mirror of
https://github.com/boostorg/tuple.git
synced 2025-07-29 20:27:17 +02:00
Adding the tuple library files
[SVN r10829]
This commit is contained in:
532
doc/tuple_users_guide.html
Normal file
532
doc/tuple_users_guide.html
Normal file
@ -0,0 +1,532 @@
|
||||
<html>
|
||||
<head>
|
||||
<title>The Boost Tuple Library</title>
|
||||
</head>
|
||||
<body bgcolor="#FFFFFF" text="#000000">
|
||||
|
||||
<IMG SRC="../../../c++boost.gif"
|
||||
ALT="C++ Boost" width="277" height="86">
|
||||
|
||||
<h1>The Boost Tuple Library</h1>
|
||||
|
||||
<p>
|
||||
A tuple (or <i>n</i>-tuple) is a fixed size collection of elements.
|
||||
Pairs, triples, quadruples etc. are tuples.
|
||||
In a programming language, a tuple is a data object containing other objects as elements.
|
||||
These element objects may be of different types.
|
||||
</p>
|
||||
|
||||
<p>Tuples are convenient in many circumstances.
|
||||
For instance, tuples make it easy to define functions that return more than one value.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Some programming languages, such as ML, Python and Haskell, have built-in tuple constructs.
|
||||
Unfortunately C++ does not.
|
||||
To compensate for this "deficiency", the Boost Tuple Library implements a tuple construct using templates.
|
||||
</p>
|
||||
|
||||
<h2>Table of Contents</h2>
|
||||
|
||||
<ol>
|
||||
<li><a href = "#using_library">Using the library</a></li>
|
||||
<li><a href = "#tuple_types">Tuple types</a></li>
|
||||
<li><a href = "#constructing_tuples">Constructing tuples</a></li>
|
||||
<li><a href = "#accessing_elements">Accessing tuple elements</a></li>
|
||||
<li><a href = "#construction_and_assignment">Copy construction and tuple assignment</a></li>
|
||||
<li><a href = "#relational_operators">Relational operators</a></li>
|
||||
<li><a href = "#tiers">Tiers</a></li>
|
||||
<li><a href = "#streaming">Streaming</a></li>
|
||||
<li><a href = "#performance">Performance</a></li>
|
||||
<li><a href = "#portability">Portability</a></li>
|
||||
<li><a href = "#thanks">Acknowledgements</a></li>
|
||||
<li><a href = "#references">References</a></li>
|
||||
</ol>
|
||||
|
||||
<h4>More details</h4>
|
||||
|
||||
<p>
|
||||
<a href = "tuple_advanced_interface.html">Advanced features</a> (describes some metafunctions etc.).</p>
|
||||
<p>
|
||||
<a href = "design_decisions_rationale.html">Rationale behind some design/implementation decisions.</a></p>
|
||||
|
||||
|
||||
<h2><a name="using_library">Using the library</a></h2>
|
||||
|
||||
<p>To use the library, just include:
|
||||
|
||||
<pre><code>#include "boost/tuple/tuple.hpp"</code></pre>
|
||||
</p>
|
||||
|
||||
<p>Comparison operators can be included with:
|
||||
<pre><code>#include "boost/tuple/tuple_comparison.hpp"</code></pre>
|
||||
</p>
|
||||
|
||||
<p>To use tuple input and output operators,
|
||||
|
||||
<pre><code>#include "boost/tuple/tuple_io.hpp"</code></pre>
|
||||
and add the <code>libs/tuple/src/tuple.hpp</code> file to your project.
|
||||
</p>
|
||||
|
||||
Both <code>tuple_io.hpp</code> and <code>tuple_comparison.hpp</code> include <code>tuple.hpp</code>.
|
||||
|
||||
<p>All definitions are in namespace <code>boost</code>.
|
||||
|
||||
<h2><a name = "tuple_types">Tuple types</a></h2>
|
||||
|
||||
<p>A tuple type is an instantiation of the <code>tuple</code> template.
|
||||
The template parameters specify the types of the tuple elements.
|
||||
The current version supports tuples with 0-10 elements.
|
||||
If necessary, the upper limit can be increased up to, say, a few dozen elements.
|
||||
The data element can be any C++ type, except for a type that cannot be copied, e.g.:
|
||||
|
||||
<ul>
|
||||
<li>classes that do not have a public copy constructor</li>
|
||||
<li>arrays</li>
|
||||
</ul>
|
||||
However, a reference to a non-copyable type is a valid element type.
