gt; const &amp; r); // never throws
template&lt;typename Y&gt; shared_ptr &amp; <A href="#assignment" >operator=</A>(std::auto_ptr&lt;Y&gt; &amp; r);
void <A href="#reset" >reset</A> ();
template&lt;typename Y&gt; void <A href="#reset" >reset</A> (Y * p);
template&lt;typename Y&gt; template&lt;typename D&gt; void <A href="#reset" >reset</A>(Y * p, D d);
T &amp; <A href="#indirection" >operator*</A>() const; // never throws
T * <A href="#indirection" >operator-&gt;</A>() const; // never throws
T * <A href="#get" >get</A>() const; // never throws
bool <A href="#unique" >unique</A>() const; // never throws
long <A href="#use_count" >use_count</A>() const; // never throws
operator <a href="#conversions"><i>unspecified-bool-type</i></a> () const; // never throws
void <A href="#swap" >swap</A>(shared_ptr&lt;T&gt; &amp; b); // never throws
};
template&lt;typename T, typename U&gt;
bool <A href="#comparison" >operator==</A>(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;U&gt; const &amp; b); // never throws
template&lt;typename T, typename U&gt;
bool <A href="#comparison" >operator!=</A>(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;U&gt; const &amp; b); // never throws
template&lt;typename T&gt;
bool <A href="#comparison" >operator&lt;</A>(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;T&gt; const &amp; b); // never throws
template&lt;typename T&gt; void <A href="#free-swap" >swap</A>(shared_ptr&lt;T&gt; &amp; a, shared_ptr&lt;T&gt; &amp; b); // never throws
template&lt;typename T&gt; T * <A href="#get_pointer" >get_pointer</A>(shared_ptr&lt;T&gt; const &amp; p); // never throws
template&lt;typename T, typename U&gt;
shared_ptr&lt;T&gt; <A href="#shared_static_cast" >shared_static_cast</A>(shared_ptr&lt;U&gt; const &amp; r); // never throws
template&lt;typename T, typename U&gt;
shared_ptr&lt;T&gt; <A href="#shared_dynamic_cast" >shared_dynamic_cast</A>(shared_ptr&lt;U&gt; const &amp; r);
template&lt;typename T, typename U&gt;
shared_ptr&lt;T&gt; <A href="#shared_polymorphic_cast" >shared_polymorphic_cast</A>(shared_ptr&lt;U&gt; const &amp; r);
template&lt;typename T, typename U&gt;
shared_ptr&lt;T&gt; <A href="#shared_polymorphic_downcast" >shared_polymorphic_downcast</A>(shared_ptr&lt;U&gt; const &amp; r); // never throws
}</pre>
<P><EM>[It might be&nbsp;convenient to relax the requirements on <STRONG>shared_ptr</STRONG>'s
signature, allowing an additional, defaulted, template parameter; the parameter
can encode the threading model, for example. This would help in detecting
possible ODR violations.</EM></P>
<P><EM> On the other hand, using <STRONG>shared_ptr</STRONG> as an argument to
a&nbsp;template template parameter requires an exact signature match. </EM><EM>Metaprogramming
experts tend to deemphasize template template parameters as they are too
inflexible, but the alternative is typically an std::allocator::rebind-type
"hack".]</EM></P>
<h2><a name="Members">Members</a></h2>
<h3><a name="element_type">element_type</a></h3>
<pre>typedef T element_type;</pre>
<blockquote>
<p>Provides the type of the template parameter T.</p>
</blockquote>
<h3><a name="constructors">constructors</a></h3>
<pre>shared_ptr();</pre>
<blockquote>
<p><b>Effects:</b> Constructs a <b>shared_ptr</b>.</p>
<p><b>Postconditions:</b> <A href="#use_count">use count</A> is 1; the stored
pointer is 0.</p>
<p><b>Throws:</b> <b>std::bad_alloc</b>.</p>
<p><b>Exception safety:</b> If an exception is thrown, the constructor has no
effect.</p>
</blockquote>
<P><EM>[The poscondition of use_count() == 1 is too strong. Having the nothrow
guarantee is important, since <STRONG>reset()</STRONG> is specified in terms of
the default constructor, but the current specification requires that a count be
allocated. Therefore, this postcondition will be dropped in a future release.
The use count of a default-constructed <STRONG>shared_ptr</STRONG>, including
all copies created from it, will probably be left unspecified.</EM></P>
<P><EM>There are two possible nothrow implementations, one stores 0 as a pointer to the
reference count, the other uses a single statically allocated count for all
default-constructed <STRONG>shared_ptr</STRONG>s. The second option is
difficult to achieve in the current header-only reference implementation due to
thread safety issues and initialization order, but it should not be precluded
by the specification.</EM></P>
<P><EM>A future release may enable <STRONG>shared_ptr</STRONG> construction from a
literal zero, for consistency with built-in pointers. It is not clear yet
whether this constructor should be left implicit, enabling <STRONG>0</STRONG> to
be used as a shorthand for <STRONG>shared_ptr&lt;T&gt;().</STRONG>]</EM></P>
<pre>template&lt;typename Y&gt; explicit shared_ptr(Y * p);</pre>
<blockquote>
<p><b>Requirements:</b> <b>p</b> must be convertible to <b>T *</b>. <STRONG>Y</STRONG>
must be a complete type. The expression <code>delete p</code> must be
well-formed, must not invoke undefined behavior, and must not throw exceptions.
</p>
<p><b>Effects:</b> Constructs a <b>shared_ptr</b>, storing a copy of <b>p</b>.</p>
<p><b>Postconditions:</b> <A href="#use_count">use count</A> is 1.</p>
<p><b>Throws:</b> <b>std::bad_alloc</b>.</p>
<p><b>Exception safety:</b> If an exception is thrown, <code>delete p</code> is
called.</p>
<P><STRONG>Notes:</STRONG> <B>p</B> must be a pointer to an object that was
allocated via a C++ <B>new</B> expression or be 0. The postcondition that <A href="#use_count">
use count</A> is 1 holds even if <b>p</b> is 0; invoking <STRONG>delete</STRONG>
on a pointer that has a value of 0 is harmless.</P>
</blockquote>
<P><EM>[This constructor has been changed to a template in order to remember the actual
pointer type passed. The destructor will call <STRONG>delete</STRONG> with the
same pointer, complete with its original type, even when <STRONG>T</STRONG> does
not have a virtual destructor, or is <STRONG>void</STRONG>.</EM></P>
<P><EM>In the current implementation, if <STRONG>p</STRONG> is convertible to <STRONG>counted_base
*</STRONG>, <STRONG>shared_ptr</STRONG> will use the embedded reference
count supplied by <STRONG>counted_base</STRONG>. This is an (experimental)
attempt to provide a way for <STRONG>shared_ptr</STRONG> to be constructed from
a raw pointer such as <STRONG>this</STRONG>. A free function <STRONG>shared_from_this(q)</STRONG>
performs the conversion when <STRONG>q</STRONG> is convertible to <STRONG>counted_base
const *</STRONG>.</EM></P>
<P><EM>The optional intrusive counting employed by the current implementation allows <STRONG>
shared_ptr</STRONG> to interoperate with <STRONG>intrusive_ptr</STRONG>, an
experimental generic intrusive-counted smart pointer.</EM></P>
<P><EM> Another possible implementation is to use a global pointer-to-count map instead
of intrusive counting. <STRONG>shared_from_this</STRONG> would no longer be
O(1), which is a concern for some users, although I do not expect any
performance problems, since the operation is rare. Maintaining a global
map&nbsp;is difficult; it needs to be initialized before any <STRONG>shared_ptr</STRONG>
instances are constructed, and the initialization needs to be&nbsp;thread safe.
In addition, under the Windows dynamic library model, it is possible for
several maps to exist.</EM></P>
<P><EM> It is not yet clear which implementation should be used, or whether the
specification should allow both; nevertheless,&nbsp;the ability to make a <STRONG>shared_ptr</STRONG>
from <STRONG>this</STRONG> is considered essential&nbsp;by experienced smart
pointer users.</EM><EM>]</EM></P>
<pre>template&lt;typename Y, typename D&gt; shared_ptr(Y * p, D d);</pre>
<blockquote>
<p><b>Requirements:</b> <B>p</B> must be convertible to <B>T *</B>. <STRONG>D</STRONG>
must be <STRONG>CopyConstructible</STRONG>. The copy constructor and destructor
of <b>D</b> must not throw. The expression <code>d(p)</code> must be
well-formed, must not invoke undefined behavior, and must not throw exceptions.
</p>
<p><b>Effects:</b> Constructs a <b>shared_ptr</b>, storing a copy of <b>p</b> and <b>d</b>.</p>
<p><b>Postconditions:</b> <A href="#use_count">use count</A> is 1.</p>
<p><b>Throws:</b> <b>std::bad_alloc</b>.</p>
<p><b>Exception safety:</b> If an exception is thrown, <code>d(p)</code> is called.</p>
<p><b>Notes:</b> When the the time comes to delete the object pointed to by <b>p</b>,
the stored copy of <STRONG>d</STRONG> is invoked with the stored copy of <STRONG>p</STRONG>
as an argument.</p>
</blockquote>
<P><EM>[Custom deallocators allow a factory function returning a <STRONG>shared_ptr</STRONG>
to insulate the user from its memory allocation strategy. Since the deallocator
is not part of the type, changing the allocation strategy does not break source
or binary compatibility, and does not require a client recompilation. For
example, a "no-op" deallocator is useful when returning a <STRONG>shared_ptr</STRONG>
to a statically allocated object.</EM></P>
<P><EM>The support for custom deallocators does not impose significant overhead. Other <STRONG>
shared_ptr</STRONG> features still require a deallocator to be kept.</EM></P>
<P><EM>The requirement that the copy constructor of <b>D</b> does not throw is too
strong. It will be removed when some core language issues are resolved
(cv-qualified function types, partial ordering clarifications.)]</EM></P>
<pre>shared_ptr(shared_ptr const &amp; r); // never throws
template&lt;typename Y&gt; shared_ptr(shared_ptr&lt;Y&gt; const &amp; r); // never throws</pre>
<blockquote>
<p><b>Effects:</b> Constructs a <b>shared_ptr</b>, as if by storing a copy of the
pointer stored in <STRONG>r</STRONG>.</p>
<p><b>Postconditions:</b> <A href="#use_count">use count</A> for all copies is
increased by one.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<P><EM>[The postcondition will be relaxed when a default-constructed <STRONG>shared_ptr</STRONG>
is being copied.]</EM></P>
<pre>explicit shared_ptr(<A href="weak_ptr.htm" >weak_ptr</A> const &amp; r);</pre>
<blockquote>
<p><b>Effects:</b> Constructs a <b>shared_ptr</b>, as if by storing a copy of the
pointer stored in <STRONG>r</STRONG>.</p>
<p><b>Postconditions:</b> <A href="#use_count">use count</A> for all copies is
increased by one.</p>
<p><b>Throws:</b> <b>use_count_is_zero</b> when <code>r.use_count() == 0</code>.</p>
<p><b>Exception safety:</b> If an exception is thrown, the constructor has no
effect.</p>
</blockquote>
<P><EM>[This constructor is an optional part of the specification; it depends on the
existence of <STRONG>weak_ptr</STRONG>. It is true that <STRONG>weak_ptr</STRONG>
support imposes overhead on every <STRONG>shared_ptr</STRONG> user, regardless
of whether weak pointers are used.</EM></P>
<P><EM>On the other hand, cyclic references are a serious problem with all reference
counted designs. Not providing a solution within the library is unacceptable;
if users are forced to reinvent the weak pointer wheel, there is substantial
probability that they will get it wrong, as designing a safe <STRONG>weak_ptr</STRONG>
interface is non-trivial.</EM></P>
<P><EM>My opinion is that the added functionality is worth the cost. <STRONG>weak_ptr</STRONG>
is provided in the reference implementation as a proof of concept.]</EM></P>
<pre>template&lt;typename Y&gt; shared_ptr(std::auto_ptr&lt;Y&gt; &amp; r);</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Constructs a <B>shared_ptr</B>, as if by storing a copy of <STRONG>r.release()</STRONG>.</P>
<P><B>Postconditions:</B> <A href="#use_count">use count</A> is 1.</P>
<P><B>Throws:</B> <B>std::bad_alloc</B>.</P>
<P><B>Exception safety:</B> If an exception is thrown, the constructor has no
effect.</P>
</BLOCKQUOTE>
<P><EM>[This constructor takes a the source <STRONG>auto_ptr</STRONG> by reference and
not by value, and cannot accept <STRONG>auto_ptr</STRONG> temporaries. This is
by design, as the constructor offers the strong guarantee.]</EM></P>
<h3><a name="destructor">destructor</a></h3>
<pre>~shared_ptr(); // never throws</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> If <STRONG>*this</STRONG> is the sole owner (<code>use_count() == 1</code>),
destroys the object pointed to by the stored pointer.</P>
<P><B>Postconditions:</B> <A href="#use_count">use count</A> for all remaining
copies is decreased by one.</P>
<P><B>Throws:</B> nothing.</P>
</BLOCKQUOTE>
<H3><a name="assignment">assignment</a></H3>
<pre>shared_ptr &amp; operator=(shared_ptr const &amp; r); // never throws
template&lt;typename Y&gt; shared_ptr &amp; operator=(shared_ptr&lt;Y&gt; const &amp; r); // never throws
template&lt;typename Y&gt; shared_ptr &amp; operator=(std::auto_ptr&lt;Y&gt; &amp; r);</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>shared_ptr(r).swap(*this)</code>.</P>
<P><B>Notes:</B> The use count updates caused by the temporary object construction
and destruction are not considered observable side effects, and the
implementation is free to meet the effects (and the implied guarantees) via
different means, without creating a temporary. In particular, in the example:</P>
<pre>
shared_ptr&lt;int&gt; p(new int);
shared_ptr&lt;void&gt; q(p);
p = p;
q = p;
</pre>
<p>both assignments may be no-ops.</p>
</BLOCKQUOTE>
<P><EM>[Some experts consider the note to be redundant, as it appears to essentially
mirror the "as if" rile. However, experience suggests that when C++ code is
used to describe effects, it is often misinterpreted as required
implementation. In addition, it is not entirely clear whether the "as if" rule
actually applies here, so it's better to be explicit about the possible
optimizations.]</EM></P>
<h3><a name="reset">reset</a></h3>
<pre>void reset();</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>shared_ptr().swap(*this)</code>.</P>
</BLOCKQUOTE>
<P><EM>[<STRONG>reset()</STRONG> will offer the nothrow guarantee in a future
implementation.]</EM></P>
<pre>template&lt;typename Y&gt; void reset(Y * p);</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>shared_ptr(p).swap(*this)</code>.</P>
</BLOCKQUOTE>
<pre>template&lt;typename Y, typename D&gt; void reset(Y * p, D d);</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>shared_ptr(p, d).swap(*this)</code>.</P>
</BLOCKQUOTE>
<h3><a name="indirection">indirection</a></h3>
<pre>T &amp; operator*() const; // never throws</pre>
<blockquote>
<p><b>Requirements:</b> The stored pointer must not be 0.</p>
<p><b>Returns:</b> a reference to the object pointed to by the stored pointer.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<pre>T * operator-&gt;() const; // never throws</pre>
<blockquote>
<p><b>Requirements:</b> The stored pointer must not be 0.</p>
<p><b>Returns:</b> the stored pointer.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<h3><a name="get">get</a></h3>
<pre>T * get() const; // never throws</pre>
<blockquote>
<p><b>Returns:</b> the stored pointer.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<h3><a name="unique">unique</a></h3>
<pre>bool unique() const; // never throws</pre>
<blockquote>
<p><b>Returns:</b> <code>use_count() == 1</code>.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> <code>unique()</code> may be faster than <code>use_count()</code>.
If you are using <code>unique()</code> to implement copy on write, do not rely
