Compare commits

..

2 Commits

Author SHA1 Message Date
nobody
e982a20e93 This commit was manufactured by cvs2svn to create tag
'Version_1_27_0'.

[SVN r12749]
2002-02-07 13:33:59 +00:00
nobody
d1f2ed19d3 This commit was manufactured by cvs2svn to create branch 'RC_1_27_0'.
[SVN r12739]
2002-02-06 03:32:50 +00:00
28 changed files with 640 additions and 2141 deletions

View File

@@ -72,8 +72,6 @@
// are called driven by smart_ptr interface...
//
// Note: atomic_count_linux.hpp has been disabled by default; see the
// comments inside for more info.
#include <boost/config.hpp>
@@ -91,15 +89,18 @@ typedef long atomic_count;
}
#elif defined(BOOST_USE_ASM_ATOMIC_H)
# include <boost/detail/atomic_count_linux.hpp>
#elif defined(BOOST_AC_USE_PTHREADS)
# include <boost/detail/atomic_count_pthreads.hpp>
#elif defined(WIN32) || defined(_WIN32) || defined(__WIN32__)
# include <boost/detail/atomic_count_win32.hpp>
#include <boost/detail/atomic_count_win32.hpp>
#elif defined(linux) || defined(__linux) || defined(__linux__)
#include <boost/detail/atomic_count_linux.hpp>
#elif defined(BOOST_HAS_PTHREADS)
# define BOOST_AC_USE_PTHREADS
# include <boost/detail/atomic_count_pthreads.hpp>
#include <boost/detail/atomic_count_pthreads.hpp>
#else
// #warning Unrecognized platform, detail::atomic_count will not be thread safe

View File

@@ -13,13 +13,7 @@
//
//
// This implementation uses <asm/atomic.h>. This is a kernel header;
// using kernel headers in a user program may cause a number of problems,
// and not all flavors of Linux provide the atomic instructions.
//
// This file is only provided because the performance of this implementation
// is significantly higher than the pthreads version. Use at your own risk
// (by defining BOOST_USE_ASM_ATOMIC_H.)
// On Linux, atomic.h is usually located in /usr/include/asm
//
#include <asm/atomic.h>

View File

@@ -19,9 +19,11 @@
// inefficiencies. Example: a class with two atomic_count members
// can get away with a single mutex.
//
// Users can detect this situation by checking BOOST_AC_USE_PTHREADS.
// Define a macro so that users can detect the situation and optimize.
//
#define BOOST_ATOMIC_COUNT_USES_PTHREADS
namespace boost
{

View File

@@ -16,14 +16,20 @@
// warranty, and with no claim as to its suitability for any purpose.
//
#include <boost/detail/winapi.hpp>
namespace boost
{
namespace detail
{
// Avoid #including <windows.h>
namespace win32
{
extern "C" __declspec(dllimport) long __stdcall InterlockedIncrement(long volatile *);
extern "C" __declspec(dllimport) long __stdcall InterlockedDecrement(long volatile *);
}
class atomic_count
{
public:
@@ -34,12 +40,12 @@ public:
long operator++()
{
return winapi::InterlockedIncrement(&value_);
return win32::InterlockedIncrement(&value_);
}
long operator--()
{
return winapi::InterlockedDecrement(&value_);
return win32::InterlockedDecrement(&value_);
}
operator long() const

View File

@@ -1,67 +0,0 @@
#ifndef BOOST_DETAIL_LIGHTWEIGHT_MUTEX_HPP_INCLUDED
#define BOOST_DETAIL_LIGHTWEIGHT_MUTEX_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/lightweight_mutex.hpp - lightweight mutex
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// typedef <implementation-defined> boost::detail::lightweight_mutex;
//
// boost::detail::lightweight_mutex meets the Mutex concept requirements
// See http://www.boost.org/libs/thread/doc/mutex_concept.html#Mutex
//
// * Used by the smart pointer library
// * Performance oriented
// * Header-only implementation
// * Small memory footprint
// * Not a general purpose mutex, use boost::mutex, CRITICAL_SECTION or
// pthread_mutex instead.
// * Never spin in a tight lock/do-something/unlock loop, since
// lightweight_mutex does not guarantee fairness.
// * Never keep a lightweight_mutex locked for long periods.
//
// Note: lwm_linux.hpp has been disabled by default; see the comments
// inside for more info.
#include <boost/config.hpp>
//
// Note to implementors: if you write a platform-specific lightweight_mutex
// for a platform that supports pthreads, be sure to test its performance
// against the pthreads-based version using smart_ptr_timing_test.cpp and
// smart_ptr_mt_test.cpp. Custom versions are usually not worth the trouble
// _unless_ the performance gains are substantial.
//
#ifndef BOOST_HAS_THREADS
# include <boost/detail/lwm_nop.hpp>
#elif defined(BOOST_USE_ASM_ATOMIC_H)
# include <boost/detail/lwm_linux.hpp>
#elif defined(BOOST_LWM_USE_CRITICAL_SECTION)
# include <boost/detail/lwm_win32_cs.hpp>
#elif defined(BOOST_LWM_USE_PTHREADS)
# include <boost/detail/lwm_pthreads.hpp>
#elif defined(WIN32) || defined(_WIN32) || defined(__WIN32__)
# include <boost/detail/lwm_win32.hpp>
#elif defined(__sgi)
# include <boost/detail/lwm_irix.hpp>
#elif defined(BOOST_HAS_PTHREADS)
# define BOOST_LWM_USE_PTHREADS
# include <boost/detail/lwm_pthreads.hpp>
#else
# include <boost/detail/lwm_nop.hpp>
#endif
#endif // #ifndef BOOST_DETAIL_LIGHTWEIGHT_MUTEX_HPP_INCLUDED

View File

@@ -1,78 +0,0 @@
#ifndef BOOST_DETAIL_LWM_IRIX_HPP_INCLUDED
#define BOOST_DETAIL_LWM_IRIX_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/lwm_irix.hpp
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
// Copyright (c) 2002 Dan Gohman
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <sgidefs.h>
#include <mutex.h>
#include <sched.h>
namespace boost
{
namespace detail
{
class lightweight_mutex
{
private:
__uint32_t l_;
lightweight_mutex(lightweight_mutex const &);
lightweight_mutex & operator=(lightweight_mutex const &);
public:
lightweight_mutex(): l_(0)
{
}
class scoped_lock;
friend class scoped_lock;
class scoped_lock
{
private:
lightweight_mutex & m_;
scoped_lock(scoped_lock const &);
scoped_lock & operator=(scoped_lock const &);
public:
explicit scoped_lock(lightweight_mutex & m): m_(m)
{
while( test_and_set32(&m_.l_, 1) )
{
sched_yield();
}
}
~scoped_lock()
{
m_.l_ = 0;
}
};
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_LWM_IRIX_HPP_INCLUDED

View File

@@ -1,89 +0,0 @@
#ifndef BOOST_DETAIL_LWM_LINUX_HPP_INCLUDED
#define BOOST_DETAIL_LWM_LINUX_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/lwm_linux.hpp
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//
// This implementation uses <asm/atomic.h>. This is a kernel header;
// using kernel headers in a user program may cause a number of problems,
// and not all flavors of Linux provide the atomic instructions.
//
// This file is only provided because the performance of this implementation
// is about 3.5 times higher than the pthreads version. Use at your own risk
// (by defining BOOST_USE_ASM_ATOMIC_H.)
//
#include <asm/atomic.h>
#include <sched.h>
namespace boost
{
namespace detail
{
class lightweight_mutex
{
private:
atomic_t a_;
lightweight_mutex(lightweight_mutex const &);
lightweight_mutex & operator=(lightweight_mutex const &);
public:
lightweight_mutex()
{
atomic_t a = ATOMIC_INIT(1);
a_ = a;
}
class scoped_lock;
friend class scoped_lock;
class scoped_lock
{
private:
lightweight_mutex & m_;
scoped_lock(scoped_lock const &);
scoped_lock & operator=(scoped_lock const &);
public:
explicit scoped_lock(lightweight_mutex & m): m_(m)
{
while( !atomic_dec_and_test(&m_.a_) )
{
atomic_inc(&m_.a_);
sched_yield();
}
}
~scoped_lock()
{
atomic_inc(&m_.a_);
}
};
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_LWM_WIN32_HPP_INCLUDED

View File

@@ -1,36 +0,0 @@
#ifndef BOOST_DETAIL_LWM_NOP_HPP_INCLUDED
#define BOOST_DETAIL_LWM_NOP_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/lwm_nop.hpp
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
namespace boost
{
namespace detail
{
class lightweight_mutex
{
public:
typedef lightweight_mutex scoped_lock;
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_LWM_NOP_HPP_INCLUDED

View File

@@ -1,78 +0,0 @@
#ifndef BOOST_DETAIL_LWM_PTHREADS_HPP_INCLUDED
#define BOOST_DETAIL_LWM_PTHREADS_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/lwm_pthreads.hpp
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <pthread.h>
namespace boost
{
namespace detail
{
class lightweight_mutex
{
private:
pthread_mutex_t m_;
lightweight_mutex(lightweight_mutex const &);
lightweight_mutex & operator=(lightweight_mutex const &);
public:
lightweight_mutex()
{
pthread_mutex_init(&m_, 0);
}
~lightweight_mutex()
{
pthread_mutex_destroy(&m_);
}
class scoped_lock;
friend class scoped_lock;
class scoped_lock
{
private:
pthread_mutex_t & m_;
scoped_lock(scoped_lock const &);
scoped_lock & operator=(scoped_lock const &);
public:
scoped_lock(lightweight_mutex & m): m_(m.m_)
{
pthread_mutex_lock(&m_);
}
~scoped_lock()
{
pthread_mutex_unlock(&m_);
}
};
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_LWM_PTHREADS_HPP_INCLUDED

View File

@@ -1,81 +0,0 @@
#ifndef BOOST_DETAIL_LWM_WIN32_HPP_INCLUDED
#define BOOST_DETAIL_LWM_WIN32_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/lwm_win32.hpp
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <boost/detail/winapi.hpp>
namespace boost
{
namespace detail
{
class lightweight_mutex
{
private:
long l_;
lightweight_mutex(lightweight_mutex const &);
lightweight_mutex & operator=(lightweight_mutex const &);
public:
lightweight_mutex(): l_(0)
{
}
class scoped_lock;
friend class scoped_lock;
class scoped_lock
{
private:
lightweight_mutex & m_;
scoped_lock(scoped_lock const &);
scoped_lock & operator=(scoped_lock const &);
public:
explicit scoped_lock(lightweight_mutex & m): m_(m)
{
while( winapi::InterlockedExchange(&m_.l_, 1) )
{
winapi::Sleep(0);
}
}
~scoped_lock()
{
winapi::InterlockedExchange(&m_.l_, 0);
// Note: adding a Sleep(0) here will make
// the mutex more fair and will increase the overall
// performance of some applications substantially in
// high contention situations, but will penalize the
// low contention / single thread case up to 5x
}
};
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_LWM_WIN32_HPP_INCLUDED

View File

@@ -1,78 +0,0 @@
#ifndef BOOST_DETAIL_LWM_WIN32_CS_HPP_INCLUDED
#define BOOST_DETAIL_LWM_WIN32_CS_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/lwm_win32_cs.hpp
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <boost/detail/winapi.hpp>
namespace boost
{
namespace detail
{
class lightweight_mutex
{
private:
winapi::critical_section cs_;
lightweight_mutex(lightweight_mutex const &);
lightweight_mutex & operator=(lightweight_mutex const &);
public:
lightweight_mutex()
{
winapi::InitializeCriticalSection(&cs_);
}
~lightweight_mutex()
{
winapi::DeleteCriticalSection(&cs_);
}
class scoped_lock;
friend class scoped_lock;
class scoped_lock
{
private:
lightweight_mutex & m_;
scoped_lock(scoped_lock const &);
scoped_lock & operator=(scoped_lock const &);
public:
explicit scoped_lock(lightweight_mutex & m): m_(m)
{
winapi::EnterCriticalSection(&m_.cs_);
}
~scoped_lock()
{
winapi::LeaveCriticalSection(&m_.cs_);
}
};
};
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_LWM_WIN32_CS_HPP_INCLUDED

View File

@@ -23,36 +23,19 @@
#endif
#include <boost/checked_delete.hpp>
#include <boost/detail/lightweight_mutex.hpp>
#include <functional> // for std::less
#include <exception> // for std::exception
#include <boost/detail/atomic_count.hpp>
namespace boost
{
class use_count_is_zero: public std::exception
namespace detail
{
public:
virtual char const * what() const throw()
{
return "use_count_is_zero";
}
};
class counted_base
{
private:
typedef detail::lightweight_mutex mutex_type;
public:
counted_base():
use_count_(0), weak_count_(0), self_deleter_(&self_delete)
{
}
typedef atomic_count count_type;
// pre: initial_use_count <= initial_weak_count
@@ -78,35 +61,20 @@ public:
{
}
void add_ref()
void add_ref() // nothrow
{
#ifdef BOOST_HAS_THREADS
mutex_type::scoped_lock lock(mtx_);
#endif
if(use_count_ == 0 && weak_count_ != 0) throw use_count_is_zero();
++use_count_;
++weak_count_;
}
void release() // nothrow
{
long new_use_count;
long new_weak_count;
{
#ifdef BOOST_HAS_THREADS
mutex_type::scoped_lock lock(mtx_);
#endif
new_use_count = --use_count_;
new_weak_count = --weak_count_;
}
if(new_use_count == 0)
if(--use_count_ == 0)
{
dispose();
}
if(new_weak_count == 0)
if(--weak_count_ == 0)
{
// not a direct 'delete this', because the inlined
// release() may use a different heap manager
@@ -116,24 +84,12 @@ public:
void weak_add_ref() // nothrow
{
#ifdef BOOST_HAS_THREADS
mutex_type::scoped_lock lock(mtx_);
#endif
++weak_count_;
}
void weak_release() // nothrow
{
long new_weak_count;
{
#ifdef BOOST_HAS_THREADS
mutex_type::scoped_lock lock(mtx_);
#endif
new_weak_count = --weak_count_;
}
if(new_weak_count == 0)
if(--weak_count_ == 0)
{
self_deleter_(this);
}
@@ -141,9 +97,6 @@ public:
long use_count() const // nothrow
{
#ifdef BOOST_HAS_THREADS
mutex_type::scoped_lock lock(mtx_);
#endif
return use_count_;
}
@@ -159,27 +112,12 @@ private:
// inv: use_count_ <= weak_count_
long use_count_;
long weak_count_;
#ifdef BOOST_HAS_THREADS
mutable mutex_type mtx_;
#endif
count_type use_count_;
count_type weak_count_;
void (*self_deleter_) (counted_base *);
};
inline void intrusive_ptr_add_ref(counted_base * p)
{
p->add_ref();
}
inline void intrusive_ptr_release(counted_base * p)
{
p->release();
}
namespace detail
{
template<class P, class D> class counted_base_impl: public counted_base
{
private:
@@ -205,7 +143,6 @@ public:
}
};
class weak_count;
class shared_count
{
@@ -215,20 +152,9 @@ private:
friend class weak_count;
template<class P, class D> shared_count(P, D, counted_base const *);
public:
shared_count(): pi_(new counted_base(1, 1))
{
}
explicit shared_count(counted_base * pi): pi_(pi) // never throws
{
pi_->add_ref();
}
template<class P, class D> shared_count(P p, D d, void const * = 0): pi_(0)
template<class P, class D> shared_count(P p, D d): pi_(0)
{
try
{
@@ -241,11 +167,6 @@ public:
}
}
template<class P, class D> shared_count(P, D, counted_base * pi): pi_(pi)
{
pi_->add_ref();
}
#ifndef BOOST_NO_AUTO_PTR
// auto_ptr<Y> is special cased to provide the strong guarantee
@@ -268,8 +189,6 @@ public:
pi_->add_ref();
}
explicit shared_count(weak_count const & r); // throws use_count_is_zero when r.use_count() == 0
shared_count & operator= (shared_count const & r) // nothrow
{
counted_base * tmp = r.pi_;
@@ -296,16 +215,6 @@ public:
{
return pi_->use_count() == 1;
}
friend inline bool operator==(shared_count const & a, shared_count const & b)
{
return a.pi_ == b.pi_;
}
friend inline bool operator<(shared_count const & a, shared_count const & b)
{
return std::less<counted_base *>()(a.pi_, b.pi_);
}
};
class weak_count
@@ -314,8 +223,6 @@ private:
counted_base * pi_;
friend class shared_count;
public:
weak_count(): pi_(new counted_base(0, 1)) // can throw
@@ -368,23 +275,8 @@ public:
{
return pi_->use_count();
}
friend inline bool operator==(weak_count const & a, weak_count const & b)
{
return a.pi_ == b.pi_;
}
friend inline bool operator<(weak_count const & a, weak_count const & b)
{
return std::less<counted_base *>()(a.pi_, b.pi_);
}
};
inline shared_count::shared_count(weak_count const & r): pi_(r.pi_)
{
pi_->add_ref();
}
} // namespace detail
} // namespace boost