|
||||
|
||||
<p>
|
||||
For example, the following definitions are valid tuple instantiations (<code>A</code>, <code>B</code> and <code>C</code> are some user defined classes):
|
||||
|
||||
<pre><code>tuple<int>
|
||||
tuple<double&, const double&, const double, double*, const double*>
|
||||
tuple<A, int(*)(char, int), B(A::*)(C&), C>
|
||||
tuple<std::string, std::pair<A, B> >
|
||||
tuple<A*, tuple<const A*, const B&, C>, bool, void*>
|
||||
</code></pre>
|
||||
|
||||
</p>
|
||||
|
||||
<p>
|
||||
The following code shows some invalid tuple instantiations:
|
||||
<pre><code>class Y {
|
||||
Y(const Y&);
|
||||
public:
|
||||
Y();
|
||||
};
|
||||
|
||||
tuple<Y> // not allowed, objects of type Y cannot be copied
|
||||
tuple<char[10]> // not allowed: arrays cannot be copied
|
||||
</code></pre>
|
||||
|
||||
Note however that <code>tuple<Y&></code> and <code>tuple<char(&)[10]></code> are valid instantiations.
|
||||
</p>
|
||||
|
||||
|
||||
<h2><a name = "constructing_tuples">Constructing tuples</a></h2>
|
||||
|
||||
<p>
|
||||
The tuple constructor takes the tuple elements as arguments.
|
||||
For an <i>n</i>-element tuple, the constructor can be invoked with <i>k</i> arguments, where 0 < <i>k</i> <= <i>n</i>.
|
||||
For example:
|
||||
<pre><code>tuple<int, double>()
|
||||
tuple<int, double>(1)
|
||||
tuple<int, double>(1, 3.14)
|
||||
</code></pre>
|
||||
</p>
|
||||
|
||||
<p>
|
||||
If no initial value for an element is provided, it is default initialized (and hence must be default initializable).
|
||||
For example.
|
||||
|
||||
<pre><code>class X {
|
||||
X();
|
||||
public:
|
||||
X(std::string);
|
||||
};
|
||||
|
||||
tuple<X,X,X>() // error: no default constructor for X
|
||||
tuple<X,X,X>(string("Jaba"), string("Daba"), string("Duu")) // ok
|
||||
</code></pre>
|
||||
|
||||
In particular, reference types do not have a default initialisation:
|
||||
|
||||
<pre><code>tuple<double&>() // error: reference must be
|
||||
// initialised explicitly
|
||||
|
||||
double d = 5;
|
||||
tuple<double&>(d) // ok
|
||||
|
||||
tuple<double&>(d+3.14) // error: cannot initialise
|
||||
// non-const reference with a temporary
|
||||
|
||||
tuple<const double&>(d+3.14) // ok, but dangerous:
|
||||
// the element becomes a dangling reference
|
||||
</code></pre>
|
||||
</p>
|
||||
|
||||
<p>In sum, the tuple construction is semantically just a group of individual elementary constructions.
|
||||
</p>
|
||||
|
||||
<h4><a name="make_tuple">The <code>make_tuple</code> function</a></h4>
|
||||
|
||||
<p>
|
||||
Tuples can also be constructed using the <code>make_tuple</code> (cf. <code>std::make_pair</code>) helper functions.
|
||||
This makes the construction more convenient, saving the programmer from explicitly specifying the element types:
|
||||
<pre><code>tuple<int, int, double> add_multiply_divide(int a, int b) {
|
||||
return make_tuple(a+b, a*b, double(a)/double(b));
|
||||
}
|
||||
</code></pre>
|
||||
</p>
|
||||
|
||||
<p>
|
||||
By default, the element types are deduced to the plain nonreference types. E.g:
|
||||
<pre><code>void foo(const A& a, B& b) {
|
||||
...
|
||||
make_tuple(a, b);
|
||||
</code></pre>
|
||||
The <code>make_tuple</code> invocation results in a tuple of type <code>tuple<A, B></code>.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Sometimes the plain nonreference type is not desired, e.g. if the element type cannot be copied.
|
||||
Therefore, the programmer can control the type deduction and state that a reference to const or reference to nonconst type should be used as the element type instead.