on a specific value when the stored pointer is zero.</P>
</blockquote>
<P><EM>[In a future release, <STRONG>unique()</STRONG> will return an unspecified value
for a default-constructed <STRONG>shared_ptr.</STRONG>]</EM></P>
<h3><a name="use_count">use_count</a></h3>
<pre>long use_count() const; // never throws</pre>
<blockquote>
<p><b>Returns:</b> the number of <b>shared_ptr</b> objects sharing ownership of the
stored pointer.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> <code>use_count()</code> is not necessarily efficient. Use only
for debugging and testing purposes, not for production code.</P>
</blockquote>
<h3><a name="conversions">conversions</a></h3>
<pre>operator <i>unspecified-bool-type</i> () const; // never throws</pre>
<blockquote>
<p><b>Returns:</b> an&nbsp;unspecified value that, when used in boolean contexts,
is equivalent to <code>get() != 0</code>.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> This conversion operator allows <b>shared_ptr</b> objects to be
used in boolean contexts, like <code>if (p &amp;&amp; p-&gt;valid()) {}</code>.
The actual target type is typically a pointer to a member function, avoiding
many of the implicit conversion pitfalls.</P>
</blockquote>
<P><EM>[The conversion to bool is not merely syntactic sugar. It allows <STRONG>shared_ptr</STRONG>s
to be declared in conditions when using <STRONG>shared_dynamic_cast </STRONG>or <STRONG>
make_shared</STRONG>.]</EM></P>
<h3><a name="swap">swap</a></h3>
<pre>void swap(shared_ptr &amp; b); // never throws</pre>
<blockquote>
<p><b>Effects:</b> Exchanges the contents of the two smart pointers.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<h2><a name="functions">Free Functions</a></h2>
<h3><a name="comparison">comparison</a></h3>
<pre>template&lt;typename T, typename U&gt;
bool operator==(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;U&gt; const &amp; b); // never throws</pre>
<blockquote>
<p><b>Returns:</b> <code>a.get() == b.get()</code>.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<pre>template&lt;typename T, typename U&gt;
bool operator!=(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;U&gt; const &amp; b); // never throws</pre>
<blockquote>
<p><b>Returns:</b> <code>a.get() != b.get()</code>.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<pre>template&lt;typename T&gt;
bool operator&lt;(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;T&gt; const &amp; b); // never throws</pre>
<blockquote>
<p><b>Returns:</b> an&nbsp;unspecified value such that <b>operator&lt;</b> is a
strict weak ordering as described in section 25.3 <code>[lib.alg.sorting]</code>
of the C++ standard.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> Allows <STRONG>shared_ptr</STRONG> objects to be used as keys in
associative containers.</P>
</blockquote>
<P><EM>[<STRONG>Operator&lt;</STRONG> has been preferred over a <STRONG>std::less </STRONG>
specialization for consistency and legality reasons, as <STRONG>std::less</STRONG>
is required to return the results of <STRONG>operator&lt;</STRONG>, and many
standard algorithms use <STRONG>operator&lt;</STRONG> instead of <STRONG>std::less</STRONG>
for comparisons when a predicate is not supplied. Composite objects, like <STRONG>std::pair</STRONG>,
also implement their <STRONG>operator&lt;</STRONG> in terms of their contained
subobjects'&nbsp;<STRONG>operator&lt;</STRONG>.</EM></P>
<P><EM>The rest of the comparison operators are omitted by design.]</EM></P>
<h3><a name="free-swap">swap</a></h3>
<pre>template&lt;typename T&gt;
void swap(shared_ptr&lt;T&gt; &amp; a, shared_ptr&lt;T&gt; &amp; b); // never throws</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>a.swap(b)</code>.</P>
<P><B>Throws:</B> nothing.</P>
<P><B>Notes:</B> Matches the interface of <B>std::swap</B>. Provided as an aid to
generic programming.</P>
</BLOCKQUOTE>
<P><EM>[<STRONG>swap</STRONG> is defined in the same namespace as <STRONG>shared_ptr</STRONG>
as this is currently the only legal way to supply a <STRONG>swap</STRONG> function
that has a chance to be used by the standard library.]</EM></P>
<h3><a name="get_pointer">get_pointer</a></h3>
<pre>template&lt;typename T&gt;
T * get_pointer(shared_ptr&lt;T&gt; const &amp; p); // never throws</pre>
<BLOCKQUOTE>
<P><B>Returns:</B> <code>p.get()</code>.</P>
<P><B>Throws:</B> nothing.</P>
<P><B>Notes:</B> Provided as an aid to generic programming. Used by <A href="../bind/mem_fn.html">
mem_fn</A>.</P>
</BLOCKQUOTE>
<h3><a name="shared_static_cast">shared_static_cast</a></h3>
<pre>template&lt;typename T, typename U&gt;
shared_ptr&lt;T&gt; shared_static_cast(shared_ptr&lt;U&gt; const &amp; r); // never throws</pre>
<BLOCKQUOTE>
<P><STRONG>Requires:</STRONG> The expression <code>static_cast&lt;T*&gt;(r.get())</code>
must be well-formed.</P>
<P><B>Returns:</B> A <STRONG>shared_ptr&lt;T&gt;</STRONG> object that stores a copy
of <code>static_cast&lt;T*&gt;(r.get())</code> and shares ownership with <b>r</b>.</P>
<P><B>Throws:</B> nothing.</P>
<P><B>Notes:</B> the seemingly equivalent expression</P>
<p><code>shared_ptr&lt;T&gt;(static_cast&lt;T*&gt;(r.get()))</code></p>
<p>will eventually result in undefined behavior, attempting to delete the same
object twice.</p>
</BLOCKQUOTE>
<h3><a name="shared_dynamic_cast">shared_dynamic_cast</a></h3>
<pre>template&lt;typename T, typename U&gt;
shared_ptr&lt;T&gt; shared_dynamic_cast(shared_ptr&lt;U&gt; const &amp; r);</pre>
<BLOCKQUOTE>
<P><STRONG>Requires:</STRONG> The expression <CODE>dynamic_cast&lt;T*&gt;(r.get())</CODE>
must be well-formed and its behavior defined.</P>
<P><B>Returns:</B></P>
<UL>
<LI>
When <CODE>dynamic_cast&lt;T*&gt;(r.get())</CODE> returns a nonzero value, a <STRONG>
shared_ptr&lt;T&gt;</STRONG> object that stores a copy of it and shares
ownership with <STRONG>r</STRONG>;
<LI>
Otherwise, a default-constructed <STRONG>shared_ptr&lt;T&gt;</STRONG> object.</LI></UL>
<P><B>Throws:</B> <STRONG>std::bad_alloc</STRONG>.</P>
<P><B>Exception safety:</B> If an exception is thrown, the function has no effect.</P>
<P><B>Notes:</B> the seemingly equivalent expression</P>
<P><CODE>shared_ptr&lt;T&gt;(dynamic_cast&lt;T*&gt;(r.get()))</CODE></P>
<P>will eventually result in undefined behavior, attempting to delete the same
object twice.</P>
</BLOCKQUOTE>
<h3><a name="shared_polymorphic_cast">shared_polymorphic_cast</a></h3>
<pre>template&lt;typename T, typename U&gt;
shared_ptr&lt;T&gt; shared_polymorphic_cast(shared_ptr&lt;U&gt; const &amp; r);</pre>
<BLOCKQUOTE>
<p><STRONG>Requires:</STRONG> The expression <CODE><A href="../conversion/cast.htm#Polymorphic_cast">
polymorphic_cast</A>&lt;T*&gt;(r.get())</CODE> must be well-formed and
its behavior defined.</p>
<P><B>Returns:</B> A <STRONG>shared_ptr&lt;T&gt;</STRONG> object that stores a copy
of <CODE><A href="../conversion/cast.htm#Polymorphic_cast">polymorphic_cast</A>&lt;T*&gt;(r.get())</CODE>
and shares ownership with <B>r</B>.</P>
<P><B>Throws:</B> <STRONG>std::bad_cast</STRONG> when the pointer cannot be
converted.</P>
<P><B>Exception safety:</B> If an exception is thrown, the function has no effect.</P>
</BLOCKQUOTE>
<h3><a name="shared_polymorphic_downcast">shared_polymorphic_downcast</a></h3>
<pre>template&lt;typename T, typename U&gt;
shared_ptr&lt;T&gt; shared_polymorphic_downcast(shared_ptr&lt;U&gt; const &amp; r); // never throws</pre>
<BLOCKQUOTE>
<p><STRONG>Requires:</STRONG> The expression <CODE><A href="../conversion/cast.htm#Polymorphic_cast">
polymorphic_downcast</A>&lt;T*&gt;(r.get())</CODE> must be well-formed
and its behavior defined.</p>
<P><B>Returns:</B> A <STRONG>shared_ptr&lt;T&gt;</STRONG> object that stores a copy
of <CODE><A href="../conversion/cast.htm#Polymorphic_cast">polymorphic_downcast</A>&lt;T*&gt;(r.get())</CODE>
and shares ownership with <B>r</B>.</P>
<P><B>Throws:</B> nothing.</P>
</BLOCKQUOTE>
<h2><a name="example">Example</a></h2>
<p>See <A href="shared_ptr_example.cpp">shared_ptr_example.cpp</A> for a complete
example program. The program builds a <b>std::vector</b> and <b>std::set</b> of <b>shared_ptr</b>
objects.</p>
<p>Note that after the containers have been populated, some of the <b>shared_ptr</b>
objects will have a use count of 1 rather than a use count of 2, since the set
is a <b>std::set</b> rather than a <b>std::multiset</b>, and thus does not
contain duplicate entries. Furthermore, the use count may be even higher at
various times while <b>push_back</b> and <b>insert</b> container operations are
performed. More complicated yet, the container operations may throw exceptions
under a variety of circumstances. Getting the memory management and exception
handling in this example right without a smart pointer would be a nightmare.</p>
<h2><a name="Handle/Body">Handle/Body</a> Idiom</h2>
<p>One common usage of <b>shared_ptr</b> is to implement a handle/body (also called
pimpl) idiom which avoids exposing the body (implementation) in the header
file.</p>
<p>The <A href="shared_ptr_example2_test.cpp">shared_ptr_example2_test.cpp</A> sample
program includes a header file, <A href="shared_ptr_example2.hpp">shared_ptr_example2.hpp</A>,
which uses a <b>shared_ptr&lt;&gt;</b> to an incomplete type to hide the
implementation. The instantiation of member functions which require a complete
type occurs in the <A href="shared_ptr_example2.cpp">shared_ptr_example2.cpp</A>
implementation file. Note that there is no need for an explicit destructor.
Unlike ~scoped_ptr, ~shared_ptr does not require that <b>T</b> be a complete
type.</p>
<h2><a name="ThreadSafety">Thread Safety</a></h2>
<p><STRONG>shared_ptr</STRONG> objects offer the same level of thread safety as
built-in types.&nbsp;A&nbsp;<STRONG>shared_ptr</STRONG> instance can be "read"
(accessed using only const operations)&nbsp;simultaneously by multiple threads.
Different <STRONG>shared_ptr</STRONG> instances can be "written to" (accessed
using mutable operations such as <STRONG>operator= </STRONG>or <STRONG>reset</STRONG>)
simultaneosly by multiple threads (even when these instances are copies, and
share the same reference count underneath.)</p>
<P>Any other simultaneous accesses result in undefined behavior.</P>
<P>Examples:</P>
<pre>
shared_ptr&lt;int&gt; p(new int(42));
//--- Example 1 ---
// thread A
shared_ptr&lt;int&gt; p2(p); // reads p
// thread B
shared_ptr&lt;int&gt; p3(p); // OK, multiple reads are safe
//--- Example 2 ---
// thread A
p.reset(new int(1912)); // writes p
// thread B
p2.reset(); // OK, writes p2
//--- Example 3 ---
// thread A
p = p3; // reads p3, writes p
// thread B
p3.reset(); // writes p3; undefined, simultaneous read/write
//--- Example 4 ---
// thread A
p3 = p2; // reads p2, writes p3
// thread B
// p2 goes out of scope: undefined, the destructor is considered a "write access"
//--- Example 5 ---
// thread A
p3.reset(new int(1));
// thread B
p3.reset(new int(2)); // undefined, multiple writes
</pre>
<p><STRONG>shared_ptr</STRONG> uses <A href="../config/config.htm">Boost.Config</A>
to detect whether the implementation supports threads. If your program is
single-threaded, but your platform is autodetected by <STRONG>Boost.Config</STRONG>
as supporting multiple threads, <STRONG>#define BOOST_DISABLE_THREADS</STRONG> to
eliminate the thread safety overhead.</p>
<h2><a name="FAQ">Frequently Asked Questions</a></h2>
<P><B>Q.</B> There are several variations of shared pointers, with different
tradeoffs; why does the smart pointer library supply only a single
implementation? It would be useful to be able to experiment with each type so
as to find the most suitable for the job at hand?<BR>
<b>A.</b> An important goal of <STRONG>shared_ptr</STRONG> is to provide a
standard shared-ownership pointer. Having a single pointer type is important
for stable library interfaces, since different shared pointers typically cannot
interoperate, i.e. a reference counted pointer (used by library A) cannot share
ownership with a linked pointer (used by library B.)</P>
<P><B>Q.</B> Why doesn't <B>shared_ptr</B> have template parameters supplying
traits or policies to allow extensive user customization?<BR>
<B>A.</B> Parameterization discourages users. The <B>shared_ptr</B> template is
carefully crafted to meet common needs without extensive parameterization. Some
day a highly configurable smart pointer may be invented that is also very easy
to use and very hard to misuse. Until then, <B>shared_ptr</B> is the smart
pointer of choice for a wide range of applications. (Those interested in policy
based smart pointers should read <A href="http://cseng.aw.com/book/0,,0201704315,00.html">
Modern C++ Design</A> by Andrei Alexandrescu.)</P>
<P><B>Q.</B> I am not convinced. Default parameters can be used where appropriate
to hide the complexity. Again, why not policies?<BR>
<B>A.</B> Template parameters affect the type. See the answer to the first
question above.</P>
<p><b>Q.</b> Why doesn't <b>shared_ptr</b> use a linked list implementation?<br>
<b>A.</b> A linked list implementation does not offer enough advantages to
offset the added cost of an extra pointer. See <A href="smarttests.htm">timings</A>
page. In addition, it is expensive to make a linked list implementation thread
safe.</p>
<p><b>Q.</b> Why doesn't <b>shared_ptr</b> (or any of the other Boost smart
pointers) supply an automatic conversion to <b>T*</b>?<br>
<b>A.</b> Automatic conversion is believed to be too error prone.</p>
<p><b>Q.</b> Why does <b>shared_ptr</b> supply use_count()?<br>
<b>A.</b> As an aid to writing test cases and debugging displays. One of the
progenitors had use_count(), and it was useful in tracking down bugs in a
complex project that turned out to have cyclic-dependencies.</p>
<p><b>Q.</b> Why doesn't <b>shared_ptr</b> specify complexity requirements?<br>
<b>A.</b> Because complexity requirements limit implementors and complicate the
specification without apparent benefit to <b>shared_ptr</b> users. For example,
error-checking implementations might become non-conforming if they had to meet
stringent complexity requirements.</p>
<p><b>Q.</b> Why doesn't <b>shared_ptr</b> provide a release() function?<br>
<b>A.</b> <b>shared_ptr</b> cannot give away ownership unless it's unique()
because the other copy will still destroy the object.</p>
<p>Consider:</p>
<blockquote><pre>shared_ptr&lt;int&gt; a(new int);
shared_ptr&lt;int&gt; b(a); // a.use_count() == b.use_count() == 2
int * p = a.release();
// Who owns p now? b will still call delete on it in its destructor.</pre>
</blockquote>
<p><b>Q.</b> Why doesn't <b>shared_ptr</b> provide (your pet feature here)?<br>
<b>A.</b> Because (your pet feature here) would mandate a reference counted
implementation or a linked list implementation, or some other specific
implementation. This is not the intent.</p>
<hr>
<p>Revised <!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B %Y" startspan -->
23 July 2002<!--webbot bot="Timestamp" i-checksum="38439" endspan --></p>
<p>Copyright 1999 Greg Colvin and Beman Dawes. Copyright 2002 Darin Adler.
Copyright 2002 Peter Dimov. Permission to copy, use, modify, sell and
distribute this document is granted provided this copyright notice appears in
all copies. This document is provided "as is" without express or implied
warranty, and with no claim as to its suitability for any purpose.</p>
</body>
</html>

