Compare commits

..

41 Commits

Author SHA1 Message Date
9e5ba40e80 Removed part of the Boost files from the SPIRIT_MINIBOOST branch.
[SVN r26362]
2004-11-29 21:25:31 +00:00
304b94fc86 This commit was manufactured by cvs2svn to create branch
'SPIRIT_MINIBOOST'.

[SVN r26343]
2004-11-29 07:29:20 +00:00
34690282fe fixes in element<> for BCB compilers, with help from Tobias Schwinger
[SVN r25763]
2004-10-18 06:03:18 +00:00
bc3d37ec2b c++boost.gif -> boost.png replacement
[SVN r25573]
2004-10-05 15:45:52 +00:00
eea1937afc Converted to Boost Software License, Version 1.0
[SVN r24096]
2004-07-27 03:43:34 +00:00
8820994ffd Doug Gregor -> Douglas Gregor
[SVN r24016]
2004-07-25 02:29:29 +00:00
045d761ab5 suppressed scoping the call get_class to the detail namespace
[SVN r23113]
2004-06-17 13:51:33 +00:00
63c93b59b4 port to vacpp:
added default template arguments explicitly (Joaquin M Lopez)
  removed member template keyword (Toon Knapen)


[SVN r23109]
2004-06-17 07:01:13 +00:00
78572fca7b Bug fix for vc6
[SVN r20866]
2003-11-19 22:01:52 +00:00
ad29f96e5b updated swallow_assign constness bug
[SVN r20520]
2003-10-28 09:42:43 +00:00
9734556efe made "ingnore" a const object to avoid linker errors
[SVN r20449]
2003-10-21 23:25:17 +00:00
c8e03a518b added praise for Dave for improving tuple support on non-partial
template specialization compilers


[SVN r19965]
2003-09-08 15:10:04 +00:00
e4b869219b More complete functionality for compilers without partial specialization.
[SVN r19925]
2003-09-05 16:52:55 +00:00
eef0e01c8d Adjust for changed test library name
[SVN r19924]
2003-09-05 16:18:53 +00:00
41d649b08c cleaning up after previous commit
[SVN r19688]
2003-08-18 19:35:29 +00:00
122bf636f5 getting rid of some library specific macros and using BOOST_NO_EXPLICIT_-
FUNCTION_TEMPLATE_ARGUMENTS related helper macros from the config library


[SVN r19687]
2003-08-18 19:33:47 +00:00
359eaeecbf added tests to ensure correct constness behaviour
[SVN r18871]
2003-06-26 15:19:01 +00:00
28e34eb757 fixed a typo
[SVN r18386]
2003-05-12 14:51:42 +00:00
5ea6623d49 restore from disk crash
[SVN r18353]
2003-05-08 02:19:10 +00:00
d349450992 fixed a few links
[SVN r18344]
2003-05-07 16:01:33 +00:00
8b4daa1385 patch of a patch
[SVN r17706]
2003-03-03 16:45:55 +00:00
1972959fda element<T>::type takes constness into consideration
[SVN r17666]
2003-02-26 23:10:55 +00:00
496cc84960 a patch for borland
[SVN r17660]
2003-02-26 16:04:56 +00:00
c1a28e5d81 typofix
[SVN r17557]
2003-02-20 15:30:48 +00:00
4d4fe0010f Added copyright statement
[SVN r17193]
2003-02-04 11:54:01 +00:00
8992af95d1 Link bug workaround for MSVC and old Dec CXX
[SVN r16342]
2002-11-20 13:17:52 +00:00
ae40fce7c9 added namespace qualifiers to make MIPS PRO happy
[SVN r16033]
2002-10-31 18:14:29 +00:00
607b65a946 fixing a borland warning
[SVN r15810]
2002-10-08 19:24:36 +00:00
2c213c8295 fix one borland warning
[SVN r15808]
2002-10-08 18:43:52 +00:00
5b8506c39b typo fixes
[SVN r15652]
2002-10-02 16:51:43 +00:00
22f56bbe58 fixed Bemans name in a comment
[SVN r15594]
2002-10-01 03:26:10 +00:00
fb8fa3c7b6 work-around for MIPSpro bug
[SVN r15574]
2002-09-30 19:45:22 +00:00
cc5a2ae388 Fixes which make it possible to declare with reference elements
[SVN r15532]
2002-09-28 07:25:27 +00:00
4cd544f4c1 applied patch Markus Schöpflin, ::template replaced with ::BOOST_NESTED_TEMPLATE
[SVN r15466]
2002-09-20 15:55:10 +00:00
74a2ab1242 changed jamfile includes from <include> to <sysinclude>
[SVN r15305]
2002-09-13 16:26:12 +00:00
7896766f8f a fix of a fix
[SVN r15278]
2002-09-12 20:59:05 +00:00
0a33edd21d workaround for isspace and metrowerks
[SVN r15277]
2002-09-12 20:50:10 +00:00
53c1bb2c20 removed an extraneous include
[SVN r14993]
2002-08-20 15:54:11 +00:00
ea8d71487d workaround for boost test library problem
[SVN r14992]
2002-08-20 15:51:36 +00:00
6a92d10f25 added a redirection index.html file
[SVN r14898]
2002-08-15 18:26:17 +00:00
3570bdb6b6 fixed some warningns about unused variables, added Jamfile
[SVN r14854]
2002-08-14 20:55:52 +00:00
13 changed files with 99 additions and 2471 deletions

View File

@ -4,7 +4,7 @@
<body bgcolor="#FFFFFF" text="#000000">
<IMG SRC="../../../c++boost.gif"
<IMG SRC="../../../boost.png"
ALT="C++ Boost" width="277" height="86">
<h1>Tuple Library : design decisions rationale</h1>

View File

@ -4,7 +4,7 @@
<title>Tuple library advanced features</title>
<body bgcolor="#FFFFFF" text="#000000">
<IMG SRC="../../../c++boost.gif"
<IMG SRC="../../../boost.png"
ALT="C++ Boost" width="277" height="86">
</head>
@ -20,7 +20,9 @@ Suppose <code>T</code> is a tuple type, and <code>N</code> is a constant integra
<code><pre>element&lt;N, T&gt;::type</pre></code>
gives the type of the <code>N</code>th element in the tuple type <code>T</code>.
gives the type of the <code>N</code>th element in the tuple type <code>T</code>. If <code>T</code> is const, the resulting type is const qualified as well.
Note that the constness of <code>T</code> does not affect reference type
elements.
</p>
<code><pre>length&lt;T&gt;::value</pre></code>

View File

@ -4,7 +4,7 @@
</head>
<body bgcolor="#FFFFFF" text="#000000">
<IMG SRC="../../../c++boost.gif"
<IMG SRC="../../../boost.png"
ALT="C++ Boost" width="277" height="86">
<h1>The Boost Tuple Library</h1>
@ -97,7 +97,7 @@ tuple&lt;A*, tuple&lt;const A*, const B&amp;, C&gt;, bool, void*&gt;
<p>
The tuple constructor takes the tuple elements as arguments.
For an <i>n</i>-element tuple, the constructor can be invoked with <i>k</i> arguments, where 0 &lt; <i>k</i> &lt;= <i>n</i>.
For an <i>n</i>-element tuple, the constructor can be invoked with <i>k</i> arguments, where 0 &lt;= <i>k</i> &lt;= <i>n</i>.
For example:
<pre><code>tuple&lt;int, double&gt;()
tuple&lt;int, double&gt;(1)
@ -202,7 +202,7 @@ Array arguments to <code>make_tuple</code> functions are deduced to reference to
<pre><code>make_tuple(&quot;Donald&quot;, &quot;Daisy&quot;);
</code></pre>
This creates an object of type <code>tuple&lt;const char (&amp;)[5], const char (&amp;)[6]&gt;</code>
This creates an object of type <code>tuple&lt;const char (&amp;)[7], const char (&amp;)[6]&gt;</code>
(note that the type of a string literal is an array of const characters, not <code>const char*</code>).
However, to get <code>make_tuple</code> to create a tuple with an element of a
non-const array type one must use the <code>ref</code> wrapper.
@ -264,10 +264,10 @@ A tuple can be copy constructed from another tuple, provided that the element ty
Analogously, a tuple can be assigned to another tuple, provided that the element types are element-wise assignable.
For example:
<pre><code>class A;
<pre><code>class A {};
class B : public A {};
struct C { C(); C(const B&amp;); }
struct D { operator C() const; }
struct C { C(); C(const B&amp;); };
struct D { operator C() const; };
tuple&lt;char, B*, B, D&gt; t;
...
tuple&lt;int, A*, C, C&gt; a(t); // ok
@ -460,8 +460,8 @@ f1(i,d); // #1
tie(i,d) = f2(); // #2
</code></pre>
See
[<a href=#publ_1>1</a>,
<a href=#publ_2>2</a>]
[<a href="#publ_1">1</a>,
<a href="#publ_2">2</a>]
for more in-depth discussions about efficiency.
<h4>Effect on Compile Time</h4>
@ -472,8 +472,8 @@ Depending on the compiler and the tuple length, it may be more than 10 times slo
However, as a realistic program is likely to contain a lot of code in addition to tuple definitions, the difference is probably unnoticeable.
Compile time increases between 5 to 10 percentages were measured for programs which used tuples very frequently.
With the same test programs, memory consumption of compiling increased between 22% to 27%. See
[<a href=#publ_1>1</a>,
<a href=#publ_2>2</a>]
[<a href="#publ_1">1</a>,
<a href="#publ_2">2</a>]
for details.
</p>
@ -492,7 +492,7 @@ Below is a list of compilers and known problems with each compiler:
</table>
<h2><a name = "thanks">Acknowledgements</a></h2>
Gary Powell has been an indispensable helping hand. In particular, stream manipulators for tuples were his idea. Doug Gregor came up with a working version for MSVC. Thanks to Jeremy Siek, William Kempf and Jens Maurer for their help and suggestions.
Gary Powell has been an indispensable helping hand. In particular, stream manipulators for tuples were his idea. Doug Gregor came up with a working version for MSVC, David Abrahams found a way to get rid of most of the restrictions for compilers not supporting partial specialization. Thanks to Jeremy Siek, William Kempf and Jens Maurer for their help and suggestions.
The comments by Vesa Karvonen, John Max Skaller, Ed Brey, Beman Dawes, David Abrahams and Hartmut Kaiser helped to improve the
library.
The idea for the tie mechanism came from an old usenet article by Ian McCulloch, where he proposed something similar for std::pairs.
@ -500,12 +500,12 @@ The idea for the tie mechanism came from an old usenet article by Ian McCulloch,
<p>
<a name="publ_1"></a>[1]
J&auml;rvi J.: <i>Tuples and multiple return values in C++</i>, TUCS Technical Report No 249, 1999 (<a href="http://www.tucs.fi/publications">http://www.tucs.fi/publications</a>).
J&auml;rvi J.: <i>Tuples and multiple return values in C++</i>, TUCS Technical Report No 249, 1999 (<a href="http://www.tucs.fi/Publications">http://www.tucs.fi/Publications</a>).
</p>
<p>
<a name="publ_2"></a>[2]
J&auml;rvi J.: <i>ML-Style Tuple Assignment in Standard C++ - Extending the Multiple Return Value Formalism</i>, TUCS Technical Report No 267, 1999 (<a href="http://www.tucs.fi/publications">http://www.tucs.fi/publications</a>).
J&auml;rvi J.: <i>ML-Style Tuple Assignment in Standard C++ - Extending the Multiple Return Value Formalism</i>, TUCS Technical Report No 267, 1999 (<a href="http://www.tucs.fi/Publications">http://www.tucs.fi/Publications</a>).
</p>
<p>
@ -514,7 +514,7 @@ J&auml;rvi J.: <i>ML-Style Tuple Assignment in Standard C++ - Extending the Mult
<hr>
<p>Last modified 2001-09-13</p>
<p>Last modified 2003-09-07</p>
<p>&copy; Copyright <a href="../../../people/jaakko_jarvi.htm"> Jaakko J&auml;rvi</a> 2001.

