Compare commits

..

99 Commits

Author SHA1 Message Date
671495a8ce Branch for 2nd try at V2 removal
[SVN r77497]
2012-03-23 12:04:44 +00:00
f904cd5d69 Revert [67111] (addition of boost/detail/iomanip.hpp) and all the commits that depend on it. ([68137], [68140], [68141], [68154], and [68165]).
[SVN r68168]
2011-01-15 08:11:51 +00:00
2b30eb2225 Replacing the use of <iomanip> with <boost/detail/iomanip.hpp> across Boost.
On Linux, GNU's libstdc++, which is the default stdlib for icc and clang,
cannot parse the <iomanip> header in version 4.5+ (which thankfully neither
compiler advises the use of yet), as it's original C++98-friendly
implementation has been replaced with a gnu++0x implementation.
<boost/detail/iomanip.hpp> is a portable implementation of <iomanip>, providing
boost::detail::setfill, boost::detail::setbase, boost::detail::setw,
boost::detail::setprecision, boost::detail::setiosflags and
boost::detail::resetiosflags. 



[SVN r68140]
2011-01-14 02:35:58 +00:00
9fbc9b4cc6 Handle width correctly. Fixes #5046.
[SVN r67751]
2011-01-07 15:22:13 +00:00
9d64187c34 Add an element-wise swap for Boost.Tuple. Fixes #1324
[SVN r62686]
2010-06-09 19:30:35 +00:00
7b6203747a Use an inline function instead of a static object for boost::tuples::ignore, avoiding problems with the ODR and Borland precompiled headers. Fixes #2656
[SVN r62684]
2010-06-09 19:00:56 +00:00
1b07c1a2d4 Reimplement boost::tuples::element and boost::tuples::get to make better use of memoization. Fixes #2130
[SVN r62683]
2010-06-09 18:28:16 +00:00
052b3db77f Make reading a tuple work with std::noskipws. Fixes #1920
[SVN r62678]
2010-06-09 17:45:24 +00:00
d908a5d566 rm cmake from trunk. I'm not entirely sure this is necessary to satisfy the inspect script, but I'm not taking any chances, and it is easy to put back
[SVN r56942]
2009-10-17 02:07:38 +00:00
a75a686fae Copyrights on CMakeLists.txt to keep them from clogging up the inspect
reports.  This is essentially the same commit as r55095 on the release
branch.



[SVN r55159]
2009-07-26 00:49:56 +00:00
b7c2e00b64 Fix typos/markup problems in tuple docs. Fixes #
[SVN r53218]
2009-05-23 18:59:02 +00:00
e89ea11d63 Avoid ambiguites between std and boost components in C++0x mode. Fixes #3026
[SVN r53212]
2009-05-23 16:49:33 +00:00
08277fd057 Allow printing an empty tuple
[SVN r53211]
2009-05-23 16:39:13 +00:00
70e04d2965 Fix html.
[SVN r51881]
2009-03-21 15:35:35 +00:00
451415ebce fixed tuples::length not having a specialization for const tuple<> and const null_type
[SVN r51862]
2009-03-20 01:21:42 +00:00
e9dc95ae93 Supress gcc warning. Fixes #2388
[SVN r51449]
2009-02-26 02:35:44 +00:00
1d1970d81d Updating dependency information for modularized libraries.
[SVN r49628]
2008-11-07 17:05:27 +00:00
4e452cb734 Updating CMake files to latest trunk. Added dependency information for regression tests and a few new macros for internal use.
[SVN r49627]
2008-11-07 17:02:56 +00:00
776be602e5 Continuing merge of CMake build system files into trunk with the encouragement of Doug Gregor
[SVN r49510]
2008-11-01 13:15:41 +00:00
a30a7f9604 With his kind permission, change Jaakko "Järvi" to "Jarvi"
[SVN r46808]
2008-06-28 13:45:21 +00:00
62d366fa68 Link to people pages on the website, as they've been removed from the download.
[SVN r43209]
2008-02-10 14:56:22 +00:00
d08c9bfab1 Update to V2
[SVN r38530]
2007-08-08 19:42:04 +00:00
19b8004830 Fixed a typo.
[SVN r36896]
2007-02-06 00:23:26 +00:00
0af5b76442 Merge fixed links from RC_1_34_0.
[SVN r36660]
2007-01-07 23:50:56 +00:00
defe1c94d6 Add copyright, license
[SVN r35905]
2006-11-07 19:11:57 +00:00
76c2151830 avoid g++ -Wall -W "unused parameter" warnings
[SVN r32373]
2006-01-22 19:29:32 +00:00
2d13a60d05 applied patch by Rupert Kittinger, avoids potentially undefined behavior
[SVN r30690]
2005-08-26 16:03:05 +00:00
9c6ef41dfe Large patch from Ulrich Eckhardt to fix support for EVC++ 4.
[SVN r30670]
2005-08-25 16:27:28 +00:00
5686969287 Merged from 1.33.0 release
[SVN r30540]
2005-08-12 13:02:37 +00:00
a17ce206f2 replaced BOOST_TEST
[SVN r27057]
2005-02-03 13:55:45 +00:00
34690282fe fixes in element<> for BCB compilers, with help from Tobias Schwinger
[SVN r25763]
2004-10-18 06:03:18 +00:00
bc3d37ec2b c++boost.gif -> boost.png replacement
[SVN r25573]
2004-10-05 15:45:52 +00:00
eea1937afc Converted to Boost Software License, Version 1.0
[SVN r24096]
2004-07-27 03:43:34 +00:00
8820994ffd Doug Gregor -> Douglas Gregor
[SVN r24016]
2004-07-25 02:29:29 +00:00
045d761ab5 suppressed scoping the call get_class to the detail namespace
[SVN r23113]
2004-06-17 13:51:33 +00:00
63c93b59b4 port to vacpp:
added default template arguments explicitly (Joaquin M Lopez)
  removed member template keyword (Toon Knapen)