View File

@@ -0,0 +1,31 @@
#if defined(_MSC_VER) && !defined(__ICL)
#pragma warning(disable: 4786) // identifier truncated in debug info
#pragma warning(disable: 4710) // function not inlined
#pragma warning(disable: 4711) // function selected for automatic inline expansion
#pragma warning(disable: 4514) // unreferenced inline removed
#endif
//
// shared_ptr_assign_fail.cpp - a negative test for shared_ptr assignment
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <boost/shared_ptr.hpp>
bool boost_error(char const *, char const *, char const *, long)
{
return true;
}
int main()
{
boost::shared_ptr<int> p;
p = new int(42); // assignment must fail
return 0;
}

96
shared_ptr_example.cpp Normal file
View File

@@ -0,0 +1,96 @@
// Boost shared_ptr_example.cpp --------------------------------------------//
// (C) Copyright Beman Dawes 2001. Permission to copy,
// use, modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided "as is"
// without express or implied warranty, and with no claim as to its
// suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 21 May 01 Initial complete version (Beman Dawes)
// The original code for this example appeared in the shared_ptr documentation.
// Ray Gallimore pointed out that foo_set was missing a Compare template
// argument, so would not work as intended. At that point the code was
// turned into an actual .cpp file so it could be compiled and tested.
#include <vector>
#include <set>
#include <iostream>
#include <algorithm>
#include <boost/shared_ptr.hpp>
// The application will produce a series of
// objects of type Foo which later must be
// accessed both by occurrence (std::vector)
// and by ordering relationship (std::set).
struct Foo
{
Foo( int _x ) : x(_x) {}
~Foo() { std::cout << "Destructing a Foo with x=" << x << "\n"; }
int x;
/* ... */
};
typedef boost::shared_ptr<Foo> FooPtr;
struct FooPtrOps
{
bool operator()( const FooPtr & a, const FooPtr & b )
{ return a->x > b->x; }
void operator()( const FooPtr & a )
{ std::cout << a->x << "\n"; }
};
int main()
{
std::vector<FooPtr> foo_vector;
std::set<FooPtr,FooPtrOps> foo_set; // NOT multiset!
FooPtr foo_ptr( new Foo( 2 ) );
foo_vector.push_back( foo_ptr );
foo_set.insert( foo_ptr );
foo_ptr.reset( new Foo( 1 ) );
foo_vector.push_back( foo_ptr );
foo_set.insert( foo_ptr );
foo_ptr.reset( new Foo( 3 ) );
foo_vector.push_back( foo_ptr );
foo_set.insert( foo_ptr );
foo_ptr.reset ( new Foo( 2 ) );
foo_vector.push_back( foo_ptr );
foo_set.insert( foo_ptr );
std::cout << "foo_vector:\n";
std::for_each( foo_vector.begin(), foo_vector.end(), FooPtrOps() );
std::cout << "\nfoo_set:\n";
std::for_each( foo_set.begin(), foo_set.end(), FooPtrOps() );
std::cout << "\n";
// Expected output:
//
// foo_vector:
// 2
// 1
// 3
// 2
//
// foo_set:
// 3
// 2
// 1
//
// Destructing a Foo with x=2
// Destructing a Foo with x=1
// Destructing a Foo with x=3
// Destructing a Foo with x=2
return 0;
}

19
shared_ptr_example2.cpp Normal file
View File

@@ -0,0 +1,19 @@
// Boost shared_ptr_example2 implementation file -----------------------------//
#include "shared_ptr_example2.hpp"
#include <iostream>
class example::implementation
{
public:
~implementation() { std::cout << "destroying implementation\n"; }
};
example::example() : _imp( new implementation ) {}
example::example( const example & s ) : _imp( s._imp ) {}
example & example::operator=( const example & s )
{ _imp = s._imp; return *this; }
void example::do_something()
{ std::cout << "use_count() is " << _imp.use_count() << "\n"; }

26
shared_ptr_example2.hpp Normal file
View File

@@ -0,0 +1,26 @@
// Boost shared_ptr_example2 header file -----------------------------------//
#include <boost/shared_ptr.hpp>
// This example demonstrates the handle/body idiom (also called pimpl and
// several other names). It separates the interface (in this header file)
// from the implementation (in shared_ptr_example2.cpp).
// Note that even though example::implementation is an incomplete type in
// some translation units using this header, shared_ptr< implementation >
// is still valid because the type is complete where it counts - in the
// shared_ptr_example2.cpp translation unit where functions requiring a
// complete type are actually instantiated.
class example
{
public:
example();
example( const example & );
example & operator=( const example & );
void do_something();
private:
class implementation;
boost::shared_ptr< implementation > _imp; // hide implementation details
};

View File

@@ -0,0 +1,15 @@
// Boost shared_ptr_example2_test main program ------------------------------//
#include "shared_ptr_example2.hpp"
int main()
{
example a;
a.do_something();
example b(a);
b.do_something();
example c;
c = a;
c.do_something();
return 0;
}