View File

@ -1,867 +0,0 @@
// tuple_basic.hpp -----------------------------------------------------
// Copyright (C) 1999, 2000 Jaakko J<>rvi (jaakko.jarvi@cs.utu.fi)
//
// Permission to copy, use, sell and distribute this software is granted
// provided this copyright notice appears in all copies.
// Permission to modify the code and to distribute modified code is granted
// provided this copyright notice appears in all copies, and a notice
// that the code was modified is included with the copyright notice.
//
// This software is provided "as is" without express or implied warranty,
// and with no claim as to its suitability for any purpose.
// For more information, see http://www.boost.org
// Outside help:
// This and that, Gary Powell.
// Fixed return types for get_head/get_tail
// ( and other bugs ) per suggestion of Jens Maurer
// simplified element type accessors + bug fix (Jeremy Siek)
// Several changes/additions according to suggestions by Doug Gregor,
// William Kempf, Vesa Karvonen, John Max Skaller, Ed Brey, Beman Davis,
// David Abrahams.
// Revision history:
// 2002 05 01 Hugo Duncan: Fix for Borland after Jaakko's previous changes
// 2002 04 18 Jaakko: tuple element types can be void or plain function
// types, as long as no object is created.
// Tuple objects can no hold even noncopyable types
// such as arrays.
// 2001 10 22 John Maddock
// Fixes for Borland C++
// 2001 08 30 David Abrahams
// Added default constructor for cons<>.
// -----------------------------------------------------------------
#ifndef BOOST_TUPLE_BASIC_HPP
#define BOOST_TUPLE_BASIC_HPP
#include <utility> // needed for the assignment from pair to tuple
#include "boost/type_traits/cv_traits.hpp"
#include "boost/type_traits/function_traits.hpp"
namespace boost {
namespace tuples {
// -- null_type --------------------------------------------------------
struct null_type {};
// a helper function to provide a const null_type type temporary
namespace detail {
inline const null_type cnull() { return null_type(); }
// -- if construct ------------------------------------------------
// Proposed by Krzysztof Czarnecki and Ulrich Eisenecker
template <bool If, class Then, class Else> struct IF { typedef Then RET; };
template <class Then, class Else> struct IF<false, Then, Else> {
typedef Else RET;
};
} // end detail
// - cons forward declaration -----------------------------------------------
template <class HT, class TT> struct cons;
// - tuple forward declaration -----------------------------------------------
template <
class T0 = null_type, class T1 = null_type, class T2 = null_type,
class T3 = null_type, class T4 = null_type, class T5 = null_type,
class T6 = null_type, class T7 = null_type, class T8 = null_type,
class T9 = null_type>
class tuple;
// tuple_length forward declaration
template<class T> struct length;
namespace detail {
#ifdef BOOST_NO_EXPLICIT_FUNCTION_TEMPLATE_ARGUMENTS
template<int N> struct workaround_holder {};
# define BOOST_TUPLE_DUMMY_PARM , detail::workaround_holder<N>* = 0
# define BOOST_TUPLE_SINGLE_DUMMY_PARM detail::workaround_holder<N>* = 0
#else
# define BOOST_TUPLE_DUMMY_PARM
# define BOOST_TUPLE_SINGLE_DUMMY_PARM
#endif
// -- generate error template, referencing to non-existing members of this
// template is used to produce compilation errors intentionally
template<class T>
class generate_error;
// - cons getters --------------------------------------------------------
// called: get_class<N>::get<RETURN_TYPE>(aTuple)
template< int N >
struct get_class {
template<class RET, class HT, class TT >
inline static RET get(const cons<HT, TT>& t)
{
return get_class<N-1>::template get<RET>(t.tail);
}
template<class RET, class HT, class TT >
inline static RET get(cons<HT, TT>& t)
{
return get_class<N-1>::template get<RET>(t.tail);
}
};
template<>
struct get_class<0> {
template<class RET, class HT, class TT>
inline static RET get(const cons<HT, TT>& t)
{
return t.head;
}
template<class RET, class HT, class TT>
inline static RET get(cons<HT, TT>& t)
{
return t.head;
}
};
} // end of namespace detail
// -cons type accessors ----------------------------------------
// typename tuples::element<N,T>::type gets the type of the
// Nth element ot T, first element is at index 0
// -------------------------------------------------------
template<int N, class T>
struct element
{
private:
typedef typename T::tail_type Next;
public:
typedef typename element<N-1, Next>::type type;
};
template<class T>
struct element<0,T>
{
typedef typename T::head_type type;
};
// -get function templates -----------------------------------------------
// Usage: get<N>(aTuple)
// -- some traits classes for get functions
// access traits lifted from detail namespace to be part of the interface,
// (Joel de Guzman's suggestion). Rationale: get functions are part of the
// interface, so should the way to express their return types be.
template <class T> struct access_traits {
typedef const T& const_type;
typedef T& non_const_type;
typedef const typename boost::remove_cv<T>::type& parameter_type;
// used as the tuple constructors parameter types
// Rationale: non-reference tuple element types can be cv-qualified.
// It should be possible to initialize such types with temporaries,
// and when binding temporaries to references, the reference must
// be non-volatile and const. 8.5.3. (5)
};
template <class T> struct access_traits<T&> {
typedef T& const_type;
typedef T& non_const_type;
typedef T& parameter_type;
};
// get function for non-const cons-lists, returns a reference to the element
template<int N, class HT, class TT>
inline typename access_traits<
typename element<N, cons<HT, TT> >::type
>::non_const_type
get(cons<HT, TT>& c BOOST_TUPLE_DUMMY_PARM) {
return detail::get_class<N>::template
get<
typename access_traits<
typename element<N, cons<HT, TT> >::type
>::non_const_type>(c);
}
// get function for const cons-lists, returns a const reference to
// the element. If the element is a reference, returns the reference
// as such (that is, can return a non-const reference)
template<int N, class HT, class TT>
inline typename access_traits<
typename element<N, cons<HT, TT> >::type
>::const_type
get(const cons<HT, TT>& c BOOST_TUPLE_DUMMY_PARM) {
return detail::get_class<N>::template
get<
typename access_traits<
typename element<N, cons<HT, TT> >::type
>::const_type>(c);
}
// -- the cons template --------------------------------------------------
namespace detail {
// These helper templates wrap void types and plain function types.
// The reationale is to allow one to write tuple types with those types
// as elements, even though it is not possible to instantiate such object.
// E.g: typedef tuple<void> some_type; // ok
// but: some_type x; // fails
template <class T> class non_storeable_type {
non_storeable_type();
};
template <class T> struct wrap_non_storeable_type {
typedef typename IF<
::boost::is_function<T>::value, non_storeable_type<T>, T
>::RET type;
};
template <> struct wrap_non_storeable_type<void> {
typedef non_storeable_type<void> type;
};
} // detail
template <class HT, class TT>
struct cons {
typedef HT head_type;
typedef TT tail_type;
typedef typename
detail::wrap_non_storeable_type<head_type>::type stored_head_type;
stored_head_type head;
tail_type tail;
typename access_traits<stored_head_type>::non_const_type
get_head() { return head; }
typename access_traits<tail_type>::non_const_type
get_tail() { return tail; }
typename access_traits<stored_head_type>::const_type
get_head() const { return head; }
typename access_traits<tail_type>::const_type
get_tail() const { return tail; }
cons() : head(), tail() {}
// cons() : head(detail::default_arg<HT>::f()), tail() {}
// the argument for head is not strictly needed, but it prevents
// array type elements. This is good, since array type elements
// cannot be supported properly in any case (no assignment,
// copy works only if the tails are exactly the same type, ...)
cons(typename access_traits<stored_head_type>::parameter_type h,
const tail_type& t)
: head (h), tail(t) {}
template <class T1, class T2, class T3, class T4, class T5,
class T6, class T7, class T8, class T9, class T10>
cons( T1& t1, T2& t2, T3& t3, T4& t4, T5& t5,
T6& t6, T7& t7, T8& t8, T9& t9, T10& t10 )
: head (t1),
tail (t2, t3, t4, t5, t6, t7, t8, t9, t10, detail::cnull())
{}
template <class T2, class T3, class T4, class T5,
class T6, class T7, class T8, class T9, class T10>
cons( const null_type& t1, T2& t2, T3& t3, T4& t4, T5& t5,
T6& t6, T7& t7, T8& t8, T9& t9, T10& t10 )
: head (),
tail (t2, t3, t4, t5, t6, t7, t8, t9, t10, detail::cnull())
{}
template <class HT2, class TT2>
cons( const cons<HT2, TT2>& u ) : head(u.head), tail(u.tail) {}
template <class HT2, class TT2>
cons& operator=( const cons<HT2, TT2>& u ) {
head=u.head; tail=u.tail; return *this;
}
// must define assignment operator explicitly, implicit version is
// illformed if HT is a reference (12.8. (12))
cons& operator=(const cons& u) {
head = u.head; tail = u.tail; return *this;
}
template <class T1, class T2>
cons& operator=( const std::pair<T1, T2>& u ) {
BOOST_STATIC_ASSERT(length<cons>::value == 2); // check length = 2
head = u.first; tail.head = u.second; return *this;
}
// get member functions (non-const and const)
template <int N>
typename access_traits<
typename element<N, cons<HT, TT> >::type
>::non_const_type
get() {
return boost::tuples::get<N>(*this); // delegate to non-member get
}
template <int N>
typename access_traits<
typename element<N, cons<HT, TT> >::type
>::const_type
get() const {
return boost::tuples::get<N>(*this); // delegate to non-member get
}
};
template <class HT>
struct cons<HT, null_type> {
typedef HT head_type;
typedef null_type tail_type;
typedef typename
detail::wrap_non_storeable_type<head_type>::type stored_head_type;
stored_head_type head;
typename access_traits<stored_head_type>::non_const_type
get_head() { return head; }
null_type get_tail() { return null_type(); }
typename access_traits<stored_head_type>::const_type
get_head() const { return head; }
const null_type get_tail() const { return null_type(); }
// cons() : head(detail::default_arg<HT>::f()) {}
cons() : head() {}
cons(typename access_traits<stored_head_type>::parameter_type h,
const null_type& = null_type())
: head (h) {}
template<class T1>
cons(T1& t1, const null_type&, const null_type&, const null_type&,
const null_type&, const null_type&, const null_type&,
const null_type&, const null_type&, const null_type&)
: head (t1) {}
cons(const null_type& t1,
const null_type&, const null_type&, const null_type&,
const null_type&, const null_type&, const null_type&,
const null_type&, const null_type&, const null_type&)
: head () {}
template <class HT2>
cons( const cons<HT2, null_type>& u ) : head(u.head) {}
template <class HT2>
cons& operator=(const cons<HT2, null_type>& u )
{ head = u.head; return *this; }
// must define assignment operator explicitely, implicit version
// is illformed if HT is a reference
cons& operator=(const cons& u) { head = u.head; return *this; }
template <int N>
typename access_traits<
typename element<N, cons>::type
>::non_const_type
get(BOOST_TUPLE_SINGLE_DUMMY_PARM) {
return boost::tuples::get<N>(*this);
}
template <int N>
typename access_traits<
typename element<N, cons>::type
>::const_type
get(BOOST_TUPLE_SINGLE_DUMMY_PARM) const {
return boost::tuples::get<N>(*this);
}
};
// templates for finding out the length of the tuple -------------------
template<class T>
struct length {
BOOST_STATIC_CONSTANT(int, value = 1 + length<typename T::tail_type>::value);
};
template<>
struct length<tuple<> > {
BOOST_STATIC_CONSTANT(int, value = 0);
};
template<>
struct length<null_type> {
BOOST_STATIC_CONSTANT(int, value = 0);
};
namespace detail {
// Tuple to cons mapper --------------------------------------------------
template <class T0, class T1, class T2, class T3, class T4,
class T5, class T6, class T7, class T8, class T9>
struct map_tuple_to_cons
{
typedef cons<T0,
typename map_tuple_to_cons<T1, T2, T3, T4, T5,
T6, T7, T8, T9, null_type>::type
> type;
};
// The empty tuple is a null_type
template <>
struct map_tuple_to_cons<null_type, null_type, null_type, null_type, null_type, null_type, null_type, null_type, null_type, null_type>
{
typedef null_type type;
};
} // end detail
// -------------------------------------------------------------------
// -- tuple ------------------------------------------------------
