Compare commits

..

1 Commits

Author SHA1 Message Date
1e0fa89122 This commit was manufactured by cvs2svn to create tag
'Version_1_25_0'.

[SVN r11317]
2001-10-01 16:59:12 +00:00
10 changed files with 250 additions and 511 deletions

View File

@ -63,6 +63,7 @@ To compensate for this "deficiency", the Boost Tuple Library implement
<p>To use tuple input and output operators, <p>To use tuple input and output operators,
<pre><code>#include &quot;boost/tuple/tuple_io.hpp&quot;</code></pre> <pre><code>#include &quot;boost/tuple/tuple_io.hpp&quot;</code></pre>
and add the <code>libs/tuple/src/tuple.hpp</code> file to your project.
Both <code>tuple_io.hpp</code> and <code>tuple_comparison.hpp</code> include <code>tuple.hpp</code>. Both <code>tuple_io.hpp</code> and <code>tuple_comparison.hpp</code> include <code>tuple.hpp</code>.
@ -74,14 +75,22 @@ Both <code>tuple_io.hpp</code> and <code>tuple_comparison.hpp</code> include <co
The template parameters specify the types of the tuple elements. The template parameters specify the types of the tuple elements.
The current version supports tuples with 0-10 elements. The current version supports tuples with 0-10 elements.
If necessary, the upper limit can be increased up to, say, a few dozen elements. If necessary, the upper limit can be increased up to, say, a few dozen elements.
The data element can be any C++ type. The data element can be any C++ type, except for a non-reference type
Note that <code>void</code> and plain function types are valid that is not copy constructible from a const qualified reference to that
C++ types, but objects of such types cannot exist. same type. In practice this means, that the element type must be <i>CopyConstructible</i> [C++ Standard 20.1.3]. (To be precise, CopyConstrucible is an unnecessary strong requirement for a valid element type, as the <code>operator&amp;</code> is not used by the library.)
Hence, if a tuple type contains such types as elements, the tuple type </p>
can exist, but not an object of that type.
There are natural limitations for element types that cannot <p>
be be copied, or that are not default constructible (see 'Constructing tuples' Examples of types that are not allowed as tuple elements:
below).
<ul>
<li>classes that do not have a public copy constructor</li>
<li>classes, where the copy constructor takes its argument as a non-const reference (cf. <code>auto_ptr</code>)
<li>arrays</li>
</ul>
Note that a reference to any of these non-copyable types is a valid element
type.
<p> <p>
For example, the following definitions are valid tuple instantiations (<code>A</code>, <code>B</code> and <code>C</code> are some user defined classes): For example, the following definitions are valid tuple instantiations (<code>A</code>, <code>B</code> and <code>C</code> are some user defined classes):
@ -93,6 +102,21 @@ tuple&lt;std::string, std::pair&lt;A, B&gt; &gt;
tuple&lt;A*, tuple&lt;const A*, const B&amp;, C&gt;, bool, void*&gt; tuple&lt;A*, tuple&lt;const A*, const B&amp;, C&gt;, bool, void*&gt;
</code></pre> </code></pre>
<p>
The following code shows some invalid tuple instantiations:
<pre><code>class Y {
Y(const Y&amp;);
public:
Y();
};
tuple&lt;Y&gt; // not allowed, objects of type Y cannot be copied
tuple&lt;char[10]&gt; // not allowed: arrays cannot be copied
</code></pre>
Note however that <code>tuple&lt;Y&amp;&gt;</code> and <code>tuple&lt;char(&)[10]&gt;</code> are valid instantiations.
<h2><a name = "constructing_tuples">Constructing tuples</a></h2> <h2><a name = "constructing_tuples">Constructing tuples</a></h2>
<p> <p>
@ -133,31 +157,6 @@ tuple&lt;const double&amp;&gt;(d+3.14) // ok, but dangerous:
// the element becomes a dangling reference // the element becomes a dangling reference
</code></pre> </code></pre>
<p>Using an initial value for an element that cannot be copied, is a compile
time error:
<pre><code>class Y {
Y(const Y&amp;);
public:
Y();
};
char a[10];
tuple&lt;char[10], Y&gt;(a, Y()); // error, neither arrays nor Y can be copied
tuple&lt;char[10], Y&gt;(); // ok
</code></pre>
Note particularly that the following is perfectly ok:
<code><pre>Y y;
tuple&lt;char(&amp;)[10], Y&amp;&gt;(a, y);
</code></pre>
It is possible to come up with a tuple type that cannot be constructed.
This occurs if an element that cannot be initialized has a lower
index than an element that requires initialization.
For example: <code>tuple&lt;char[10], int&amp;&gt;</code>.
<p>In sum, the tuple construction is semantically just a group of individual elementary constructions. <p>In sum, the tuple construction is semantically just a group of individual elementary constructions.
</p> </p>
@ -417,9 +416,8 @@ parseable.
<h2><a name = "performance">Performance</a></h2> <h2><a name = "performance">Performance</a></h2>
All tuple access and construction functions are small inlined one-liners. Tuples are efficient. All functions are small inlined one-liners and a decent compiler will eliminate any extra cost.
Therefore, a decent compiler can eliminate any extra cost of using tuples compared to using hand written tuple like classes. Particularly, there is no performance difference between this code:
Particularly, with a decent compiler there is no performance difference between this code:
<pre><code>class hand_made_tuple { <pre><code>class hand_made_tuple {
A a; B b; C c; A a; B b; C c;
@ -441,8 +439,6 @@ and this code:
t.get&lt;0&gt;(); t.get&lt;1&gt;(); t.get&lt;2&gt;(); t.get&lt;0&gt;(); t.get&lt;1&gt;(); t.get&lt;2&gt;();
</code></pre> </code></pre>
<p>Note, that there are widely used compilers (e.g. bcc 5.5.1) which fail to optimize this kind of tuple usage.
</p>
<p> <p>
Depending on the optimizing ability of the compiler, the tier mechanism may have a small performance penalty compared to using Depending on the optimizing ability of the compiler, the tier mechanism may have a small performance penalty compared to using
non-const reference parameters as a mechanism for returning multiple values from a function. non-const reference parameters as a mechanism for returning multiple values from a function.
@ -492,10 +488,11 @@ Below is a list of compilers and known problems with each compiler:
</table> </table>
<h2><a name = "thanks">Acknowledgements</a></h2> <h2><a name = "thanks">Acknowledgements</a></h2>
Gary Powell has been an indispensable helping hand. In particular, stream manipulators for tuples were his idea. Doug Gregor came up with a working version for MSVC. Thanks to Jeremy Siek, William Kempf and Jens Maurer for their help and suggestions. Gary Powell has been an indispensable helping hand. In particular, stream manipulators for tuples were his idea. Doug Gregor came up with a working version for MSVC. Thanks to Jeremy Siek, William Kempf, Jens Maurer for their help and suggestions.
The comments by Vesa Karvonen, John Max Skaller, Ed Brey, Beman Dawes, David Abrahams and Hartmut Kaiser helped to improve the The comments by Vesa Karvonen, John Max Skaller, Ed Brey, Beman Dawes and David Abrahams helped to improve the
library. library.
The idea for the tie mechanism came from an old usenet article by Ian McCulloch, where he proposed something similar for std::pairs. The idea for the tie mechanism came from an old usenet article by Ian McCulloch, where he proposed something similar for std::pairs.
<h2><a name = "references">References</a></h2> <h2><a name = "references">References</a></h2>
<p> <p>