|
||||
This is accomplished with two helper template functions: <code>ref</code> and <code>cref</code>.
|
||||
Any argument can be wrapped with these functions to get the desired type.
|
||||
The mechanism does not compromise const correctness since a const object wrapped with <code>ref</code> results in a tuple element with const reference type (see the fifth code line below).
|
||||
For example:
|
||||
|
||||
<pre><code>A a; B b; const A ca = a;
|
||||
make_tuple(cref(a), b); // creates tuple<const A&, B>
|
||||
make_tuple(ref(a), b); // creates tuple<A&, B>
|
||||
make_tuple(ref(a), cref(b)); // creates tuple<A&, const B&>
|
||||
make_tuple(cref(ca)); // creates tuple<const A&>
|
||||
make_tuple(ref(ca)); // creates tuple<const A&>
|
||||
</code></pre>
|
||||
</p>
|
||||
|
||||
|
||||
<p>
|
||||
Array arguments to <code>make_tuple</code> functions are deduced to reference to const types by default; there is no need to wrap them with <code>cref</code>. For example:
|
||||
<pre><code>make_tuple("Donald", "Daisy");
|
||||
</code></pre>
|
||||
|
||||
This creates an object of type <code>tuple<const char (&)[5], const char (&)[6]></code>
|
||||
(note that the type of a string literal is an array of const characters, not <code>const char*</code>).
|
||||
However, to get <code>make_tuple</code> to create a tuple with an element of a nonconst array type one must use the <code>ref</code> wrapper.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Function pointers are deduced to the plain nonreference type, that is, to plain function pointer.
|
||||
A tuple can also hold a reference to a function,
|
||||
but such a tuple cannot be constructed with <code>make_tuple</code> (a const qualified function type would result, which is illegal):
|
||||
<pre><code>void f(int i);
|
||||
...
|
||||
make_tuple(&f); // tuple<void (*)(int)>
|
||||
...
|
||||
tuple<tuple<void (&)(int)> > a(f) // ok
|
||||
make_tuple(f); // not ok
|
||||
</code></pre>
|
||||
|
||||
</p>
|
||||
|
||||
<h2><a name = "accessing_elements">Accessing tuple elements</a></h2>
|
||||
|
||||
<p>
|
||||
Tuple elements are accessed with the expression:
|
||||
|
||||
<pre><code>t.get<N>()
|
||||
</code></pre>
|
||||
or
|
||||
<pre><code>get<N>(t)
|
||||
</code></pre>
|
||||
where <code>t</code> is a tuple object and <code>N</code> is a constant integral expression specifying the index of the element to be accessed.
|
||||
Depending on whether <code>t</code> is const or not, <code>get</code> returns the <code>N</code>th element as a reference to const or nonconst type.
|
||||
The index of the first element is 0 and thus<code>
|
||||
N</code> must be between 0 and <code>k-1</code>, where <code>k</code> is the number of elements in the tuple.
|
||||
Violations of these constrains are detected at compile time. Examples:
|
||||
|
||||
<pre><code>double d = 2.7; A a;
|
||||
tuple<int, double&, const A&> t(1, d, a);
|
||||
const tuple<int, double&, const A&> ct = t;
|
||||
...
|
||||
int i = get<0>(t); i = t.get<0>(); // ok
|
||||
int j = get<0>(ct); // ok
|
||||
get<0>(t) = 5; // ok
|
||||
get<0>(ct) = 5; // error, can't assign to const
|
||||
...
|
||||
double e = get<1>(t); // ok
|
||||
get<1>(t) = 3.14; // ok
|
||||
get<2>(t) = A(); // error, can't assign to const
|
||||
A aa = get<3>(t); // error: index out of bounds
|
||||
...
|
||||
++get<0>(t); // ok, can be used as any variable
|
||||
</code></pre>
|
||||
</p>
|
||||
|
||||
<h2><a name = "construction_and_assignment">Copy construction and tuple assignment</a></h2>
|
||||
|
||||
<p>
|
||||
A tuple can be copy constructed from another tuple, provided that the element types are element-wise copy constructible.
|
||||
Analogously, a tuple can be assigned to another tuple, provided that the element types are element-wise assignable.
|
||||
For example:
|
||||
|
||||
<pre><code>class A;
|
||||
class B : public A {};
|
||||
struct C { C(); C(const B&); }
|
||||
struct D { operator C() const; }
|
||||
tuple<char, B*, B, D> t;
|
||||
...
|
||||
tuple<int, A*, C, C> a(t); // ok
|
||||
a = t; // ok
|
||||
</code></pre>
|
||||
|
||||
In both cases, the conversions performed are: <code>char -> int</code>, <code>B* -> A*</code> (derived class pointer to base class pointer), <code>B -> C</code> (a user defined conversion) and <code>D -> C</code> (a user defined conversion).