template <class T0, class T1, class T2, class T3, class T4,
class T5, class T6, class T7, class T8, class T9>
class tuple :
public detail::map_tuple_to_cons<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>::type
{
public:
typedef typename
detail::map_tuple_to_cons<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>::type inherited;
typedef typename inherited::head_type head_type;
typedef typename inherited::tail_type tail_type;
// access_traits<T>::parameter_type takes non-reference types as const T&
tuple() {}
tuple(typename access_traits<T0>::parameter_type t0)
: inherited(t0, detail::cnull(), detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1)
: inherited(t0, t1, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2)
: inherited(t0, t1, t2, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3)
: inherited(t0, t1, t2, t3, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull(),
detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3,
typename access_traits<T4>::parameter_type t4)
: inherited(t0, t1, t2, t3, t4, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3,
typename access_traits<T4>::parameter_type t4,
typename access_traits<T5>::parameter_type t5)
: inherited(t0, t1, t2, t3, t4, t5, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3,
typename access_traits<T4>::parameter_type t4,
typename access_traits<T5>::parameter_type t5,
typename access_traits<T6>::parameter_type t6)
: inherited(t0, t1, t2, t3, t4, t5, t6, detail::cnull(),
detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3,
typename access_traits<T4>::parameter_type t4,
typename access_traits<T5>::parameter_type t5,
typename access_traits<T6>::parameter_type t6,
typename access_traits<T7>::parameter_type t7)
: inherited(t0, t1, t2, t3, t4, t5, t6, t7, detail::cnull(),
detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3,
typename access_traits<T4>::parameter_type t4,
typename access_traits<T5>::parameter_type t5,
typename access_traits<T6>::parameter_type t6,
typename access_traits<T7>::parameter_type t7,
typename access_traits<T8>::parameter_type t8)
: inherited(t0, t1, t2, t3, t4, t5, t6, t7, t8, detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3,
typename access_traits<T4>::parameter_type t4,
typename access_traits<T5>::parameter_type t5,
typename access_traits<T6>::parameter_type t6,
typename access_traits<T7>::parameter_type t7,
typename access_traits<T8>::parameter_type t8,
typename access_traits<T9>::parameter_type t9)
: inherited(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) {}
template<class U1, class U2>
tuple(const cons<U1, U2>& p) : inherited(p) {}
template <class U1, class U2>
tuple& operator=(const cons<U1, U2>& k) {
inherited::operator=(k);
return *this;
}
template <class U1, class U2>
tuple& operator=(const std::pair<U1, U2>& k) {
BOOST_STATIC_ASSERT(length<tuple>::value == 2);// check_length = 2
this->head = k.first;
this->tail.head = k.second;
return *this;
}
};
// The empty tuple
template <>
class tuple<null_type, null_type, null_type, null_type, null_type, null_type, null_type, null_type, null_type, null_type> :
public null_type
{
public:
typedef null_type inherited;
};
// Swallows any assignment (by Doug Gregor)
namespace detail {
struct swallow_assign {
template<typename T>
swallow_assign& operator=(const T&) {
return *this;
}
};
} // namespace detail
// "ignore" allows tuple positions to be ignored when using "tie".
namespace {
detail::swallow_assign ignore;
}
// ---------------------------------------------------------------------------
// The call_traits for make_tuple
// Honours the reference_wrapper class.
// Must be instantiated with plain or const plain types (not with references)
// from template<class T> foo(const T& t) : make_tuple_traits<const T>::type
// from template<class T> foo(T& t) : make_tuple_traits<T>::type
// Conversions:
// T -> T,
// references -> compile_time_error
// reference_wrapper<T> -> T&
// const reference_wrapper<T> -> T&
// array -> const ref array
template<class T>
struct make_tuple_traits {
typedef T type;
// commented away, see below (JJ)
// typedef typename IF<
// boost::is_function<T>::value,
// T&,
// T>::RET type;
};
// The is_function test was there originally for plain function types,
// which can't be stored as such (we must either store them as references or
// pointers). Such a type could be formed if make_tuple was called with a
// reference to a function.
// But this would mean that a const qualified function type was formed in
// the make_tuple function and hence make_tuple can't take a function
// reference as a parameter, and thus T can't be a function type.
// So is_function test was removed.
// (14.8.3. says that type deduction fails if a cv-qualified function type
// is created. (It only applies for the case of explicitly specifying template
// args, though?)) (JJ)
template<class T>
struct make_tuple_traits<T&> {
typedef typename
detail::generate_error<T&>::
do_not_use_with_reference_type error;
};
// Arrays can't be stored as plain types; convert them to references.
// All arrays are converted to const. This is because make_tuple takes its
// parameters as const T& and thus the knowledge of the potential
// non-constness of actual argument is lost.
template<class T, int n> struct make_tuple_traits <T[n]> {
typedef const T (&type)[n];
};
template<class T, int n>
struct make_tuple_traits<const T[n]> {
typedef const T (&type)[n];
};
template<class T, int n> struct make_tuple_traits<volatile T[n]> {
typedef const volatile T (&type)[n];
};
template<class T, int n>
struct make_tuple_traits<const volatile T[n]> {
typedef const volatile T (&type)[n];
};
template<class T>
struct make_tuple_traits<reference_wrapper<T> >{
typedef T& type;
};
template<class T>
struct make_tuple_traits<const reference_wrapper<T> >{
typedef T& type;
};
namespace detail {
// a helper traits to make the make_tuple functions shorter (Vesa Karvonen's
// suggestion)
template <
class T0 = null_type, class T1 = null_type, class T2 = null_type,
class T3 = null_type, class T4 = null_type, class T5 = null_type,
class T6 = null_type, class T7 = null_type, class T8 = null_type,
class T9 = null_type
>
struct make_tuple_mapper {
typedef
tuple<typename make_tuple_traits<T0>::type,
typename make_tuple_traits<T1>::type,
typename make_tuple_traits<T2>::type,
typename make_tuple_traits<T3>::type,
typename make_tuple_traits<T4>::type,
typename make_tuple_traits<T5>::type,
typename make_tuple_traits<T6>::type,
typename make_tuple_traits<T7>::type,
typename make_tuple_traits<T8>::type,
typename make_tuple_traits<T9>::type> type;
};
} // end detail
// -make_tuple function templates -----------------------------------
inline tuple<> make_tuple() {
return tuple<>();
}
template<class T0>
inline typename detail::make_tuple_mapper<T0>::type
make_tuple(const T0& t0) {
typedef typename detail::make_tuple_mapper<T0>::type t;
return t(t0);
}
template<class T0, class T1>
inline typename detail::make_tuple_mapper<T0, T1>::type
make_tuple(const T0& t0, const T1& t1) {
typedef typename detail::make_tuple_mapper<T0, T1>::type t;
return t(t0, t1);
}
template<class T0, class T1, class T2>
inline typename detail::make_tuple_mapper<T0, T1, T2>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2) {
typedef typename detail::make_tuple_mapper<T0, T1, T2>::type t;
return t(t0, t1, t2);
}
template<class T0, class T1, class T2, class T3>
inline typename detail::make_tuple_mapper<T0, T1, T2, T3>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3) {
typedef typename detail::make_tuple_mapper<T0, T1, T2, T3>::type t;
return t(t0, t1, t2, t3);
}
template<class T0, class T1, class T2, class T3, class T4>
inline typename detail::make_tuple_mapper<T0, T1, T2, T3, T4>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
const T4& t4) {
typedef typename detail::make_tuple_mapper<T0, T1, T2, T3, T4>::type t;
return t(t0, t1, t2, t3, t4);
}
template<class T0, class T1, class T2, class T3, class T4, class T5>
inline typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
const T4& t4, const T5& t5) {
typedef typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5>::type t;
return t(t0, t1, t2, t3, t4, t5);
}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6>
inline typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5, T6>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
const T4& t4, const T5& t5, const T6& t6) {
typedef typename detail::make_tuple_mapper
<T0, T1, T2, T3, T4, T5, T6>::type t;
return t(t0, t1, t2, t3, t4, t5, t6);
}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6,
class T7>
inline typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5, T6, T7>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
const T4& t4, const T5& t5, const T6& t6, const T7& t7) {
typedef typename detail::make_tuple_mapper
<T0, T1, T2, T3, T4, T5, T6, T7>::type t;
return t(t0, t1, t2, t3, t4, t5, t6, t7);
}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6,
class T7, class T8>
inline typename detail::make_tuple_mapper
<T0, T1, T2, T3, T4, T5, T6, T7, T8>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
const T4& t4, const T5& t5, const T6& t6, const T7& t7,
const T8& t8) {
typedef typename detail::make_tuple_mapper
<T0, T1, T2, T3, T4, T5, T6, T7, T8>::type t;
return t(t0, t1, t2, t3, t4, t5, t6, t7, t8);
}
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6,
class T7, class T8, class T9>
inline typename detail::make_tuple_mapper
<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
const T4& t4, const T5& t5, const T6& t6, const T7& t7,
const T8& t8, const T9& t9) {
typedef typename detail::make_tuple_mapper
<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>::type t;
return t(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9);
}
// Tie function templates -------------------------------------------------
template<class T1>
inline tuple<T1&> tie(T1& t1) {
return tuple<T1&> (t1);
}
template<class T1, class T2>
inline tuple<T1&, T2&> tie(T1& t1, T2& t2) {
return tuple<T1&, T2&> (t1, t2);
}
template<class T1, class T2, class T3>
inline tuple<T1&, T2&, T3&> tie(T1& t1, T2& t2, T3& t3) {
return tuple<T1&, T2&, T3&> (t1, t2, t3);
}
template<class T1, class T2, class T3, class T4>
inline tuple<T1&, T2&, T3&, T4&> tie(T1& t1, T2& t2, T3& t3, T4& t4) {
return tuple<T1&, T2&, T3&, T4&> (t1, t2, t3, t4);
}
template<class T1, class T2, class T3, class T4, class T5>
inline tuple<T1&, T2&, T3&, T4&, T5&>
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5& t5) {
return tuple<T1&, T2&, T3&, T4&, T5&> (t1, t2, t3, t4, t5);
}
template<class T1, class T2, class T3, class T4, class T5, class T6>
inline tuple<T1&, T2&, T3&, T4&, T5&, T6&>
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5& t5, T6& t6) {
return tuple<T1&, T2&, T3&, T4&, T5&, T6&> (t1, t2, t3, t4, t5, t6);
}
template<class T1, class T2, class T3, class T4, class T5, class T6, class T7>
inline tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&>
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5& t5, T6& t6, T7& t7) {
return tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&> (t1, t2, t3, t4, t5, t6, t7);
}
template<class T1, class T2, class T3, class T4, class T5, class T6, class T7,
class T8>
inline tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&, T8&>
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5& t5, T6& t6, T7& t7, T8& t8) {
return tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&, T8&>
(t1, t2, t3, t4, t5, t6, t7, t8);
}
template<class T1, class T2, class T3, class T4, class T5, class T6, class T7,
class T8, class T9>
inline tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&, T8&, T9&>
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5& t5, T6& t6, T7& t7, T8& t8,
T9& t9) {
return tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&, T8&, T9&>
(t1, t2, t3, t4, t5, t6, t7, t8, t9);
}
template<class T1, class T2, class T3, class T4, class T5, class T6, class T7,
class T8, class T9, class T10>
inline tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&, T8&, T9&, T10&>
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5& t5, T6& t6, T7& t7, T8& t8,
T9& t9, T10& t10) {
return tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&, T8&, T9&, T10&>
(t1, t2, t3, t4, t5, t6, t7, t8, t9, t10);
}
} // end of namespace tuples
} // end of namespace boost
#undef BOOST_TUPLE_DUMMY_PARM
#undef BOOST_TUPLE_SINGLE_DUMMY_PARM
#endif // BOOST_TUPLE_BASIC_HPP