View File

@ -23,11 +23,6 @@
// David Abrahams. // David Abrahams.
// Revision history: // Revision history:
// 2002 05 01 Hugo Duncan: Fix for Borland after Jaakko's previous changes
// 2002 04 18 Jaakko: tuple element types can be void or plain function
// types, as long as no object is created.
// Tuple objects can no hold even noncopyable types
// such as arrays.
// 2001 10 22 John Maddock // 2001 10 22 John Maddock
// Fixes for Borland C++ // Fixes for Borland C++
// 2001 08 30 David Abrahams // 2001 08 30 David Abrahams
@ -41,7 +36,6 @@
#include <utility> // needed for the assignment from pair to tuple #include <utility> // needed for the assignment from pair to tuple
#include "boost/type_traits/cv_traits.hpp" #include "boost/type_traits/cv_traits.hpp"
#include "boost/type_traits/function_traits.hpp"
namespace boost { namespace boost {
namespace tuples { namespace tuples {
@ -51,18 +45,7 @@ struct null_type {};
// a helper function to provide a const null_type type temporary // a helper function to provide a const null_type type temporary
namespace detail { namespace detail {
inline const null_type cnull() { return null_type(); } inline const null_type cnull_type() { return null_type(); }
// -- if construct ------------------------------------------------
// Proposed by Krzysztof Czarnecki and Ulrich Eisenecker
template <bool If, class Then, class Else> struct IF { typedef Then RET; };
template <class Then, class Else> struct IF<false, Then, Else> {
typedef Else RET;
};
} // end detail } // end detail
// - cons forward declaration ----------------------------------------------- // - cons forward declaration -----------------------------------------------
@ -84,22 +67,46 @@ template<class T> struct length;
namespace detail { namespace detail {
#ifdef BOOST_NO_EXPLICIT_FUNCTION_TEMPLATE_ARGUMENTS
template<int N> struct workaround_holder {};
# define BOOST_TUPLE_DUMMY_PARM , detail::workaround_holder<N>* = 0
# define BOOST_TUPLE_SINGLE_DUMMY_PARM detail::workaround_holder<N>* = 0
#else
# define BOOST_TUPLE_DUMMY_PARM
# define BOOST_TUPLE_SINGLE_DUMMY_PARM
#endif
// -- generate error template, referencing to non-existing members of this // -- generate error template, referencing to non-existing members of this
// template is used to produce compilation errors intentionally // template is used to produce compilation errors intentionally
template<class T> template<class T>
class generate_error; class generate_error;
// tuple default argument wrappers ---------------------------------------
// Work for non-reference types, intentionally not for references
template <class T>
struct default_arg {
// Non-class temporaries cannot have qualifiers.
// To prevent f to return for example const int, we remove cv-qualifiers
// from all temporaries.
static typename boost::remove_cv<T>::type f() { return T(); }
};
// This is just to produce a more informative error message
// The code would fail in any case
template<class T, int N>
struct default_arg<T[N]> {
static T* f() {
return generate_error<T[N]>::arrays_are_not_valid_tuple_elements; }
};
template <class T>
struct default_arg<T&> {
static T& f() {
#ifndef __sgi
return generate_error<T>::no_default_values_for_reference_types;
#else
// MIPSpro instantiates functions even when it should not, so
// this technique can not be used for error checking.
// The simple workaround is to just not have this error checking
// with MIPSpro.
static T x;
return x;
#endif
}
};
// - cons getters -------------------------------------------------------- // - cons getters --------------------------------------------------------
// called: get_class<N>::get<RETURN_TYPE>(aTuple) // called: get_class<N>::get<RETURN_TYPE>(aTuple)
@ -167,7 +174,6 @@ template <class T> struct access_traits {
typedef T& non_const_type; typedef T& non_const_type;
typedef const typename boost::remove_cv<T>::type& parameter_type; typedef const typename boost::remove_cv<T>::type& parameter_type;
// used as the tuple constructors parameter types // used as the tuple constructors parameter types
// Rationale: non-reference tuple element types can be cv-qualified. // Rationale: non-reference tuple element types can be cv-qualified.
// It should be possible to initialize such types with temporaries, // It should be possible to initialize such types with temporaries,
@ -183,13 +189,14 @@ template <class T> struct access_traits<T&> {
typedef T& parameter_type; typedef T& parameter_type;
}; };
// get function for non-const cons-lists, returns a reference to the element // get function for non-const cons-lists, returns a reference to the element
template<int N, class HT, class TT> template<int N, class HT, class TT>
inline typename access_traits< inline typename access_traits<
typename element<N, cons<HT, TT> >::type typename element<N, cons<HT, TT> >::type
>::non_const_type >::non_const_type
get(cons<HT, TT>& c BOOST_TUPLE_DUMMY_PARM) { get(cons<HT, TT>& c) {
return detail::get_class<N>::template return detail::get_class<N>::template
get< get<
typename access_traits< typename access_traits<
@ -204,7 +211,7 @@ template<int N, class HT, class TT>