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Note that assignment is also defined from <code>std::pair</code> types:
|
||||
|
||||
<pre><code>tuple<float, int> a = std::make_pair(1, 'a');
|
||||
</code></pre>
|
||||
</p>
|
||||
|
||||
<h2><a name = "relational_operators">Relational operators</a></h2>
|
||||
<p>
|
||||
Tuples reduce the operators <code>==, !=, <, >, <=</code> and <code>>=</code> to the corresponding elementary operators.
|
||||
This means, that if any of these operators is defined between all elements of two tuples, then the same operator is defined between the tuples as well.
|
||||
|
||||
The equality operators for two tuples <code>a</code> and <code>b</code> are defined as:
|
||||
<ul>
|
||||
<li><code>a == b</code> iff for each <code>i</code>: <code>a<sub>i</sub> == b<sub>i</sub></code></li>
|
||||
<li><code>a != b</code> iff exists <code>i</code>: <code>a<sub>i</sub> != b<sub>i</sub></code></li>
|
||||
</ul>
|
||||
|
||||
The operators <code><, >, <=</code> and <code>>=</code> implement a lexicographical ordering.
|
||||
|
||||
<p>
|
||||
Note that an attempt to compare two tuples of different lengths results in a compile time error.</p>
|
||||
Also, the comparison operators are <i>"short-circuited"</i>: elementary comparisons start from the first elements and are performed only until the result is clear.</p>
|
||||
|
||||
<p>Examples:
|
||||
|
||||
<pre><code>tuple<std::string, int, A> t1(std::string("same?"), 2, A());
|
||||
tuple<std::string, long, A> t2(std::string("same?"), 2, A());
|
||||
tuple<std::string, long, A> t3(std::string("different"), 3, A());
|
||||
|
||||
bool operator==(A, A) { std::cout << "All the same to me..."; return true; }
|
||||
|
||||
t1 == t2; // true
|
||||
t1 == t3; // false, does not print "All the..."
|
||||
</code></pre>
|
||||
</p>
|
||||
|
||||
|
||||
<h2><a name = "tiers">Tiers</a></h2>
|
||||
|
||||
<p>
|
||||
<i>Tiers</i> are tuples, where all elements are of nonconst reference types.
|
||||
They are constructed with a call to the <code>tie</code> function template (cf. <code>make_tuple</code>):
|
||||
|
||||
<pre><code>int i; char c; double d;
|
||||
...
|
||||
tie(i, c, a);
|
||||
</code></pre>
|
||||
</p>
|
||||
|
||||
<p>
|
||||
The above <code>tie</code> function creates a tuple of type <code>tuple<int&, char&, double&></code>.
|
||||
The same result could be achieved with the call <code>make_tuple(ref(i), ref(c), ref(a))</code>.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
A tuple that contains nonconst references as elements can be used to 'unpack' another tuple into variables. E.g.:
|
||||
|
||||
<pre><code>int i; char c; double d;
|
||||
tie(i, c, d) = make_tuple(1,'a', 5.5);
|
||||
std::cout << i << " " << c << " " << d;
|
||||
</code></pre>
|
||||
This code prints <code>1 a 5.5</code> to the standard output stream.
|
||||
|
||||
A tuple unpacking operation like this is found for example in ML and Python.
|
||||
It is convenient when calling functions which return tuples.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
The tying mechanism works with <code>std::pair</code> templates as well:
|
||||
|
||||
<pre><code>int i; char c;
|
||||
tie(i, c) = std::make_pair(1, 'a');
|
||||
</code></pre>
|
||||
</p>
|
||||
<h4>Ignore</h4>
|
||||
There is also an object called <code>ignore</code> which allows you to ignore an element assigned by a tuple.