View File

@ -1,756 +0,0 @@
// - tuple_basic_no_partial_spec.hpp -----------------------------------------
// Copyright (C) 1999, 2000 Jaakko J<>rvi (jaakko.jarvi@cs.utu.fi)
// Copyright (C) 2001 Doug Gregor (gregod@rpi.edu)
// Copyright (C) 2001 Gary Powell (gary.powell@sierra.com)
//
// Permission to copy, use, sell and distribute this software is granted
// provided this copyright notice appears in all copies.
// Permission to modify the code and to distribute modified code is granted
// provided this copyright notice appears in all copies, and a notice
// that the code was modified is included with the copyright notice.
//
// This software is provided "as is" without express or implied warranty,
// and with no claim as to its suitability for any purpose.
// For more information, see http://www.boost.org or http://lambda.cs.utu.fi
// Revision History
// 14 02 01 Remove extra ';'. Also, fixed 10-parameter to make_tuple. (DG)
// 10 02 01 Fixed "null_type" constructors.
// Implemented comparison operators globally.
// Hide element_type_ref and element_type_const_ref.
// (DG).
// 09 02 01 Extended to tuples of length 10. Changed comparison for
// operator<()
// to the same used by std::pair<>, added cnull_type() (GP)
// 03 02 01 Initial Version from original tuple.hpp code by JJ. (DG)
// -----------------------------------------------------------------
#ifndef BOOST_TUPLE_BASIC_NO_PARTIAL_SPEC_HPP
#define BOOST_TUPLE_BASIC_NO_PARTIAL_SPEC_HPP
#include "boost/type_traits.hpp"
#include <utility>
#if defined BOOST_MSVC
#pragma warning(disable:4518) // storage-class or type specifier(s) unexpected here; ignored
#pragma warning(disable:4181) // qualifier applied to reference type ignored
#pragma warning(disable:4227) // qualifier applied to reference type ignored
#endif
namespace boost {
namespace tuples {
// null_type denotes the end of a list built with "cons"
struct null_type
{
null_type() {}
null_type(const null_type&, const null_type&) {}
};
// a helper function to provide a const null_type type temporary
inline const null_type cnull_type() { return null_type(); }
// forward declaration of tuple
template<
typename T1 = null_type,
typename T2 = null_type,
typename T3 = null_type,
typename T4 = null_type,
typename T5 = null_type,
typename T6 = null_type,
typename T7 = null_type,
typename T8 = null_type,
typename T9 = null_type,
typename T10 = null_type
>
class tuple;
namespace detail {
// Takes a pointer and routes all assignments to whatever it points to
template<typename T>
struct assign_to_pointee
{
public:
explicit assign_to_pointee(T* p) : ptr(p) {}
template<typename Other>
assign_to_pointee& operator=(const Other& other)
{
*ptr = other;
return *this;
}
private:
T* ptr;
};
// Swallows any assignment
struct swallow_assign
{
template<typename T>
swallow_assign& operator=(const T&)
{
return *this;
}
};
} // end of namespace detail
// cons builds a heterogenous list of types
template<typename Head, typename Tail = null_type>
struct cons
{
typedef cons self_type;
typedef Head head_type;
typedef Tail tail_type;
head_type head;
tail_type tail;
typename boost::add_reference<head_type>::type get_head() { return head; }
typename boost::add_reference<tail_type>::type get_tail() { return tail; }
typename boost::add_reference<const head_type>::type get_head() const { return head; }
typename boost::add_reference<const tail_type>::type get_tail() const { return tail; }
#if defined BOOST_MSVC
template<typename Tail>
explicit cons(const head_type& h /* = head_type() */, // causes MSVC 6.5 to barf.
const Tail& t) : head(h), tail(t.head, t.tail)
{
}
explicit cons(const head_type& h /* = head_type() */, // causes MSVC 6.5 to barf.
const null_type& t) : head(h), tail(t)
{
}
#else
template<typename T>
explicit cons(const head_type& h, const T& t) :
head(h), tail(t.head, t.tail)
{
}
explicit cons(const head_type& h = head_type(),
const tail_type& t = tail_type()) :
head(h), tail(t)
{
}
#endif
template<typename Other>
cons& operator=(const Other& other)
{
head = other.head;
tail = other.tail;
return *this;
}
};
namespace detail {
// Determines if the parameter is null_type
template<typename T> struct is_null_type { enum { RET = 0 }; };
template<> struct is_null_type<null_type> { enum { RET = 1 }; };
/* Build a cons structure from the given Head and Tail. If both are null_type,
return null_type. */
template<typename Head, typename Tail>
struct build_cons
{
private:
enum { tail_is_null_type = is_null_type<Tail>::RET };
public:
typedef cons<Head, Tail> RET;
};
template<>
struct build_cons<null_type, null_type>
{
typedef null_type RET;
};
// Map the N elements of a tuple into a cons list
template<
typename T1,
typename T2 = null_type,
typename T3 = null_type,
typename T4 = null_type,
typename T5 = null_type,
typename T6 = null_type,
typename T7 = null_type,
typename T8 = null_type,
typename T9 = null_type,
typename T10 = null_type
>
struct map_tuple_to_cons
{
typedef typename detail::build_cons<T10, null_type >::RET cons10;
typedef typename detail::build_cons<T9, cons10>::RET cons9;
typedef typename detail::build_cons<T8, cons9>::RET cons8;
typedef typename detail::build_cons<T7, cons8>::RET cons7;
typedef typename detail::build_cons<T6, cons7>::RET cons6;
typedef typename detail::build_cons<T5, cons6>::RET cons5;
typedef typename detail::build_cons<T4, cons5>::RET cons4;
typedef typename detail::build_cons<T3, cons4>::RET cons3;
typedef typename detail::build_cons<T2, cons3>::RET cons2;
typedef typename detail::build_cons<T1, cons2>::RET cons1;
};
// Workaround the lack of partial specialization in some compilers
template<int N>
struct _element_type
{
template<typename Tuple>
struct inner
{
private:
typedef typename Tuple::tail_type tail_type;
typedef _element_type<N-1> next_elt_type;
public:
typedef typename _element_type<N-1>::template inner<tail_type>::RET RET;
};
};
template<>
struct _element_type<0>
{
template<typename Tuple>
struct inner
{
typedef typename Tuple::head_type RET;
};
};
} // namespace detail
// Return the Nth type of the given Tuple
template<int N, typename Tuple>
struct element
{
private:
typedef detail::_element_type<N> nth_type;
public:
typedef typename nth_type::template inner<Tuple>::RET RET;
typedef RET type;
};
namespace detail {
#if defined(BOOST_MSVC) && (BOOST_MSVC == 1300)
// special workaround for vc7:
template <bool x>
struct reference_adder
{
template <class T>
struct rebind
{
typedef T& type;
};
};
template <>
struct reference_adder<true>
{
template <class T>
struct rebind
{
typedef T type;
};
};
// Return a reference to the Nth type of the given Tuple
template<int N, typename Tuple>
struct element_ref
{
private:
typedef typename element<N, Tuple>::RET elt_type;
enum { is_ref = is_reference<elt_type>::value };
public:
typedef reference_adder<is_ref>::rebind<elt_type>::type RET;
typedef RET type;
};
// Return a const reference to the Nth type of the given Tuple
template<int N, typename Tuple>
struct element_const_ref
{
private:
typedef typename element<N, Tuple>::RET elt_type;
enum { is_ref = is_reference<elt_type>::value };
public:
typedef reference_adder<is_ref>::rebind<const elt_type>::type RET;
typedef RET type;
};
#else // vc7
// Return a reference to the Nth type of the given Tuple
template<int N, typename Tuple>
struct element_ref
{
private:
typedef typename element<N, Tuple>::RET elt_type;
public:
typedef typename add_reference<elt_type>::type RET;
typedef RET type;
};
// Return a const reference to the Nth type of the given Tuple
template<int N, typename Tuple>
struct element_const_ref
{
private:
typedef typename element<N, Tuple>::RET elt_type;
public:
typedef typename add_reference<const elt_type>::type RET;
typedef RET type;
};
#endif // vc7
} // namespace detail
// Get length of this tuple
template<typename Tuple>
struct length
{
BOOST_STATIC_CONSTANT(int, value = 1 + length<typename Tuple::tail_type>::value);
};
template<> struct length<tuple<> > {
BOOST_STATIC_CONSTANT(int, value = 0);
};
template<>
struct length<null_type>
{
BOOST_STATIC_CONSTANT(int, value = 0);
};
namespace detail {
// Reference the Nth element in a tuple and retrieve it with "get"
template<int N>
struct get_class
{
template<typename Head, typename Tail>
static inline
typename detail::element_ref<N, cons<Head, Tail> >::RET
get(cons<Head, Tail>& t)
{
return get_class<N-1>::get(t.tail);
}
template<typename Head, typename Tail>
static inline
typename detail::element_const_ref<N, cons<Head, Tail> >::RET
get(const cons<Head, Tail>& t)
{
return get_class<N-1>::get(t.tail);
}
};
template<>
struct get_class<0>
{
template<typename Head, typename Tail>
static inline
typename add_reference<Head>::type
get(cons<Head, Tail>& t)
{
return t.head;
}
template<typename Head, typename Tail>
static inline
typename add_reference<const Head>::type
get(const cons<Head, Tail>& t)
{
return t.head;
}
};
} // namespace detail
// tuple class
template<
typename T1,
typename T2,
typename T3,
typename T4,
typename T5,
typename T6,
typename T7,
typename T8,
typename T9,
typename T10
>
class tuple :
public detail::map_tuple_to_cons<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>::cons1
{
private:
typedef detail::map_tuple_to_cons<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10> mapped_tuple;
typedef typename mapped_tuple::cons10 cons10;
typedef typename mapped_tuple::cons9 cons9;
typedef typename mapped_tuple::cons8 cons8;
typedef typename mapped_tuple::cons7 cons7;
typedef typename mapped_tuple::cons6 cons6;
typedef typename mapped_tuple::cons5 cons5;
typedef typename mapped_tuple::cons4 cons4;
typedef typename mapped_tuple::cons3 cons3;
typedef typename mapped_tuple::cons2 cons2;
typedef typename mapped_tuple::cons1 cons1;
public:
typedef cons1 inherited;
typedef tuple self_type;
explicit tuple(const T1& t1 = T1(),
const T2& t2 = T2(),
const T3& t3 = T3(),
const T4& t4 = T4(),
const T5& t5 = T5(),
const T6& t6 = T6(),
const T7& t7 = T7(),
const T8& t8 = T8(),
const T9& t9 = T9(),
const T10& t10 = T10()) :
cons1(t1, cons2(t2, cons3(t3, cons4(t4, cons5(t5, cons6(t6,cons7(t7,cons8(t8,cons9(t9,cons10(t10))))))))))
{
}
template<typename Head, typename Tail>
explicit tuple(const cons<Head, Tail>& other) :
cons1(other.head, other.tail)
{
}
template<typename First, typename Second>
self_type& operator=(const std::pair<First, Second>& other)
{
this->head = other.first;
this->tail.head = other.second;
return *this;
}
template<typename Head, typename Tail>
self_type& operator=(const cons<Head, Tail>& other)
{
this->head = other.head;
this->tail = other.tail;
return *this;
}
};
namespace detail {
template<int N> struct workaround_holder {};
} // namespace detail
template<int N, typename Head, typename Tail>
typename detail::element_ref<N, cons<Head, Tail> >::RET
get(cons<Head, Tail>& t, detail::workaround_holder<N>* = 0)
{
return detail::get_class<N>::get(t);
}
template<int N, typename Head, typename Tail>
typename detail::element_const_ref<N, cons<Head, Tail> >::RET
get(const cons<Head, Tail>& t, detail::workaround_holder<N>* = 0)
{
return detail::get_class<N>::get(t);
}
// Make a tuple
template<typename T1>
inline
tuple<T1>
make_tuple(const T1& t1)
{
return tuple<T1>(t1);
}
// Make a tuple
template<typename T1, typename T2>
inline
tuple<T1, T2>
make_tuple(const T1& t1, const T2& t2)
{
return tuple<T1, T2>(t1, t2);
}
// Make a tuple
template<typename T1, typename T2, typename T3>
inline
tuple<T1, T2, T3>
make_tuple(const T1& t1, const T2& t2, const T3& t3)
{
return tuple<T1, T2, T3>(t1, t2, t3);
}
// Make a tuple
template<typename T1, typename T2, typename T3, typename T4>
inline
tuple<T1, T2, T3, T4>
make_tuple(const T1& t1, const T2& t2, const T3& t3, const T4& t4)
{
return tuple<T1, T2, T3, T4>(t1, t2, t3, t4);
}
// Make a tuple
template<typename T1, typename T2, typename T3, typename T4, typename T5>
inline
tuple<T1, T2, T3, T4, T5>
make_tuple(const T1& t1, const T2& t2, const T3& t3, const T4& t4, const T5& t5)
{
return tuple<T1, T2, T3, T4, T5>(t1, t2, t3, t4, t5);
}
// Make a tuple
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
inline
tuple<T1, T2, T3, T4, T5, T6>
make_tuple(const T1& t1, const T2& t2, const T3& t3, const T4& t4, const T5& t5, const T6& t6)
{
return tuple<T1, T2, T3, T4, T5, T6>(t1, t2, t3, t4, t5, t6);
}
// Make a tuple
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7>
inline
tuple<T1, T2, T3, T4, T5, T6, T7>
make_tuple(const T1& t1, const T2& t2, const T3& t3, const T4& t4, const T5& t5, const T6& t6, const T7& t7)
{
return tuple<T1, T2, T3, T4, T5, T6, T7>(t1, t2, t3, t4, t5, t6, t7);
}
// Make a tuple
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8>
inline
tuple<T1, T2, T3, T4, T5, T6, T7, T8>
make_tuple(const T1& t1, const T2& t2, const T3& t3, const T4& t4, const T5& t5, const T6& t6, const T7& t7, const T8& t8)
{
return tuple<T1, T2, T3, T4, T5, T6, T7, T8>(t1, t2, t3, t4, t5, t6, t7, t8);
}
// Make a tuple
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9>
inline
tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9>
make_tuple(const T1& t1, const T2& t2, const T3& t3, const T4& t4, const T5& t5, const T6& t6, const T7& t7, const T8& t8, const T9& t9)
{
return tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9>(t1, t2, t3, t4, t5, t6, t7, t8, t9);
}
// Make a tuple
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9, typename T10>
inline
tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>
make_tuple(const T1& t1, const T2& t2, const T3& t3, const T4& t4, const T5& t5, const T6& t6, const T7& t7, const T8& t8, const T9& t9, const T10& t10)
{
return tuple<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>(t1, t2, t3, t4, t5, t6, t7, t8, t9, t10);
}
// Tie variables into a tuple
template<typename T1>
inline
tuple<detail::assign_to_pointee<T1> >
tie(T1& t1)
{
return make_tuple(detail::assign_to_pointee<T1>(&t1));
}
// Tie variables into a tuple
template<typename T1, typename T2>
inline
tuple<detail::assign_to_pointee<T1>,
detail::assign_to_pointee<T2> >
tie(T1& t1, T2& t2)
{
return make_tuple(detail::assign_to_pointee<T1>(&t1),
detail::assign_to_pointee<T2>(&t2));
}
// Tie variables into a tuple
template<typename T1, typename T2, typename T3>
inline
tuple<detail::assign_to_pointee<T1>,
detail::assign_to_pointee<T2>,
detail::assign_to_pointee<T3> >
tie(T1& t1, T2& t2, T3& t3)
{
return make_tuple(detail::assign_to_pointee<T1>(&t1),
detail::assign_to_pointee<T2>(&t2),
detail::assign_to_pointee<T3>(&t3));
}
// Tie variables into a tuple
template<typename T1, typename T2, typename T3, typename T4>
inline
tuple<detail::assign_to_pointee<T1>,
detail::assign_to_pointee<T2>,
detail::assign_to_pointee<T3>,
detail::assign_to_pointee<T4> >
tie(T1& t1, T2& t2, T3& t3, T4& t4)
{
return make_tuple(detail::assign_to_pointee<T1>(&t1),
detail::assign_to_pointee<T2>(&t2),
detail::assign_to_pointee<T3>(&t3),
detail::assign_to_pointee<T4>(&t4));
}
// Tie variables into a tuple
template<typename T1, typename T2, typename T3, typename T4, typename T5>
inline
tuple<detail::assign_to_pointee<T1>,
detail::assign_to_pointee<T2>,
detail::assign_to_pointee<T3>,
detail::assign_to_pointee<T4>,
detail::assign_to_pointee<T5> >
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5 &t5)
{
return make_tuple(detail::assign_to_pointee<T1>(&t1),
detail::assign_to_pointee<T2>(&t2),
detail::assign_to_pointee<T3>(&t3),
detail::assign_to_pointee<T4>(&t4),
detail::assign_to_pointee<T5>(&t5));
}
// Tie variables into a tuple
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6>
inline
tuple<detail::assign_to_pointee<T1>,
detail::assign_to_pointee<T2>,
detail::assign_to_pointee<T3>,
detail::assign_to_pointee<T4>,
detail::assign_to_pointee<T5>,
detail::assign_to_pointee<T6> >
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5 &t5, T6 &t6)
{
return make_tuple(detail::assign_to_pointee<T1>(&t1),
detail::assign_to_pointee<T2>(&t2),
detail::assign_to_pointee<T3>(&t3),
detail::assign_to_pointee<T4>(&t4),
detail::assign_to_pointee<T5>(&t5),
detail::assign_to_pointee<T6>(&t6));
}
// Tie variables into a tuple
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7>
inline
tuple<detail::assign_to_pointee<T1>,
detail::assign_to_pointee<T2>,
detail::assign_to_pointee<T3>,
detail::assign_to_pointee<T4>,
detail::assign_to_pointee<T5>,
detail::assign_to_pointee<T6>,
detail::assign_to_pointee<T7> >
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5 &t5, T6 &t6, T7 &t7)
{
return make_tuple(detail::assign_to_pointee<T1>(&t1),
detail::assign_to_pointee<T2>(&t2),
detail::assign_to_pointee<T3>(&t3),
detail::assign_to_pointee<T4>(&t4),
detail::assign_to_pointee<T5>(&t5),
detail::assign_to_pointee<T6>(&t6),
detail::assign_to_pointee<T7>(&t7));
}
// Tie variables into a tuple
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8>
inline
tuple<detail::assign_to_pointee<T1>,
detail::assign_to_pointee<T2>,
detail::assign_to_pointee<T3>,
detail::assign_to_pointee<T4>,
detail::assign_to_pointee<T5>,
detail::assign_to_pointee<T6>,
detail::assign_to_pointee<T7>,
detail::assign_to_pointee<T8> >
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5 &t5, T6 &t6, T7 &t7, T8 &t8)
{
return make_tuple(detail::assign_to_pointee<T1>(&t1),
detail::assign_to_pointee<T2>(&t2),
detail::assign_to_pointee<T3>(&t3),
detail::assign_to_pointee<T4>(&t4),
detail::assign_to_pointee<T5>(&t5),
detail::assign_to_pointee<T6>(&t6),
detail::assign_to_pointee<T7>(&t7),
detail::assign_to_pointee<T8>(&t8));
}
// Tie variables into a tuple
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9>
inline
tuple<detail::assign_to_pointee<T1>,
detail::assign_to_pointee<T2>,
detail::assign_to_pointee<T3>,
detail::assign_to_pointee<T4>,
detail::assign_to_pointee<T5>,
detail::assign_to_pointee<T6>,
detail::assign_to_pointee<T7>,
detail::assign_to_pointee<T8>,
detail::assign_to_pointee<T9> >
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5 &t5, T6 &t6, T7 &t7, T8 &t8, T9 &t9)
{
return make_tuple(detail::assign_to_pointee<T1>(&t1),
detail::assign_to_pointee<T2>(&t2),
detail::assign_to_pointee<T3>(&t3),
detail::assign_to_pointee<T4>(&t4),
detail::assign_to_pointee<T5>(&t5),
detail::assign_to_pointee<T6>(&t6),
detail::assign_to_pointee<T7>(&t7),
detail::assign_to_pointee<T8>(&t8),
detail::assign_to_pointee<T9>(&t9));
}
// Tie variables into a tuple
template<typename T1, typename T2, typename T3, typename T4, typename T5, typename T6, typename T7, typename T8, typename T9, typename T10>
inline
tuple<detail::assign_to_pointee<T1>,
detail::assign_to_pointee<T2>,
detail::assign_to_pointee<T3>,
detail::assign_to_pointee<T4>,
detail::assign_to_pointee<T5>,
detail::assign_to_pointee<T6>,
detail::assign_to_pointee<T7>,
detail::assign_to_pointee<T8>,
detail::assign_to_pointee<T9>,
detail::assign_to_pointee<T10> >
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5 &t5, T6 &t6, T7 &t7, T8 &t8, T9 &t9, T10 &t10)
{
return make_tuple(detail::assign_to_pointee<T1>(&t1),
detail::assign_to_pointee<T2>(&t2),
detail::assign_to_pointee<T3>(&t3),
detail::assign_to_pointee<T4>(&t4),
detail::assign_to_pointee<T5>(&t5),
detail::assign_to_pointee<T6>(&t6),
detail::assign_to_pointee<T7>(&t7),
detail::assign_to_pointee<T8>(&t8),
detail::assign_to_pointee<T9>(&t9),
detail::assign_to_pointee<T10>(&t10));
}
// "ignore" allows tuple positions to be ignored when using "tie".
namespace {
detail::swallow_assign ignore;
}
} // namespace tuples
} // namespace boost
#endif // BOOST_TUPLE_BASIC_NO_PARTIAL_SPEC_HPP