inline typename access_traits< inline typename access_traits<
typename element<N, cons<HT, TT> >::type typename element<N, cons<HT, TT> >::type
>::const_type >::const_type
get(const cons<HT, TT>& c BOOST_TUPLE_DUMMY_PARM) { get(const cons<HT, TT>& c) {
return detail::get_class<N>::template return detail::get_class<N>::template
get< get<
typename access_traits< typename access_traits<
@ -212,29 +219,10 @@ get(const cons<HT, TT>& c BOOST_TUPLE_DUMMY_PARM) {
>::const_type>(c); >::const_type>(c);
} }
// -- the cons template -------------------------------------------------- // -- the cons template --------------------------------------------------
namespace detail {
// These helper templates wrap void types and plain function types.
// The reationale is to allow one to write tuple types with those types
// as elements, even though it is not possible to instantiate such object.
// E.g: typedef tuple<void> some_type; // ok
// but: some_type x; // fails
template <class T> class non_storeable_type {
non_storeable_type();
};
template <class T> struct wrap_non_storeable_type {
typedef typename IF<
::boost::is_function<T>::value, non_storeable_type<T>, T
>::RET type;
};
template <> struct wrap_non_storeable_type<void> {
typedef non_storeable_type<void> type;
};
} // detail
template <class HT, class TT> template <class HT, class TT>
struct cons { struct cons {
@ -242,33 +230,28 @@ struct cons {
typedef HT head_type; typedef HT head_type;
typedef TT tail_type; typedef TT tail_type;
typedef typename head_type head;
detail::wrap_non_storeable_type<head_type>::type stored_head_type;
stored_head_type head;
tail_type tail; tail_type tail;
typename access_traits<stored_head_type>::non_const_type typename access_traits<head_type>::non_const_type
get_head() { return head; } get_head() { return head; }
typename access_traits<tail_type>::non_const_type typename access_traits<tail_type>::non_const_type
get_tail() { return tail; } get_tail() { return tail; }
typename access_traits<stored_head_type>::const_type typename access_traits<head_type>::const_type
get_head() const { return head; } get_head() const { return head; }
typename access_traits<tail_type>::const_type typename access_traits<tail_type>::const_type
get_tail() const { return tail; } get_tail() const { return tail; }
cons() : head(), tail() {} cons() : head(detail::default_arg<HT>::f()), tail() {}
// cons() : head(detail::default_arg<HT>::f()), tail() {}
// the argument for head is not strictly needed, but it prevents // the argument for head is not strictly needed, but it prevents
// array type elements. This is good, since array type elements // array type elements. This is good, since array type elements
// cannot be supported properly in any case (no assignment, // cannot be supported properly in any case (no assignment,
// copy works only if the tails are exactly the same type, ...) // copy works only if the tails are exactly the same type, ...)
cons(typename access_traits<stored_head_type>::parameter_type h, cons(typename access_traits<head_type>::parameter_type h,
const tail_type& t) const tail_type& t)
: head (h), tail(t) {} : head (h), tail(t) {}
@ -277,18 +260,9 @@ struct cons {
cons( T1& t1, T2& t2, T3& t3, T4& t4, T5& t5, cons( T1& t1, T2& t2, T3& t3, T4& t4, T5& t5,
T6& t6, T7& t7, T8& t8, T9& t9, T10& t10 ) T6& t6, T7& t7, T8& t8, T9& t9, T10& t10 )
: head (t1), : head (t1),
tail (t2, t3, t4, t5, t6, t7, t8, t9, t10, detail::cnull()) tail (t2, t3, t4, t5, t6, t7, t8, t9, t10, detail::cnull_type())
{} {}
template <class T2, class T3, class T4, class T5,
class T6, class T7, class T8, class T9, class T10>
cons( const null_type& t1, T2& t2, T3& t3, T4& t4, T5& t5,
T6& t6, T7& t7, T8& t8, T9& t9, T10& t10 )
: head (),
tail (t2, t3, t4, t5, t6, t7, t8, t9, t10, detail::cnull())
{}
template <class HT2, class TT2> template <class HT2, class TT2>
cons( const cons<HT2, TT2>& u ) : head(u.head), tail(u.tail) {} cons( const cons<HT2, TT2>& u ) : head(u.head), tail(u.tail) {}
@ -333,24 +307,21 @@ struct cons<HT, null_type> {
typedef HT head_type; typedef HT head_type;
typedef null_type tail_type; typedef null_type tail_type;
typedef typename head_type head;
detail::wrap_non_storeable_type<head_type>::type stored_head_type;
stored_head_type head;
typename access_traits<stored_head_type>::non_const_type typename access_traits<head_type>::non_const_type
get_head() { return head; } get_head() { return head; }
null_type get_tail() { return null_type(); } null_type get_tail() { return null_type(); }
typename access_traits<stored_head_type>::const_type typename access_traits<head_type>::const_type
get_head() const { return head; } get_head() const { return head; }
const null_type get_tail() const { return null_type(); } const null_type get_tail() const { return null_type(); }
// cons() : head(detail::default_arg<HT>::f()) {} cons() : head(detail::default_arg<HT>::f()) {}
cons() : head() {}
cons(typename access_traits<stored_head_type>::parameter_type h, cons(typename access_traits<head_type>::parameter_type h,
const null_type& = null_type()) const null_type& = null_type())
: head (h) {} : head (h) {}
@ -360,12 +331,6 @@ struct cons<HT, null_type> {