|
||||
The idea is that a function may return a tuple, only part of which you are interested in. For example:
|
||||
|
||||
<pre><code>char c;
|
||||
tie(ignore, c) = std::make_pair(1, 'a');
|
||||
</code></pre>
|
||||
|
||||
<h2><a name = "streaming">Streaming</a></h2>
|
||||
|
||||
<p>
|
||||
The global <code>operator<<</code> has been overloaded for <code>std::ostream</code> such that tuples are
|
||||
output by recursively calling <code>operator<<</code> for each element.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Analogously, the global <code>operator>></code> has been overloaded to extract tuples from <code>std::istream</code> by recursively calling <code>operator>></code> for each element.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
The default delimiter between the elements is space, and the tuple is enclosed
|
||||
in parenthesis.
|
||||
For Example:
|
||||
|
||||
<pre><code>tuple<float, int, std::string> a(1.0f, 2, std::string("Howdy folks!");
|
||||
|
||||
cout << a;
|
||||
</code></pre>
|
||||
outputs the tuple as: <code>(1.0 2 Howdy folks!)</code>
|
||||
</p>
|
||||
|
||||
<p>
|
||||
The library defines three <i>manipulators</i> for changing the default
|
||||
behaviour:
|
||||
<ul>
|
||||
<li><code>set_open(char)</code> defines the character that is output before the first
|
||||
element.</li>
|
||||
<li><code>set_close(char)</code> defines the character that is output after the
|
||||
last element.</li>
|
||||
<li><code>set_delimiter(char)</code> defines the delimiter charcter between
|
||||
elements.</li>
|
||||
</ul>
|
||||
|
||||
For example:
|
||||
<code><pre>cout << set_open('[') << set_close(']') << set_delimiter(',') << a;
|
||||
</code></pre>
|
||||
outputs the same tuple <code>a</code> as: <code>[1.0,2,Howdy folks!]</code>
|
||||
</p>
|
||||
|
||||
<p>The same manipulators work with <code>operator>></code> and <code>istream</code> as well. Suppose the <code>cin</code> stream contains the following data:
|
||||
|
||||
<pre><code>(1 2 3) [4:5]</code></pre>
|
||||
|
||||
The code:
|
||||
|
||||
<code><pre>tuple<int, int, int> i;
|
||||
tuple<int, int> j;
|
||||
|
||||
cin >> i;
|
||||
cin >> set_open('[') >> set_close(']') >> set_delimiter(':');
|
||||
cin >> j;
|
||||
</code></pre>
|
||||
|
||||
reads the data into the tuples <code>i</code> and <code>j</code>.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Note that extracting tuples with <code>std::string</code> or C-style string
|
||||
elements does not generally work, since the streamed tuple representation may not be unambiguously parseable.
|
||||
</p>
|
||||
|
||||
<h2><a name = "performance">Performance</a></h2>
|
||||
|
||||
Tuples are efficient. All functions are small inlined one-liners and a decent compiler will eliminate any extra cost.
|
||||
Particularly, there is no performance difference between this code:
|
||||
|
||||
<pre><code>class hand_made_tuple {
|
||||
A a; B b; C c;
|
||||
public:
|
||||
hand_made_tuple(const A& aa, const B& bb, const C& cc)
|
||||
: a(aa), b(bb), c(cc) {};
|
||||
A& getA() { return a; };
|
||||
B& getB() { return b; };
|
||||
C& getC() { return c; };
|
||||
};
|
||||
|
||||
hand_made_tuple hmt(A(), B(), C());
|
||||
hmt.getA(); hmt.getB(); hmt.getC();
|
||||
</code></pre>
|
||||
|
||||
and this code:
|
||||
|
||||
<pre><code>tuple<A, B, C> t(A(), B(), C());
|
||||
t.get<0>(); t.get<1>(); t.get<2>();
|
||||
</code></pre>
|
||||
</p>
|
||||
|
||||
<p>
|
||||
Depending on the optimizing ablity of the compiler, the tier mechanism may have a small performance penalty compared to using nonconst reference parameters as a mechanism for returning multiple values from a function.
|
||||
For example, suppose that the following functions <code>f1</code> and <code>f2</code> have equivalent functionalities:
|
||||
|
||||
<pre><code>void f1(int&, double&);
|
||||
tuple<int, double> f2();
|
||||
</code></pre>
|
||||
|
||||
Then, the call #1 may be slightly faster than #2 in the code below:
|
||||
|
||||
<pre><code>int i; double d;
|
||||
...