View File

@ -1,88 +0,0 @@
// tuple.hpp - Boost Tuple Library --------------------------------------
// Copyright (C) 1999, 2000 Jaakko J<>rvi (jaakko.jarvi@cs.utu.fi)
//
// Permission to copy, use, sell and distribute this software is granted
// provided this copyright notice appears in all copies.
// Permission to modify the code and to distribute modified code is granted
// provided this copyright notice appears in all copies, and a notice
// that the code was modified is included with the copyright notice.
//
// This software is provided "as is" without express or implied warranty,
// and with no claim as to its suitability for any purpose.
// For more information, see http://www.boost.org
// -----------------------------------------------------------------
#ifndef BOOST_TUPLE_HPP
#define BOOST_TUPLE_HPP
#include "boost/config.hpp"
#include "boost/static_assert.hpp"
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
// The MSVC version
#include "boost/tuple/detail/tuple_basic_no_partial_spec.hpp"
#else
// other compilers
#include "boost/ref.hpp"
#include "boost/tuple/detail/tuple_basic.hpp"
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
namespace boost {
using tuples::tuple;
using tuples::make_tuple;
using tuples::tie;
#if !defined(BOOST_NO_USING_TEMPLATE)
using tuples::get;
#elif !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
//
// The "using tuples::get" statement causes the
// Borland compiler to ICE, use forwarding
// functions instead:
//
template<int N, class HT, class TT>
inline typename tuples::access_traits<
typename tuples::element<N, tuples::cons<HT, TT> >::type
>::non_const_type
get(tuples::cons<HT, TT>& c) {
return tuples::get<N,HT,TT>(c);
}
// get function for const cons-lists, returns a const reference to
// the element. If the element is a reference, returns the reference
// as such (that is, can return a non-const reference)
template<int N, class HT, class TT>
inline typename tuples::access_traits<
typename tuples::element<N, tuples::cons<HT, TT> >::type
>::const_type
get(const tuples::cons<HT, TT>& c) {
return tuples::get<N,HT,TT>(c);
}
#else // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
//
// MSVC, using declarations don't mix with templates well,
// so use forwarding functions instead:
//
template<int N, typename Head, typename Tail>
typename tuples::detail::element_ref<N, tuples::cons<Head, Tail> >::RET
get(tuples::cons<Head, Tail>& t, tuples::detail::workaround_holder<N>* = 0)
{
return tuples::detail::get_class<N>::get(t);
}
template<int N, typename Head, typename Tail>
typename tuples::detail::element_const_ref<N, tuples::cons<Head, Tail> >::RET
get(const tuples::cons<Head, Tail>& t, tuples::detail::workaround_holder<N>* = 0)
{
return tuples::detail::get_class<N>::get(t);
}
#endif // BOOST_NO_USING_TEMPLATE
} // end namespace boost
#endif // BOOST_TUPLE_HPP

View File

@ -1,180 +0,0 @@
// tuple_comparison.hpp -----------------------------------------------------
//
// Copyright (C) 2001 Jaakko J<>rvi (jaakko.jarvi@cs.utu.fi)
// Copyright (C) 2001 Gary Powell (gary.powell@sierra.com)
//
// Permission to copy, use, sell and distribute this software is granted
// provided this copyright notice appears in all copies.
// Permission to modify the code and to distribute modified code is granted
// provided this copyright notice appears in all copies, and a notice
// that the code was modified is included with the copyright notice.
//
// This software is provided "as is" without express or implied warranty,
// and with no claim as to its suitability for any purpose.
//
// For more information, see http://www.boost.org
//
// (The idea and first impl. of comparison operators was from Doug Gregor)
// -----------------------------------------------------------------
#ifndef BOOST_TUPLE_COMPARISON_HPP
#define BOOST_TUPLE_COMPARISON_HPP
#include "boost/tuple/tuple.hpp"
// -------------------------------------------------------------
// equality and comparison operators
//
// == and != compare tuples elementwise
// <, >, <= and >= use lexicographical ordering
//
// Any operator between tuples of different length fails at compile time
// No dependencies between operators are assumed
// (i.e. !(a<b) does not imply a>=b, a!=b does not imply a==b etc.
// so any weirdnesses of elementary operators are respected).
//
// -------------------------------------------------------------
namespace boost {
namespace tuples {
inline bool operator==(const null_type&, const null_type&) { return true; }
inline bool operator>=(const null_type&, const null_type&) { return true; }
inline bool operator<=(const null_type&, const null_type&) { return true; }
inline bool operator!=(const null_type&, const null_type&) { return false; }
inline bool operator<(const null_type&, const null_type&) { return false; }
inline bool operator>(const null_type&, const null_type&) { return false; }
namespace detail {
// comparison operators check statically the length of its operands and
// delegate the comparing task to the following functions. Hence
// the static check is only made once (should help the compiler).
// These functions assume tuples to be of the same length.
template<class T1, class T2>
inline bool eq(const T1& lhs, const T2& rhs) {
return lhs.get_head() == rhs.get_head() &&
eq(lhs.get_tail(), rhs.get_tail());
}
template<>
inline bool eq<null_type,null_type>(const null_type&, const null_type&) { return true; }
template<class T1, class T2>
inline bool neq(const T1& lhs, const T2& rhs) {
return lhs.get_head() != rhs.get_head() ||
neq(lhs.get_tail(), rhs.get_tail());
}
template<>
inline bool neq<null_type,null_type>(const null_type&, const null_type&) { return false; }
template<class T1, class T2>
inline bool lt(const T1& lhs, const T2& rhs) {
return lhs.get_head() < rhs.get_head() ||
!(rhs.get_head() < lhs.get_head()) &&
lt(lhs.get_tail(), rhs.get_tail());
}
template<>
inline bool lt<null_type,null_type>(const null_type&, const null_type&) { return false; }
template<class T1, class T2>
inline bool gt(const T1& lhs, const T2& rhs) {
return lhs.get_head() > rhs.get_head() ||
!(rhs.get_head() > lhs.get_head()) &&
gt(lhs.get_tail(), rhs.get_tail());
}
template<>
inline bool gt<null_type,null_type>(const null_type&, const null_type&) { return false; }
template<class T1, class T2>
inline bool lte(const T1& lhs, const T2& rhs) {
return lhs.get_head() <= rhs.get_head() &&
( !(rhs.get_head() <= lhs.get_head()) ||
lte(lhs.get_tail(), rhs.get_tail()));
}
template<>
inline bool lte<null_type,null_type>(const null_type&, const null_type&) { return true; }
template<class T1, class T2>
inline bool gte(const T1& lhs, const T2& rhs) {
return lhs.get_head() >= rhs.get_head() &&
( !(rhs.get_head() >= lhs.get_head()) ||
gte(lhs.get_tail(), rhs.get_tail()));
}
template<>
inline bool gte<null_type,null_type>(const null_type&, const null_type&) { return true; }
} // end of namespace detail
// equal ----
template<class T1, class T2, class S1, class S2>
inline bool operator==(const cons<T1, T2>& lhs, const cons<S1, S2>& rhs)
{
// check that tuple lengths are equal
BOOST_STATIC_ASSERT(length<T2>::value == length<S2>::value);
return detail::eq(lhs, rhs);
}
// not equal -----
template<class T1, class T2, class S1, class S2>
inline bool operator!=(const cons<T1, T2>& lhs, const cons<S1, S2>& rhs)
{
// check that tuple lengths are equal
BOOST_STATIC_ASSERT(length<T2>::value == length<S2>::value);
return detail::neq(lhs, rhs);
}
// <
template<class T1, class T2, class S1, class S2>
inline bool operator<(const cons<T1, T2>& lhs, const cons<S1, S2>& rhs)
{
// check that tuple lengths are equal
BOOST_STATIC_ASSERT(length<T2>::value == length<S2>::value);
return detail::lt(lhs, rhs);
}
// >
template<class T1, class T2, class S1, class S2>
inline bool operator>(const cons<T1, T2>& lhs, const cons<S1, S2>& rhs)
{
// check that tuple lengths are equal
BOOST_STATIC_ASSERT(length<T2>::value == length<S2>::value);
return detail::gt(lhs, rhs);
}
// <=
template<class T1, class T2, class S1, class S2>
inline bool operator<=(const cons<T1, T2>& lhs, const cons<S1, S2>& rhs)
{
// check that tuple lengths are equal
BOOST_STATIC_ASSERT(length<T2>::value == length<S2>::value);
return detail::lte(lhs, rhs);
}
// >=
template<class T1, class T2, class S1, class S2>
inline bool operator>=(const cons<T1, T2>& lhs, const cons<S1, S2>& rhs)
{
// check that tuple lengths are equal
BOOST_STATIC_ASSERT(length<T2>::value == length<S2>::value);
return detail::gte(lhs, rhs);
}
} // end of namespace tuples
} // end of namespace boost
#endif // BOOST_TUPLE_COMPARISON_HPP