178
shared_ptr_mt_test.cpp Normal file
View File

@@ -0,0 +1,178 @@
#if defined(_MSC_VER) && !defined(__ICL) && !defined(__COMO__)
#pragma warning(disable: 4786) // identifier truncated in debug info
#pragma warning(disable: 4710) // function not inlined
#pragma warning(disable: 4711) // function selected for automatic inline expansion
#pragma warning(disable: 4514) // unreferenced inline removed
#endif
//
// shared_ptr_mt_test.cpp - tests shared_ptr with multiple threads
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <boost/shared_ptr.hpp>
#include <boost/bind.hpp>
#include <vector>
#include <memory>
#include <stdexcept>
#include <cstdio>
#include <ctime>
// 'portable' thread framework
class abstract_thread
{
public:
virtual ~abstract_thread() {}
virtual void run() = 0;
};
#if !defined(BOOST_HAS_PTHREADS) && defined(BOOST_HAS_WINTHREADS)
char const * title = "Using Windows threads";
#include <windows.h>
#include <process.h>
typedef HANDLE pthread_t;
unsigned __stdcall common_thread_routine(void * pv)
{
abstract_thread * pt = static_cast<abstract_thread *>(pv);
pt->run();
delete pt;
return 0;
}
int pthread_create(pthread_t * thread, void const *, unsigned (__stdcall * start_routine) (void*), void* arg)
{
HANDLE h = (HANDLE)_beginthreadex(0, 0, start_routine, arg, 0, 0);
if(h != 0)
{
*thread = h;
return 0;
}
else
{
return 1; // return errno;
}
}
int pthread_join(pthread_t thread, void ** /*value_ptr*/)
{
::WaitForSingleObject(thread, INFINITE);
::CloseHandle(thread);
return 0;
}
#else
char const * title = "Using POSIX threads";
#include <pthread.h>
extern "C" void * common_thread_routine(void * pv)
{
abstract_thread * pt = static_cast<abstract_thread *>(pv);
pt->run();
delete pt;
return 0;
}
#endif
//
template<class F> class thread: public abstract_thread
{
public:
explicit thread(F f): f_(f)
{
}
void run()
{
f_();
}
private:
F f_;
};
template<class F> pthread_t createThread(F f)
{
std::auto_ptr<abstract_thread> p(new thread<F>(f));
pthread_t r;
if(pthread_create(&r, 0, common_thread_routine, p.get()) == 0)
{
p.release();
return r;
}
throw std::runtime_error("createThread failed.");
}
//
int const n = 1024 * 1024;
void test(boost::shared_ptr<int> const & pi)
{
std::vector< boost::shared_ptr<int> > v;
for(int i = 0; i < n; ++i)
{
v.push_back(pi);
}
}
int const m = 16; // threads
#if defined(BOOST_LWM_USE_CRITICAL_SECTION)
char const * implementation = "critical section";
#elif defined(BOOST_LWM_USE_PTHREADS)
char const * implementation = "pthread_mutex";
#else
char const * implementation = "spinlock";
#endif
int main()
{
std::printf("%s: %s, %d threads, %d iterations: ", title, implementation, m, n);
boost::shared_ptr<int> pi(new int(42));
std::clock_t t = std::clock();
pthread_t a[m];
for(int i = 0; i < m; ++i)
{
a[i] = createThread( boost::bind(test, pi) );
}
for(int i = 0; i < m; ++i)
{
pthread_join(a[i], 0);
}
t = std::clock() - t;
std::printf("\n\n%.3f seconds.\n", static_cast<double>(t) / CLOCKS_PER_SEC);
return 0;
}

372
shared_ptr_test.cpp Normal file
View File

@@ -0,0 +1,372 @@
#if defined(_MSC_VER) && !defined(__ICL) && !defined(__COMO__)
#pragma warning(disable: 4786) // identifier truncated in debug info
#pragma warning(disable: 4710) // function not inlined
#pragma warning(disable: 4711) // function selected for automatic inline expansion
#pragma warning(disable: 4514) // unreferenced inline removed
#endif
//
// shared_ptr_test.cpp - a test for shared_ptr.hpp and weak_ptr.hpp
//
// Copyright (c) 2001, 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <boost/detail/lightweight_test.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/weak_ptr.hpp>
#include <iostream>
bool boost_error(char const *, char const *, char const *, long)
{
return true;
}
namespace
{
int cnt = 0;
}
struct X
{
X()
{
++cnt;
std::cout << "X(" << this << ")::X()\n";
}
~X() // virtual destructor deliberately omitted
{
--cnt;
std::cout << "X(" << this << ")::~X()\n";
}
virtual int id() const
{
return 1;
}
private:
X(X const &);
X & operator= (X const &);
};
struct Y: public X
{
Y()
{
++cnt;
std::cout << "Y(" << this << ")::Y()\n";
}
~Y()
{
--cnt;
std::cout << "Y(" << this << ")::~Y()\n";
}
virtual int id() const
{
return 2;
}
private:
Y(Y const &);
Y & operator= (Y const &);
};
int * get_object()
{
++cnt;
std::cout << "get_object()\n";
return &cnt;
}
void release_object(int * p)
{
BOOST_TEST(p == &cnt);
--cnt;
std::cout << "release_object()\n";
}
class Z: public virtual boost::counted_base
{
public:
Z()
{
++cnt;
std::cout << "Z(" << this << ")::Z()\n";
}
~Z()
{
--cnt;
std::cout << "Z(" << this << ")::~Z()\n";
}
boost::shared_ptr<Z> shared_this()
{
return boost::shared_from_this(this);
}
boost::shared_ptr<Z const> shared_this() const
{
return boost::shared_from_this(this);
}
private:
Z(Z const &);
Z & operator= (Z const &);
};
template<class T> void test_is_X(boost::shared_ptr<T> const & p)
{
BOOST_TEST(p->id() == 1);
BOOST_TEST((*p).id() == 1);
}
template<class T> void test_is_X(boost::weak_ptr<T> const & p)
{
BOOST_TEST(p.get() != 0);
BOOST_TEST(p.get()->id() == 1);
}
template<class T> void test_is_Y(boost::shared_ptr<T> const & p)
{
BOOST_TEST(p->id() == 2);
BOOST_TEST((*p).id() == 2);
}
template<class T> void test_is_Y(boost::weak_ptr<T> const & p)
{
BOOST_TEST(p.get() != 0);
BOOST_TEST(p.get()->id() == 2);
}
template<class T> void test_eq(T const & a, T const & b)
{
BOOST_TEST(a == b);
BOOST_TEST(!(a != b));
BOOST_TEST(!(a < b));
BOOST_TEST(!(b < a));
}
template<class T> void test_ne(T const & a, T const & b)
{
BOOST_TEST(!(a == b));
BOOST_TEST(a != b);
BOOST_TEST(a < b || b < a);
BOOST_TEST(!(a < b && b < a));
}
template<class T, class U> void test_eq2(T const & a, U const & b)
{
BOOST_TEST(a == b);
BOOST_TEST(!(a != b));
}
template<class T, class U> void test_ne2(T const & a, U const & b)
{
BOOST_TEST(!(a == b));
BOOST_TEST(a != b);
}
template<class T> void test_is_zero(boost::shared_ptr<T> const & p)
{
BOOST_TEST(!p);
BOOST_TEST(p.get() == 0);
}
template<class T> void test_is_nonzero(boost::shared_ptr<T> const & p)
{
// p? true: false is used to test p in a boolean context.
// BOOST_TEST(p) is not guaranteed to test the conversion,
// as the macro might test !!p instead.
BOOST_TEST(p? true: false);
BOOST_TEST(p.get() != 0);
}
int main()
{
using namespace boost;
{
shared_ptr<X> p(new Y);
shared_ptr<X> p2(new X);
test_is_nonzero(p);
test_is_nonzero(p2);
test_is_Y(p);
test_is_X(p2);
test_ne(p, p2);
{
shared_ptr<X> q(p);
test_eq(p, q);
}
shared_ptr<Y> p3 = shared_dynamic_cast<Y>(p);
shared_ptr<Y> p4 = shared_dynamic_cast<Y>(p2);
test_is_nonzero(p3);
test_is_zero(p4);
BOOST_TEST(p.use_count() == 2);
BOOST_TEST(p2.use_count() == 1);
BOOST_TEST(p3.use_count() == 2);
BOOST_TEST(p4.use_count() == 1);
test_is_Y(p3);
test_eq2(p, p3);
test_ne2(p2, p4);
shared_ptr<void> p5(p);
test_is_nonzero(p5);
test_eq2(p, p5);
std::cout << "--\n";
p.reset();
p2.reset();
p3.reset();
p4.reset();
test_is_zero(p);
test_is_zero(p2);
test_is_zero(p3);
test_is_zero(p4);
std::cout << "--\n";
BOOST_TEST(p5.use_count() == 1);
weak_ptr<X> wp1;
BOOST_TEST(wp1.use_count() == 0);
BOOST_TEST(wp1.get() == 0);
try
{
shared_ptr<X> sp1(wp1);
BOOST_ERROR("shared_ptr<X> sp1(wp1) failed to throw");
}
catch(boost::use_count_is_zero const &)
{
}
test_is_zero(boost::make_shared(wp1));
weak_ptr<X> wp2 = shared_static_cast<X>(p5);
BOOST_TEST(wp2.use_count() == 1);
BOOST_TEST(wp2.get() != 0);
test_is_Y(wp2);
test_ne(wp1, wp2);
// Scoped to not affect the subsequent use_count() tests.
{
shared_ptr<X> sp2(wp2);
test_is_nonzero(boost::make_shared(wp2));
}
weak_ptr<Y> wp3 = shared_dynamic_cast<Y>(boost::make_shared(wp2));
BOOST_TEST(wp3.use_count() == 1);
BOOST_TEST(wp3.get() != 0);
test_eq2(wp2, wp3);
weak_ptr<X> wp4(wp3);
BOOST_TEST(wp4.use_count() == 1);
BOOST_TEST(wp4.get() != 0);
test_eq(wp2, wp4);
wp1 = p2;
BOOST_TEST(wp1.get() == 0);
// Note the following test. Construction succeeds,
// but make_shared() returns a null shared_ptr with
// use_count() == 2.
shared_ptr<X> sp1(wp1);
test_is_zero(boost::make_shared(wp1));
BOOST_TEST(p2.use_count() == 2);
BOOST_TEST(sp1.use_count() == 2);
BOOST_TEST(wp1.use_count() == 2);
//
wp1 = p4;
wp1 = wp3;
wp1 = wp2;
BOOST_TEST(wp1.use_count() == 1);
BOOST_TEST(wp1.get() != 0);
test_eq(wp1, wp2);
weak_ptr<X> wp5;
bool b1 = wp1 < wp5;
bool b2 = wp5 < wp1;
p5.reset();
BOOST_TEST(wp1.use_count() == 0);
BOOST_TEST(wp1.get() == 0);
BOOST_TEST(wp2.use_count() == 0);
BOOST_TEST(wp2.get() == 0);
BOOST_TEST(wp3.use_count() == 0);
BOOST_TEST(wp3.get() == 0);
// Test operator< stability for std::set< weak_ptr<> >
// Thanks to Joe Gottman for pointing this out
BOOST_TEST(b1 == (wp1 < wp5));
BOOST_TEST(b2 == (wp5 < wp1));
{
// note that both get_object and release_object deal with int*
shared_ptr<void> p6(get_object(), release_object);
}
{
// test intrusive counting
boost::shared_ptr<void> pv(new Z);
boost::shared_ptr<Z> pz = boost::shared_static_cast<Z>(pv);
BOOST_TEST(pz.use_count() == pz->use_count());
// test shared_from_this
boost::shared_ptr<Z> pz2 = pz->shared_this();
Z const & z = *pz2;
boost::shared_ptr<Z const> pz3 = z.shared_this();
BOOST_TEST(pz.use_count() == pz->use_count());
BOOST_TEST(pz2.use_count() == pz2->use_count());
BOOST_TEST(pz3.use_count() == pz3->use_count());
BOOST_TEST(pz.use_count() == pz2.use_count());
BOOST_TEST(pz.use_count() == pz3.use_count());
}
}
BOOST_TEST(cnt == 0);
return boost::report_errors();
}

View File

@@ -0,0 +1,41 @@
#if defined(_MSC_VER) && !defined(__ICL) && !defined(__COMO__)
#pragma warning(disable: 4786) // identifier truncated in debug info
#pragma warning(disable: 4710) // function not inlined
#pragma warning(disable: 4711) // function selected for automatic inline expansion
#pragma warning(disable: 4514) // unreferenced inline removed
#endif
//
// shared_ptr_timing_test.cpp - use to evaluate the impact of thread safety
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <boost/shared_ptr.hpp>
#include <iostream>
#include <vector>
#include <ctime>
int const n = 8 * 1024 * 1024;
int main()
{
std::vector< boost::shared_ptr<int> > v;
boost::shared_ptr<int> pi(new int);
std::clock_t t = std::clock();
for(int i = 0; i < n; ++i)
{
v.push_back(pi);
}
t = std::clock() - t;
std::cout << static_cast<double>(t) / CLOCKS_PER_SEC << '\n';
}