|
||||
f1(i,d); // #1
|
||||
tie(i,d) = f2(); // #2
|
||||
</code></pre>
|
||||
See
|
||||
[<a href=#publ_1>1</a>,
|
||||
<a href=#publ_2>2</a>]
|
||||
for more in-depth discussions about efficiency.
|
||||
|
||||
<h4>Effect on Compile Time</h4>
|
||||
|
||||
<p>
|
||||
Compiling tuples can be slow due to the excessive amount of template instantiations.
|
||||
Depending on the compiler and the tuple length, it may be more than 10 times slower to compile a tuple construct, compared to compiling an equivalent explicitly written class, such as the <code>hand_made_tuple</code> class above.
|
||||
However, as a realistic program is likely to contain a lot of code in addition to tuple definitions, the difference is probably unnoticeable.
|
||||
Compile time increases between 5 to 10 percentages were measured for programs which used tuples very frequently.
|
||||
With the same test programs, memory consumption of compiling increased between 22% to 27%. See
|
||||
[<a href=#publ_1>1</a>,
|
||||
<a href=#publ_2>2</a>]
|
||||
for details.
|
||||
</p>
|
||||
|
||||
<h2><a name = "portability">Portability</a></h2>
|
||||
|
||||
<p>The library code is(?) standard C++ and thus the library works with a standard conforming compiler.
|
||||
Below is a list of compilers and known problems with each compiler:
|
||||
</p>
|
||||
<table>
|
||||
<tr><td><u>Compiler</u></td><td><u>Problems</u></td></tr>
|
||||
<tr><td>gcc 2.95</td><td>-</td></tr>
|
||||
<tr><td>edg 2.44</td><td>-</td></tr>
|
||||
<tr><td>Borland 5.5</td><td>Can't use function pointers or member pointers as tuple elements</td></tr>
|
||||
<tr><td>Metrowerks 6.2</td><td>Can't use <code>ref</code> and <code>cref</code> wrappers</td></tr>
|
||||
<tr><td>MS Visual C++</td><td>No reference elements (<code>tie</code> still works). Can't use <code>ref</code> and <code>cref</code> wrappers</td></tr>
|
||||
</table>
|
||||
|
||||
<h2><a name = "thanks">Acknowledgements</a></h2>
|
||||
Gary Powell has been an indispensable helping hand. In particular, stream manipulators for tuples were his idea. Doug Gregor came up with a working version for MSVC. Thanks to Jeremy Siek, William Kempf, Jens Maurer for their help and suggestions.
|
||||
The comments by Vesa Karvonen, John Max Skaller, Ed Brey, Beman Davis and David Abrahams helped to improve the libray.
|
||||
The idea for the tie mechanism came from an old usenet article by Ian McCulloch, where he proposed something similar for std::pairs.
|
||||
|
||||
<h2><a name = "references">References</a></h2>
|
||||
|
||||
<p>
|
||||
<a name="publ_1"></a>[1]
|
||||
Järvi J.: <i>Tuples and multiple return values in C++</i>, TUCS Technical Report No 249, 1999 (<a href="http://www.tucs.fi/publications">http://www.tucs.fi/publications</a>).
|
||||
</p>
|
||||
|
||||
<p>
|
||||
<a name="publ_2"></a>[2]
|
||||
Järvi J.: <i>ML-Style Tuple Assignment in Standard C++ - Extending the Multiple Return Value Formalism</i>, TUCS Technical Report No 267, 1999 (<a href="http://www.tucs.fi/publications">http://www.tucs.fi/publications</a>).
|
||||
</p>
|
||||
|
||||
<p>
|
||||
[3] Järvi J.:<i>Tuple Types and Multiple Return Values</i>, C/C++ Users Journal, August 2001.
|
||||
</p>
|
||||
|
||||
<hr>
|
||||
|
||||
<p>Last modified 2001-08-10</p>
|
||||
|
||||
<p>© Copyright Jaakko Järvi 2001.
|
||||
|
||||
Permission to copy, use, modify, sell and distribute this software and its documentation is granted provided this copyright notice appears in all copies.
|
||||
This software and its documentation is provided "as is" without express or implied warranty, and with no claim as to its suitability for any purpose.
|
||||
</p>
|
||||
</body>
|
||||
</html>
|
||||
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user