View File

@ -1,502 +0,0 @@
// tuple_io.hpp --------------------------------------------------------------
// Copyright (C) 2001 Jaakko J<>rvi (jaakko.jarvi@cs.utu.fi)
// 2001 Gary Powell (gary.powell@sierra.com)
//
// Permission to copy, use, sell and distribute this software is granted
// provided this copyright notice appears in all copies.
// Permission to modify the code and to distribute modified code is granted
// provided this copyright notice appears in all copies, and a notice
// that the code was modified is included with the copyright notice.
//
// This software is provided "as is" without express or implied warranty,
// and with no claim as to its suitability for any purpose.
// For more information, see http://www.boost.org
// ----------------------------------------------------------------------------
#ifndef BOOST_TUPLE_IO_HPP
#define BOOST_TUPLE_IO_HPP
// add to boost/config.hpp
// for now
# if defined __GNUC__
# if (__GNUC__ == 2 && __GNUC_MINOR__ <= 97)
#define BOOST_NO_TEMPLATED_STREAMS
#endif
#endif // __GNUC__
#if defined BOOST_NO_TEMPLATED_STREAMS
#include <iostream>
#else
#include <istream>
#include <ostream>
#endif
#include "boost/tuple/tuple.hpp"
namespace boost {
namespace tuples {
namespace detail {
class format_info {
public:
enum manipulator_type { open, close, delimiter };
BOOST_STATIC_CONSTANT(int, number_of_manipulators = delimiter + 1);
private:
static int get_stream_index (int m)
{
static const int stream_index[number_of_manipulators]
= { std::ios::xalloc(), std::ios::xalloc(), std::ios::xalloc() };
return stream_index[m];
}
format_info(const format_info&);
format_info();
public:
#if defined (BOOST_NO_TEMPLATED_STREAMS)
static char get_manipulator(std::ios& i, manipulator_type m) {
char c = static_cast<char>(i.iword(get_stream_index(m)));
// parentheses and space are the default manipulators
if (!c) {
switch(m) {
case open : c = '('; break;
case close : c = ')'; break;
case delimiter : c = ' '; break;
}
}
return c;
}
static void set_manipulator(std::ios& i, manipulator_type m, char c) {
i.iword(get_stream_index(m)) = static_cast<long>(c);
}
#else
template<class CharType, class CharTrait>
static CharType get_manipulator(std::basic_ios<CharType, CharTrait>& i,
manipulator_type m) {
// The manipulators are stored as long.
// A valid instanitation of basic_stream allows CharType to be any POD,
// hence, the static_cast may fail (it fails if long is not convertible
// to CharType
CharType c = static_cast<CharType>(i.iword(get_stream_index(m)) );
// parentheses and space are the default manipulators
if (!c) {
switch(m) {
case open : c = i.widen('('); break;
case close : c = i.widen(')'); break;
case delimiter : c = i.widen(' '); break;
}
}
return c;
}
template<class CharType, class CharTrait>
static void set_manipulator(std::basic_ios<CharType, CharTrait>& i,
manipulator_type m, CharType c) {
// The manipulators are stored as long.
// A valid instanitation of basic_stream allows CharType to be any POD,
// hence, the static_cast may fail (it fails if CharType is not
// convertible long.
i.iword(get_stream_index(m)) = static_cast<long>(c);
}
#endif // BOOST_NO_TEMPLATED_STREAMS
};
} // end of namespace detail
template<class CharType>
class tuple_manipulator {
const detail::format_info::manipulator_type mt;
CharType f_c;
public:
explicit tuple_manipulator(detail::format_info::manipulator_type m,
const char c = 0)
: mt(m), f_c(c) {}
#if defined (BOOST_NO_TEMPLATED_STREAMS)
void set(std::ios &io) const {
detail::format_info::set_manipulator(io, mt, f_c);
}
#else
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
template<class CharType2, class CharTrait>
void set(std::basic_ios<CharType2, CharTrait> &io) const {
detail::format_info::set_manipulator(io, mt, f_c);
}
#else
template<class CharTrait>
void set(std::basic_ios<CharType, CharTrait> &io) const {
detail::format_info::set_manipulator(io, mt, f_c);
}
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
#endif // BOOST_NO_TEMPLATED_STREAMS
};
#if defined (BOOST_NO_TEMPLATED_STREAMS)
inline std::ostream&
operator<<(std::ostream& o, const tuple_manipulator<char>& m) {
m.set(o);
return o;
}
inline std::istream&
operator>>(std::istream& i, const tuple_manipulator<char>& m) {
m.set(i);
return i;
}
#else
template<class CharType, class CharTrait>
inline std::basic_ostream<CharType, CharTrait>&
operator<<(std::basic_ostream<CharType, CharTrait>& o, const tuple_manipulator<CharType>& m) {
m.set(o);
return o;
}
template<class CharType, class CharTrait>
inline std::basic_istream<CharType, CharTrait>&
operator>>(std::basic_istream<CharType, CharTrait>& i, const tuple_manipulator<CharType>& m) {
m.set(i);
return i;
}
#endif // BOOST_NO_TEMPLATED_STREAMS
template<class CharType>
inline tuple_manipulator<CharType> set_open(const CharType c) {
return tuple_manipulator<CharType>(detail::format_info::open, c);
}
template<class CharType>
inline tuple_manipulator<CharType> set_close(const CharType c) {
return tuple_manipulator<CharType>(detail::format_info::close, c);
}
template<class CharType>
inline tuple_manipulator<CharType> set_delimiter(const CharType c) {
return tuple_manipulator<CharType>(detail::format_info::delimiter, c);
}
// -------------------------------------------------------------
// printing tuples to ostream in format (a b c)
// parentheses and space are defaults, but can be overriden with manipulators
// set_open, set_close and set_delimiter
namespace detail {
// Note: The order of the print functions is critical
// to let a conforming compiler find and select the correct one.
#if defined (BOOST_NO_TEMPLATED_STREAMS)
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
template<class T1>
inline std::ostream& print(std::ostream& o, const cons<T1, null_type>& t) {
return o << t.head;
}
#endif // BOOST_NO_TEMPLATED_STREAMS
inline std::ostream& print(std::ostream& o, const null_type&) { return o; }
template<class T1, class T2>
inline std::ostream&
print(std::ostream& o, const cons<T1, T2>& t) {
const char d = format_info::get_manipulator(o, format_info::delimiter);
o << t.head;
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
if (tuples::length<T2>::value == 0)
return o;
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
o << d;
return print(o, t.tail );
}
#else
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
template<class CharType, class CharTrait, class T1>
inline std::basic_ostream<CharType, CharTrait>&
print(std::basic_ostream<CharType, CharTrait>& o, const cons<T1, null_type>& t) {
return o << t.head;
}
#endif // !BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template<class CharType, class CharTrait>
inline std::basic_ostream<CharType, CharTrait>&
print(std::basic_ostream<CharType, CharTrait>& o, const null_type&) {
return o;
}
template<class CharType, class CharTrait, class T1, class T2>
inline std::basic_ostream<CharType, CharTrait>&
print(std::basic_ostream<CharType, CharTrait>& o, const cons<T1, T2>& t) {
const CharType d = format_info::get_manipulator(o, format_info::delimiter);
o << t.head;
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
if (tuples::length<T2>::value == 0)
return o;
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
o << d;
return print(o, t.tail);
}
#endif // BOOST_NO_TEMPLATED_STREAMS
} // namespace detail
#if defined (BOOST_NO_TEMPLATED_STREAMS)
template<class T1, class T2>
inline std::ostream& operator<<(std::ostream& o, const cons<T1, T2>& t) {
if (!o.good() ) return o;
const char l =
detail::format_info::get_manipulator(o, detail::format_info::open);
const char r =
detail::format_info::get_manipulator(o, detail::format_info::close);
o << l;
detail::print(o, t);
o << r;
return o;
}
#else
template<class CharType, class CharTrait, class T1, class T2>
inline std::basic_ostream<CharType, CharTrait>&
operator<<(std::basic_ostream<CharType, CharTrait>& o,
const cons<T1, T2>& t) {
if (!o.good() ) return o;
const CharType l =
detail::format_info::get_manipulator(o, detail::format_info::open);
const CharType r =
detail::format_info::get_manipulator(o, detail::format_info::close);
o << l;
detail::print(o, t);
o << r;
return o;
}
#endif // BOOST_NO_TEMPLATED_STREAMS
// -------------------------------------------------------------
// input stream operators
namespace detail {
#if defined (BOOST_NO_TEMPLATED_STREAMS)
inline std::istream&
extract_and_check_delimiter(
std::istream& is, format_info::manipulator_type del)
{
const char d = format_info::get_manipulator(is, del);
const bool is_delimiter = (!isspace(d) );
char c;
if (is_delimiter) {
is >> c;
if (c!=d) {
is.setstate(std::ios::failbit);
}
}
return is;
}
// Note: The order of the read functions is critical to let a
// (conforming?) compiler find and select the correct one.
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
template<class T1>
inline std::istream &
read (std::istream &is, cons<T1, null_type>& t1) {
if (!is.good()) return is;
return is >> t1.head ;
}
#else
inline std::istream& read(std::istream& i, const null_type&) { return i; }
#endif // !BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template<class T1, class T2>
inline std::istream&
read(std::istream &is, cons<T1, T2>& t1) {
if (!is.good()) return is;
is >> t1.head;
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
if (tuples::length<T2>::value == 0)
return is;
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
extract_and_check_delimiter(is, format_info::delimiter);
return read(is, t1.tail);
}
} // end namespace detail
inline std::istream&
operator>>(std::istream &is, null_type&) {
if (!is.good() ) return is;
detail::extract_and_check_delimiter(is, detail::format_info::open);
detail::extract_and_check_delimiter(is, detail::format_info::close);
return is;
}
template<class T1, class T2>
inline std::istream&
operator>>(std::istream& is, cons<T1, T2>& t1) {
if (!is.good() ) return is;
detail::extract_and_check_delimiter(is, detail::format_info::open);
detail::read(is, t1);
detail::extract_and_check_delimiter(is, detail::format_info::close);
return is;
}
#else
template<class CharType, class CharTrait>
inline std::basic_istream<CharType, CharTrait>&
extract_and_check_delimiter(
std::basic_istream<CharType, CharTrait> &is, format_info::manipulator_type del)
{
const CharType d = format_info::get_manipulator(is, del);
const bool is_delimiter = (!isspace(d) );
CharType c;
if (is_delimiter) {
is >> c;
if (c!=d) {
is.setstate(std::ios::failbit);
}
}
return is;
}
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
template<class CharType, class CharTrait, class T1>
inline std::basic_istream<CharType, CharTrait> &
read (std::basic_istream<CharType, CharTrait> &is, cons<T1, null_type>& t1) {
if (!is.good()) return is;
return is >> t1.head;
}
#else
template<class CharType, class CharTrait>
inline std::basic_istream<CharType, CharTrait>&
read(std::basic_istream<CharType, CharTrait>& i, const null_type&) { return i; }
#endif // !BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template<class CharType, class CharTrait, class T1, class T2>
inline std::basic_istream<CharType, CharTrait>&
read(std::basic_istream<CharType, CharTrait> &is, cons<T1, T2>& t1) {
if (!is.good()) return is;
is >> t1.head;
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
if (tuples::length<T2>::value == 0)
return is;
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
extract_and_check_delimiter(is, format_info::delimiter);
return read(is, t1.tail);
}
} // end namespace detail
template<class CharType, class CharTrait>
inline std::basic_istream<CharType, CharTrait>&
operator>>(std::basic_istream<CharType, CharTrait> &is, null_type&) {
if (!is.good() ) return is;
detail::extract_and_check_delimiter(is, detail::format_info::open);
detail::extract_and_check_delimiter(is, detail::format_info::close);
return is;
}
template<class CharType, class CharTrait, class T1, class T2>
inline std::basic_istream<CharType, CharTrait>&
operator>>(std::basic_istream<CharType, CharTrait>& is, cons<T1, T2>& t1) {
if (!is.good() ) return is;
detail::extract_and_check_delimiter(is, detail::format_info::open);
detail::read(is, t1);
detail::extract_and_check_delimiter(is, detail::format_info::close);
return is;
}
#endif // BOOST_NO_TEMPLATED_STREAMS
} // end of namespace tuples
} // end of namespace boost
#endif // BOOST_TUPLE_IO_HPP