View File

@@ -1,75 +0,0 @@
#ifndef BOOST_DETAIL_WINAPI_HPP_INCLUDED
#define BOOST_DETAIL_WINAPI_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/detail/winapi.hpp - a lightweight version of <windows.h>
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
namespace boost
{
namespace detail
{
namespace winapi
{
typedef long long_type;
typedef unsigned long dword_type;
typedef void * handle_type;
#if defined(_WIN64)
typedef __int64 int_ptr_type;
typedef unsigned __int64 uint_ptr_type;
typedef __int64 long_ptr_type;
typedef unsigned __int64 ulong_ptr_type;
#else
typedef int int_ptr_type;
typedef unsigned int uint_ptr_type;
typedef long long_ptr_type;
typedef unsigned long ulong_ptr_type;
#endif
struct critical_section
{
struct critical_section_debug * DebugInfo;
long_type LockCount;
long_type RecursionCount;
handle_type OwningThread;
handle_type LockSemaphore;
ulong_ptr_type SpinCount;
};
extern "C" __declspec(dllimport) long_type __stdcall InterlockedIncrement(long_type volatile *);
extern "C" __declspec(dllimport) long_type __stdcall InterlockedDecrement(long_type volatile *);
extern "C" __declspec(dllimport) long_type __stdcall InterlockedExchange(long_type volatile *, long_type);
extern "C" __declspec(dllimport) void __stdcall Sleep(dword_type);
extern "C" __declspec(dllimport) void __stdcall InitializeCriticalSection(critical_section *);
extern "C" __declspec(dllimport) void __stdcall EnterCriticalSection(critical_section *);
extern "C" __declspec(dllimport) void __stdcall LeaveCriticalSection(critical_section *);
extern "C" __declspec(dllimport) void __stdcall DeleteCriticalSection(critical_section *);
} // namespace winapi
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_DETAIL_WINAPI_HPP_INCLUDED

View File

@@ -1,202 +0,0 @@
#ifndef BOOST_INTRUSIVE_PTR_HPP_INCLUDED
#define BOOST_INTRUSIVE_PTR_HPP_INCLUDED
//
// intrusive_ptr.hpp
//
// Copyright (c) 2001, 2002 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// See http://www.boost.org/libs/smart_ptr/intrusive_ptr.html for documentation.
//
#ifdef BOOST_MSVC // moved here to work around VC++ compiler crash
# pragma warning(push)
# pragma warning(disable:4284) // odd return type for operator->
#endif
#include <functional> // std::less
namespace boost
{
//
// intrusive_ptr
//
// A smart pointer that uses intrusive reference counting.
//
// Relies on unqualified calls to
//
// void intrusive_ptr_add_ref(T * p);
// void intrusive_ptr_release(T * p);
//
// (p != 0)
//
// The object is responsible for destroying itself.
//
template<class T> class intrusive_ptr
{
private:
typedef intrusive_ptr this_type;
public:
intrusive_ptr(): p_(0)
{
}
intrusive_ptr(T * p): p_(p)
{
if(p_ != 0) intrusive_ptr_add_ref(p_);
}
~intrusive_ptr()
{
if(p_ != 0) intrusive_ptr_release(p_);
}
#ifdef BOOST_MSVC6_MEMBER_TEMPLATES
template<class U> intrusive_ptr(intrusive_ptr<U> const & rhs): p_(rhs.get())
{
if(p_ != 0) intrusive_ptr_add_ref(p_);
}
#endif
intrusive_ptr(intrusive_ptr const & rhs): p_(rhs.p_)
{
if(p_ != 0) intrusive_ptr_add_ref(p_);
}
#ifdef BOOST_MSVC6_MEMBER_TEMPLATES
template<class U> intrusive_ptr & operator=(intrusive_ptr<U> const & rhs)
{
this_type(rhs).swap(*this);
return *this;
}
#endif
intrusive_ptr & operator=(intrusive_ptr const & rhs)
{
this_type(rhs).swap(*this);
return *this;
}
intrusive_ptr & operator=(T * rhs)
{
this_type(rhs).swap(*this);
return *this;
}
void swap(intrusive_ptr & rhs)
{
T * tmp = p_;
p_ = rhs.p_;
rhs.p_ = tmp;
}
T * get() const
{
return p_;
}
T & operator*() const
{
return *p_;
}
T * operator->() const
{
return p_;
}
bool empty() const
{
return p_ == 0;
}
typedef bool (intrusive_ptr::*bool_type) () const;
operator bool_type () const
{
return p_ == 0? 0: &intrusive_ptr::empty;
}
private:
T * p_;
};
template<class T> void swap(intrusive_ptr<T> & lhs, intrusive_ptr<T> & rhs)
{
lhs.swap(rhs);
}
template<class T, class U> intrusive_ptr<T> shared_dynamic_cast(intrusive_ptr<U> const & p)
{
return dynamic_cast<T *>(p.get());
}
template<class T, class U> intrusive_ptr<T> shared_static_cast(intrusive_ptr<U> const & p)
{
return static_cast<T *>(p.get());
}
template<class T, class U> inline bool operator==(intrusive_ptr<T> const & a, intrusive_ptr<U> const & b)
{
return a.get() == b.get();
}
template<class T, class U> inline bool operator!=(intrusive_ptr<T> const & a, intrusive_ptr<U> const & b)
{
return a.get() != b.get();
}
template<class T> inline bool operator<(intrusive_ptr<T> const & a, intrusive_ptr<T> const & b)
{
return std::less<T *>(a.get(), b.get());
}
template<class T> inline bool operator==(intrusive_ptr<T> const & a, T * b)
{
return a.get() == b;
}
template<class T> inline bool operator!=(intrusive_ptr<T> const & a, T * b)
{
return a.get() != b;
}
template<class T> inline bool operator==(T * a, intrusive_ptr<T> const & b)
{
return a == b.get();
}
template<class T> inline bool operator!=(T * a, intrusive_ptr<T> const & b)
{
return a != b.get();
}
// mem_fn support
template<class T> T * get_pointer(intrusive_ptr<T> const & p)
{
return p.get();
}
} // namespace boost
#ifdef BOOST_MSVC
# pragma warning(pop)
#endif
#endif // #ifndef BOOST_INTRUSIVE_PTR_HPP_INCLUDED

View File

@@ -13,7 +13,6 @@
//
#include <boost/assert.hpp>
#include <boost/checked_delete.hpp>
#include <boost/config.hpp> // in case ptrdiff_t not in std
#include <cstddef> // for std::ptrdiff_t
@@ -43,14 +42,17 @@ public:
~scoped_array() // never throws
{
checked_array_delete(ptr);
typedef char type_must_be_complete[sizeof(T)];
delete [] ptr;
}
void reset(T * p = 0) // never throws
{
typedef char type_must_be_complete[sizeof(T)];
if (ptr != p)
{
checked_array_delete(ptr);
delete [] ptr;
ptr = p;
}
}

View File

@@ -13,7 +13,6 @@
//
#include <boost/assert.hpp>
#include <boost/checked_delete.hpp>
namespace boost
{
@@ -42,14 +41,17 @@ public:
~scoped_ptr() // never throws
{
checked_delete(ptr);
typedef char type_must_be_complete[sizeof(T)];
delete ptr;
}
void reset(T * p = 0) // never throws
{
typedef char type_must_be_complete[sizeof(T)];
if (ptr != p)
{
checked_delete(ptr);
delete ptr;
ptr = p;
}
}

View File

@@ -29,7 +29,6 @@
#include <memory> // for std::auto_ptr
#include <algorithm> // for std::swap
#include <functional> // for std::less
#include <typeinfo> // for std::bad_cast
#ifdef BOOST_MSVC // moved here to work around VC++ compiler crash
# pragma warning(push)
@@ -44,7 +43,6 @@ namespace detail
struct static_cast_tag {};
struct dynamic_cast_tag {};
struct polymorphic_cast_tag {};
template<typename T> struct shared_ptr_traits
{
@@ -68,26 +66,20 @@ template<> struct shared_ptr_traits<void>
//
template<typename T> class weak_ptr;
template<typename T> class intrusive_ptr;
template<typename T> class shared_ptr
{
private:
// Borland 5.5.1 specific workarounds
// typedef checked_deleter<T> deleter;
typedef checked_deleter<T> deleter;
typedef shared_ptr<T> this_type;
public:
typedef T element_type;
shared_ptr(): px(0), pn()
{
}
template<typename Y>
explicit shared_ptr(Y * p): px(p), pn(p, checked_deleter<Y>(), p) // Y must be complete
explicit shared_ptr(T * p = 0): px(p), pn(p, deleter())
{
}
@@ -97,27 +89,17 @@ public:
// shared_ptr will release p by calling d(p)
//
template<typename Y, typename D> shared_ptr(Y * p, D d): px(p), pn(p, d)
template<typename D> shared_ptr(T * p, D d): px(p), pn(p, d)
{
}
// generated copy constructor, assignment, destructor are fine
template<typename Y>
explicit shared_ptr(weak_ptr<Y> const & r): px(r.px), pn(r.pn) // may throw
{
}
template<typename Y>
shared_ptr(shared_ptr<Y> const & r): px(r.px), pn(r.pn) // never throws
{
}
template<typename Y>
shared_ptr(intrusive_ptr<Y> const & r): px(r.get()), pn(r.get()) // never throws
{
}
template<typename Y>
shared_ptr(shared_ptr<Y> const & r, detail::static_cast_tag): px(static_cast<element_type *>(r.px)), pn(r.pn)
{
@@ -128,16 +110,7 @@ public:
{
if (px == 0) // need to allocate new counter -- the cast failed
{
pn = detail::shared_count();
}
}
template<typename Y>
shared_ptr(shared_ptr<Y> const & r, detail::polymorphic_cast_tag): px(dynamic_cast<element_type *>(r.px)), pn(r.pn)
{
if (px == 0)
{
throw std::bad_cast();
pn = detail::shared_count(static_cast<element_type *>(0), deleter());
}
}
@@ -148,9 +121,7 @@ public:
{
}
#endif
#if !defined(BOOST_MSVC) || (BOOST_MSVC > 1200)
#endif
template<typename Y>
shared_ptr & operator=(shared_ptr<Y> const & r) // never throws
@@ -160,8 +131,6 @@ public:
return *this;
}
#endif
#ifndef BOOST_NO_AUTO_PTR
template<typename Y>
@@ -173,18 +142,13 @@ public:
#endif
void reset()
void reset(T * p = 0)
{
this_type().swap(*this);
}
template<typename Y> void reset(Y * p) // Y must be complete
{
BOOST_ASSERT(p == 0 || p != px); // catch self-reset errors
BOOST_ASSERT(p == 0 || p != px);
this_type(p).swap(*this);
}
template<typename Y, typename D> void reset(Y * p, D d)
template<typename D> void reset(T * p, D d)
{
this_type(p, d).swap(*this);
}
@@ -216,20 +180,6 @@ public:
return pn.use_count();
}
// implicit conversion to "bool"
typedef long (this_type::*bool_type)() const;
operator bool_type() const // never throws
{
return px == 0? 0: &this_type::use_count;
}
bool operator! () const // never throws
{
return px == 0;
}
void swap(shared_ptr<T> & other) // never throws
{
std::swap(px, other.px);
@@ -264,23 +214,12 @@ template<typename T, typename U> inline bool operator!=(shared_ptr<T> const & a,
return a.get() != b.get();
}
#if __GNUC__ == 2 && __GNUC_MINOR__ <= 96
// Resolve the ambiguity between our op!= and the one in rel_ops
template<typename T> inline bool operator!=(shared_ptr<T> const & a, shared_ptr<T> const & b)
{
return a.get() != b.get();
}
#endif
template<typename T> inline bool operator<(shared_ptr<T> const & a, shared_ptr<T> const & b)
{
return std::less<T*>()(a.get(), b.get());
}
template<typename T> inline void swap(shared_ptr<T> & a, shared_ptr<T> & b)
template<typename T> void swap(shared_ptr<T> & a, shared_ptr<T> & b)
{
a.swap(b);
}
@@ -295,17 +234,6 @@ template<typename T, typename U> shared_ptr<T> shared_dynamic_cast(shared_ptr<U>
return shared_ptr<T>(r, detail::dynamic_cast_tag());
}
template<typename T, typename U> shared_ptr<T> shared_polymorphic_cast(shared_ptr<U> const & r)
{
return shared_ptr<T>(r, detail::polymorphic_cast_tag());
}
template<typename T, typename U> shared_ptr<T> shared_polymorphic_downcast(shared_ptr<U> const & r)
{
BOOST_ASSERT(dynamic_cast<T *>(r.get()) == r.get());
return shared_static_cast<T>(r);
}
// get_pointer() enables boost::mem_fn to recognize shared_ptr
template<typename T> inline T * get_pointer(shared_ptr<T> const & p)