168
smart_ptr.htm Normal file
View File

@@ -0,0 +1,168 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Smart Pointers</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body bgcolor="#ffffff" text="#000000">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="middle" width="277" height="86">Smart
Pointers</h1>
<p>Smart pointers are objects which store pointers to dynamically allocated (heap)
objects. They behave much like built-in C++ pointers except that they
automatically delete the object pointed to at the appropriate time. Smart
pointers are particularly useful in the face of exceptions as they ensure
proper destruction of dynamically allocated objects. They can also be used to
keep track of dynamically allocated objects shared by multiple owners.</p>
<p>Conceptually, smart pointers are seen as owning the object pointed to, and thus
responsible for deletion of the object when it is no longer needed.</p>
<p>The smart pointer library provides five smart pointer class templates:</p>
<div align="left">
<table border="1" cellpadding="4" cellspacing="4">
<tr>
<td><a href="scoped_ptr.htm"><b>scoped_ptr</b></a></td>
<td><a href="../../boost/scoped_ptr.hpp">&lt;boost/scoped_ptr.hpp&gt;</a></td>
<td>Simple sole ownership of single objects. Noncopyable.</td>
</tr>
<tr>
<td><a href="scoped_array.htm"><b>scoped_array</b></a></td>
<td><a href="../../boost/scoped_array.hpp">&lt;boost/scoped_array.hpp&gt;</a></td>
<td>Simple sole ownership of arrays. Noncopyable.</td>
</tr>
<tr>
<td><a href="shared_ptr.htm"><b>shared_ptr</b></a></td>
<td><a href="../../boost/shared_ptr.hpp">&lt;boost/shared_ptr.hpp&gt;</a></td>
<td>Object ownership shared among multiple pointers</td>
</tr>
<tr>
<td><a href="shared_array.htm"><b>shared_array</b></a></td>
<td><a href="../../boost/shared_array.hpp">&lt;boost/shared_array.hpp&gt;</a></td>
<td>Array ownership shared among multiple pointers.</td>
</tr>
<tr>
<td><a href="weak_ptr.htm"><b>weak_ptr</b></a></td>
<td><a href="../../boost/weak_ptr.hpp">&lt;boost/weak_ptr.hpp&gt;</a></td>
<td>Non-owning observers of an object owned by <b>shared_ptr</b>.</td>
</tr>
</table>
</div>
<p>These templates are designed to complement the <b>std::auto_ptr</b> template.</p>
<p>They are examples of the "resource acquisition is initialization" idiom
described in Bjarne Stroustrup's "The C++ Programming Language", 3rd edition,
Section 14.4, Resource Management.</p>
<p>A test program, <a href="smart_ptr_test.cpp">smart_ptr_test.cpp</a>, is provided
to verify correct operation.</p>
<p>A page on <a href="compatibility.htm">compatibility</a> with older versions of
the Boost smart pointer library describes some of the changes since earlier
versions of the smart pointer implementation.</p>
<p>A page on <a href="smarttests.htm">smart pointer timings</a> will be of interest
to those curious about performance issues.</p>
<h2><a name="Common requirements">Common Requirements</a></h2>
<p>These smart pointer class templates have a template parameter, <b>T</b>, which
specifies the type of the object pointed to by the smart pointer. The behavior
of the smart pointer templates is undefined if the destructor or <b>operator delete</b>
for objects of type <b>T</b> throw exceptions.</p>
<p><b>T</b> may be an incomplete type at the point of smart pointer declaration.
Unless otherwise specified, it is required that <b>T</b> be a complete type at
points of smart pointer instantiation. Implementations are required to diagnose
(treat as an error) all violations of this requirement, including deletion of
an incomplete type. See the description of the <a href="../utility/utility.htm#checked_delete">
<b>checked_delete</b></a> function template.</p>
<P>Note that <STRONG>shared_ptr</STRONG> does not have this restriction, as most of
its member functions do not require <STRONG>T</STRONG> to be a complete type.</P>
<h3>Rationale</h3>
<p>The requirements on <b>T</b> are carefully crafted to maximize safety yet allow
handle-body (also called pimpl) and similar idioms. In these idioms a smart
pointer may appear in translation units where <b>T</b> is an incomplete type.
This separates interface from implementation and hides implementation from
translation units which merely use the interface. Examples described in the
documentation for specific smart pointers illustrate use of smart pointers in
these idioms.</p>
<p>Note that <b>scoped_ptr</b> requires that <b>T</b> be a complete type at
destruction time, but <b>shared_ptr</b> does not.</p>
<h2>Exception Safety</h2>
<p>Several functions in these smart pointer classes are specified as having "no
effect" or "no effect except such-and-such" if an exception is thrown. This
means that when an exception is thrown by an object of one of these classes,
the entire program state remains the same as it was prior to the function call
which resulted in the exception being thrown. This amounts to a guarantee that
there are no detectable side effects. Other functions never throw exceptions.
The only exception ever thrown by functions which do throw (assuming <b>T</b> meets
the <a href="#Common requirements">common requirements</a>) is <b>std::bad_alloc</b>,
and that is thrown only by functions which are explicitly documented as
possibly throwing <b>std::bad_alloc</b>.</p>
<h2>Exception-specifications</h2>
<p>Exception-specifications are not used; see <a href="../../more/lib_guide.htm#Exception-specification">
exception-specification rationale</a>.</p>
<p>All the smart pointer templates contain member functions which can never throw
exceptions, because they neither throw exceptions themselves nor call other
functions which may throw exceptions. These members are indicated by a comment: <code>
// never throws</code>.
</p>
<p>Functions which destroy objects of the pointed to type are prohibited from
throwing exceptions by the <a href="#Common requirements">common requirements</a>.</p>
<h2>History and Acknowledgements</h2>
<p>January 2002. Peter Dimov reworked all four classes, adding features, fixing
bugs, and splitting them into four separate headers, and added <b>weak_ptr</b>.
See the <a href="compatibility.htm">compatibility</a> page for a summary of the
changes.</p>
<p>May 2001. Vladimir Prus suggested requiring a complete type on destruction.
Refinement evolved in discussions including Dave Abrahams, Greg Colvin, Beman
Dawes, Rainer Deyke, Peter Dimov, John Maddock, Vladimir Prus, Shankar Sai, and
others.</p>
<p>November 1999. Darin Adler provided <b>operator ==</b>, <b>operator !=</b>, and <b>std::swap</b>
and <b>std::less</b> specializations for shared types.</p>
<p>September 1999. Luis Coelho provided <b>shared_ptr::swap</b> and <b>shared_array::swap</b></p>
<p>May 1999. In April and May, 1999, Valentin Bonnard and David Abrahams made a
number of suggestions resulting in numerous improvements.</p>
<p>October 1998. In 1994 Greg Colvin proposed to the C++ Standards Committee
classes named <b>auto_ptr</b> and <b>counted_ptr</b> which were very similar to
what we now call <b>scoped_ptr</b> and <b>shared_ptr</b>. The committee
document was 94-168/N0555, Exception Safe Smart Pointers. In one of the very
few cases where the Library Working Group's recommendations were not followed
by the full committee, <b>counted_ptr</b> was rejected and surprising
transfer-of-ownership semantics were added to <b>auto_ptr</b>.</p>
<p>Beman Dawes proposed reviving the original semantics under the names <b>safe_ptr</b>
and <b>counted_ptr</b> at an October, 1998, meeting of Per Andersson, Matt
Austern, Greg Colvin, Sean Corfield, Pete Becker, Nico Josuttis, Dietmar K<>hl,
Nathan Myers, Chichiang Wan and Judy Ward. During the discussion, the four
class names were finalized, it was decided that there was no need to exactly
follow the <b>std::auto_ptr</b> interface, and various function signatures and
semantics were finalized.</p>
<p>Over the next three months, several implementations were considered for <b>shared_ptr</b>,
and discussed on the <a href="http://www.boost.org">boost.org</a> mailing list.
The implementation questions revolved around the reference count which must be
kept, either attached to the pointed to object, or detached elsewhere. Each of
those variants have themselves two major variants:
<ul>
<li>
Direct detached: the shared_ptr contains a pointer to the object, and a pointer
to the count.
<li>
Indirect detached: the shared_ptr contains a pointer to a helper object, which
in turn contains a pointer to the object and the count.
<li>
Embedded attached: the count is a member of the object pointed to.
<li>
Placement attached: the count is attached via operator new manipulations.</li>
</ul>
<p>Each implementation technique has advantages and disadvantages. We went so far
as to run various timings of the direct and indirect approaches, and found that
at least on Intel Pentium chips there was very little measurable difference.
Kevlin Henney provided a paper he wrote on "Counted Body Techniques." Dietmar
K<>hl suggested an elegant partial template specialization technique to allow
users to choose which implementation they preferred, and that was also
experimented with.</p>
<p>But Greg Colvin and Jerry Schwarz argued that "parameterization will discourage
users", and in the end we choose to supply only the direct implementation.</p>
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B %Y" startspan
-->
4 February 2002<!--webbot bot="Timestamp" endspan i-checksum="40737"
--></p>
<p>Copyright 1999 Greg Colvin and Beman Dawes. Copyright 2002 Darin Adler.
Permission to copy, use, modify, sell and distribute this document is granted
provided this copyright notice appears in all copies. This document is provided
"as is" without express or implied warranty, and with no claim as to its
suitability for any purpose.</p>
</body>
</html>