const null_type&, const null_type&, const null_type&) const null_type&, const null_type&, const null_type&)
: head (t1) {} : head (t1) {}
cons(const null_type& t1,
const null_type&, const null_type&, const null_type&,
const null_type&, const null_type&, const null_type&,
const null_type&, const null_type&, const null_type&)
: head () {}
template <class HT2> template <class HT2>
cons( const cons<HT2, null_type>& u ) : head(u.head) {} cons( const cons<HT2, null_type>& u ) : head(u.head) {}
@ -381,7 +346,7 @@ struct cons<HT, null_type> {
typename access_traits< typename access_traits<
typename element<N, cons>::type typename element<N, cons>::type
>::non_const_type >::non_const_type
get(BOOST_TUPLE_SINGLE_DUMMY_PARM) { get() {
return boost::tuples::get<N>(*this); return boost::tuples::get<N>(*this);
} }
@ -389,7 +354,7 @@ struct cons<HT, null_type> {
typename access_traits< typename access_traits<
typename element<N, cons>::type typename element<N, cons>::type
>::const_type >::const_type
get(BOOST_TUPLE_SINGLE_DUMMY_PARM) const { get() const {
return boost::tuples::get<N>(*this); return boost::tuples::get<N>(*this);
} }
@ -402,11 +367,6 @@ struct length {
BOOST_STATIC_CONSTANT(int, value = 1 + length<typename T::tail_type>::value); BOOST_STATIC_CONSTANT(int, value = 1 + length<typename T::tail_type>::value);
}; };
template<>
struct length<tuple<> > {
BOOST_STATIC_CONSTANT(int, value = 0);
};
template<> template<>
struct length<null_type> { struct length<null_type> {
BOOST_STATIC_CONSTANT(int, value = 0); BOOST_STATIC_CONSTANT(int, value = 0);
@ -451,96 +411,30 @@ public:
// access_traits<T>::parameter_type takes non-reference types as const T& // access_traits<T>::parameter_type takes non-reference types as const T&
tuple() {} explicit tuple(
typename access_traits<T0>::parameter_type t0
= detail::default_arg<T0>::f(),
typename access_traits<T1>::parameter_type t1
= detail::default_arg<T1>::f(),
typename access_traits<T2>::parameter_type t2
= detail::default_arg<T2>::f(),
typename access_traits<T3>::parameter_type t3
= detail::default_arg<T3>::f(),
typename access_traits<T4>::parameter_type t4
= detail::default_arg<T4>::f(),
typename access_traits<T5>::parameter_type t5
= detail::default_arg<T5>::f(),
typename access_traits<T6>::parameter_type t6
= detail::default_arg<T6>::f(),
typename access_traits<T7>::parameter_type t7
= detail::default_arg<T7>::f(),
typename access_traits<T8>::parameter_type t8
= detail::default_arg<T8>::f(),
typename access_traits<T9>::parameter_type t9
= detail::default_arg<T9>::f())
tuple(typename access_traits<T0>::parameter_type t0)
: inherited(t0, detail::cnull(), detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1)
: inherited(t0, t1, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2)
: inherited(t0, t1, t2, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3)
: inherited(t0, t1, t2, t3, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull(),
detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3,
typename access_traits<T4>::parameter_type t4)
: inherited(t0, t1, t2, t3, t4, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3,
typename access_traits<T4>::parameter_type t4,
typename access_traits<T5>::parameter_type t5)
: inherited(t0, t1, t2, t3, t4, t5, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3,
typename access_traits<T4>::parameter_type t4,
typename access_traits<T5>::parameter_type t5,
typename access_traits<T6>::parameter_type t6)
: inherited(t0, t1, t2, t3, t4, t5, t6, detail::cnull(),
detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3,
typename access_traits<T4>::parameter_type t4,
typename access_traits<T5>::parameter_type t5,
typename access_traits<T6>::parameter_type t6,
typename access_traits<T7>::parameter_type t7)
: inherited(t0, t1, t2, t3, t4, t5, t6, t7, detail::cnull(),
detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3,
typename access_traits<T4>::parameter_type t4,
typename access_traits<T5>::parameter_type t5,
typename access_traits<T6>::parameter_type t6,
typename access_traits<T7>::parameter_type t7,
typename access_traits<T8>::parameter_type t8)
: inherited(t0, t1, t2, t3, t4, t5, t6, t7, t8, detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3,
typename access_traits<T4>::parameter_type t4,
typename access_traits<T5>::parameter_type t5,
typename access_traits<T6>::parameter_type t6,
typename access_traits<T7>::parameter_type t7,
typename access_traits<T8>::parameter_type t8,
typename access_traits<T9>::parameter_type t9)
: inherited(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) {} : inherited(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) {}
template<class U1, class U2> template<class U1, class U2>
tuple(const cons<U1, U2>& p) : inherited(p) {} tuple(const cons<U1, U2>& p) : inherited(p) {}
@ -859,8 +753,6 @@ tie(T1& t1, T2& t2, T3& t3, T4& t4, T5& t5, T6& t6, T7& t7, T8& t8,
} // end of namespace tuples } // end of namespace tuples
} // end of namespace boost } // end of namespace boost
#undef BOOST_TUPLE_DUMMY_PARM
#undef BOOST_TUPLE_SINGLE_DUMMY_PARM
#endif // BOOST_TUPLE_BASIC_HPP #endif // BOOST_TUPLE_BASIC_HPP