View File

@@ -16,10 +16,18 @@
#include <boost/shared_ptr.hpp>
#include <boost/config.hpp> // for broken compiler workarounds
#include <boost/assert.hpp>
#include <boost/detail/shared_count.hpp>
#include <algorithm> // for std::swap
#include <functional> // for std::less
#ifdef BOOST_MSVC // moved here to work around VC++ compiler crash
# pragma warning(push)
# pragma warning(disable:4284) // odd return type for operator->
#endif
#endif
namespace boost
{
@@ -51,7 +59,19 @@ public:
{
}
#if !defined(BOOST_MSVC) || (BOOST_MSVC > 1200)
template<typename Y>
weak_ptr(weak_ptr<Y> const & r, detail::static_cast_tag): px(static_cast<element_type *>(r.px)), pn(r.pn)
{
}
template<typename Y>
weak_ptr(weak_ptr<Y> const & r, detail::dynamic_cast_tag): px(dynamic_cast<element_type *>(r.px)), pn(r.pn)
{
if (px == 0) // need to allocate new counter -- the cast failed
{
pn = detail::weak_count();
}
}
template<typename Y>
weak_ptr & operator=(weak_ptr<Y> const & r) // never throws
@@ -69,39 +89,41 @@ public:
return *this;
}
#endif
void reset()
{
this_type().swap(*this);
}
T * get() const // never throws; unsafe in multithreaded programs!
T * get() const // never throws
{
return pn.use_count() == 0? 0: px;
return use_count() == 0? 0: px;
}
typename detail::shared_ptr_traits<T>::reference operator* () const // never throws
{
T * p = get();
BOOST_ASSERT(p != 0);
return *p;
}
T * operator-> () const // never throws
{
T * p = get();
BOOST_ASSERT(p != 0);
return p;
}
long use_count() const // never throws
{
return pn.use_count();
}
bool expired() const // never throws
{
return pn.use_count() == 0;
}
void swap(this_type & other) // never throws
void swap(weak_ptr<T> & other) // never throws
{
std::swap(px, other.px);
pn.swap(other.pn);
}
bool less(this_type const & rhs) const // implementation detail, never throws
{
return pn < rhs.pn;
}
// Tasteless as this may seem, making all members public allows member templates
// to work in the absence of member template friends. (Matthew Langston)
@@ -110,7 +132,6 @@ public:
private:
template<typename Y> friend class weak_ptr;
template<typename Y> friend class shared_ptr;
#endif
@@ -129,20 +150,9 @@ template<class T, class U> inline bool operator!=(weak_ptr<T> const & a, weak_pt
return a.get() != b.get();
}
#if __GNUC__ == 2 && __GNUC_MINOR__ <= 96
// Resolve the ambiguity between our op!= and the one in rel_ops
template<typename T> inline bool operator!=(weak_ptr<T> const & a, weak_ptr<T> const & b)
{
return a.get() != b.get();
}
#endif
template<class T> inline bool operator<(weak_ptr<T> const & a, weak_ptr<T> const & b)
{
return a.less(b);
return std::less<T*>()(a.get(), b.get());
}
template<class T> void swap(weak_ptr<T> & a, weak_ptr<T> & b)
@@ -150,22 +160,21 @@ template<class T> void swap(weak_ptr<T> & a, weak_ptr<T> & b)
a.swap(b);
}
template<class T> shared_ptr<T> make_shared(weak_ptr<T> const & r) // never throws
template<class T, class U> weak_ptr<T> shared_static_cast(weak_ptr<U> const & r)
{
// optimization: avoid throw overhead
if(r.use_count() == 0)
{
return shared_ptr<T>();
}
return weak_ptr<T>(r, detail::static_cast_tag());
}
try
{
return shared_ptr<T>(r);
}
catch(use_count_is_zero const &)
{
return shared_ptr<T>();
}
template<class T, class U> weak_ptr<T> shared_dynamic_cast(weak_ptr<U> const & r)
{
return weak_ptr<T>(r, detail::dynamic_cast_tag());
}
// get_pointer() enables boost::mem_fn to recognize weak_ptr
template<class T> inline T * get_pointer(weak_ptr<T> const & p)
{
return p.get();
}
} // namespace boost

View File

@@ -9,7 +9,7 @@
// is complete where it counts - in the inplementation translation unit where
// destruction is actually instantiated.
class example : private boost::noncopyable
class example : boost::noncopyable
{
public:
example();

View File

@@ -23,7 +23,7 @@ are supplied so that <b>shared_array</b> works with
the standard library's associative containers.</p>
<p>Normally, a <b>shared_array</b> cannot correctly hold a pointer to a
single dynamically allocated object. See <a href="shared_ptr.htm"><b>shared_ptr</b></a>
dynamically allocated array. See <a href="shared_ptr.htm"><b>shared_ptr</b></a>
for that usage.</p>
<p>Because the implementation uses reference counting, <b>shared_array</b> will not work
@@ -54,10 +54,10 @@ pointed to. <b>T</b> must meet the smart pointer
<a href="#constructors">shared_array</a>(shared_array const &amp; r); // never throws
shared_array &amp; <a href="#assignment">operator=</a>(shared_array const &amp; r); // never throws
shared_array &amp; <a href="#assignment">operator=</a>(shared_array const &amp; r); // never throws
void <a href="#reset">reset</a>(T * p = 0);
template&lt;typename D&gt; void <a href="#reset">reset</a>(T * p, D d);
void <a href="#reset">reset</a>(T * p = 0); // never throws
template&lt;typename D&gt; void <a href="#reset">reset</a>(T * p, D d); // never throws
T &amp; <a href="#indexing">operator[]</a>(std::ptrdiff_t i) const() const; // never throws
T * <a href="#get">get</a>() const; // never throws
@@ -69,11 +69,11 @@ pointed to. <b>T</b> must meet the smart pointer
};
template&lt;typename T&gt;
bool <a href="#comparison">operator==</a>(shared_array&lt;T&gt; const &amp; a, shared_array&lt;T&gt; const &amp; b); // never throws
bool <a href="#operator==">operator==</a>(shared_array&lt;T&gt; const &amp; a, shared_array&lt;T&gt; const &amp; b); // never throws
template&lt;typename T&gt;
bool <a href="#comparison">operator!=</a>(shared_array&lt;T&gt; const &amp; a, shared_array&lt;T&gt; const &amp; b); // never throws
bool <a href="#operator!=">operator!=</a>(shared_array&lt;T&gt; const &amp; a, shared_array&lt;T&gt; const &amp; b); // never throws
template&lt;typename T&gt;
bool <a href="#comparison">operator&lt;</a>(shared_array&lt;T&gt; const &amp; a, shared_array&lt;T&gt; const &amp; b); // never throws
bool <a href="#operator&lt;">operator&lt;</a>(shared_array&lt;T&gt; const &amp; a, shared_array&lt;T&gt; const &amp; b); // never throws
template&lt;typename T&gt; void <a href="#free-swap">swap</a>(shared_array&lt;T&gt; &amp; a, shared_array&lt;T&gt; &amp; b); // never throws
@@ -186,11 +186,11 @@ See the smart pointer
<h3><a name="comparison">comparison</a></h3>
<pre>template&lt;typename T&gt;
bool operator==(shared_array&lt;T&gt; const &amp; a, shared_array&lt;T&gt; const &amp; b); // never throws
bool <a href="#operator==">operator==</a>(shared_array&lt;T&gt; const &amp; a, shared_array&lt;T&gt; const &amp; b); // never throws
template&lt;typename T&gt;
bool operator!=(shared_array&lt;T&gt; const &amp; a, shared_array&lt;T&gt; const &amp; b); // never throws
bool <a href="#operator!=">operator!=</a>(shared_array&lt;T&gt; const &amp; a, shared_array&lt;T&gt; const &amp; b); // never throws
template&lt;typename T&gt;
bool operator&lt;(shared_array&lt;T&gt; const &amp; a, shared_array&lt;T&gt; const &amp; b); // never throws</pre>
bool <a href="#operator&lt;">operator&lt;</a>(shared_array&lt;T&gt; const &amp; a, shared_array&lt;T&gt; const &amp; b); // never throws</pre>
<p>Compares the stored pointers of the two smart pointers.
<b>T</b> need not be a complete type.
See the smart pointer
@@ -211,7 +211,7 @@ Provided as an aid to generic programming.</p>
<hr>
<p>Revised <!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B %Y" startspan -->8 February 2002<!--webbot bot="Timestamp" i-checksum="38439" endspan --></p>
<p>Revised <!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B %Y" startspan -->1 February 2002<!--webbot bot="Timestamp" i-checksum="38439" endspan --></p>
<p>Copyright 1999 Greg Colvin and Beman Dawes. Copyright 2002 Darin Adler.
Permission to copy, use, modify, sell and distribute this document is granted