296
smart_ptr_test.cpp Normal file
View File

@@ -0,0 +1,296 @@
// smart pointer test program ----------------------------------------------//
// (C) Copyright Beman Dawes 1998, 1999. Permission to copy, use, modify, sell
// and distribute this software is granted provided this copyright notice
// appears in all copies. This software is provided "as is" without express or
// implied warranty, and with no claim as to its suitability for any purpose.
// Revision History
// 24 May 01 use Boost test library for error detection, reporting, add tests
// for operations on incomplete types (Beman Dawes)
// 29 Nov 99 added std::swap and associative container tests (Darin Adler)
// 25 Sep 99 added swap tests
// 20 Jul 99 header name changed to .hpp
// 20 Apr 99 additional error tests added.
#include <boost/scoped_ptr.hpp>
#include <boost/scoped_array.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/shared_array.hpp>
#include <boost/detail/lightweight_test.hpp>
#include <cstring>
#include <iostream>
#include <set>
bool boost_error(char const *, char const *, char const *, long)
{
return true; // fail with assert()
}
class Incomplete;
Incomplete * get_ptr( boost::shared_ptr<Incomplete>& incomplete )
{
return incomplete.get();
}
using namespace std;
using boost::scoped_ptr;
using boost::scoped_array;
using boost::shared_ptr;
using boost::shared_array;
template<typename T>
void ck( const T* v1, T v2 ) { BOOST_TEST( *v1 == v2 ); }
namespace {
int UDT_use_count; // independent of pointer maintained counts
}
// user defined type -------------------------------------------------------//
class UDT {
long value_;
public:
explicit UDT( long value=0 ) : value_(value) { ++UDT_use_count; }
~UDT() {
--UDT_use_count;
cout << "UDT with value " << value_ << " being destroyed\n";
}
long value() const { return value_; }
void value( long v ) { value_ = v;; }
}; // UDT
// tests on incomplete types -----------------------------------------------//
// Certain smart pointer operations are specified to work on incomplete types,
// and some uses depend upon this feature. These tests verify compilation
// only - the functions aren't actually invoked.
class Incomplete;
Incomplete * check_incomplete( scoped_ptr<Incomplete>& incomplete )
{
return incomplete.get();
}
Incomplete * check_incomplete( shared_ptr<Incomplete>& incomplete,
shared_ptr<Incomplete>& i2 )
{
incomplete.swap(i2);
cout << incomplete.use_count() << ' ' << incomplete.unique() << '\n';
return incomplete.get();
}
// This isn't a very systematic test; it just hits some of the basics.
void test()
{
BOOST_TEST( UDT_use_count == 0 ); // reality check
// test scoped_ptr with a built-in type
long * lp = new long;
scoped_ptr<long> sp ( lp );
BOOST_TEST( sp.get() == lp );
BOOST_TEST( lp == sp.get() );
BOOST_TEST( &*sp == lp );
*sp = 1234568901L;
BOOST_TEST( *sp == 1234568901L );
BOOST_TEST( *lp == 1234568901L );
ck( static_cast<long*>(sp.get()), 1234568901L );
ck( lp, *sp );
sp.reset();
BOOST_TEST( sp.get() == 0 );
// test scoped_ptr with a user defined type
scoped_ptr<UDT> udt_sp ( new UDT( 999888777 ) );
BOOST_TEST( udt_sp->value() == 999888777 );
udt_sp.reset();
udt_sp.reset( new UDT( 111222333 ) );
BOOST_TEST( udt_sp->value() == 111222333 );
udt_sp.reset( new UDT( 333222111 ) );
BOOST_TEST( udt_sp->value() == 333222111 );
// test scoped_array with a build-in type
char * sap = new char [ 100 ];
scoped_array<char> sa ( sap );
BOOST_TEST( sa.get() == sap );
BOOST_TEST( sap == sa.get() );
strcpy( sa.get(), "Hot Dog with mustard and relish" );
BOOST_TEST( strcmp( sa.get(), "Hot Dog with mustard and relish" ) == 0 );
BOOST_TEST( strcmp( sap, "Hot Dog with mustard and relish" ) == 0 );
BOOST_TEST( sa[0] == 'H' );
BOOST_TEST( sa[30] == 'h' );
sa[0] = 'N';
sa[4] = 'd';
BOOST_TEST( strcmp( sap, "Not dog with mustard and relish" ) == 0 );
sa.reset();
BOOST_TEST( sa.get() == 0 );
// test shared_ptr with a built-in type
int * ip = new int;
shared_ptr<int> cp ( ip );
BOOST_TEST( ip == cp.get() );
BOOST_TEST( cp.use_count() == 1 );
*cp = 54321;
BOOST_TEST( *cp == 54321 );
BOOST_TEST( *ip == 54321 );
ck( static_cast<int*>(cp.get()), 54321 );
ck( static_cast<int*>(ip), *cp );
shared_ptr<int> cp2 ( cp );
BOOST_TEST( ip == cp2.get() );
BOOST_TEST( cp.use_count() == 2 );
BOOST_TEST( cp2.use_count() == 2 );
BOOST_TEST( *cp == 54321 );
BOOST_TEST( *cp2 == 54321 );
ck( static_cast<int*>(cp2.get()), 54321 );
ck( static_cast<int*>(ip), *cp2 );
shared_ptr<int> cp3 ( cp );
BOOST_TEST( cp.use_count() == 3 );
BOOST_TEST( cp2.use_count() == 3 );
BOOST_TEST( cp3.use_count() == 3 );
cp.reset();
BOOST_TEST( cp2.use_count() == 2 );
BOOST_TEST( cp3.use_count() == 2 );
BOOST_TEST( cp.use_count() == 1 );
cp.reset( new int );
*cp = 98765;
BOOST_TEST( *cp == 98765 );
*cp3 = 87654;
BOOST_TEST( *cp3 == 87654 );
BOOST_TEST( *cp2 == 87654 );
cp.swap( cp3 );
BOOST_TEST( *cp == 87654 );
BOOST_TEST( *cp2 == 87654 );
BOOST_TEST( *cp3 == 98765 );
cp.swap( cp3 );
BOOST_TEST( *cp == 98765 );
BOOST_TEST( *cp2 == 87654 );
BOOST_TEST( *cp3 == 87654 );
cp2 = cp2;
BOOST_TEST( cp2.use_count() == 2 );
BOOST_TEST( *cp2 == 87654 );
cp = cp2;
BOOST_TEST( cp2.use_count() == 3 );
BOOST_TEST( *cp2 == 87654 );
BOOST_TEST( cp.use_count() == 3 );
BOOST_TEST( *cp == 87654 );
shared_ptr<int> cp4;
swap( cp2, cp4 );
BOOST_TEST( cp4.use_count() == 3 );
BOOST_TEST( *cp4 == 87654 );
BOOST_TEST( cp2.get() == 0 );
set< shared_ptr<int> > scp;
scp.insert(cp4);
BOOST_TEST( scp.find(cp4) != scp.end() );
BOOST_TEST( scp.find(cp4) == scp.find( shared_ptr<int>(cp4) ) );
// test shared_array with a built-in type
char * cap = new char [ 100 ];
shared_array<char> ca ( cap );
BOOST_TEST( ca.get() == cap );
BOOST_TEST( cap == ca.get() );
BOOST_TEST( &ca[0] == cap );
strcpy( ca.get(), "Hot Dog with mustard and relish" );
BOOST_TEST( strcmp( ca.get(), "Hot Dog with mustard and relish" ) == 0 );
BOOST_TEST( strcmp( cap, "Hot Dog with mustard and relish" ) == 0 );
BOOST_TEST( ca[0] == 'H' );
BOOST_TEST( ca[30] == 'h' );
shared_array<char> ca2 ( ca );
shared_array<char> ca3 ( ca2 );
ca[0] = 'N';
ca[4] = 'd';
BOOST_TEST( strcmp( ca.get(), "Not dog with mustard and relish" ) == 0 );
BOOST_TEST( strcmp( ca2.get(), "Not dog with mustard and relish" ) == 0 );
BOOST_TEST( strcmp( ca3.get(), "Not dog with mustard and relish" ) == 0 );
BOOST_TEST( ca.use_count() == 3 );
BOOST_TEST( ca2.use_count() == 3 );
BOOST_TEST( ca3.use_count() == 3 );
ca2.reset();
BOOST_TEST( ca.use_count() == 2 );
BOOST_TEST( ca3.use_count() == 2 );
BOOST_TEST( ca2.use_count() == 1 );
ca.reset();
BOOST_TEST( ca.get() == 0 );
shared_array<char> ca4;
swap( ca3, ca4 );
BOOST_TEST( ca4.use_count() == 1 );
BOOST_TEST( strcmp( ca4.get(), "Not dog with mustard and relish" ) == 0 );
BOOST_TEST( ca3.get() == 0 );
set< shared_array<char> > sca;
sca.insert(ca4);
BOOST_TEST( sca.find(ca4) != sca.end() );
BOOST_TEST( sca.find(ca4) == sca.find( shared_array<char>(ca4) ) );
// test shared_array with user defined type
shared_array<UDT> udta ( new UDT[3] );
udta[0].value( 111 );
udta[1].value( 222 );
udta[2].value( 333 );
shared_array<UDT> udta2 ( udta );
BOOST_TEST( udta[0].value() == 111 );
BOOST_TEST( udta[1].value() == 222 );
BOOST_TEST( udta[2].value() == 333 );
BOOST_TEST( udta2[0].value() == 111 );
BOOST_TEST( udta2[1].value() == 222 );
BOOST_TEST( udta2[2].value() == 333 );
udta2.reset();
BOOST_TEST( udta2.get() == 0 );
BOOST_TEST( udta.use_count() == 1 );
BOOST_TEST( udta2.use_count() == 1 );
BOOST_TEST( UDT_use_count == 4 ); // reality check
// test shared_ptr with a user defined type
UDT * up = new UDT;
shared_ptr<UDT> sup ( up );
BOOST_TEST( up == sup.get() );
BOOST_TEST( sup.use_count() == 1 );
sup->value( 54321 ) ;
BOOST_TEST( sup->value() == 54321 );
BOOST_TEST( up->value() == 54321 );
shared_ptr<UDT> sup2;
sup2 = sup;
BOOST_TEST( sup2->value() == 54321 );
BOOST_TEST( sup.use_count() == 2 );
BOOST_TEST( sup2.use_count() == 2 );
sup2 = sup2;
BOOST_TEST( sup2->value() == 54321 );
BOOST_TEST( sup.use_count() == 2 );
BOOST_TEST( sup2.use_count() == 2 );
cout << "OK\n";
new char[12345]; // deliberate memory leak to verify leaks detected
}
int main()
{
test();
return boost::report_errors();
}

BIN
smarttest.zip Normal file

Binary file not shown.