View File

@ -53,21 +53,6 @@ namespace tuples {
// a helper function to provide a const null_type type temporary // a helper function to provide a const null_type type temporary
inline const null_type cnull_type() { return null_type(); } inline const null_type cnull_type() { return null_type(); }
// forward declaration of tuple
template<
typename T1 = null_type,
typename T2 = null_type,
typename T3 = null_type,
typename T4 = null_type,
typename T5 = null_type,
typename T6 = null_type,
typename T7 = null_type,
typename T8 = null_type,
typename T9 = null_type,
typename T10 = null_type
>
class tuple;
namespace detail { namespace detail {
// Takes a pointer and routes all assignments to whatever it points to // Takes a pointer and routes all assignments to whatever it points to
@ -246,58 +231,6 @@ namespace tuples {
namespace detail { namespace detail {
#if defined(BOOST_MSVC) && (BOOST_MSVC == 1300)
// special workaround for vc7:
template <bool x>
struct reference_adder
{
template <class T>
struct rebind
{
typedef T& type;
};
};
template <>
struct reference_adder<true>
{
template <class T>
struct rebind
{
typedef T type;
};
};
// Return a reference to the Nth type of the given Tuple
template<int N, typename Tuple>
struct element_ref
{
private:
typedef typename element<N, Tuple>::RET elt_type;
enum { is_ref = is_reference<elt_type>::value };
public:
typedef reference_adder<is_ref>::rebind<elt_type>::type RET;
typedef RET type;
};
// Return a const reference to the Nth type of the given Tuple
template<int N, typename Tuple>
struct element_const_ref
{
private:
typedef typename element<N, Tuple>::RET elt_type;
enum { is_ref = is_reference<elt_type>::value };
public:
typedef reference_adder<is_ref>::rebind<const elt_type>::type RET;
typedef RET type;
};
#else // vc7
// Return a reference to the Nth type of the given Tuple // Return a reference to the Nth type of the given Tuple
template<int N, typename Tuple> template<int N, typename Tuple>
struct element_ref struct element_ref
@ -321,7 +254,6 @@ namespace tuples {
typedef typename add_reference<const elt_type>::type RET; typedef typename add_reference<const elt_type>::type RET;
typedef RET type; typedef RET type;
}; };
#endif // vc7
} // namespace detail } // namespace detail
@ -332,10 +264,6 @@ namespace tuples {
BOOST_STATIC_CONSTANT(int, value = 1 + length<typename Tuple::tail_type>::value); BOOST_STATIC_CONSTANT(int, value = 1 + length<typename Tuple::tail_type>::value);
}; };
template<> struct length<tuple<> > {
BOOST_STATIC_CONSTANT(int, value = 0);
};
template<> template<>
struct length<null_type> struct length<null_type>
{ {
@ -390,15 +318,15 @@ namespace tuples {
// tuple class // tuple class
template< template<
typename T1, typename T1,
typename T2, typename T2 = null_type,
typename T3, typename T3 = null_type,
typename T4, typename T4 = null_type,
typename T5, typename T5 = null_type,
typename T6, typename T6 = null_type,
typename T7, typename T7 = null_type,
typename T8, typename T8 = null_type,
typename T9, typename T9 = null_type,
typename T10 typename T10 = null_type
> >
class tuple : class tuple :
public detail::map_tuple_to_cons<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>::cons1 public detail::map_tuple_to_cons<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>::cons1
@ -417,7 +345,6 @@ namespace tuples {
typedef typename mapped_tuple::cons1 cons1; typedef typename mapped_tuple::cons1 cons1;
public: public:
typedef cons1 inherited;
typedef tuple self_type; typedef tuple self_type;
explicit tuple(const T1& t1 = T1(), explicit tuple(const T1& t1 = T1(),
@ -648,8 +575,8 @@ namespace tuples {
detail::assign_to_pointee<T2>(&t2), detail::assign_to_pointee<T2>(&t2),
detail::assign_to_pointee<T3>(&t3), detail::assign_to_pointee<T3>(&t3),
detail::assign_to_pointee<T4>(&t4), detail::assign_to_pointee<T4>(&t4),
detail::assign_to_pointee<T5>(&t5), detail::assign_to_pointee<T6>(&t5),
detail::assign_to_pointee<T6>(&t6)); detail::assign_to_pointee<T5>(&t6));
} }
// Tie variables into a tuple // Tie variables into a tuple

View File

@ -37,50 +37,7 @@ namespace boost {
using tuples::tuple; using tuples::tuple;
using tuples::make_tuple; using tuples::make_tuple;
using tuples::tie; using tuples::tie;
#if !defined(BOOST_NO_USING_TEMPLATE)
using tuples::get; using tuples::get;
#elif !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
//
// The "using tuples::get" statement causes the
// Borland compiler to ICE, use forwarding
// functions instead:
//
template<int N, class HT, class TT>
inline typename tuples::access_traits<
typename tuples::element<N, tuples::cons<HT, TT> >::type
>::non_const_type
get(tuples::cons<HT, TT>& c) {
return tuples::get<N,HT,TT>(c);
}
// get function for const cons-lists, returns a const reference to
// the element. If the element is a reference, returns the reference
// as such (that is, can return a non-const reference)
template<int N, class HT, class TT>
inline typename tuples::access_traits<
typename tuples::element<N, tuples::cons<HT, TT> >::type
>::const_type
get(const tuples::cons<HT, TT>& c) {
return tuples::get<N,HT,TT>(c);
}
#else // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
//
// MSVC, using declarations don't mix with templates well,
// so use forwarding functions instead:
//
template<int N, typename Head, typename Tail>
typename tuples::detail::element_ref<N, tuples::cons<Head, Tail> >::RET
get(tuples::cons<Head, Tail>& t, tuples::detail::workaround_holder<N>* = 0)
{
return tuples::detail::get_class<N>::get(t);
}
template<int N, typename Head, typename Tail>
typename tuples::detail::element_const_ref<N, tuples::cons<Head, Tail> >::RET
get(const tuples::cons<Head, Tail>& t, tuples::detail::workaround_holder<N>* = 0)
{
return tuples::detail::get_class<N>::get(t);
}
#endif // BOOST_NO_USING_TEMPLATE
} // end namespace boost } // end namespace boost