8
index.html Normal file
View File

@ -0,0 +1,8 @@
<html>
<head>
<meta http-equiv="refresh" content="0; URL=doc/tuple_users_guide.html">
</head>
<body>
Automatic redirection failed, please go to <a href="doc/tuple_users_guide.html">doc/tuple_users_guide.html</a>
</body>
</html>

20
test/Jamfile Normal file
View File

@ -0,0 +1,20 @@
subproject libs/tuple/test ;
unit-test tuple_test_bench
: tuple_test_bench.cpp
<lib>../../test/build/boost_test_exec_monitor
: <sysinclude>$(BOOST_ROOT)
;
unit-test io_test
: io_test.cpp
<lib>../../test/build/boost_test_exec_monitor
: <sysinclude>$(BOOST_ROOT)
;
unit-test another_tuple_test_bench
: another_tuple_test_bench.cpp
<lib>../../test/build/boost_test_exec_monitor
: <sysinclude>$(BOOST_ROOT)
;

View File

@ -1,3 +1,12 @@
// Copyright (C) 1999, 2000 Jaakko J<>rvi (jaakko.jarvi@cs.utu.fi)
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// For more information, see http://www.boost.org
// another_test_bench.cpp --------------------------------
// This file has various tests to see that things that shouldn't
@ -89,12 +98,11 @@ void foo2() {
void foo4()
{
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
double d = 2.7;
A a;
tuple<int, double&, const A&> t(1, d, a);
const tuple<int, double&, const A> ct = t;
(void)ct;
#ifdef E8
get<0>(ct) = 5; // can't assign to const
#endif
@ -105,8 +113,6 @@ void foo4()
#ifdef E10
dummy(get<5>(ct)); // illegal index
#endif
#endif
}
// testing copy and assignment with implicit conversions between elements
@ -119,9 +125,10 @@ void foo4()
void foo5() {
tuple<char, BB*, BB, DD> t;
(void)t;
tuple<char, char> aaa;
tuple<int, int> bbb(aaa);
(void)bbb;
// tuple<int, AA*, CC, CC> a = t;
// a = t;
}

View File

@ -1,3 +1,11 @@
// Copyright (C) 1999, 2000 Jaakko J<>rvi (jaakko.jarvi@cs.utu.fi)
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// For more information, see http://www.boost.org
// -- io_test.cpp -----------------------------------------------
//
// Testing the I/O facilities of tuples
@ -19,8 +27,6 @@
#include <sstream>
#endif
#include "boost/config.hpp"
using namespace std;
using namespace boost;
@ -33,7 +39,8 @@ typedef istringstream useThisIStringStream;
#endif
int test_main(int argc, char * argv[] ) {
(void)argc;
(void)argv;
using boost::tuples::set_close;
using boost::tuples::set_open;
using boost::tuples::set_delimiter;
@ -94,7 +101,7 @@ int test_main(int argc, char * argv[] ) {
useThisIStringStream is("(100 200 300)");
tuple<int, int, int> ti;
BOOST_TEST(is >> ti);
BOOST_TEST(bool(is >> ti));
BOOST_TEST(ti == make_tuple(100, 200, 300));

View File

@ -1,3 +1,11 @@
// Copyright (C) 1999, 2000 Jaakko J<>rvi (jaakko.jarvi@cs.utu.fi)
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// For more information, see http://www.boost.org
// tuple_test_bench.cpp --------------------------------
#define BOOST_INCLUDE_MAIN // for testing, include rather than link
@ -7,6 +15,9 @@
#include "boost/tuple/tuple_comparison.hpp"
#include "boost/type_traits/is_const.hpp"
#include "boost/ref.hpp"
#include <string>
#include <utility>
@ -66,7 +77,6 @@ public:
typedef tuple<int> t1;
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
typedef tuple<double&, const double&, const double, double*, const double*> t2;
typedef tuple<A, int(*)(char, int), C> t3;
typedef tuple<std::string, std::pair<A, B> > t4;
@ -77,22 +87,16 @@ typedef tuple<volatile int, const volatile char&, int(&)(float) > t6;
typedef tuple<B(A::*)(C&), A&> t7;
#endif
#endif
// -----------------------------------------------------------------------
// -tuple construction tests ---------------------------------------------
// -----------------------------------------------------------------------
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
no_copy y;
tuple<no_copy&> x = tuple<no_copy&>(y); // ok
#endif
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
char cs[10];
tuple<char(&)[10]> v2(cs); // ok
#endif
void
construction_test()
@ -147,12 +151,10 @@ construction_test()
// dummy(tuple<double&>()); // should fail, not defaults for references
// dummy(tuple<const double&>()); // likewise
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
double dd = 5;
dummy(tuple<double&>(dd)); // ok
dummy(tuple<const double&>(dd+3.14)); // ok, but dangerous
#endif
// dummy(tuple<double&>(dd+3.14)); // should fail,
// // temporary to non-const reference
@ -165,7 +167,6 @@ construction_test()
void element_access_test()
{
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
double d = 2.7;
A a;
tuple<int, double&, const A&, int> t(1, d, a, 2);
@ -196,36 +197,18 @@ void element_access_test()
++get<0>(t);
BOOST_TEST(get<0>(t) == 6);
dummy(i); dummy(i2); dummy(j); dummy(e); // avoid warns for unused variables
#else
double d = 2.7;
A a;
tuple<int, double, const A, int> t(1, d, a, 2);
int i = get<0>(t);
int i2 = get<3>(t);
BOOST_TEST(i == 1 && i2 == 2);
get<0>(t) = 5;
BOOST_TEST(t.head == 5);
// get<0>(ct) = 5; // can't assign to const
double e = get<1>(t);
BOOST_TEST(e > 2.69 && e < 2.71);
get<1>(t) = 3.14+i;
BOOST_TEST(get<1>(t) > 4.13 && get<1>(t) < 4.15);
// get<4>(t) = A(); // can't assign to const
// dummy(get<5>(ct)); // illegal index
++get<0>(t);
BOOST_TEST(get<0>(t) == 6);
dummy(i); dummy(i2); dummy(e); // avoid warns for unused variables
BOOST_STATIC_ASSERT((boost::is_const<boost::tuples::element<0, tuple<int, float> >::type>::value != true));
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
BOOST_STATIC_ASSERT((boost::is_const<boost::tuples::element<0, const tuple<int, float> >::type>::value));
#endif
BOOST_STATIC_ASSERT((boost::is_const<boost::tuples::element<1, tuple<int, float> >::type>::value != true));
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
BOOST_STATIC_ASSERT((boost::is_const<boost::tuples::element<1, const tuple<int, float> >::type>::value));
#endif
dummy(i); dummy(i2); dummy(j); dummy(e); // avoid warns for unused variables
}
@ -296,31 +279,27 @@ make_tuple_test()
BOOST_TEST(get<1>(t2) == "Hi");
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
A a; B b;
A a = A(); B b;
const A ca = a;
make_tuple(cref(a), b);
make_tuple(ref(a), b);
make_tuple(ref(a), cref(b));
make_tuple(boost::cref(a), b);
make_tuple(boost::ref(a), b);
make_tuple(boost::ref(a), boost::cref(b));
make_tuple(ref(ca));
#endif
make_tuple(boost::ref(ca));
// the result of make_tuple is assignable:
BOOST_TEST(make_tuple(2, 4, 6) ==
(make_tuple(1, 2, 3) = make_tuple(2, 4, 6)));
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
make_tuple("Donald", "Daisy"); // should work;
#endif
// std::make_pair("Doesn't","Work"); // fails
// You can store a reference to a function in a tuple
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
tuple<void(&)()> adf(make_tuple_test);
dummy(adf); // avoid warning for unused variable
#endif
// But make_tuple doesn't work
// with function references, since it creates a const qualified function type
@ -426,7 +405,6 @@ ordering_test()
// ----------------------------------------------------------------------------
void cons_test()
{
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
using tuples::cons;
using tuples::null_type;
@ -438,7 +416,6 @@ void cons_test()
cons<char, cons<int, cons<float, null_type> > > x;
dummy(x);
#endif
}
// ----------------------------------------------------------------------------