543
smarttests.htm Normal file
View File

@@ -0,0 +1,543 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Smart Pointer Timings</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body bgcolor="#FFFFFF">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="middle" WIDTH="277" HEIGHT="86">Smart Pointer Timings</h1>
<p>In late January 2000, Mark Borgerding put forward a suggestion to boost for
a new design of smart pointer whereby an intrusive doubly linked list is used
to join together all instances of smart pointers sharing a given raw pointer.
This allowed avoidance of the costly heap allocation of a reference count that
occurred in the initial construction of the then current version of boost::shared_ptr.
Of course, nothing is for free and the benefit here was gained at the expense
of increased size and more costly copy operations. A debate ensued on the boost
mailing list and the tests which this page describes were performed to provide
a guide for current and future investigations into smart pointer implementation
strategies.</p>
<p>Thanks are due to <a href="../../people/dave_abrahams.htm">Dave Abrahams</a>,
Gavin Collings,
<a href="../../people/greg_colvin.htm">Greg Colvin</a> and
<a href="../../people/beman_dawes.html">Beman Dawes</a>
for test code and trial implementations, the final version of which can be found
in .zip format <a href="smarttest.zip">here</a>.</p>
<h2>Description</h2>
<p>Two tests were run: the first aimed to obtain timings for two basic individual
operations:</p>
<ol type="i">
<li> Initial construction from raw pointer.</li>
<li> An amortized copy operation consisting of half an assignment and half a
copy construction - designed to reflect average usage.</li>
</ol>
<p>The second attempted to gain more insight into normal usage by timing the fill
and sort algorithms for vectors and lists filled with the various smart pointers.</p>
<p>Five smart pointer implementation strategies were tested:</p>
<ol type="i">
<li>Counted pointer using a heap allocated reference count, this is referred
to as <b>simple counted</b>.</li>
<li>Counted pointer using a special purpose allocator for the reference count
- <b>special counted</b>.</li>
<li>Counted pointer using an intrusive reference count - <b>intrusive</b>.</li>
<li>Linked pointer as described above - <b>linked</b>.</li>
<li>Cyclic pointer, a counted implementation using a std::deque for allocation
with provision for weak pointers and garbage collection of cycles of pointers
- <b>cyclic</b>.</li>
</ol>
<p>on two compilers:</p>
<ol type="i">
<li>MSVC 6.0 service pack 3, using default release optimization mode (/O2 -
optimized for speed, no inlining of functions defined outside a class body
unless specified as inline).</li>
<li>gcc 2.95.2 using full optimization (-O3 -DNDEBUG).</li>
</ol>
<p>Additionally, generated pointer sizes (taking into account struct alignment)
were compared, as were generated code sizes for MSVC mainly by manual inspection
of generated assembly code - a necessity due to function inlining.</p>
<p>All tests were run on a PII-200 running Windows NT version 4.0</p>
<h2>&nbsp;</h2>
<h2>Operation Timing Test Results</h2>
<p>The following graphs show the overall time in nanoseconds to acquire a pointer
(default construction) perform n amortized copy operations on it and finally
release it. The initial allocation time for the contained pointer is not included,
although the time for it's deallocation is. The contained pointer pointed to
a trivial class, but for the inclusion of an intrusive reference count for the
benefit of the intrusive counted shared pointer. A dumb pointer (i.e. a smart
pointer that simply acquires and releases its contained pointer with no extra
overhead) and a raw pointer were also included for comparison.</p>
<table border="0" align="center">
<tr>
<td width="20" height="20">&nbsp;</td>
<td>&nbsp;</td>
<td width="20">&nbsp;</td>
</tr>
<tr>
<td width="20">&nbsp; </td>
<td><img src="msvcspeed.gif" width="560" height="355" alt="MSVC speed graph"></td>
<td width="20">&nbsp;</td>
</tr>
<tr>
<td height="20">&nbsp;</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
<tr>
<td>&nbsp;</td>
<td><img src="gccspeed.gif" width="560" height="355" alt="GCC speed graph"></td>
<td>&nbsp;</td>
</tr>
<tr>
<td height="20">&nbsp;</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
</table>
<p>&nbsp;</p>
<p>Fitting straight lines to the above plots gives the following figures for initialization
and amortized copy operation for the two compilers (times in nanoseconds, errors
at two standard deviations) : -</p>
<p>&nbsp;</p>
<h4 align="center">MSVC</h4>
<table align="center" cellpadding="5" cellspacing="0" class="codetable" width="400">
<tr>
<th width="120">
<div align="right"></div>
</th>
<th class="codetabletop" width="120">
<div align="center">initialization</div>
</th>
<th class="codetabletop" width="120">copy operation</th>
</tr>
<tr>
<th class="codetableleft">
<div align="right">simple counted</div>
</th>
<td class="codetablecell" align="center">3000 +/- 170</td>
<td class="codetablecell" align="center">104 +/- 31</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">special counted</div>
</th>
<td class="codetablecell" align="center">1330 +/- 50</td>
<td class="codetablecell" align="center">85 +/- 9</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">intrusive</div>
</th>
<td class="codetablecell" align="center">1000 +/- 20</td>
<td class="codetablecell" align="center">71 +/- 3</td>
</tr>
<tr>
<th class="codetableleft" align="right">linked</th>
<td class="codetablecell" align="center">970 +/- 60</td>
<td class="codetablecell" align="center">136 +/- 10</td>
</tr>
<tr>
<th class="codetableleft" align="right">cyclic</th>
<td class="codetablecell" align="center">1290 +/- 70</td>
<td class="codetablecell" align="center">112 +/- 12</td>
</tr>
<tr>
<th class="codetableleft" align="right">dumb</th>
<td class="codetablecell" align="center">1020 +/- 20</td>
<td class="codetablecell" align="center">10 +/- 4</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">raw</div>
</th>
<td class="codetablecell" align="center">1038 +/- 30</td>
<td class="codetablecell" align="center">10 +/- 5</td>
</tr>
</table>
<h4 align="center">&nbsp;</h4>
<h4 align="center">GCC</h4>
<table align="center" cellpadding="5" cellspacing="0" class="codetable" width="400">
<tr>
<th width="120">
<div align="right"></div>
</th>
<th class="codetabletop" width="120">
<div align="center">initialization</div>
</th>
<th class="codetabletop" width="120">copy operation</th>
</tr>
<tr>
<th class="codetableleft">
<div align="right">simple counted</div>
</th>
<td class="codetablecell" align="center">4620 +/- 150</td>
<td class="codetablecell" align="center">301 +/- 28</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">special counted</div>
</th>
<td class="codetablecell" align="center">1990 +/- 40</td>
<td class="codetablecell" align="center">264 +/- 7</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">intrusive</div>
</th>
<td class="codetablecell" align="center">1590 +/- 70</td>
<td class="codetablecell" align="center">181 +/- 12</td>
</tr>
<tr>
<th class="codetableleft" align="right">linked</th>
<td class="codetablecell" align="center">1470 +/- 140</td>
<td class="codetablecell" align="center">345 +/- 26</td>
</tr>
<tr>
<th class="codetableleft" align="right">cyclic</th>
<td class="codetablecell" align="center">2180 +/- 100</td>
<td class="codetablecell" align="center">330 +/- 18</td>
</tr>
<tr>
<th class="codetableleft" align="right">dumb</th>
<td class="codetablecell" align="center">1590 +/- 70</td>
<td class="codetablecell" align="center">74 +/- 12</td>
</tr>
<tr>
<th class="codetableleft" align="right">
<div align="right">raw</div>
</th>
<td class="codetablecell" align="center">1430 +/- 60</td>
<td class="codetablecell" align="center">27 +/- 11</td>
</tr>
</table>
<p>Note that the above times include a certain amount of loop overhead etc. for
each operation. An estimate of the pure smart pointer operation time 'overhead'
can be obtained by subtracting the dumb or raw figure from the smart pointer
time of interest.</p>
<h3>Detail</h3>
<p>The test involved iterating a loop which creates raw pointers. These were then
shared among a varying number (set size) of smart pointers. A range of set sizes
was used and then a line fitted to get a linear relation with number of initializations
and copy-operations. A spreadsheet was used for the line fit, and to produce
the performance graphs above.</p>
<h2>&nbsp;</h2>
<h2>Container Test Results</h2>
<p>To gain some insight in to operation within real life programs, this test was
devised. Smart pointers were used to fill standard containers which were then
sorted.</p>
<p>In this case, the contained pointer pointed to a class which initializes a
private data member to a random value in its default constructor. This value
is used subsequently for the sort comparison test. The class also contains an
intrusive reference count for the benefit of the intrusive counted pointer.</p>
<p> All times are in seconds for 300,000 contained pointers.</p>
<h4 align="center">GCC</h4>
<table align="center" cellpadding="5" cellspacing="0" class="codetable" width="500">
<tr>
<th>&nbsp;</th>
<th class="codetabletop" colspan="2">vector</th>
<th class="codetabletop" colspan="2">list</th>
</tr>
<tr>
<th width="120">
<div align="right"></div>
</th>
<th class="codetabletop2" width="80">
<div align="center">fill</div>
</th>
<th class="codetabletop2" width="80">sort</th>
<th class="codetabletop2" width="80">fill</th>
<th class="codetabletop2" width="80">sort</th>
</tr>
<tr>
<th class="codetableleft">
<div align="right">simple counted</div>
</th>
<td class="codetablecell" align="center">46.54</td>
<td class="codetablecell" align="center">2.44</td>
<td class="codetablecell" align="center">47.09</td>
<td class="codetablecell" align="center">3.22</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">special counted</div>
</th>
<td class="codetablecell" align="center">14.02</td>
<td class="codetablecell" align="center">2.83</td>
<td class="codetablecell" align="center">7.28</td>
<td class="codetablecell" align="center">3.21</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">intrusive</div>
</th>
<td class="codetablecell" align="center">12.15</td>
<td class="codetablecell" align="center">1.91</td>
<td class="codetablecell" align="center">7.99</td>
<td class="codetablecell" align="center">3.08</td>
</tr>
<tr>
<th class="codetableleft" align="right">linked</th>
<td class="codetablecell" align="center">12.46</td>
<td class="codetablecell" align="center">2.32</td>
<td class="codetablecell" align="center">8.14</td>
<td class="codetablecell" align="center">3.27</td>
</tr>
<tr>
<th class="codetableleft" align="right">cyclic</th>
<td class="codetablecell" align="center">22.60</td>
<td class="codetablecell" align="center">3.19</td>
<td class="codetablecell" align="center">1.63</td>
<td class="codetablecell" align="center">3.18</td>
</tr>
<tr>
<th class="codetableleft" align="right">
<div align="right">raw</div>
</th>
<td class="codetablecell" align="center">11.81</td>
<td class="codetablecell" align="center">0.24</td>
<td class="codetablecell" align="center">27.51</td>
<td class="codetablecell" align="center">0.77</td>
</tr>
</table>
<p>&nbsp;</p>
<h4 align="center">MSVC</h4>
<table align="center" cellpadding="5" cellspacing="0" class="codetable" width="500">
<tr>
<th>&nbsp;</th>
<th class="codetabletop" colspan="2">vector</th>
<th class="codetabletop" colspan="2">list</th>
</tr>
<tr>
<th width="120">
<div align="right"></div>
</th>
<th class="codetabletop2" width="80">
<div align="center">fill</div>
</th>
<th class="codetabletop2" width="80">sort</th>
<th class="codetabletop2" width="80">fill</th>
<th class="codetabletop2" width="80">sort</th>
</tr>
<tr>
<th class="codetableleft">
<div align="right">simple counted</div>
</th>
<td class="codetablecell" align="center">1.83</td>
<td class="codetablecell" align="center">2.37</td>
<td class="codetablecell" align="center">1.86</td>
<td class="codetablecell" align="center">4.85</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">special counted</div>
</th>
<td class="codetablecell" align="center">1.04</td>
<td class="codetablecell" align="center">2.35</td>
<td class="codetablecell" align="center">1.38</td>
<td class="codetablecell" align="center">4.58</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">intrusive</div>
</th>
<td class="codetablecell" align="center">1.04</td>
<td class="codetablecell" align="center">1.84</td>
<td class="codetablecell" align="center">1.16</td>
<td class="codetablecell" align="center">4.29</td>
</tr>
<tr>
<th class="codetableleft" align="right">linked</th>
<td class="codetablecell" align="center">1.08</td>
<td class="codetablecell" align="center">2.00</td>
<td class="codetablecell" align="center">1.21</td>
<td class="codetablecell" align="center">4.33</td>
</tr>
<tr>
<th class="codetableleft" align="right">cyclic</th>
<td class="codetablecell" align="center">1.38</td>
<td class="codetablecell" align="center">2.84</td>
<td class="codetablecell" align="center">1.47</td>
<td class="codetablecell" align="center">4.73</td>
</tr>
<tr>
<th class="codetableleft" align="right">
<div align="right">raw</div>
</th>
<td class="codetablecell" align="center">0.67</td>
<td class="codetablecell" align="center">0.28</td>
<td class="codetablecell" align="center">1.24</td>
<td class="codetablecell" align="center">1.81</td>
</tr>
</table>
<p>&nbsp;</p>
<h2>Code Size</h2>
<p>The following code sizes were determined by inspection of generated code for
MSVC only. Sizes are given in the form N / M / I where:</p>
<ul type="circle">
<li> N is the instruction count of the operation</li>
<li>M is the size of the code in bytes</li>
<li>I determines whether generated code was inlined or not I = inline, O = &quot;outline&quot;</li>
</ul>
<p>&nbsp;</p>
<table align="center" cellpadding="5" cellspacing="0" class="codetable" width="570">
<tr>
<th height="28" width="140">
<div align="right"></div>
</th>
<th height="28" class="codetabletop" width="80">
<div align="center">ptr()</div>
</th>
<th height="28" class="codetabletop" width="80">ptr(p)</th>
<th height="28" class="codetabletop" width="80">ptr(ptr)</th>
<th height="28" class="codetabletop" width="80">op=()</th>
<th height="28" class="codetabletop" width="80">
<div align="center">~ptr()</div>
</th>
</tr>
<tr>
<th class="codetableleft">
<div align="right">simple counted</div>
</th>
<td class="codetablecell" align="center">38/110/O</td>
<td class="codetablecell" align="center">38/110/O</td>
<td class="codetablecell" align="center">9/23/I</td>
<td class="codetablecell" align="center">22/57/I</td>
<td class="codetablecell" align="center">17/40/I</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">special counted</div>
</th>
<td class="codetablecell" align="center"><font size="-1">50/141/O</font></td>
<td class="codetablecell" align="center"><font size="-1">50/141/O</font></td>
<td class="codetablecell" align="center"><font size="-1">9/23/I</font></td>
<td class="codetablecell" align="center"><font size="-1">23/64/I</font></td>
<td class="codetablecell" align="center"><font size="-1">13/38/I</font></td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">intrusive</div>
</th>
<td class="codetablecell" align="center"><font size="-1">1/2/I</font></td>
<td class="codetablecell" align="center"><font size="-1">3/6/I</font></td>
<td class="codetablecell" align="center"><font size="-1">3/6/I</font></td>
<td class="codetablecell" align="center"><font size="-1">6/11/I</font></td>
<td class="codetablecell" align="center"><font size="-1">6/11/I</font></td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">linked</div>
</th>
<td class="codetablecell" align="center"><font size="-1">5/19/I</font></td>
<td class="codetablecell" align="center"><font size="-1">5/15/I</font></td>
<td class="codetablecell" align="center"><font size="-1">10/30/I</font></td>
<td class="codetablecell" align="center"><font size="-1">27/59/I</font></td>
<td class="codetablecell" align="center"><font size="-1">14/38/I</font></td>
</tr>
</table>
<p>During the code inspection, a couple of minor points were noticed: -</p>
<ul>
<li>Function inlining was critical to performance.</li>
<li>For MSVC, at least, a &quot;delete 0&quot; caused execution of 11 assembly
instructions, including a function call. So in cases where performance is
at an absolute premium it can be worth inserting the extra manual test.</li>
</ul>
<h2>&nbsp;</h2>
<h2>Data Size</h2>
<p>The following smart pointer sizes were obtained in bytes</p>
<table align="center" cellpadding="5" cellspacing="0" class="codetable" width="270">
<tr>
<th height="28" width="150">
<div align="right"></div>
</th>
<th height="28" class="codetabletop" width="60">
<div align="center">MSVC</div>
</th>
<th height="28" class="codetabletop" width="60">
<div align="center">GCC</div>
</th>
</tr>
<tr>
<th class="codetableleft">
<div align="right">simple counted</div>
</th>
<td class="codetablecell">
<div align="center">8</div>
</td>
<td class="codetablecell">
<div align="center">8</div>
</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">special counted</div>
</th>
<td class="codetablecell">
<div align="center">8</div>
</td>
<td class="codetablecell">
<div align="center">12</div>
</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">intrusive</div>
</th>
<td class="codetablecell">
<div align="center">4</div>
</td>
<td class="codetablecell">
<div align="center">4</div>
</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">linked</div>
</th>
<td class="codetablecell">
<div align="center">12</div>
</td>
<td class="codetablecell">
<div align="center">12</div>
</td>
</tr>
<tr>
<th class="codetableleft">
<div align="right">cyclic</div>
</th>
<td class="codetablecell">
<div align="center">8</div>
</td>
<td class="codetablecell">
<div align="center">8</div>
</td>
</tr>
</table>
<h2>&nbsp;</h2>
<h2>Summary</h2>
<p>The timing results mainly speak for themselves: clearly an intrusive pointer
outperforms all others and a simple heap based counted pointer has poor performance
relative to other implementations. The selection of an optimal non-intrusive
smart pointer implementation is more application dependent, however. Where small
numbers of copies are expected, it is likely that the linked implementation
will be favoured. Conversely, for larger numbers of copies a counted pointer
with some type of special purpose allocator looks like a win. Other factors
to bear in mind are: -</p>
<ul>
<li>Deterministic individual, as opposed to amortized, operation time. This
weighs against any implementation depending on an allocator.</li>
<li>Multithreaded synchronization. This weighs against an implementation which
spreads its information as in the case of linked pointer.</li>
</ul>
<hr>
<p>Revised <!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B %Y" startspan -->19 August 2001<!--webbot bot="Timestamp" endspan i-checksum="14767" -->
</p>
<p><EFBFBD> Copyright Gavin Collings 2000. Permission to copy, use, modify, sell
and distribute this document is granted provided this copyright notice appears in all
copies. This document is provided &quot;as is&quot; without express or implied warranty,
and with no claim as to its suitability for any purpose.</p>
</body>
</html>