View File

@ -69,7 +69,7 @@ inline bool neq(const T1& lhs, const T2& rhs) {
neq(lhs.get_tail(), rhs.get_tail()); neq(lhs.get_tail(), rhs.get_tail());
} }
template<> template<>
inline bool neq<null_type,null_type>(const null_type&, const null_type&) { return false; } inline bool neq<null_type,null_type>(const null_type&, const null_type&) { return true; }
template<class T1, class T2> template<class T1, class T2>
inline bool lt(const T1& lhs, const T2& rhs) { inline bool lt(const T1& lhs, const T2& rhs) {

View File

@ -36,6 +36,8 @@
#include "boost/tuple/tuple.hpp" #include "boost/tuple/tuple.hpp"
namespace boost { namespace boost {
namespace tuples { namespace tuples {
@ -43,19 +45,11 @@ namespace detail {
class format_info { class format_info {
public: public:
enum manipulator_type { open, close, delimiter }; enum manipulator_type { open, close, delimiter };
BOOST_STATIC_CONSTANT(int, number_of_manipulators = delimiter + 1); BOOST_STATIC_CONSTANT(int, number_of_manipulators = delimiter + 1);
private: private:
static int get_stream_index (int m) static const int stream_index[number_of_manipulators];
{
static const int stream_index[number_of_manipulators]
= { std::ios::xalloc(), std::ios::xalloc(), std::ios::xalloc() };
return stream_index[m];
}
format_info(const format_info&); format_info(const format_info&);
format_info(); format_info();
@ -64,7 +58,7 @@ public:
#if defined (BOOST_NO_TEMPLATED_STREAMS) #if defined (BOOST_NO_TEMPLATED_STREAMS)
static char get_manipulator(std::ios& i, manipulator_type m) { static char get_manipulator(std::ios& i, manipulator_type m) {
char c = static_cast<char>(i.iword(get_stream_index(m))); char c = static_cast<char>(i.iword(stream_index[m]));
// parentheses and space are the default manipulators // parentheses and space are the default manipulators
if (!c) { if (!c) {
@ -78,7 +72,7 @@ public:
} }
static void set_manipulator(std::ios& i, manipulator_type m, char c) { static void set_manipulator(std::ios& i, manipulator_type m, char c) {
i.iword(get_stream_index(m)) = static_cast<long>(c); i.iword(stream_index[m]) = static_cast<long>(c);
} }
#else #else
template<class CharType, class CharTrait> template<class CharType, class CharTrait>
@ -88,7 +82,7 @@ public:
// A valid instanitation of basic_stream allows CharType to be any POD, // A valid instanitation of basic_stream allows CharType to be any POD,
// hence, the static_cast may fail (it fails if long is not convertible // hence, the static_cast may fail (it fails if long is not convertible
// to CharType // to CharType
CharType c = static_cast<CharType>(i.iword(get_stream_index(m)) ); CharType c = static_cast<CharType>(i.iword(stream_index[m]) );
// parentheses and space are the default manipulators // parentheses and space are the default manipulators
if (!c) { if (!c) {
switch(m) { switch(m) {
@ -108,7 +102,7 @@ public:
// A valid instanitation of basic_stream allows CharType to be any POD, // A valid instanitation of basic_stream allows CharType to be any POD,
// hence, the static_cast may fail (it fails if CharType is not // hence, the static_cast may fail (it fails if CharType is not
// convertible long. // convertible long.
i.iword(get_stream_index(m)) = static_cast<long>(c); i.iword(stream_index[m]) = static_cast<long>(c);
} }
#endif // BOOST_NO_TEMPLATED_STREAMS #endif // BOOST_NO_TEMPLATED_STREAMS
}; };

34
src/tuple.cpp Normal file
View File

@ -0,0 +1,34 @@
// tuple.cpp -----------------------------------------------------
// Copyright (C) 1999, 2000, 2001 Jaakko J<>rvi (jaakko.jarvi@cs.utu.fi)
// Copyright (C) 2001 Gary Powell (gary.powell@sierra.com)
//
// Permission to copy, use, sell and distribute this software is granted
// provided this copyright notice appears in all copies.
// Permission to modify the code and to distribute modified code is granted
// provided this copyright notice appears in all copies, and a notice
// that the code was modified is included with the copyright notice.
//
// This software is provided "as is" without express or implied warranty,
// and with no claim as to its suitability for any purpose.
// For more information, see http://lambda.cs.utu.fi
// Revision History
// 16 02 01 Initial Version (GWP)
// -----------------------------------------------------------------
#include "boost/tuple/tuple_io.hpp"
namespace boost {
namespace tuples {
namespace detail {
const int
format_info::stream_index[number_of_manipulators]
= { std::ios::xalloc(), std::ios::xalloc(), std::ios::xalloc() };
} // namespace detail
} // namespace tuples
} // namespace boost

View File

@ -8,9 +8,7 @@ For example, in libs/tuple/test directory you would type (using g++):
g++ -I../../.. tuple_test_bench.cpp g++ -I../../.. tuple_test_bench.cpp
The following is not true anymore:
If you want to use tuple_io, you need to compile and link src/tuple.cpp: If you want to use tuple_io, you need to compile and link src/tuple.cpp:
g++ -I../../.. ../src/tuple.cpp io_test.cpp g++ -I../../.. ../src/tuple.cpp io_test.cpp
Thanks to Hartmut Kaiser's suggestion, the tuple.cpp is not needed anymore.