View File

@@ -1,456 +1,356 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>shared_ptr</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body text="#000000" bgColor="#ffffff">
<h1><IMG height="86" alt="c++boost.gif (8819 bytes)" src="../../c++boost.gif" width="277" align="middle">shared_ptr
class template</h1>
<p><A href="#Introduction">Introduction</A><br>
<A href="#Synopsis">Synopsis</A><br>
<A href="#Members">Members</A><br>
<A href="#functions">Free Functions</A><br>
<A href="#example">Example</A><br>
<A href="#Handle/Body">Handle/Body Idiom</A><br>
<A href="#FAQ">Frequently Asked Questions</A><br>
<A href="smarttests.htm">Smart Pointer Timings</A></p>
<h2><a name="Introduction">Introduction</a></h2>
<p>The <b>shared_ptr</b> class template stores a pointer to a dynamically allocated
object. (Dynamically allocated objects are allocated with the C++ <b>new</b> expression.)
The object pointed to is guaranteed to be deleted when the last <b>shared_ptr</b>
pointing to it is destroyed or reset. See the <A href="#example">example</A>.</p>
<p>Every <b>shared_ptr</b> meets the <b>CopyConstructible</b> and <b>Assignable</b>
requirements of the C++ Standard Library, and so can be used in standard
library containers. Comparison operators are supplied so that <b>shared_ptr</b>
works with the standard library's associative containers.</p>
<p>Normally, a <b>shared_ptr</b> cannot correctly hold a pointer to a dynamically
allocated array. See <A href="shared_array.htm"><b>shared_array</b></A> for
that usage.</p>
<p>Because the implementation uses reference counting, <b>shared_ptr</b> will not
work correctly with cyclic data structures. For example, if <b>main()</b> holds
a <b>shared_ptr</b> to <b>A</b>, which directly or indirectly holds a <b>shared_ptr</b>
back to <b>A</b>, <b>A</b>'s use count will be 2. Destruction of the original <b>shared_ptr</b>
will leave <b>A</b> dangling with a use count of 1. Use <A href="weak_ptr.htm">weak_ptr</A>
to "break cycles."</p>
<p>The class template is parameterized on <b>T</b>, the type of the object pointed
to. <STRONG>shared_ptr</STRONG> and most of its member functions place no
requirements on <STRONG>T</STRONG>; it is allowed to be an incomplete type, or <STRONG>
void</STRONG>. Member functions that do place additional requirements (<A href="#constructors">constructors</A>,
<A href="#reset">reset</A>) are explicitly documented below.</p>
<P><STRONG>shared_ptr&lt;T&gt;</STRONG> can be implicitly converted to <STRONG>shared_ptr&lt;U&gt;</STRONG>
whenever <STRONG>T*</STRONG> can be implicitly converted to <STRONG>U*</STRONG>.
In particular, <STRONG>shared_ptr&lt;T&gt;</STRONG> is implicitly convertible
to <STRONG>shared_ptr&lt;T const&gt;</STRONG>, to <STRONG>shared_ptr&lt;U&gt;</STRONG>
where <STRONG>U</STRONG> is an accessible base of <STRONG>T</STRONG>, and to <STRONG>
shared_ptr&lt;void&gt;</STRONG>.</P>
<h2><a name="Synopsis">Synopsis</a></h2>
<pre>namespace boost {
class use_count_is_zero: public std::exception;
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>shared_ptr</title>
</head>
template&lt;typename T&gt; class <A href="weak_ptr.htm" >weak_ptr</A>;
<body bgcolor="#FFFFFF" text="#000000">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="middle" width="277" height="86">shared_ptr class template</h1>
<p><a href="#Introduction">Introduction</a><br>
<a href="#Synopsis">Synopsis</a><br>
<a href="#Members">Members</a><br>
<a href="#functions">Free Functions</a><br>
<a href="#example">Example</a><br>
<a href="#Handle/Body">Handle/Body Idiom</a><br>
<a href="#FAQ">Frequently Asked Questions</a><br>
<a href="smarttests.htm">Smart Pointer Timings</a></p>
<h2><a name="Introduction">Introduction</a></h2>
<p>The <b>shared_ptr</b> class template stores a pointer to a dynamically allocated
object. (Dynamically allocated objects are allocated with the C++ <b>new</b>
expression.) The object pointed to is guaranteed to be deleted when
the last <b>shared_ptr</b> pointing to it is destroyed or reset.
See the <a href="#example">example</a>.</p>
<p>Every <b>shared_ptr</b> meets the <b>CopyConstructible</b>
and <b>Assignable</b> requirements of the C++ Standard Library, and so
can be used in standard library containers. Comparison operators
are supplied so that <b>shared_ptr</b> works with
the standard library's associative containers.</p>
<p>Normally, a <b>shared_ptr</b> cannot correctly hold a pointer to a
dynamically allocated array. See <a href="shared_array.htm"><b>shared_array</b></a>
for that usage.</p>
<p>Because the implementation uses reference counting, <b>shared_ptr</b> will not work
correctly with cyclic data structures. For example, if <b>main()</b> holds a <b>shared_ptr</b>
to <b>A</b>, which directly or indirectly holds a <b>shared_ptr</b> back to <b>A</b>,
<b>A</b>'s use count will be 2. Destruction of the original <b>shared_ptr</b>
will leave <b>A</b> dangling with a use count of 1.</p>
<p>The class template is parameterized on <b>T</b>, the type of the object
pointed to. <b>T</b> must meet the smart pointer
<a href="smart_ptr.htm#Common requirements">common requirements</a>.
<b>T</b> may be <b>void</b>, but in that case, either an explicit delete
function must be passed in, or the pointed-to object must have a trivial destructor.</p>
<h2><a name="Synopsis">Synopsis</a></h2>
<pre>namespace boost {
template&lt;typename T&gt; class shared_ptr {
public:
typedef T <a href="#element_type">element_type</a>;
typedef T <A href="#element_type" >element_type</A>;
explicit <a href="#constructors">shared_ptr</a>(T * p = 0);
template&lt;typename D&gt; <a href="#constructors">shared_ptr</a>(T * p, D d);
<a href="#destructor">~shared_ptr</a>(); // never throws
<A href="#constructors" >shared_ptr</A> ();
template&lt;typename Y&gt; explicit <A href="#constructors" >shared_ptr</A> (Y * p);
template&lt;typename Y, typename D&gt; <A href="#constructors" >shared_ptr</A>(Y * p, D d);
<A href="#destructor" >~shared_ptr</A>(); // never throws
<a href="#constructors">shared_ptr</a>(shared_ptr const &amp; r); // never throws
template&lt;typename Y&gt; <a href="#constructors">shared_ptr</a>(shared_ptr&lt;Y&gt; const &amp; r); // never throws
template&lt;typename Y&gt; <a href="#constructors">shared_ptr</a>(std::auto_ptr&lt;Y&gt; &amp; r);
<A href="#constructors" >shared_ptr</A>(shared_ptr const &amp; r); // never throws
template&lt;typename Y&gt; <A href="#constructors" >shared_ptr</A>(shared_ptr&lt;Y&gt; const &amp; r); // never throws
explicit <A href="#constructors" >shared_ptr</A>(<A href="weak_ptr.htm" >weak_ptr</A> const &amp; r);
template&lt;typename Y&gt; <A href="#constructors" >shared_ptr</A>(std::auto_ptr&lt;Y&gt; &amp; r);
shared_ptr &amp; <a href="#assignment">operator=</a>(shared_ptr const &amp; r); // never throws
template&lt;typename Y&gt; shared_ptr &amp; <a href="#assignment">operator=</a>(shared_ptr&lt;Y&gt; const &amp; r); // never throws
template&lt;typename Y&gt; shared_ptr &amp; <a href="#assignment">operator=</a>(std::auto_ptr&lt;Y&gt; &amp; r);
shared_ptr &amp; <A href="#assignment" >operator=</A>(shared_ptr const &amp; r); // never throws
template&lt;typename Y&gt; shared_ptr &amp; <A href="#assignment" >operator=</A>(shared_ptr&lt;Y&gt; const &amp; r); // never throws
template&lt;typename Y&gt; shared_ptr &amp; <A href="#assignment" >operator=</A>(std::auto_ptr&lt;Y&gt; &amp; r);
void <a href="#reset">reset</a>(T * p = 0); // never throws
template&lt;typename D&gt; void <a href="#reset">reset</a>(T * p, D d); // never throws
void <A href="#reset" >reset</A> ();
template&lt;typename Y&gt; void <A href="#reset" >reset</A> (Y * p);
template&lt;typename Y&gt; template&lt;typename D&gt; void <A href="#reset" >reset</A>(Y * p, D d);
T &amp; <a href="#indirection">operator*</a>() const; // never throws
T * <a href="#indirection">operator-&gt;</a>() const; // never throws
T * <a href="#get">get</a>() const; // never throws
T &amp; <A href="#indirection" >operator*</A>() const; // never throws
T * <A href="#indirection" >operator-&gt;</A>() const; // never throws
T * <A href="#get" >get</A>() const; // never throws
bool <a href="#unique">unique</a>() const; // never throws
long <a href="#use_count">use_count</a>() const; // never throws
bool <A href="#unique" >unique</A>() const; // never throws
long <A href="#use_count" >use_count</A>() const; // never throws
operator <a href="#conversions"><i>implementation-defined-type</i></a> () const; // never throws
void <A href="#swap" >swap</A>(shared_ptr&lt;T&gt; &amp; b); // never throws
void <a href="#swap">swap</a>(shared_ptr&lt;T&gt; &amp; b); // never throws
};
template&lt;typename T, typename U&gt;
bool <A href="#comparison" >operator==</A>(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;U&gt; const &amp; b); // never throws
bool <a href="#operator==">operator==</a>(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;U&gt; const &amp; b); // never throws
template&lt;typename T, typename U&gt;
bool <A href="#comparison" >operator!=</A>(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;U&gt; const &amp; b); // never throws
template&lt;typename T&gt;
bool <A href="#comparison" >operator&lt;</A>(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;T&gt; const &amp; b); // never throws
bool <a href="#operator!=">operator!=</a>(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;U&gt; const &amp; b); // never throws
template&lt;typename T, typename U&gt;
bool <a href="#operator&lt;">operator&lt;</a>(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;U&gt; const &amp; b); // never throws
template&lt;typename T&gt; void <A href="#free-swap" >swap</A>(shared_ptr&lt;T&gt; &amp; a, shared_ptr&lt;T&gt; &amp; b); // never throws
template&lt;typename T&gt; void <a href="#free-swap">swap</a>(shared_ptr&lt;T&gt; &amp; a, shared_ptr&lt;T&gt; &amp; b); // never throws
template&lt;typename T, typename U&gt;
shared_ptr&lt;T&gt; <A href="#shared_static_cast" >shared_static_cast</A>(shared_ptr&lt;U&gt; const &amp; r); // never throws
shared_ptr&lt;T&gt <a href="#shared_static_cast">shared_static_cast</a>(shared_ptr&lt;U&gt; const &amp; r); // never throws
template&lt;typename T, typename U&gt;
shared_ptr&lt;T&gt; <A href="#shared_dynamic_cast" >shared_dynamic_cast</A>(shared_ptr&lt;U&gt; const &amp; r);
template&lt;typename T, typename U&gt;
shared_ptr&lt;T&gt; <A href="#shared_polymorphic_cast" >shared_polymorphic_cast</A>(shared_ptr&lt;U&gt; const &amp; r);
template&lt;typename T, typename U&gt;
shared_ptr&lt;T&gt; <A href="#shared_polymorphic_downcast" >shared_polymorphic_downcast</A>(shared_ptr&lt;U&gt; const &amp; r); // never throws
shared_ptr&lt;T&gt <a href="#shared_dynamic_cast">shared_dynamic_cast</a>(shared_ptr&lt;U&gt; const &amp; r);
}</pre>
<h2><a name="Members">Members</a></h2>
<h3><a name="element_type">element_type</a></h3>
<pre>typedef T element_type;</pre>
<blockquote>
<p>Provides the type of the template parameter T.</p>
</blockquote>
<h3><a name="constructors">constructors</a></h3>
<pre>shared_ptr();</pre>
<blockquote>
<p><b>Effects:</b> Constructs a <b>shared_ptr</b>.</p>
<p><b>Postconditions:</b> <A href="#use_count">use count</A> is 1; the stored
pointer is 0.</p>
<p><b>Throws:</b> <b>std::bad_alloc</b>.</p>
<p><b>Exception safety:</b> If an exception is thrown, the constructor has no
effect.</p>
</blockquote>
<pre>template&lt;typename Y&gt; explicit shared_ptr(Y * p);</pre>
<blockquote>
<p><b>Requirements:</b> <b>p</b> must be convertible to <b>T *</b>. <STRONG>Y</STRONG>
must be a complete type. The expression <code>delete p</code> must be
well-formed, must not invoke undefined behavior, and must not throw exceptions.
</p>
<p><b>Effects:</b> Constructs a <b>shared_ptr</b>, storing a copy of <b>p</b>.</p>
<p><b>Postconditions:</b> <A href="#use_count">use count</A> is 1.</p>
<p><b>Throws:</b> <b>std::bad_alloc</b>.</p>
<p><b>Exception safety:</b> If an exception is thrown, <code>delete p</code> is
called.</p>
<P><STRONG>Notes:</STRONG> <B>p</B> must be a pointer to an object that was
allocated via a C++ <B>new</B> expression or be 0. The postcondition that <A href="#use_count">
use count</A> is 1 holds even if <b>p</b> is 0; invoking <STRONG>delete</STRONG>
on a pointer that has a value of 0 is harmless.</P>
</blockquote>
<pre>template&lt;typename Y, typename D&gt; shared_ptr(Y * p, D d);</pre>
<blockquote>
<p><b>Requirements:</b> <B>p</B> must be convertible to <B>T *</B>. The copy
constructor and destructor of <b>D</b> must not throw. The expression <code>d(p)</code>
must be well-formed, must not invoke undefined behavior, and must not throw
exceptions.
</p>
<p><b>Effects:</b> Constructs a <b>shared_ptr</b>, storing a copy of <b>p</b> and <b>d</b>.</p>
<p><b>Postconditions:</b> <A href="#use_count">use count</A> is 1.</p>
<p><b>Throws:</b> <b>std::bad_alloc</b>.</p>
<p><b>Exception safety:</b> If an exception is thrown, <code>d(p)</code> is called.</p>
<p><b>Notes:</b> When the the time comes to delete the object pointed to by <b>p</b>,
<code>d(p)</code> is invoked.</p>
</blockquote>
<pre>shared_ptr(shared_ptr const &amp; r); // never throws
template&lt;typename Y&gt; shared_ptr(shared_ptr&lt;Y&gt; const &amp; r); // never throws</pre>
<blockquote>
<p><b>Effects:</b> Constructs a <b>shared_ptr</b>, as if by storing a copy of the
pointer stored in <STRONG>r</STRONG>.</p>
<p><b>Postconditions:</b> <A href="#use_count">use count</A> for all copies is
increased by one.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<pre>explicit shared_ptr(<A href="weak_ptr.htm" >weak_ptr</A> const &amp; r);</pre>
<blockquote>
<p><b>Effects:</b> Constructs a <b>shared_ptr</b>, as if by storing a copy of the
pointer stored in <STRONG>r</STRONG>.</p>
<p><b>Postconditions:</b> <A href="#use_count">use count</A> for all copies is
increased by one.</p>
<p><b>Throws:</b> <b>use_count_is_zero</b> when <code>r.use_count() == 0</code>.</p>
<p><b>Exception safety:</b> If an exception is thrown, the constructor has no
effect.</p>
</blockquote>
<pre>template&lt;typename Y&gt; shared_ptr(std::auto_ptr&lt;Y&gt; &amp; r);</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Constructs a <B>shared_ptr</B>, as if by storing a copy of <STRONG>r.release()</STRONG>.</P>
<P><B>Postconditions:</B> <A href="#use_count">use count</A> for all copies is
increased by one.</P>
<P><B>Throws:</B> <B>std::bad_alloc</B>.</P>
<P><B>Exception safety:</B> If an exception is thrown, the constructor has no
effect.</P>
</BLOCKQUOTE>
<h3><a name="destructor">destructor</a></h3>
<pre>~shared_ptr(); // never throws</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> If <STRONG>*this</STRONG> is the sole owner (<code>use_count() == 1</code>),
destroys the object pointed to by the stored pointer.</P>
<P><B>Postconditions:</B> <A href="#use_count">use count</A> for all remaining
copies is decreased by one.</P>
<P><B>Throws:</B> nothing.</P>
</BLOCKQUOTE>
<H3><a name="assignment">assignment</a></H3>
<pre>shared_ptr &amp; operator=(shared_ptr const &amp; r); // never throws
template&lt;typename Y&gt; shared_ptr &amp; operator=(shared_ptr&lt;Y&gt; const &amp; r); // never throws
template&lt;typename Y&gt; shared_ptr &amp; operator=(std::auto_ptr&lt;Y&gt; &amp; r);</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>shared_ptr(r).swap(*this)</code>.</P>
<P><B>Notes:</B> The implementation is free to meet the effects (and the implied
guarantees) via different means, without creating a temporary. In particular,
in the example:</P>
<pre>
shared_ptr&lt;int&gt; p(new int);
shared_ptr&lt;void&gt; q(p);
p = p;
q = p;
</pre>
<p>both assignments may be no-ops.</p>
</BLOCKQUOTE>
<h3><a name="reset">reset</a></h3>
<pre>void reset();</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>shared_ptr().swap(*this)</code>.</P>
</BLOCKQUOTE>
<pre>template&lt;typename Y&gt; void reset(Y * p);</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>shared_ptr(p).swap(*this)</code>.</P>
</BLOCKQUOTE>
<pre>template&lt;typename Y, typename D&gt; void reset(Y * p, D d);</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>shared_ptr(p, d).swap(*this)</code>.</P>
</BLOCKQUOTE>
<h3><a name="indirection">indirection</a></h3>
<pre>T &amp; operator*() const; // never throws</pre>
<blockquote>
<p><b>Requirements:</b> The stored pointer must not be 0.</p>
<p><b>Returns:</b> a reference to the object pointed to by the stored pointer.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<pre>T * operator-&gt;() const; // never throws</pre>
<blockquote>
<p><b>Requirements:</b> The stored pointer must not be 0.</p>
<p><b>Returns:</b> the stored pointer.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<h3><a name="get">get</a></h3>
<pre>T * get() const; // never throws</pre>
<blockquote>
<p><b>Returns:</b> the stored pointer.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<h3><a name="unique">unique</a></h3>
<pre>bool unique() const; // never throws</pre>
<blockquote>
<p><b>Returns:</b> <code>use_count() == 1</code>.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> <code>unique()</code> may be faster than <code>use_count()</code>.</P>
</blockquote>
<h3><a name="use_count">use_count</a></h3>
<pre>long use_count() const; // never throws</pre>
<blockquote>
<p><b>Returns:</b> the number of <b>shared_ptr</b> objects sharing ownership of the
stored pointer.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> <code>use_count()</code> is not necessarily efficient. Use only
for debugging and testing purposes, not for production code.</P>
</blockquote>
<h3><a name="conversions">conversions</a></h3>
<pre>operator <i>implementation-defined-type</i> () const; // never throws</pre>
<blockquote>
<p><b>Returns:</b> an implementation defined value that, when used in boolean
contexts, is equivalent to <code>get() != 0</code>.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> This conversion operator allows <b>shared_ptr</b> objects to be
used in boolean contexts, like <code>if (p &amp;&amp; p-&gt;valid()) {}</code>.
The actual target type is typically a pointer to a member function, avloiding
many of the implicit conversion pitfalls.</P>
</blockquote>
<h3><a name="swap">swap</a></h3>
<pre>void swap(shared_ptr &amp; b); // never throws</pre>
<blockquote>
<p><b>Effects:</b> Exchanges the contents of the two smart pointers.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<h2><a name="functions">Free Functions</a></h2>
<h3><a name="comparison">comparison</a></h3>
<pre>template&lt;typename T, typename U&gt;
bool operator==(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;U&gt; const &amp; b); // never throws</pre>
<blockquote>
<p><b>Returns:</b> <code>a.get() == b.get()</code>.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<pre>template&lt;typename T, typename U&gt;
bool operator!=(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;U&gt; const &amp; b); // never throws</pre>
<blockquote>
<p><b>Returns:</b> <code>a.get() != b.get()</code>.</p>
<p><b>Throws:</b> nothing.</p>
</blockquote>
<pre>template&lt;typename T&gt;
bool operator&lt;(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;T&gt; const &amp; b); // never throws</pre>
<blockquote>
<p><b>Returns:</b> an implementation-defined value such that <b>operator&lt;</b> is
a strict weak ordering as described in section 25.3 <code>[lib.alg.sorting]</code>
of the C++ standard.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> Allows <STRONG>shared_ptr</STRONG> objects to be used as keys in
associative containers.</P>
</blockquote>
<h3><a name="free-swap">swap</a></h3>
<pre>template&lt;typename T&gt;
<h2><a name="Members">Members</a></h2>
<h3><a name="element_type">element_type</a></h3>
<pre>typedef T element_type;</pre>
<p>Provides the type of the stored pointer.</p>
<h3><a name="constructors">constructors</a></h3>
<pre>explicit shared_ptr(T * p = 0);</pre>
<p>Constructs a <b>shared_ptr</b>, storing a copy of <b>p</b>, which
must be a pointer to an object that was allocated via a C++ <b>new</b> expression or be 0.
Afterwards, the <a href="#use_count">use count</a> is 1 (even if p == 0; see <a href="#destructor">~shared_ptr</a>).
The only exception which may be thrown by this constructor is <b>std::bad_alloc</b>.
If an exception is thrown, <b>delete p</b> is called.</p>
<pre>template&lt;typename D&gt; shared_ptr(T * p, D d);</pre>
<p>Constructs a <b>shared_ptr</b>, storing a copy of <b>p</b> and of <b>d</b>.
Afterwards, the <a href="#use_count">use count</a> is 1.
<b>D</b>'s copy constructor and destructor must not throw.
When the the time comes to delete the object pointed to by <b>p</b>, the object
<b>d</b> is used in the statement <b>d(p)</b>. Invoking the object <b>d</b> with
parameter <b>p</b> in this way must not throw.
The only exception which may be thrown by this constructor is <b>std::bad_alloc</b>.
If an exception is thrown, <b>d(p)</b> is called.</p>
<pre>shared_ptr(shared_ptr const &amp; r); // never throws
template&lt;typename Y&gt; shared_ptr(shared_ptr&lt;Y&gt; const &amp; r); // never throws
template&lt;typename Y&gt; shared_ptr(std::auto_ptr&lt;Y&gt; &amp; r);</pre>
<p>Constructs a <b>shared_ptr</b>, as if by storing a copy of the
pointer stored in <b>r</b>. Afterwards, the <a href="#use_count">use count</a>
for all copies is 1 more than the initial use count, or 1