[SVN r23109]
2004-06-17 07:01:13 +00:00
78572fca7b Bug fix for vc6
[SVN r20866]
2003-11-19 22:01:52 +00:00
ad29f96e5b updated swallow_assign constness bug
[SVN r20520]
2003-10-28 09:42:43 +00:00
9734556efe made "ingnore" a const object to avoid linker errors
[SVN r20449]
2003-10-21 23:25:17 +00:00
c8e03a518b added praise for Dave for improving tuple support on non-partial
template specialization compilers


[SVN r19965]
2003-09-08 15:10:04 +00:00
e4b869219b More complete functionality for compilers without partial specialization.
[SVN r19925]
2003-09-05 16:52:55 +00:00
eef0e01c8d Adjust for changed test library name
[SVN r19924]
2003-09-05 16:18:53 +00:00
41d649b08c cleaning up after previous commit
[SVN r19688]
2003-08-18 19:35:29 +00:00
122bf636f5 getting rid of some library specific macros and using BOOST_NO_EXPLICIT_-
FUNCTION_TEMPLATE_ARGUMENTS related helper macros from the config library


[SVN r19687]
2003-08-18 19:33:47 +00:00
359eaeecbf added tests to ensure correct constness behaviour
[SVN r18871]
2003-06-26 15:19:01 +00:00
28e34eb757 fixed a typo
[SVN r18386]
2003-05-12 14:51:42 +00:00
5ea6623d49 restore from disk crash
[SVN r18353]
2003-05-08 02:19:10 +00:00
d349450992 fixed a few links
[SVN r18344]
2003-05-07 16:01:33 +00:00
8b4daa1385 patch of a patch
[SVN r17706]
2003-03-03 16:45:55 +00:00
1972959fda element<T>::type takes constness into consideration
[SVN r17666]
2003-02-26 23:10:55 +00:00
496cc84960 a patch for borland
[SVN r17660]
2003-02-26 16:04:56 +00:00
c1a28e5d81 typofix
[SVN r17557]
2003-02-20 15:30:48 +00:00
4d4fe0010f Added copyright statement
[SVN r17193]
2003-02-04 11:54:01 +00:00
8992af95d1 Link bug workaround for MSVC and old Dec CXX
[SVN r16342]
2002-11-20 13:17:52 +00:00
ae40fce7c9 added namespace qualifiers to make MIPS PRO happy
[SVN r16033]
2002-10-31 18:14:29 +00:00
607b65a946 fixing a borland warning
[SVN r15810]
2002-10-08 19:24:36 +00:00
2c213c8295 fix one borland warning
[SVN r15808]
2002-10-08 18:43:52 +00:00
5b8506c39b typo fixes
[SVN r15652]
2002-10-02 16:51:43 +00:00
22f56bbe58 fixed Bemans name in a comment
[SVN r15594]
2002-10-01 03:26:10 +00:00
fb8fa3c7b6 work-around for MIPSpro bug
[SVN r15574]
2002-09-30 19:45:22 +00:00
cc5a2ae388 Fixes which make it possible to declare with reference elements
[SVN r15532]
2002-09-28 07:25:27 +00:00
4cd544f4c1 applied patch Markus Schöpflin, ::template replaced with ::BOOST_NESTED_TEMPLATE
[SVN r15466]
2002-09-20 15:55:10 +00:00
74a2ab1242 changed jamfile includes from <include> to <sysinclude>
[SVN r15305]
2002-09-13 16:26:12 +00:00
7896766f8f a fix of a fix
[SVN r15278]
2002-09-12 20:59:05 +00:00
0a33edd21d workaround for isspace and metrowerks
[SVN r15277]
2002-09-12 20:50:10 +00:00