View File

@ -103,32 +103,32 @@ construction_test()
// MSVC 6.0 just cannot find get without the namespace qualifier // MSVC 6.0 just cannot find get without the namespace qualifier
tuple<int> t1; tuple<int> t1;
BOOST_TEST(get<0>(t1) == int()); BOOST_TEST(tuples::get<0>(t1) == int());
tuple<float> t2(5.5f); tuple<float> t2(5.5f);
BOOST_TEST(get<0>(t2) > 5.4f && get<0>(t2) < 5.6f); BOOST_TEST(tuples::get<0>(t2) > 5.4f && tuples::get<0>(t2) < 5.6f);
tuple<foo> t3(foo(12)); tuple<foo> t3(foo(12));
BOOST_TEST(get<0>(t3) == foo(12)); BOOST_TEST(tuples::get<0>(t3) == foo(12));
tuple<double> t4(t2); tuple<double> t4(t2);
BOOST_TEST(get<0>(t4) > 5.4 && get<0>(t4) < 5.6); BOOST_TEST(tuples::get<0>(t4) > 5.4 && tuples::get<0>(t4) < 5.6);
tuple<int, float> t5; tuple<int, float> t5;
BOOST_TEST(get<0>(t5) == int()); BOOST_TEST(tuples::get<0>(t5) == int());
BOOST_TEST(get<1>(t5) == float()); BOOST_TEST(tuples::get<1>(t5) == float());
tuple<int, float> t6(12, 5.5f); tuple<int, float> t6(12, 5.5f);
BOOST_TEST(get<0>(t6) == 12); BOOST_TEST(tuples::get<0>(t6) == 12);
BOOST_TEST(get<1>(t6) > 5.4f && get<1>(t6) < 5.6f); BOOST_TEST(tuples::get<1>(t6) > 5.4f && tuples::get<1>(t6) < 5.6f);
tuple<int, float> t7(t6); tuple<int, float> t7(t6);
BOOST_TEST(get<0>(t7) == 12); BOOST_TEST(tuples::get<0>(t7) == 12);
BOOST_TEST(get<1>(t7) > 5.4f && get<1>(t7) < 5.6f); BOOST_TEST(tuples::get<1>(t7) > 5.4f && tuples::get<1>(t7) < 5.6f);
tuple<long, double> t8(t6); tuple<long, double> t8(t6);
BOOST_TEST(get<0>(t8) == 12); BOOST_TEST(tuples::get<0>(t8) == 12);
BOOST_TEST(get<1>(t8) > 5.4f && get<1>(t8) < 5.6f); BOOST_TEST(tuples::get<1>(t8) > 5.4f && tuples::get<1>(t8) < 5.6f);
dummy( dummy(
tuple<no_def_constructor, no_def_constructor, no_def_constructor>( tuple<no_def_constructor, no_def_constructor, no_def_constructor>(
@ -156,6 +156,7 @@ construction_test()
// dummy(tuple<double&>(dd+3.14)); // should fail, // dummy(tuple<double&>(dd+3.14)); // should fail,
// // temporary to non-const reference // // temporary to non-const reference
} }
@ -168,63 +169,31 @@ void element_access_test()
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) #if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
double d = 2.7; double d = 2.7;
A a; A a;
tuple<int, double&, const A&, int> t(1, d, a, 2); tuple<int, double&, const A&> t(1, d, a);
const tuple<int, double&, const A, int> ct = t; const tuple<int, double&, const A> ct = t;
int i = get<0>(t); int i = tuples::get<0>(t);
int i2 = get<3>(t); int j = tuples::get<0>(ct);
BOOST_TEST(i == 1 && j == 1);
BOOST_TEST(i == 1 && i2 == 2); tuples::get<0>(t) = 5;
int j = get<0>(ct);
BOOST_TEST(j == 1);
get<0>(t) = 5;
BOOST_TEST(t.head == 5); BOOST_TEST(t.head == 5);
// get<0>(ct) = 5; // can't assign to const // tuples::get<0>(ct) = 5; // can't assign to const
double e = get<1>(t); double e = tuples::get<1>(t);
BOOST_TEST(e > 2.69 && e < 2.71); BOOST_TEST(e > 2.69 && e < 2.71);
get<1>(t) = 3.14+i; tuples::get<1>(t) = 3.14+i;
BOOST_TEST(get<1>(t) > 4.13 && get<1>(t) < 4.15); BOOST_TEST(tuples::get<1>(t) > 4.13 && tuples::get<1>(t) < 4.15);
// get<4>(t) = A(); // can't assign to const // tuples::get<4>(t) = A(); // can't assign to const
// dummy(get<5>(ct)); // illegal index // dummy(tuples::get<5>(ct)); // illegal index
++get<0>(t); ++tuples::get<0>(t);
BOOST_TEST(get<0>(t) == 6); BOOST_TEST(tuples::get<0>(t) == 6);
dummy(i); dummy(i2); dummy(j); dummy(e); // avoid warns for unused variables dummy(i); dummy(j); dummy(e); // avoid warns for unused variables
#else
double d = 2.7;
A a;
tuple<int, double, const A, int> t(1, d, a, 2);
int i = get<0>(t);
int i2 = get<3>(t);
BOOST_TEST(i == 1 && i2 == 2);
get<0>(t) = 5;
BOOST_TEST(t.head == 5);
// get<0>(ct) = 5; // can't assign to const
double e = get<1>(t);
BOOST_TEST(e > 2.69 && e < 2.71);
get<1>(t) = 3.14+i;
BOOST_TEST(get<1>(t) > 4.13 && get<1>(t) < 4.15);
// get<4>(t) = A(); // can't assign to const
// dummy(get<5>(ct)); // illegal index
++get<0>(t);