in the <b>auto_ptr</b> case. In the <b>auto_ptr</b> case, <b>r.release()</b>
is called.
The only exception which may be thrown is <b>std::bad_alloc</b>,
which may be thrown during construction from <b>auto_ptr</b>.
If an exception is thrown, the constructor has no effect.</p>
<h3><a name="destructor">destructor</a></h3>
<pre>~shared_ptr(); // never throws</pre>
<p>Decrements the <a href="#use_count">use count</a>. Then, if the use count is 0,
deletes the object pointed to by the stored pointer.
Note that <b>delete</b> on a pointer with a value of 0 is harmless.
<b>T</b> need not be a complete type.
The guarantee that this does not throw exceptions depends on the requirement that the
deleted object's destructor does not throw exceptions.
See the smart pointer <a href="smart_ptr.htm#Common requirements">common requirements</a>.</p>
<h3><a name="operator=">assignment</a></h3>
<pre>shared_ptr &amp; <a href="#assignment">operator=</a>(shared_ptr const &amp; r); // never throws
template&lt;typename Y&gt; shared_ptr &amp; <a href="#assignment">operator=</a>(shared_ptr&lt;Y&gt; const &amp; r); // never throws
template&lt;typename Y&gt; shared_ptr &amp; <a href="#assignment">operator=</a>(std::auto_ptr&lt;Y&gt; &amp; r);</pre>
<p>Constructs a new <b>shared_ptr</b> as described <a href="#constructors">above</a>,
then replaces this <b>shared_ptr</b> with the new one, destroying the replaced object.
The only exception which may be thrown is <b>std::bad_alloc</b>,
which may be thrown during assignment from <b>auto_ptr</b>.
If an exception is thrown, the assignment has no effect.</p>
<h3><a name="reset">reset</a></h3>
<pre>void reset(T * p = 0);</pre>
<p>Constructs a new <b>shared_ptr</b> as described <a href="#constructors">above</a>,
then replaces this <b>shared_ptr</b> with the new one, destroying the replaced object.
The only exception which may be thrown is <b>std::bad_alloc</b>. If
an exception is thrown, <b>delete p</b> is called.</p>
<pre>template&lt;typename D&gt; void reset(T * p, D d);</pre>
<p>Constructs a new <b>shared_ptr</b> as described <a href="#constructors">above</a>,
then replaces this <b>shared_ptr</b> with the new one, destroying the replaced object.
<b>D</b>'s copy constructor must not throw.
The only exception which may be thrown is <b>std::bad_alloc</b>. If
an exception is thrown, <b>d(p)</b> is called.</p>
<h3><a name="indirection">indirection</a></h3>
<pre>T &amp; operator*() const; // never throws</pre>
<p>Returns a reference to the object pointed to by the stored pointer.
Behavior is undefined if the stored pointer is 0.</p>
<pre>T * operator-&gt;() const; // never throws</pre>
<p>Returns the stored pointer. Behavior is undefined if the stored pointer is 0.</p>
<h3><a name="get">get</a></h3>
<pre>T * get() const; // never throws</pre>
<p>Returns the stored pointer.
<b>T</b> need not be a complete type.
See the smart pointer
<a href="smart_ptr.htm#Common requirements">common requirements</a>.</p>
<h3><a name="unique">unique</a></h3>
<pre>bool unique() const; // never throws</pre>
<p>Returns true if no other <b>shared_ptr</b> is sharing ownership of
the stored pointer, false otherwise.
<b>T</b> need not be a complete type.
See the smart pointer
<a href="smart_ptr.htm#Common requirements">common requirements</a>.</p>
<h3><a name="use_count">use_count</a></h3>
<pre>long use_count() const; // never throws</pre>
<p>Returns the number of <b>shared_ptr</b> objects sharing ownership of the
stored pointer.
<b>T</b> need not be a complete type.
See the smart pointer
<a href="smart_ptr.htm#Common requirements">common requirements</a>.</p>
<p>Because <b>use_count</b> is not necessarily efficient to implement for
implementations of <b>shared_ptr</b> that do not use an explicit reference
count, it might be removed from some future version. Thus it should
be used for debugging purposes only, and not production code.</p>
<h3><a name="swap">swap</a></h3>
<pre>void swap(shared_ptr &amp; b); // never throws</pre>
<p>Exchanges the contents of the two smart pointers.
<b>T</b> need not be a complete type.
See the smart pointer
<a href="smart_ptr.htm#Common requirements">common requirements</a>.</p>
<h2><a name="functions">Free Functions</a></h2>
<h3><a name="comparison">comparison</a></h3>
<pre>template&lt;typename T, typename U&gt;
bool <a href="#operator==">operator==</a>(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;U&gt; const &amp; b); // never throws
template&lt;typename T, typename U&gt;
bool <a href="#operator!=">operator!=</a>(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;U&gt; const &amp; b); // never throws
template&lt;typename T, typename U&gt;
bool <a href="#operator&lt;">operator&lt;</a>(shared_ptr&lt;T&gt; const &amp; a, shared_ptr&lt;U&gt; const &amp; b); // never throws</pre>
<p>Compares the stored pointers of the two smart pointers.
<b>T</b> need not be a complete type.
See the smart pointer
<a href="smart_ptr.htm#Common requirements">common requirements</a>.</p>
<p>The <b>operator&lt;</b> overload is provided to define an ordering so that <b>shared_ptr</b>
objects can be used in associative containers such as <b>std::map</b>.
The implementation uses <b>std::less&lt;T *&gt;</b> to perform the
comparison. This ensures that the comparison is handled correctly, since the
standard mandates that relational operations on pointers are unspecified (5.9 [expr.rel]
paragraph 2) but <b>std::less&lt;&gt;</b> on pointers is well-defined (20.3.3 [lib.comparisons]
paragraph 8).</p>
<h3><a name="free-swap">swap</a></h3>
<pre>template&lt;typename T&gt;
void swap(shared_ptr&lt;T&gt; &amp; a, shared_ptr&lt;T&gt; &amp; b) // never throws</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>a.swap(b)</code>.</P>
<P><B>Throws:</B> nothing.</P>
<P><B>Notes:</B> Matches the interface of <B>std::swap</B>. Provided as an aid to
generic programming.</P>
</BLOCKQUOTE>
<h3><a name="shared_static_cast">shared_static_cast</a></h3>
<pre>template&lt;typename T, typename U&gt;
shared_ptr&lt;T&gt; shared_static_cast(shared_ptr&lt;U&gt; const &amp; r); // never throws</pre>
<BLOCKQUOTE>
<P><STRONG>Requires:</STRONG> The expression <code>static_cast&lt;T*&gt;(r.get())</code>
must be well-formed.</P>
<P><B>Returns:</B> A <STRONG>shared_ptr&lt;T&gt;</STRONG> object that stores a copy
of <code>static_cast&lt;T*&gt;(r.get())</code> and shares ownership with <b>r</b>.</P>
<P><B>Throws:</B> nothing.</P>
<P><B>Notes:</B> the seemingly equivalent expression</P>
<p><code>shared_ptr&lt;T&gt;(static_cast&lt;T*&gt;(r.get()))</code></p>
<p>will eventually result in undefined behavior, attempting to delete the same
object twice.</p>
</BLOCKQUOTE>
<h3><a name="shared_dynamic_cast">shared_dynamic_cast</a></h3>
<pre>template&lt;typename T, typename U&gt;
shared_ptr&lt;T&gt; shared_dynamic_cast(shared_ptr&lt;U&gt; const &amp; r);</pre>
<BLOCKQUOTE>
<P><STRONG>Requires:</STRONG> The expression <CODE>dynamic_cast&lt;T*&gt;(r.get())</CODE>
must be well-formed and its behavior defined.</P>
<P><B>Returns:</B></P>
<UL>
<LI>
When <CODE>dynamic_cast&lt;T*&gt;(r.get())</CODE> returns a nonzero value, a <STRONG>
shared_ptr&lt;T&gt;</STRONG> object that stores a copy of it and shares
ownership with <STRONG>r</STRONG>;
<LI>
Otherwise, a default-constructed <STRONG>shared_ptr&lt;T&gt;</STRONG> object.</LI></UL>
<P><B>Throws:</B> <STRONG>std::bad_alloc</STRONG>.</P>
<P><B>Exception safety:</B> If an exception is thrown, the function has no effect.</P>
<P><B>Notes:</B> the seemingly equivalent expression</P>
<P><CODE>shared_ptr&lt;T&gt;(dynamic_cast&lt;T*&gt;(r.get()))</CODE></P>
<P>will eventually result in undefined behavior, attempting to delete the same
object twice.</P>
</BLOCKQUOTE>
<h3><a name="shared_polymorphic_cast">shared_polymorphic_cast</a></h3>
<pre>template&lt;typename T, typename U&gt;
shared_ptr&lt;T&gt; shared_polymorphic_cast(shared_ptr&lt;U&gt; const &amp; r);</pre>
<BLOCKQUOTE>
<p><STRONG>Requires:</STRONG> The expression <CODE><A href="../conversion/cast.htm#Polymorphic_cast">
polymorphic_cast</A>&lt;T*&gt;(r.get())</CODE> must be well-formed and
its behavior defined.</p>
<P><B>Returns:</B> A <STRONG>shared_ptr&lt;T&gt;</STRONG> object that stores a copy
of <CODE><A href="../conversion/cast.htm#Polymorphic_cast">polymorphic_cast</A>&lt;T*&gt;(r.get())</CODE>
and shares ownership with <B>r</B>.</P>
<P><B>Throws:</B> <STRONG>std::bad_cast</STRONG> when the pointer cannot be
converted.</P>
<P><B>Exception safety:</B> If an exception is thrown, the function has no effect.</P>
</BLOCKQUOTE>
<h3><a name="shared_polymorphic_downcast">shared_polymorphic_downcast</a></h3>
<pre>template&lt;typename T, typename U&gt;
shared_ptr&lt;T&gt; shared_polymorphic_downcast(shared_ptr&lt;U&gt; const &amp; r); // never throws</pre>
<BLOCKQUOTE>
<p><STRONG>Requires:</STRONG> The expression <CODE><A href="../conversion/cast.htm#Polymorphic_cast">
polymorphic_downcast</A>&lt;T*&gt;(r.get())</CODE> must be well-formed
and its behavior defined.</p>
<P><B>Returns:</B> A <STRONG>shared_ptr&lt;T&gt;</STRONG> object that stores a copy
of <CODE><A href="../conversion/cast.htm#Polymorphic_cast">polymorphic_downcast</A>&lt;T*&gt;(r.get())</CODE>
and shares ownership with <B>r</B>.</P>
<P><B>Throws:</B> nothing.</P>
</BLOCKQUOTE>
<h2><a name="example">Example</a></h2>
<p>See <A href="shared_ptr_example.cpp">shared_ptr_example.cpp</A> for a complete
example program. The program builds a <b>std::vector</b> and <b>std::set</b> of <b>shared_ptr</b>
objects.</p>
<p>Note that after the containers have been populated, some of the <b>shared_ptr</b>
objects will have a use count of 1 rather than a use count of 2, since the set
is a <b>std::set</b> rather than a <b>std::multiset</b>, and thus does not
contain duplicate entries. Furthermore, the use count may be even higher at
various times while <b>push_back</b> and <b>insert</b> container operations are
performed. More complicated yet, the container operations may throw exceptions
under a variety of circumstances. Getting the memory management and exception
handling in this example right without a smart pointer would be a nightmare.</p>
<h2><a name="Handle/Body">Handle/Body</a> Idiom</h2>
<p>One common usage of <b>shared_ptr</b> is to implement a handle/body (also called
pimpl) idiom which avoids exposing the body (implementation) in the header
file.</p>
<p>The <A href="shared_ptr_example2_test.cpp">shared_ptr_example2_test.cpp</A> sample
program includes a header file, <A href="shared_ptr_example2.hpp">shared_ptr_example2.hpp</A>,
which uses a <b>shared_ptr&lt;&gt;</b> to an incomplete type to hide the
implementation. The instantiation of member functions which require a complete
type occurs in the <A href="shared_ptr_example2.cpp">shared_ptr_example2.cpp</A>
implementation file. Note that there is no need for an explicit destructor.
Unlike ~scoped_ptr, ~shared_ptr does not require that <b>T</b> be a complete
type.</p>
<h2><a name="FAQ">Frequently Asked Questions</a></h2>
<P><B>Q.</B> There are several variations of shared pointers, with different
tradeoffs; why does the smart pointer library supply only a single
implementation? It would be useful to be able to experiment with each type so
as to find the most suitable for the job at hand?<BR>
<b>A.</b> An important goal of <STRONG>shared_ptr</STRONG> is to provide a
standard shared-ownership pointer. Having a single pointer type is important
for stable library interfaces, since different shared pointers typically cannot
interoperate, i.e. a reference counted pointer (used by library A) cannot share
ownership with a linked pointer (used by library B.)</P>
<P><B>Q.</B> Why doesn't <B>shared_ptr</B> have template parameters supplying
traits or policies to allow extensive user customization?<BR>
<B>A.</B> Parameterization discourages users. The <B>shared_ptr</B> template is
carefully crafted to meet common needs without extensive parameterization. Some
day a highly configurable smart pointer may be invented that is also very easy
to use and very hard to misuse. Until then, <B>shared_ptr</B> is the smart
pointer of choice for a wide range of applications. (Those interested in policy
based smart pointers should read <A href="http://cseng.aw.com/book/0,,0201704315,00.html">
Modern C++ Design</A> by Andrei Alexandrescu.)</P>
<P><B>Q.</B> I am not convinced. Default parameters can be used where appropriate to
hide the complexity. Again, why not policies?<BR>
<B>A.</B> Template parameters affect the type. See the answer to the first
question above.</P>
<p><b>Q.</b> Why doesn't <b>shared_ptr</b> use a linked list implementation?<br>
<b>A.</b> A linked list implementation does not offer enough advantages to
offset the added cost of an extra pointer. See <A href="smarttests.htm">timings</A>
page. In addition, it is expensive to make a linked list implementation thread
safe.</p>
<p><b>Q.</b> Why doesn't <b>shared_ptr</b> (or any of the other Boost smart
pointers) supply an automatic conversion to <b>T*</b>?<br>
<b>A.</b> Automatic conversion is believed to be too error prone.</p>
<p><b>Q.</b> Why does <b>shared_ptr</b> supply use_count()?<br>
<b>A.</b> As an aid to writing test cases and debugging displays. One of the
progenitors had use_count(), and it was useful in tracking down bugs in a
complex project that turned out to have cyclic-dependencies.</p>
<p><b>Q.</b> Why doesn't <b>shared_ptr</b> specify complexity requirements?<br>
<b>A.</b> Because complexity requirements limit implementors and complicate the
specification without apparent benefit to <b>shared_ptr</b> users. For example,
error-checking implementations might become non-conforming if they had to meet
stringent complexity requirements.</p>
<p><b>Q.</b> Why doesn't <b>shared_ptr</b> provide a release() function?<br>
<b>A.</b> <b>shared_ptr</b> cannot give away ownership unless it's unique()
because the other copy will still destroy the object.</p>
<p>Consider:</p>
<blockquote><pre>shared_ptr&lt;int&gt; a(new int);
<p>Equivalent to <b>a.swap(b)</b>. Matches the interface of <b>std::swap</b>.
Provided as an aid to generic programming.</p>
<h3><a name="shared_static_cast">shared_static_cast</a></h3>
<pre>template&lt;typename T, typename U&gt;
shared_ptr&lt;T&gt <a href="#shared_static_cast">shared_static_cast</a>(shared_ptr&lt;U&gt; const &amp; r); // never throws</pre>
<p>Perform a <b>static_cast</b> on the stored pointer, returning another <b>shared_ptr</b>.
The resulting smart pointer will share its use count with the original pointer.</p>
<p>Note that the seemingly equivalent expression</p>
<blockquote><code>shared_ptr&lt;T&gt;(static_cast&lt;T*&gt;(r.get()))</code></blockquote>
<p>will eventually result in undefined behavior, attempting to delete the same object twice.</p>
<h3><a name="shared_dynamic_cast">shared_dynamic_cast</a></h3>
<pre>template&lt;typename T, typename U&gt;
shared_ptr&lt;T&gt <a href="#shared_dynamic_cast">shared_dynamic_cast</a>(shared_ptr&lt;U&gt; const &amp; r);</pre>
<p>Perform a <b>dynamic_cast</b> on the stored pointer, returning another <b>shared_ptr</b>.
The resulting smart pointer will share its use count with the original pointer unless the result of the
cast is 0. The only exception which may be thrown is <b>std::bad_alloc</b>, which may be thrown during the
construction of the new <b>shared_ptr</b> if the result of the cast is 0. If an exception is thrown, the
cast has no effect.</p>
<p>Note that the seemingly equivalent expression</p>
<blockquote><code>shared_ptr&lt;T&gt;(dynamic_cast&lt;T*&gt;(r.get()))</code></blockquote>
<p>will eventually result in undefined behavior, attempting to delete the same object twice.</p>
<h2><a name="example">Example</a></h2>
<p>See <a href="shared_ptr_example.cpp">shared_ptr_example.cpp</a> for a complete example program.
The program builds a <b>std::vector</b> and <b>std::set</b> of <b>shared_ptr</b> objects.</p>
<p>Note that after the containers have been populated, some of the <b>shared_ptr</b> objects
will have a use count of 1 rather than a use count of 2, since the set is a <b>std::set</b>
rather than a <b>std::multiset</b>, and thus does not contain duplicate entries.
Furthermore, the use count may be even higher
at various times while <b>push_back</b> and <b>insert</b> container operations are performed.
More complicated yet, the container operations may throw exceptions under a
variety of circumstances. Getting the memory management and exception handling in this
example right without a smart pointer would be a nightmare.</p>
<h2><a name="Handle/Body">Handle/Body</a> Idiom</h2>
<p>One common usage of <b>shared_ptr</b> is to implement a handle/body (also
called pimpl) idiom which avoids exposing the body (implementation) in the header
file.</p>
<p>The <a href="shared_ptr_example2_test.cpp">shared_ptr_example2_test.cpp</a>
sample program includes a header file, <a href="shared_ptr_example2.hpp">shared_ptr_example2.hpp</a>,
which uses a <b>shared_ptr&lt;&gt;</b> to an incomplete type to hide the
implementation. The
instantiation of member functions which require a complete type occurs in the
<a href="shared_ptr_example2.cpp">shared_ptr_example2.cpp</a>
implementation file.
Note that there is no need for an explicit destructor.
Unlike ~scoped_ptr, ~shared_ptr does not require that <b>T</b> be a complete type.</p>
<h2><a name="FAQ">Frequently Asked Questions</a></h2>
<p><b>Q.</b> Why doesn't <b>shared_ptr</b> have template parameters supplying
traits or policies to allow extensive user customization?<br>
<b>A.</b> Parameterization discourages users. The <b>shared_ptr</b> template is
carefully crafted to meet common needs without extensive parameterization.
Some day a highly configurable smart pointer may be invented that is also very
easy to use and very hard to misuse. Until then, <b>shared_ptr</b> is the
smart pointer of choice for a wide range of applications. (Those
interested in policy based smart pointers should read
<a href="http://cseng.aw.com/book/0,,0201704315,00.html">Modern C++ Design</a> by Andrei Alexandrescu.)</p>
<p><b>Q.</b> Why doesn't <b>shared_ptr</b> use a linked list implementation?<br>
<b>A.</b> A linked list implementation does not offer enough advantages to
offset the added cost of an extra pointer. See <a href="smarttests.htm">timings</a>
page.</p>
<p><b>Q.</b> Why doesn't <b>shared_ptr</b> (or any of the other Boost smart pointers)
supply an automatic conversion to <b>T*</b>?<br>
<b>A.</b> Automatic conversion is believed to be too error prone.</p>
<p><b>Q.</b> Why does <b>shared_ptr</b> supply use_count()?<br>
<b>A.</b> As an aid to writing test cases and debugging displays. One of the
progenitors had use_count(), and it was useful in tracking down bugs in a
complex project that turned out to have cyclic-dependencies.</p>
<p><b>Q.</b> Why doesn't <b>shared_ptr</b> specify complexity requirements?<br>
<b>A.</b> Because complexity requirements limit implementors and complicate the
specification without apparent benefit to <b>shared_ptr</b> users.
For example, error-checking implementations might become non-conforming if they
had to meet stringent complexity requirements.</p>
<p><b>Q.</b> Why doesn't <b>shared_ptr</b> provide a release() function?<br>
<b>A.</b> <b>shared_ptr</b> cannot give away ownership unless it's unique()
because the other copy will still destroy the object.</p>
<p>Consider:</p>
<blockquote><pre>shared_ptr&lt;int&gt; a(new int);
shared_ptr&lt;int&gt; b(a); // a.use_count() == b.use_count() == 2
int * p = a.release();
// Who owns p now? b will still call delete on it in its destructor.</pre>
</blockquote>
<p><b>Q.</b> Why doesn't <b>shared_ptr</b> provide (your pet feature here)?<br>
<b>A.</b> Because (your pet feature here) would mandate a reference counted
implementation or a linked list implementation, or some other specific
implementation. This is not the intent.</p>
<hr>
<p>Revised&nbsp; <!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B %Y" startspan -->
04&nbsp;May 2002<!--webbot bot="Timestamp" i-checksum="38439" endspan --></p>
<p>Copyright 1999 Greg Colvin and Beman Dawes. Copyright 2002 Darin Adler.
Copyright 2002 Peter Dimov. Permission to copy, use, modify, sell and
distribute this document is granted provided this copyright notice appears in
all copies. This document is provided "as is" without express or implied
warranty, and with no claim as to its suitability for any purpose.</p>
</body>
// Who owns p now? b will still call delete on it in its destructor.</pre></blockquote>
<p><b>Q.</b> Why doesn't <b>shared_ptr</b> provide (your pet feature here)?<br>
<b>A.</b> Because (your pet feature here) would mandate a reference counted
implementation or a linked list implementation, or some other specific implementation.
This is not the intent.</p>
<hr>
<p>Revised <!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B %Y" startspan -->1 February 2002<!--webbot bot="Timestamp" i-checksum="38439" endspan --></p>
<p>Copyright 1999 Greg Colvin and Beman Dawes. Copyright 2002 Darin Adler.
Permission to copy, use, modify, sell and distribute this document is granted
provided this copyright notice appears in all copies.
This document is provided &quot;as is&quot; without express or implied warranty,
and with no claim as to its suitability for any purpose.</p>
</body>
</html>