258
weak_ptr.htm Normal file
View File

@@ -0,0 +1,258 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>weak_ptr</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body bgcolor="#ffffff" text="#000000">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="middle" width="277" height="86">weak_ptr
class template</h1>
<p>The <b>weak_ptr</b> class template stores a&nbsp;"weak reference"&nbsp;to an
object that's already managed by a <b>shared_ptr</b>. To access the object, a <STRONG>
weak_ptr</STRONG> can be converted to a <STRONG>shared_ptr</STRONG> using <A href="shared_ptr.htm#constructors">
the <STRONG>shared_ptr</STRONG> constructor</A> or the function <STRONG><A href="#make_shared">
make_shared</A></STRONG>. When the last <b>shared_ptr</b> to the object
goes away and the object is deleted,&nbsp;the attempt to obtain a <STRONG>shared_ptr</STRONG>
&nbsp;from the <b>weak_ptr</b> instances that refer to the deleted object will
fail: the constructor will throw an exception of type <STRONG>boost::use_count_is_zero</STRONG>,
and <STRONG>make_shared</STRONG> will return a default constructed (null) <STRONG>shared_ptr</STRONG>.</p>
<p>Every <b>weak_ptr</b> meets the <b>CopyConstructible</b> and <b>Assignable</b> requirements
of the C++ Standard Library, and so can be used in standard library containers.
Comparison operators are supplied so that <b>weak_ptr</b> works with the
standard library's associative containers.</p>
<p>The class template is parameterized on <b>T</b>, the type of the object pointed
to. <b>T</b> must meet the smart pointer <a href="smart_ptr.htm#Common requirements">
common requirements</a>.</p>
<P>Compared to&nbsp;<STRONG>shared_ptr</STRONG>, <STRONG>weak_ptr</STRONG> provides
a very limited subset of operations since accessing its stored pointer is
often&nbsp;dangerous in multithreaded&nbsp;programs, and sometimes unsafe even
within a single thread&nbsp;(that is, it may invoke undefined behavior.)
Consider, for example, this innocent piece of code:</P>
<pre>
shared_ptr&lt;int&gt; p(new int(5));
weak_ptr&lt;int&gt; q(p);
// some time later
if(int * r = q.get())
{
// use *r
}
</pre>
<P>Imagine that after the <STRONG>if</STRONG>, but immediately before <STRONG>r</STRONG>
is used, another thread executes the statement <code>p.reset()</code>. Now <STRONG>r</STRONG>
is a dangling pointer.</P>
<P>The solution to this problem is to create a temporary <STRONG>shared_ptr</STRONG>
from <STRONG>q</STRONG>:</P>
<pre>
shared_ptr&lt;int&gt; p(new int(5));
weak_ptr&lt;int&gt; q(p);
// some time later
if(shared_ptr&lt;int&gt; r = <a href="#make_shared">make_shared</a>(q))
{
// use *r
}
</pre>
<p>Now <STRONG>r</STRONG> holds a reference to the object that was pointed by <STRONG>q</STRONG>.
Even if <code>p.reset()</code> is executed in another thread, the object will
stay alive until <STRONG>r</STRONG> goes out of scope (or is reset.)</p>
<h2><a name="Synopsis">Synopsis</a></h2>
<pre>namespace boost {
template&lt;typename T&gt; class weak_ptr {
public:
typedef T <a href="#element_type">element_type</a>;
<a href="#constructors">weak_ptr</a>();
template&lt;typename Y&gt; <a href="#constructors">weak_ptr</a>(shared_ptr&lt;Y&gt; const &amp; r); // never throws
<a href="#destructor">~weak_ptr</a>(); // never throws
<a href="#constructors">weak_ptr</a>(weak_ptr const &amp; r); // never throws
template&lt;typename Y&gt; <a href="#constructors">weak_ptr</a>(weak_ptr&lt;Y&gt; const &amp; r); // never throws
weak_ptr &amp; <a href="#assignment">operator=</a>(weak_ptr const &amp; r); // never throws
template&lt;typename Y&gt; weak_ptr &amp; <a href="#assignment">operator=</a>(weak_ptr&lt;Y&gt; const &amp; r); // never throws
template&lt;typename Y&gt; weak_ptr &amp; <a href="#assignment">operator=</a>(shared_ptr&lt;Y&gt; const &amp; r); // never throws
void <a href="#reset">reset</a>();
T * <a href="#get">get</a>() const; // never throws; deprecated, will disappear
long <a href="#use_count">use_count</a>() const; // never throws
bool <a href="#expired">expired</a>() const; // never throws
void <a href="#swap">swap</a>(weak_ptr&lt;T&gt; &amp; b); // never throws
};
template&lt;typename T, typename U&gt;
bool <a href="#comparison">operator==</a>(weak_ptr&lt;T&gt; const &amp; a, weak_ptr&lt;U&gt; const &amp; b); // never throws
template&lt;typename T, typename U&gt;
bool <a href="#comparison">operator!=</a>(weak_ptr&lt;T&gt; const &amp; a, weak_ptr&lt;U&gt; const &amp; b); // never throws
template&lt;typename T&gt;
bool <a href="#comparison">operator&lt;</a>(weak_ptr&lt;T&gt; const &amp; a, weak_ptr&lt;T&gt; const &amp; b); // never throws
template&lt;typename T&gt; void <a href="#free-swap">swap</a>(weak_ptr&lt;T&gt; &amp; a, weak_ptr&lt;T&gt; &amp; b); // never throws
template&lt;typename T&gt;
shared_ptr&lt;T&gt; <a href="#make_shared">make_shared</a>(weak_ptr&lt;T&gt; const &amp; r); // never throws
}
</pre>
<h2><a name="Members">Members</a></h2>
<h3><a name="element_type">element_type</a></h3>
<pre>typedef T element_type;</pre>
<blockquote>
<p>Provides the type of the template parameter T.</p>
</blockquote>
<h3><a name="constructors">constructors</a></h3>
<pre> weak_ptr();</pre>
<blockquote>
<p><b>Effects:</b> Constructs a <b>weak_ptr</b>.</p>
<p><b>Postconditions:</b> <A href="#use_count">use count</A> is 0; the stored
pointer is 0.</p>
<p><b>Throws:</b> <b>std::bad_alloc</b>.</p>
<p><b>Exception safety:</b> If an exception is thrown, the constructor has no
effect.</p>
<P><B>Notes:</B> <B>T</B> need not be a complete type. See the smart pointer <A href="smart_ptr.htm#Common requirements">
common requirements</A>.</P>
</blockquote>
<pre>template&lt;typename Y&gt; weak_ptr</A>(shared_ptr&lt;Y&gt; const &amp; r); // never throws</pre>
<blockquote>
<p><b>Effects:</b> Constructs a <b>weak_ptr</b>, as if by storing a copy of the
pointer stored in <b>r</b>.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> The <a href="#use_count">use count</a> for all copies is
unchanged. When the last <b>shared_ptr</b> is destroyed, the use count and
stored pointer become 0.</P>
</blockquote>
<pre>weak_ptr(weak_ptr const &amp; r); // never throws
template&lt;typename Y&gt; weak_ptr(weak_ptr&lt;Y&gt; const &amp; r); // never throws</pre>
<blockquote>
<p><b>Effects:</b> Constructs a <b>weak_ptr</b>, as if by storing a copy of the
pointer stored in <b>r</b>.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> The <a href="#use_count">use count</a> for all copies is
unchanged.</P>
</blockquote>
<h3><a name="destructor">destructor</a></h3>
<pre>~weak_ptr(); // never throws</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Destroys this <b>weak_ptr</b> but has no effect on the object
its stored pointer points to.</P>
<P><B>Throws:</B> nothing.</P>
<P><B>Notes:</B> <B>T</B> need not be a complete type. See the smart pointer <A href="smart_ptr.htm#Common requirements">
common requirements</A>.</P>
</BLOCKQUOTE>
<h3><a name="assignment">assignment</a></h3>
<pre>weak_ptr &amp; <a href="#assignment">operator=</a>(weak_ptr const &amp; r); // never throws
template&lt;typename Y&gt; weak_ptr &amp; <a href="#assignment">operator=</a>(weak_ptr&lt;Y&gt; const &amp; r); // never throws
template&lt;typename Y&gt; weak_ptr &amp; <a href="#assignment">operator=</a>(shared_ptr&lt;Y&gt; const &amp; r); // never throws</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>weak_ptr(r).swap(*this)</code>.</P>
<P><B>Throws:</B> nothing.</P>
<P><B>Notes:</B> The implementation is free to meet the effects (and the implied
guarantees) via different means, without creating a temporary.</P>
</BLOCKQUOTE>
<h3><a name="reset">reset</a></h3>
<pre>void reset();</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>weak_ptr().swap(*this)</code>.</P>
</BLOCKQUOTE>
<h3><a name="get">get</a></h3>
<pre>T * get() const; // never throws</pre>
<blockquote>
<p><b>Returns:</b> the stored pointer (0 if all <b>shared_ptr</b> objects for that
pointer are destroyed.)</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> Using <b>get</b> in multithreaded code is dangerous. After the
function returns, the pointed-to object may be destroyed by a different thread,
since the <b>weak_ptr</b> doesn't affect its <b>use_count</b>.</P>
</blockquote>
<P><EM>[<b>get</b> is&nbsp;very error-prone. Even single-threaded code may experience
problems, as the returned pointer may be invalidated at any time, for example,
indirectly by a member function of the pointee.</EM></P>
<P><EM><STRONG>get</STRONG>&nbsp;is deprecated, and it will disappear in a future
release. Do not use it.]</EM></P>
<h3><a name="use_count">use_count</a></h3>
<pre>long use_count() const; // never throws</pre>
<blockquote>
<p><b>Returns:</b> the number of <b>shared_ptr</b> objects sharing ownership of the
stored pointer.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> <code>use_count()</code> is not necessarily efficient. Use only
for debugging and testing purposes, not for production code. <B>T</B> need not
be a complete type. See the smart pointer <A href="smart_ptr.htm#Common requirements">
common requirements</A>.</P>
</blockquote>
<h3><a name="expired">expired</a></h3>
<pre>bool expired() const; // never throws</pre>
<blockquote>
<p><b>Returns:</b> <code>use_count() == 0</code>.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> <code>expired()</code> may be faster than <code>use_count()</code>.
<B>T</B> need not be a complete type. See the smart pointer <A href="smart_ptr.htm#Common requirements">
common requirements</A>.</P>
</blockquote>
<h3><a name="swap">swap</a></h3>
<pre>void swap(weak_ptr &amp; b); // never throws</pre>
<blockquote>
<p><b>Effects:</b> Exchanges the contents of the two smart pointers.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> <B>T</B> need not be a complete type. See the smart pointer <A href="smart_ptr.htm#Common requirements">
common requirements</A>.</P>
</blockquote>
<h2><a name="functions">Free Functions</a></h2>
<h3><a name="comparison">comparison</a></h3>
<pre>template&lt;typename T, typename U&gt;
bool operator==(weak_ptr&lt;T&gt; const &amp; a, weak_ptr&lt;U&gt; const &amp; b); // never throws
template&lt;typename T, typename U&gt;
bool operator!=(weak_ptr&lt;T&gt; const &amp; a, weak_ptr&lt;U&gt; const &amp; b); // never throws</pre>
<blockquote>
<p><b>Returns:</b> <code>a.get() == b.get()</code>.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> <B>T</B> need not be a complete type. See the smart pointer <A href="smart_ptr.htm#Common requirements">
common requirements</A>.</P>
</blockquote>
<pre>template&lt;typename T&gt;
bool operator&lt;(weak_ptr&lt;T&gt; const &amp; a, weak_ptr&lt;T&gt; const &amp; b); // never throws</pre>
<blockquote>
<p><b>Returns:</b> an implementation-defined value such that <b>operator&lt;</b> is
a strict weak ordering as described in section 25.3 <code>[lib.alg.sorting]</code>
of the C++ standard.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> Allows <STRONG>weak_ptr</STRONG> objects to be used as keys in
associative containers. <B>T</B> need not be a complete type. See the smart
pointer <A href="smart_ptr.htm#Common requirements">common requirements</A>.</P>
</blockquote>
<h3><a name="free-swap">swap</a></h3>
<pre>template&lt;typename T&gt;
void swap(weak_ptr&lt;T&gt; &amp; a, weak_ptr&lt;T&gt; &amp; b) // never throws</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>a.swap(b)</code>.</P>
<P><B>Throws:</B> nothing.</P>
<P><B>Notes:</B> Matches the interface of <B>std::swap</B>. Provided as an aid to
generic programming.</P>
</BLOCKQUOTE>
<h3><a name="make_shared">make_shared</a></h3>
<pre>template&lt;typename T&gt;
shared_ptr&lt;T&gt; make_shared(weak_ptr&lt;T&gt; &amp; const r) // never throws</pre>
<BLOCKQUOTE>
<P><B>Returns:</B> <code>r.expired()? shared_ptr&lt;T&gt;(): shared_ptr&lt;T&gt;(r)</code>.</P>
<P><B>Throws:</B> nothing.</P>
</BLOCKQUOTE>
<P><EM>[The current implementation of <STRONG>make_shared</STRONG> can&nbsp;propagate
an exception&nbsp;thrown by the <STRONG>shared_ptr</STRONG> default
constructor, so it doesn't meet the stated requirements</EM><EM>. In a future
release, this default constructor will not throw.]</EM></P>
<hr>
<p>Revised 29 August 2002<!--webbot bot="Timestamp" i-checksum="38439" endspan --></p>
<p>Copyright 1999 Greg Colvin and Beman Dawes. Copyright 2002 Darin Adler.
Copyright 2002 Peter Dimov. Permission to copy, use, modify, sell and
distribute this document is granted provided this copyright notice appears in
all copies. This document is provided "as is" without express or implied
warranty, and with no claim as to its suitability for any purpose.</p>
</A>
</body>
</html>