BOOST_TEST(get<0>(t) == 6);
dummy(i); dummy(i2); dummy(e); // avoid warns for unused variables
#endif #endif
} }
@ -241,13 +210,13 @@ copy_test()
tuple<int, char> t1(4, 'a'); tuple<int, char> t1(4, 'a');
tuple<int, char> t2(5, 'b'); tuple<int, char> t2(5, 'b');
t2 = t1; t2 = t1;
BOOST_TEST(get<0>(t1) == get<0>(t2)); BOOST_TEST(tuples::get<0>(t1) == tuples::get<0>(t2));
BOOST_TEST(get<1>(t1) == get<1>(t2)); BOOST_TEST(tuples::get<1>(t1) == tuples::get<1>(t2));
tuple<long, std::string> t3(2, "a"); tuple<long, std::string> t3(2, "a");
t3 = t1; t3 = t1;
BOOST_TEST((double)get<0>(t1) == get<0>(t3)); BOOST_TEST((double)tuples::get<0>(t1) == tuples::get<0>(t3));
BOOST_TEST(get<1>(t1) == get<1>(t3)[0]); BOOST_TEST(tuples::get<1>(t1) == tuples::get<1>(t3)[0]);
// testing copy and assignment with implicit conversions between elements // testing copy and assignment with implicit conversions between elements
// testing tie // testing tie
@ -268,15 +237,15 @@ void
mutate_test() mutate_test()
{ {
tuple<int, float, bool, foo> t1(5, 12.2f, true, foo(4)); tuple<int, float, bool, foo> t1(5, 12.2f, true, foo(4));
get<0>(t1) = 6; tuples::get<0>(t1) = 6;
get<1>(t1) = 2.2f; tuples::get<1>(t1) = 2.2f;
get<2>(t1) = false; tuples::get<2>(t1) = false;
get<3>(t1) = foo(5); tuples::get<3>(t1) = foo(5);
BOOST_TEST(get<0>(t1) == 6); BOOST_TEST(tuples::get<0>(t1) == 6);
BOOST_TEST(get<1>(t1) > 2.1f && get<1>(t1) < 2.3f); BOOST_TEST(tuples::get<1>(t1) > 2.1f && tuples::get<1>(t1) < 2.3f);
BOOST_TEST(get<2>(t1) == false); BOOST_TEST(tuples::get<2>(t1) == false);
BOOST_TEST(get<3>(t1) == foo(5)); BOOST_TEST(tuples::get<3>(t1) == foo(5));
} }
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
@ -287,13 +256,13 @@ void
make_tuple_test() make_tuple_test()
{ {
tuple<int, char> t1 = make_tuple(5, 'a'); tuple<int, char> t1 = make_tuple(5, 'a');
BOOST_TEST(get<0>(t1) == 5); BOOST_TEST(tuples::get<0>(t1) == 5);
BOOST_TEST(get<1>(t1) == 'a'); BOOST_TEST(tuples::get<1>(t1) == 'a');
tuple<int, std::string> t2; tuple<int, std::string> t2;
t2 = make_tuple((short int)2, std::string("Hi")); t2 = make_tuple((short int)2, std::string("Hi"));
BOOST_TEST(get<0>(t2) == 2); BOOST_TEST(tuples::get<0>(t2) == 2);
BOOST_TEST(get<1>(t2) == "Hi"); BOOST_TEST(tuples::get<1>(t2) == "Hi");
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) #if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
@ -395,7 +364,6 @@ equality_test()
tuple<int, char> t4(2, 'a'); tuple<int, char> t4(2, 'a');
BOOST_TEST(t1 != t3); BOOST_TEST(t1 != t3);
BOOST_TEST(t1 != t4); BOOST_TEST(t1 != t4);
BOOST_TEST(!(t1 != t2));
} }
@ -447,30 +415,10 @@ void cons_test()
void const_tuple_test() void const_tuple_test()
{ {
const tuple<int, float> t1(5, 3.3f); const tuple<int, float> t1(5, 3.3f);
BOOST_TEST(get<0>(t1) == 5); BOOST_TEST(tuples::get<0>(t1) == 5);
BOOST_TEST(get<1>(t1) == 3.3f); BOOST_TEST(tuples::get<1>(t1) == 3.3f);
} }
// ----------------------------------------------------------------------------
// - testing length -----------------------------------------------------------
// ----------------------------------------------------------------------------
void tuple_length_test()
{
typedef tuple<int, float, double> t1;
using tuples::cons;
typedef cons<int, cons< float, cons <double, tuples::null_type> > > t1_cons;
typedef tuple<> t2;
typedef tuples::null_type t3;
BOOST_STATIC_ASSERT(tuples::length<t1>::value == 3);
BOOST_STATIC_ASSERT(tuples::length<t1_cons>::value == 3);
BOOST_STATIC_ASSERT(tuples::length<t2>::value == 0);
BOOST_STATIC_ASSERT(tuples::length<t3>::value == 0);
}
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
// - main --------------------------------------------------------------------- // - main ---------------------------------------------------------------------
@ -488,13 +436,5 @@ int test_main(int, char *[]) {
ordering_test(); ordering_test();
cons_test(); cons_test();
const_tuple_test(); const_tuple_test();
tuple_length_test();
return 0; return 0;
} }