View File

@@ -1,31 +0,0 @@
#if defined(_MSC_VER) && !defined(__ICL)
#pragma warning(disable: 4786) // identifier truncated in debug info
#pragma warning(disable: 4710) // function not inlined
#pragma warning(disable: 4711) // function selected for automatic inline expansion
#pragma warning(disable: 4514) // unreferenced inline removed
#endif
//
// shared_ptr_assign_fail.cpp - a negative test for shared_ptr assignment
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <boost/shared_ptr.hpp>
bool boost_error(char const *, char const *, char const *, long)
{
return true;
}
int main()
{
boost::shared_ptr<int> p;
p = new int(42); // assignment must fail
return 0;
}

View File

@@ -1,181 +0,0 @@
#if defined(_MSC_VER) && !defined(__ICL) && !defined(__COMO__)
#pragma warning(disable: 4786) // identifier truncated in debug info
#pragma warning(disable: 4710) // function not inlined
#pragma warning(disable: 4711) // function selected for automatic inline expansion
#pragma warning(disable: 4514) // unreferenced inline removed
#endif
//
// shared_ptr_mt_test.cpp - tests shared_ptr with multiple threads
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <boost/shared_ptr.hpp>
#include <boost/bind.hpp>
#define BOOST_INCLUDE_MAIN
#include <boost/test/test_tools.hpp>
#include <vector>
#include <memory>
#include <stdexcept>
#include <cstdio>
#include <ctime>
// 'portable' thread framework
class abstract_thread
{
public:
virtual ~abstract_thread() {}
virtual void run() = 0;
};
#if !defined(BOOST_HAS_PTHREADS) && defined(BOOST_HAS_WINTHREADS)
char const * title = "Using Windows threads";
#include <windows.h>
#include <process.h>
typedef HANDLE pthread_t;
unsigned __stdcall common_thread_routine(void * pv)
{
abstract_thread * pt = static_cast<abstract_thread *>(pv);
pt->run();
delete pt;
return 0;
}
int pthread_create(pthread_t * thread, void const *, unsigned (__stdcall * start_routine) (void*), void* arg)
{
HANDLE h = (HANDLE)_beginthreadex(0, 0, start_routine, arg, 0, 0);
if(h != 0)
{
*thread = h;
return 0;
}
else
{
return 1; // return errno;
}
}
int pthread_join(pthread_t thread, void ** /*value_ptr*/)
{
::WaitForSingleObject(thread, INFINITE);
::CloseHandle(thread);
return 0;
}
#else
char const * title = "Using POSIX threads";
#include <pthread.h>
extern "C" void * common_thread_routine(void * pv)
{
abstract_thread * pt = static_cast<abstract_thread *>(pv);
pt->run();
delete pt;
return 0;
}
#endif
//
template<class F> class thread: public abstract_thread
{
public:
explicit thread(F f): f_(f)
{
}
void run()
{
f_();
}
private:
F f_;
};
template<class F> pthread_t createThread(F f)
{
std::auto_ptr<abstract_thread> p(new thread<F>(f));
pthread_t r;
if(pthread_create(&r, 0, common_thread_routine, p.get()) == 0)
{
p.release();
return r;
}
throw std::runtime_error("createThread failed.");
}
//
int const n = 1024 * 1024;
void test(boost::shared_ptr<int> const & pi)
{
std::vector< boost::shared_ptr<int> > v;
for(int i = 0; i < n; ++i)
{
v.push_back(pi);
}
}
int const m = 16; // threads
#if defined(BOOST_LWM_USE_CRITICAL_SECTION)
char const * implementation = "critical section";
#elif defined(BOOST_LWM_USE_PTHREADS)
char const * implementation = "pthread_mutex";
#else
char const * implementation = "spinlock";
#endif
int test_main( int, char ** )
{
std::printf("%s: %s, %d threads, %d iterations: ", title, implementation, m, n);
boost::shared_ptr<int> pi(new int(42));
std::clock_t t = std::clock();
pthread_t a[m];
for(int i = 0; i < m; ++i)
{
a[i] = createThread( boost::bind(test, pi) );
}
for(int i = 0; i < m; ++i)
{
pthread_join(a[i], 0);
}
t = std::clock() - t;
std::printf("\n\n%.3f seconds.\n", static_cast<double>(t) / CLOCKS_PER_SEC);
return 0;
}

View File

@@ -1,4 +1,4 @@
#if defined(_MSC_VER) && !defined(__ICL) && !defined(__COMO__)
#if defined(_MSC_VER) && !defined(__ICL)
#pragma warning(disable: 4786) // identifier truncated in debug info
#pragma warning(disable: 4710) // function not inlined
#pragma warning(disable: 4711) // function selected for automatic inline expansion
@@ -8,7 +8,7 @@
//
// shared_ptr_test.cpp - a test for shared_ptr.hpp and weak_ptr.hpp
//
// Copyright (c) 2001, 2002 Peter Dimov and Multi Media Ltd.
// Copyright (c) 2001 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
@@ -40,17 +40,12 @@ struct X
std::cout << "X(" << this << ")::X()\n";
}
~X() // virtual destructor deliberately omitted
virtual ~X()
{
--cnt;
std::cout << "X(" << this << ")::~X()\n";
}
virtual int id() const
{
return 1;
}
private:
X(X const &);
@@ -71,11 +66,6 @@ struct Y: public X
std::cout << "Y(" << this << ")::~Y()\n";
}
virtual int id() const
{
return 2;
}
private:
Y(Y const &);
@@ -96,92 +86,6 @@ void release_object(int * p)
std::cout << "release_object()\n";
}
class Z: public virtual boost::counted_base
{
public:
Z()
{
++cnt;
std::cout << "Z(" << this << ")::Z()\n";
}
~Z()
{
--cnt;
std::cout << "Z(" << this << ")::~Z()\n";
}
private:
Z(Z const &);
Z & operator= (Z const &);
};
template<class T> void test_is_X(boost::shared_ptr<T> const & p)
{
BOOST_TEST(p->id() == 1);
BOOST_TEST((*p).id() == 1);
}
template<class T> void test_is_X(boost::weak_ptr<T> const & p)
{
BOOST_TEST(p.get() != 0);
BOOST_TEST(p.get()->id() == 1);
}
template<class T> void test_is_Y(boost::shared_ptr<T> const & p)
{
BOOST_TEST(p->id() == 2);
BOOST_TEST((*p).id() == 2);
}
template<class T> void test_is_Y(boost::weak_ptr<T> const & p)
{
BOOST_TEST(p.get() != 0);
BOOST_TEST(p.get()->id() == 2);
}
template<class T> void test_eq(T const & a, T const & b)
{
BOOST_TEST(a == b);
BOOST_TEST(!(a != b));
BOOST_TEST(!(a < b));
BOOST_TEST(!(b < a));
}
template<class T> void test_ne(T const & a, T const & b)
{
BOOST_TEST(!(a == b));
BOOST_TEST(a != b);
BOOST_TEST(a < b || b < a);
BOOST_TEST(!(a < b && b < a));
}
template<class T, class U> void test_eq2(T const & a, U const & b)
{
BOOST_TEST(a == b);
BOOST_TEST(!(a != b));
}
template<class T, class U> void test_ne2(T const & a, U const & b)
{
BOOST_TEST(!(a == b));
BOOST_TEST(a != b);
}
template<class T> void test_is_zero(boost::shared_ptr<T> const & p)
{
BOOST_TEST(!p);
BOOST_TEST(p.get() == 0);
}
template<class T> void test_is_nonzero(boost::shared_ptr<T> const & p)
{
BOOST_TEST(p);
BOOST_TEST(p.get() != 0);
}
int test_main(int, char * [])
{
using namespace boost;
@@ -190,37 +94,16 @@ int test_main(int, char * [])
shared_ptr<X> p(new Y);
shared_ptr<X> p2(new X);
test_is_nonzero(p);
test_is_nonzero(p2);
test_is_Y(p);
test_is_X(p2);
test_ne(p, p2);
{
shared_ptr<X> q(p);
test_eq(p, q);
}
shared_ptr<Y> p3 = shared_dynamic_cast<Y>(p);
shared_ptr<Y> p4 = shared_dynamic_cast<Y>(p2);
test_is_nonzero(p3);
test_is_zero(p4);
BOOST_TEST(p.use_count() == 2);
BOOST_TEST(p2.use_count() == 1);
BOOST_TEST(p3.use_count() == 2);
BOOST_TEST(p4.use_count() == 1);
test_is_Y(p3);
test_eq2(p, p3);
test_ne2(p2, p4);
shared_ptr<void> p5(p);
test_is_nonzero(p5);
test_eq2(p, p5);
std::cout << "--\n";
p.reset();
@@ -228,11 +111,6 @@ int test_main(int, char * [])
p3.reset();
p4.reset();
test_is_zero(p);
test_is_zero(p2);
test_is_zero(p3);
test_is_zero(p4);
std::cout << "--\n";
BOOST_TEST(p5.use_count() == 1);
@@ -242,70 +120,27 @@ int test_main(int, char * [])
BOOST_TEST(wp1.use_count() == 0);
BOOST_TEST(wp1.get() == 0);
try
{
shared_ptr<X> sp1(wp1);
BOOST_ERROR("shared_ptr<X> sp1(wp1) failed to throw");
}
catch(boost::use_count_is_zero const &)
{
}
test_is_zero(boost::make_shared(wp1));
weak_ptr<X> wp2 = shared_static_cast<X>(p5);
BOOST_TEST(wp2.use_count() == 1);
BOOST_TEST(wp2.get() != 0);
test_is_Y(wp2);
test_ne(wp1, wp2);
// Scoped to not affect the subsequent use_count() tests.
{
shared_ptr<X> sp2(wp2);
test_is_nonzero(boost::make_shared(wp2));
}
weak_ptr<Y> wp3 = shared_dynamic_cast<Y>(boost::make_shared(wp2));
weak_ptr<Y> wp3 = shared_dynamic_cast<Y>(wp2);
BOOST_TEST(wp3.use_count() == 1);
BOOST_TEST(wp3.get() != 0);
test_eq2(wp2, wp3);
BOOST_TEST(wp2 == wp3);
weak_ptr<X> wp4(wp3);
BOOST_TEST(wp4.use_count() == 1);
BOOST_TEST(wp4.get() != 0);
test_eq(wp2, wp4);
wp1 = p2;
BOOST_TEST(wp1.get() == 0);
// Note the following test. Construction succeeds,
// but make_shared() returns a null shared_ptr with
// use_count() == 2.
shared_ptr<X> sp1(wp1);
test_is_zero(boost::make_shared(wp1));
BOOST_TEST(p2.use_count() == 2);
BOOST_TEST(sp1.use_count() == 2);
BOOST_TEST(wp1.use_count() == 2);
//
wp1 = p4;
wp1 = wp3;
wp1 = wp2;
BOOST_TEST(wp1.use_count() == 1);
BOOST_TEST(wp1.get() != 0);
test_eq(wp1, wp2);
weak_ptr<X> wp5;
bool b1 = wp1 < wp5;
bool b2 = wp5 < wp1;
BOOST_TEST(wp1 == wp2);
p5.reset();
@@ -318,23 +153,7 @@ int test_main(int, char * [])
BOOST_TEST(wp3.use_count() == 0);
BOOST_TEST(wp3.get() == 0);
// Test operator< stability for std::set< weak_ptr<> >
// Thanks to Joe Gottman for pointing this out
BOOST_TEST(b1 == (wp1 < wp5));
BOOST_TEST(b2 == (wp5 < wp1));
{
// note that both get_object and release_object deal with int*
shared_ptr<void> p6(get_object(), release_object);
}
{
// test intrusive counting
boost::shared_ptr<void> pv(new Z);
boost::shared_ptr<Z> pz = boost::shared_static_cast<Z>(pv);
BOOST_TEST(pz.use_count() == pz->use_count());
}
shared_ptr<int> p6(get_object(), release_object);
}
BOOST_TEST(cnt == 0);

View File

@@ -1,41 +0,0 @@
#if defined(_MSC_VER) && !defined(__ICL) && !defined(__COMO__)
#pragma warning(disable: 4786) // identifier truncated in debug info
#pragma warning(disable: 4710) // function not inlined
#pragma warning(disable: 4711) // function selected for automatic inline expansion
#pragma warning(disable: 4514) // unreferenced inline removed
#endif
//
// shared_ptr_timing_test.cpp - use to evaluate the impact of thread safety
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
#include <boost/shared_ptr.hpp>
#include <iostream>
#include <vector>
#include <ctime>
int const n = 8 * 1024 * 1024;
int main()
{
std::vector< boost::shared_ptr<int> > v;
boost::shared_ptr<int> pi(new int);
std::clock_t t = std::clock();
for(int i = 0; i < n; ++i)
{
v.push_back(pi);
}
t = std::clock() - t;
std::cout << static_cast<double>(t) / CLOCKS_PER_SEC << '\n';
}

View File

@@ -138,13 +138,15 @@ destruction. Refinement evolved in discussions including Dave Abrahams,
Greg Colvin, Beman Dawes, Rainer Deyke, Peter Dimov, John Maddock, Vladimir Prus,
Shankar Sai, and others.</p>
<p>November 1999. Darin Adler provided <b>operator ==</b>, <b>operator !=</b>, and <b>std::swap</b>
and <b>std::less</b> specializations for shared types.</p>
<p>November 1999. Darin Adler provided operator ==, operator !=, and std::swap
and std::less specializations for shared types.</p>
<p>September 1999. Luis Coelho provided <b>shared_ptr::swap</b> and <b>shared_array::swap</b></p>
<p>September 1999. Luis Coelho provided shared_ptr::swap and shared_array::swap</p>
<p>May 1999. In April and May, 1999, Valentin Bonnard and David Abrahams
made a number of suggestions resulting in numerous improvements.</p>
made a number of suggestions resulting in numerous improvements. See the
revision history in <a href="../../boost/smart_ptr.hpp"><b>smart_ptr.hpp</b></a>
for the specific changes made as a result of their constructive criticism.</p>
<p>October 1998. In 1994 Greg Colvin proposed to the C++ Standards Committee
classes named <b>auto_ptr</b> and <b>counted_ptr</b> which
@@ -189,6 +191,8 @@ preferred, and that was also experimented with.</p>
discourage users&quot;, and in the end we choose to supply only the direct
implementation.</p>
<p>See the Revision History section of the header for further contributors.</p>
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B %Y" startspan

View File

@@ -88,7 +88,7 @@ Incomplete * check_incomplete( shared_ptr<Incomplete>& incomplete,
// This isn't a very systematic test; it just hits some of the basics.
int test_main( int, char *[] ) {
int test_main( int, char ** ) {
BOOST_TEST( UDT_use_count == 0 ); // reality check

View File

@@ -1,66 +1,42 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>weak_ptr</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>
<body bgcolor="#ffffff" text="#000000">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="middle" width="277" height="86">weak_ptr
class template</h1>
<p>The <b>weak_ptr</b> class template stores a pointer to an object that's already
managed by a <b>shared_ptr</b>. When the object last <b>shared_ptr</b> to the
object goes away and the object is deleted, all <b>weak_ptr</b> objects have
their stored pointers set to 0.</p>
<p>Every <b>weak_ptr</b> meets the <b>CopyConstructible</b> and <b>Assignable</b> requirements
of the C++ Standard Library, and so can be used in standard library containers.
Comparison operators are supplied so that <b>weak_ptr</b> works with the
standard library's associative containers.</p>
<p>The class template is parameterized on <b>T</b>, the type of the object pointed
to. <b>T</b> must meet the smart pointer <a href="smart_ptr.htm#Common requirements">
common requirements</a>.</p>
<P>Compared to&nbsp;<STRONG>shared_ptr</STRONG>, <STRONG>weak_ptr</STRONG> provides
a very limited subset of operations since accessing its stored pointer is
unsafe in multithreaded&nbsp;programs (that is, it may invoke undefined
behavior.) Consider, for example, this innocent piece of code:</P>
<pre>
shared_ptr&lt;int&gt; p(new int(5));
weak_ptr&lt;int&gt; q(p);
// some time later
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>weak_ptr</title>
</head>
if(int * r = q.get())
{
// use *r
}
</pre>
<P>Imagine that after the <STRONG>if</STRONG>, but immediately before <STRONG>r</STRONG>
is used, another thread executes the statement <code>p.reset()</code>. Now <STRONG>r</STRONG>
is a dangling pointer.</P>
<P>The solution to this problem is to create a temporary <STRONG>shared_ptr</STRONG>
from <STRONG>q</STRONG>:</P>
<pre>
shared_ptr&lt;int&gt; p(new int(5));
weak_ptr&lt;int&gt; q(p);
<body bgcolor="#FFFFFF" text="#000000">
// some time later
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="middle" width="277" height="86">weak_ptr class template</h1>
if(shared_ptr&lt;int&gt; r = <a href="#make_shared">make_shared</a>(q))
{
// use *r
}
</pre>
<p>Now <STRONG>r</STRONG> holds a reference to the object that was pointed by <STRONG>q</STRONG>.
Even if <code>p.reset()</code> is executed in another thread, the object will
stay alive until <STRONG>r</STRONG> goes out of scope (or is reset.)</p>
<h2><a name="Synopsis">Synopsis</a></h2>
<pre>namespace boost {
<p>The <b>weak_ptr</b> class template stores a pointer to an
object that's already managed by a <b>shared_ptr</b>. When the
object last <b>shared_ptr</b> to the object goes away and the object
is deleted, all <b>weak_ptr</b> objects have their stored pointers
set to 0.</p>
<p>Every <b>weak_ptr</b> meets the <b>CopyConstructible</b>
and <b>Assignable</b> requirements of the C++ Standard Library, and so
can be used in standard library containers. Comparison operators
are supplied so that <b>weak_ptr</b> works with
the standard library's associative containers.</p>
<p>The class template is parameterized on <b>T</b>, the type of the object
pointed to. <b>T</b> must meet the smart pointer
<a href="smart_ptr.htm#Common requirements">common requirements</a>.</p>
<h2><a name="Synopsis">Synopsis</a></h2>
<pre>namespace boost {
template&lt;typename T&gt; class weak_ptr {
public:
typedef T <a href="#element_type">element_type</a>;
<a href="#constructors">weak_ptr</a>();
explicit <a href="#constructors">weak_ptr</a>();
template&lt;typename Y&gt; <a href="#constructors">weak_ptr</a>(shared_ptr&lt;Y&gt; const &amp; r); // never throws
<a href="#destructor">~weak_ptr</a>(); // never throws
@@ -71,173 +47,174 @@ if(shared_ptr&lt;int&gt; r = <a href="#make_shared">make_shared</a>(q))
template&lt;typename Y&gt; weak_ptr &amp; <a href="#assignment">operator=</a>(weak_ptr&lt;Y&gt; const &amp; r); // never throws
template&lt;typename Y&gt; weak_ptr &amp; <a href="#assignment">operator=</a>(shared_ptr&lt;Y&gt; const &amp; r); // never throws
void <a href="#reset">reset</a>();
T * <a href="#get">get</a>() const; // never throws; unsafe in multithreaded code!
void <a href="#reset">reset</a>(); // never throws
T &amp; <a href="#indirection">operator*</a>() const; // never throws
T * <a href="#indirection">operator-&gt;</a>() const; // never throws
T * <a href="#get">get</a>() const; // never throws
long <a href="#use_count">use_count</a>() const; // never throws
bool <a href="#expired">expired</a>() const; // never throws
void <a href="#swap">swap</a>(weak_ptr&lt;T&gt; &amp; b); // never throws
};
template&lt;typename T, typename U&gt;
bool <a href="#comparison">operator==</a>(weak_ptr&lt;T&gt; const &amp; a, weak_ptr&lt;U&gt; const &amp; b); // never throws
bool <a href="#operator==">operator==</a>(weak_ptr&lt;T&gt; const &amp; a, weak_ptr&lt;U&gt; const &amp; b); // never throws
template&lt;typename T, typename U&gt;
bool <a href="#comparison">operator!=</a>(weak_ptr&lt;T&gt; const &amp; a, weak_ptr&lt;U&gt; const &amp; b); // never throws
template&lt;typename T&gt;
bool <a href="#comparison">operator&lt;</a>(weak_ptr&lt;T&gt; const &amp; a, weak_ptr&lt;T&gt; const &amp; b); // never throws
bool <a href="#operator!=">operator!=</a>(weak_ptr&lt;T&gt; const &amp; a, weak_ptr&lt;U&gt; const &amp; b); // never throws
template&lt;typename T, typename U&gt;
bool <a href="#operator&lt;">operator&lt;</a>(weak_ptr&lt;T&gt; const &amp; a, weak_ptr&lt;U&gt; const &amp; b); // never throws
template&lt;typename T&gt; void <a href="#free-swap">swap</a>(weak_ptr&lt;T&gt; &amp; a, weak_ptr&lt;T&gt; &amp; b); // never throws
template&lt;typename T&gt;
shared_ptr&lt;T&gt; <a href="#make_shared">make_shared</a>(weak_ptr&lt;T&gt; const &amp; r); // never throws
template&lt;typename T, typename U&gt;
weak_ptr&lt;T&gt <a href="#shared_static_cast">shared_static_cast</a>(weak_ptr&lt;U&gt; const &amp; r); // never throws
template&lt;typename T, typename U&gt;
weak_ptr&lt;T&gt <a href="#shared_dynamic_cast">shared_dynamic_cast</a>(weak_ptr&lt;U&gt; const &amp; r);
}
</pre>
<h2><a name="Members">Members</a></h2>
<h3><a name="element_type">element_type</a></h3>
<pre>typedef T element_type;</pre>
<blockquote>
<p>Provides the type of the template parameter T.</p>
</blockquote>
<h3><a name="constructors">constructors</a></h3>
<pre>explicit weak_ptr();</pre>
<blockquote>
<p><b>Effects:</b> Constructs a <b>weak_ptr</b>.</p>
<p><b>Postconditions:</b> <A href="#use_count">use count</A> is 0; the stored
pointer is 0.</p>
<p><b>Throws:</b> <b>std::bad_alloc</b>.</p>
<p><b>Exception safety:</b> If an exception is thrown, the constructor has no
effect.</p>
<P><B>Notes:</B> <B>T</B> need not be a complete type. See the smart pointer <A href="smart_ptr.htm#Common requirements">
common requirements</A>.</P>
</blockquote>
<pre>template&lt;typename Y&gt; weak_ptr</A>(shared_ptr&lt;Y&gt; const &amp; r); // never throws</pre>
<blockquote>
<p><b>Effects:</b> Constructs a <b>weak_ptr</b>, as if by storing a copy of the
pointer stored in <b>r</b>.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> The <a href="#use_count">use count</a> for all copies is
unchanged. When the last <b>shared_ptr</b> is destroyed, the use count and
stored pointer become 0.</P>
</blockquote>
<pre>weak_ptr(weak_ptr const &amp; r); // never throws
}</pre>
<h2><a name="Members">Members</a></h2>
<h3><a name="element_type">element_type</a></h3>
<pre>typedef T element_type;</pre>
<p>Provides the type of the stored pointer.</p>
<h3><a name="constructors">constructors</a></h3>
<pre>explicit weak_ptr();</pre>
<p>Constructs a <b>weak_ptr</b>, with 0 as its stored pointer.
The only exception which may be thrown by this constructor is <b>std::bad_alloc</b>.
If an exception is thrown, the constructor has no effect.</p>
<pre>template&lt;typename Y&gt; weak_ptr</a>(shared_ptr&lt;Y&gt; const &amp; r); // never throws</pre>
<p>Constructs a <b>weak_ptr</b>, as if by storing a copy of the pointer stored in <b>r</b>.
Afterwards, the <a href="#use_count">use count</a> for all copies is unchanged.
When the last <b>shared_ptr</b> is destroyed, the use count and stored pointer become 0.</p>
<pre>weak_ptr(weak_ptr const &amp; r); // never throws
template&lt;typename Y&gt; weak_ptr(weak_ptr&lt;Y&gt; const &amp; r); // never throws</pre>
<blockquote>
<p><b>Effects:</b> Constructs a <b>weak_ptr</b>, as if by storing a copy of the
pointer stored in <b>r</b>.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> The <a href="#use_count">use count</a> for all copies is
unchanged.</P>
</blockquote>
<h3><a name="destructor">destructor</a></h3>
<pre>~weak_ptr(); // never throws</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Destroys this <b>weak_ptr</b> but has no effect on the object
its stored pointer points to.</P>
<P><B>Throws:</B> nothing.</P>
<P><B>Notes:</B> <B>T</B> need not be a complete type. See the smart pointer <A href="smart_ptr.htm#Common requirements">
common requirements</A>.</P>
</BLOCKQUOTE>
<h3><a name="assignment">assignment</a></h3>
<pre>weak_ptr &amp; <a href="#assignment">operator=</a>(weak_ptr const &amp; r); // never throws
<p>Constructs a <b>weak_ptr</b>, as if by storing a copy of the
pointer stored in <b>r</b>.</p>
<h3><a name="destructor">destructor</a></h3>
<pre>~weak_ptr(); // never throws</pre>
<p>Destroys this <b>weak_ptr</b> but has no effect on the object its stored pointer points to.
<b>T</b> need not be a complete type.
See the smart pointer <a href="smart_ptr.htm#Common requirements">common requirements</a>.</p>
<h3><a name="operator=">assignment</a></h3>
<pre>weak_ptr &amp; <a href="#assignment">operator=</a>(weak_ptr const &amp; r); // never throws
template&lt;typename Y&gt; weak_ptr &amp; <a href="#assignment">operator=</a>(weak_ptr&lt;Y&gt; const &amp; r); // never throws
template&lt;typename Y&gt; weak_ptr &amp; <a href="#assignment">operator=</a>(shared_ptr&lt;Y&gt; const &amp; r); // never throws</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>weak_ptr(r).swap(*this)</code>.</P>
<P><B>Throws:</B> nothing.</P>
<P><B>Notes:</B> The implementation is free to meet the effects (and the implied
guarantees) via different means, without creating a temporary.</P>
</BLOCKQUOTE>
<h3><a name="reset">reset</a></h3>
<pre>void reset();</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>weak_ptr().swap(*this)</code>.</P>
</BLOCKQUOTE>
<h3><a name="get">get</a></h3>
<pre>T * get() const; // never throws</pre>
<blockquote>
<p><b>Returns:</b> the stored pointer (0 if all <b>shared_ptr</b> objects for that
pointer are destroyed.)</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> Using <b>get</b> in multithreaded code is dangerous. After the
function returns, the pointed-to object may be destroyed by a different thread,
since the <b>weak_ptr</b> doesn't affect its <b>use_count</b>.</P>
</blockquote>
<h3><a name="use_count">use_count</a></h3>
<pre>long use_count() const; // never throws</pre>
<blockquote>
<p><b>Returns:</b> the number of <b>shared_ptr</b> objects sharing ownership of the
stored pointer.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> <code>use_count()</code> is not necessarily efficient. Use only
for debugging and testing purposes, not for production code. <B>T</B> need not
be a complete type. See the smart pointer <A href="smart_ptr.htm#Common requirements">
common requirements</A>.</P>
</blockquote>
<h3><a name="expired">expired</a></h3>
<pre>bool expired() const; // never throws</pre>
<blockquote>
<p><b>Returns:</b> <code>use_count() == 0</code>.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> <code>expired()</code> may be faster than <code>use_count()</code>.
<B>T</B> need not be a complete type. See the smart pointer <A href="smart_ptr.htm#Common requirements">
common requirements</A>.</P>
</blockquote>
<h3><a name="swap">swap</a></h3>
<pre>void swap(weak_ptr &amp; b); // never throws</pre>
<blockquote>
<p><b>Effects:</b> Exchanges the contents of the two smart pointers.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> <B>T</B> need not be a complete type. See the smart pointer <A href="smart_ptr.htm#Common requirements">
common requirements</A>.</P>
</blockquote>
<h2><a name="functions">Free Functions</a></h2>
<h3><a name="comparison">comparison</a></h3>
<pre>template&lt;typename T, typename U&gt;
bool operator==(weak_ptr&lt;T&gt; const &amp; a, weak_ptr&lt;U&gt; const &amp; b); // never throws
<p>Constructs a new <b>weak_ptr</b> as described <a href="#constructors">above</a>,
then replaces this <b>weak_ptr</b> with the new one, destroying the replaced object.</p>
<h3><a name="reset">reset</a></h3>
<pre>void reset();</pre>
<p>Constructs a new <b>weak_ptr</b> as described <a href="#constructors">above</a>,
then replaces this <b>weak_ptr</b> with the new one, destroying the replaced object.
The only exception which may be thrown is <b>std::bad_alloc</b>. If
an exception is thrown, the <b>reset</b> has no effect.</p>
<h3><a name="indirection">indirection</a></h3>
<pre>T &amp; operator*() const; // never throws</pre>
<p>Returns a reference to the object pointed to by the stored pointer.
Behavior is undefined if the stored pointer is 0.
Note that the stored pointer becomes 0 if all <b>shared_ptr</b> objects for that
pointer are destroyed.</p>
<pre>T * operator-&gt;() const; // never throws</pre>
<p>Returns the stored pointer.
Behavior is undefined if the stored pointer is 0.
Note that the stored pointer becomes 0 if all <b>shared_ptr</b> objects for that
pointer are destroyed.</p>
<h3><a name="get">get</a></h3>
<pre>T * get() const; // never throws</pre>
<p>Returns the stored pointer.
Note that the stored pointer becomes 0 if all <b>shared_ptr</b> objects for that
pointer are destroyed.
<b>T</b> need not be a complete type.
See the smart pointer
<a href="smart_ptr.htm#Common requirements">common requirements</a>.</p>
<h3><a name="use_count">use_count</a></h3>
<pre>long use_count() const; // never throws</pre>
<p>Returns the number of <b>shared_ptr</b> objects sharing ownership of the
stored pointer.
<b>T</b> need not be a complete type.
See the smart pointer
<a href="smart_ptr.htm#Common requirements">common requirements</a>.</p>
<p>Because <b>use_count</b> is not necessarily efficient to implement for
implementations of <b>weak_ptr</b> that do not use an explicit reference
count, it might be removed from some future version. Thus it should
be used for debugging purposes only, and <b>get</b> should be used for
production code.</p>
<h3><a name="swap">swap</a></h3>
<pre>void swap(weak_ptr &amp; b); // never throws</pre>
<p>Exchanges the contents of the two smart pointers.
<b>T</b> need not be a complete type.
See the smart pointer
<a href="smart_ptr.htm#Common requirements">common requirements</a>.</p>
<h2><a name="functions">Free Functions</a></h2>
<h3><a name="comparison">comparison</a></h3>
<pre>template&lt;typename T, typename U&gt;
bool <a href="#operator==">operator==</a>(weak_ptr&lt;T&gt; const &amp; a, weak_ptr&lt;U&gt; const &amp; b); // never throws
template&lt;typename T, typename U&gt;
bool operator!=(weak_ptr&lt;T&gt; const &amp; a, weak_ptr&lt;U&gt; const &amp; b); // never throws</pre>
<blockquote>
<p><b>Returns:</b> <code>a.get() == b.get()</code>.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> <B>T</B> need not be a complete type. See the smart pointer <A href="smart_ptr.htm#Common requirements">
common requirements</A>.</P>
</blockquote>
<pre>template&lt;typename T&gt;
bool operator&lt;(weak_ptr&lt;T&gt; const &amp; a, weak_ptr&lt;T&gt; const &amp; b); // never throws</pre>
<blockquote>
<p><b>Returns:</b> an implementation-defined value such that <b>operator&lt;</b> is
a strict weak ordering as described in section 25.3 <code>[lib.alg.sorting]</code>
of the C++ standard.</p>
<p><b>Throws:</b> nothing.</p>
<P><B>Notes:</B> Allows <STRONG>weak_ptr</STRONG> objects to be used as keys in
associative containers. <B>T</B> need not be a complete type. See the smart
pointer <A href="smart_ptr.htm#Common requirements">common requirements</A>.</P>
</blockquote>
<h3><a name="free-swap">swap</a></h3>
<pre>template&lt;typename T&gt;
bool <a href="#operator!=">operator!=</a>(weak_ptr&lt;T&gt; const &amp; a, weak_ptr&lt;U&gt; const &amp; b); // never throws
template&lt;typename T, typename U&gt;
bool <a href="#operator&lt;">operator&lt;</a>(weak_ptr&lt;T&gt; const &amp; a, weak_ptr&lt;U&gt; const &amp; b); // never throws</pre>
<p>Compares the stored pointers of the two smart pointers.
<b>T</b> need not be a complete type.
See the smart pointer
<a href="smart_ptr.htm#Common requirements">common requirements</a>.</p>
<p>The <b>operator&lt;</b> overload is provided to define an ordering so that <b>weak_ptr</b>
objects can be used in associative containers such as <b>std::map</b>.
The implementation uses <b>std::less&lt;T *&gt;</b> to perform the
comparison. This ensures that the comparison is handled correctly, since the
standard mandates that relational operations on pointers are unspecified (5.9 [expr.rel]
paragraph 2) but <b>std::less&lt;&gt;</b> on pointers is well-defined (20.3.3 [lib.comparisons]
paragraph 8).</p>
<h3><a name="free-swap">swap</a></h3>
<pre>template&lt;typename T&gt;
void swap(weak_ptr&lt;T&gt; &amp; a, weak_ptr&lt;T&gt; &amp; b) // never throws</pre>
<BLOCKQUOTE>
<P><B>Effects:</B> Equivalent to <code>a.swap(b)</code>.</P>
<P><B>Throws:</B> nothing.</P>
<P><B>Notes:</B> Matches the interface of <B>std::swap</B>. Provided as an aid to
generic programming.</P>
</BLOCKQUOTE>
<h3><a name="make_shared">make_shared</a></h3>
<pre>template&lt;typename T&gt;
shared_ptr&lt;T&gt; make_shared(weak_ptr&lt;T&gt; &amp; const r) // never throws</pre>
<BLOCKQUOTE>
<P><B>Returns:</B> <code>r.expired()? shared_ptr&lt;T&gt;(): shared_ptr&lt;T&gt;(r)</code>.</P>
<P><B>Throws:</B> nothing.</P>
</BLOCKQUOTE>
<hr>
<p>Revised 12 March 2002<!--webbot bot="Timestamp" i-checksum="38439" endspan --></p>
<p>Copyright 1999 Greg Colvin and Beman Dawes. Copyright 2002 Darin Adler.
Copyright 2002 Peter Dimov. Permission to copy, use, modify, sell and
distribute this document is granted provided this copyright notice appears in
all copies. This document is provided "as is" without express or implied
warranty, and with no claim as to its suitability for any purpose.</p>
</A>
</body>
<p>Equivalent to <b>a.swap(b)</b>. Matches the interface of <b>std::swap</b>.
Provided as an aid to generic programming.</p>
<h3><a name="shared_static_cast">shared_static_cast</a></h3>
<pre>template&lt;typename T, typename U&gt;
weak_ptr&lt;T&gt <a href="#shared_static_cast">shared_static_cast</a>(weak_ptr&lt;U&gt; const &amp; r); // never throws</pre>
<p>Perform a <b>static_cast</b> on the stored pointer, returning another <b>weak_ptr</b>.
The resulting smart pointer will share its use count with the original pointer.</p>
<h3><a name="shared_dynamic_cast">shared_dynamic_cast</a></h3>
<pre>template&lt;typename T, typename U&gt;
weak_ptr&lt;T&gt <a href="#shared_dynamic_cast">shared_dynamic_cast</a>(weak_ptr&lt;U&gt; const &amp; r);</pre>
<p>Perform a <b>dynamic_cast</b> on the stored pointer, returning another <b>weak_ptr</b>.
The resulting smart pointer will share its use count with the original pointer unless the result of the
cast is 0. The only exception which may be thrown is <b>std::bad_alloc</b>, which may be thrown during the
construction of the new <b>weak_ptr</b> if the result of the cast is 0. If an exception is thrown, the
cast has no effect.</p>
<hr>
<p>Revised <!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B %Y" startspan -->1 February 2002<!--webbot bot="Timestamp" i-checksum="38439" endspan --></p>
<p>Copyright 1999 Greg Colvin and Beman Dawes. Copyright 2002 Darin Adler.
Permission to copy, use, modify, sell and distribute this document is granted
provided this copyright notice appears in all copies.
This document is provided &quot;as is&quot; without express or implied warranty,
and with no claim as to its suitability for any purpose.</p>
</body>
</html>