53c1bb2c20 removed an extraneous include
[SVN r14993]
2002-08-20 15:54:11 +00:00
ea8d71487d workaround for boost test library problem
[SVN r14992]
2002-08-20 15:51:36 +00:00
6a92d10f25 added a redirection index.html file
[SVN r14898]
2002-08-15 18:26:17 +00:00
3570bdb6b6 fixed some warningns about unused variables, added Jamfile
[SVN r14854]
2002-08-14 20:55:52 +00:00
788896864a Fixed a dumb typo (thanks Marsh)
[SVN r14232]
2002-06-24 14:20:29 +00:00
d24e9b9a72 added a test for !=
[SVN r14091]
2002-06-06 15:47:23 +00:00
22d8e8ecc0 fixed != by suggestion of Björn Karlsson
[SVN r14090]
2002-06-06 15:44:51 +00:00
08be3cbe04 removing tabs
[SVN r13783]
2002-05-09 17:26:37 +00:00
b1621fad71 removed the demand for element types being copy constructible
[SVN r13729]
2002-05-07 21:44:26 +00:00
001f5b4c14 Previous changes broke tuples for Borland, this should fix it
[SVN r13611]
2002-05-01 20:53:44 +00:00
75d7917f66 - tuple types can now have void and plain function types as
elements
- tuple objects can hold non-copyable objects (such as arrays)


[SVN r13525]
2002-04-19 19:32:19 +00:00
6d2cb1d793 Fixed VC7 compile problems (thanks to Sofus Mortensen).
[SVN r13482]
2002-04-14 11:45:32 +00:00
ce02fa0c58 Removed crazy mess up from previous change:
(the body of the test was commented out with #if 0)


[SVN r12454]
2002-01-23 12:40:44 +00:00
5f196d037f added missing "inherited" typedef
[SVN r12332]
2002-01-17 07:47:25 +00:00
2ab1b6705f Changed occurances of "tuples::get" to "get" to verify new forwarding code in tuples.hpp
[SVN r12291]
2002-01-13 12:12:48 +00:00
55a83b6408 Added forwarding get functions to solve problems with using::tuples::get statement.
[SVN r12290]
2002-01-13 12:09:39 +00:00
c89357006b reflecting the removal of src/tuple.cpp
[SVN r12023]
2001-12-12 22:20:42 +00:00
2fe366f263 reflecting the change to remove tuple.cpp, adding some thanks
[SVN r12022]
2001-12-12 22:17:09 +00:00
8b3b6efe24 not needed anymore
[SVN r12021]
2001-12-12 22:08:12 +00:00
2e825630f8 made the iomanipulator storage indexes static members of a class.
Now all code can be in header files.


[SVN r12020]
2001-12-12 21:35:41 +00:00
8408cc0bd5 thomas witt:s patch for icl501, adds a workaround for explicitly
qualified arguments
Also fixed length, so that it now works for empty tuples as well


[SVN r11722]
2001-11-16 23:27:08 +00:00
8f29dbe149 Thomas Witt's patch for icl501: adds better test coverage
+ tests for length template


[SVN r11721]
2001-11-16 23:24:43 +00:00
e531e7ce2e added a comment about performance penalties with some compilers
[SVN r11603]
2001-11-05 21:18:48 +00:00
a6d8c4f20c superseded by boost/ref.hpp
[SVN r11275]
2001-09-26 13:23:31 +00:00
cd416f50be Changed tuple.hpp to use ref.hpp
[SVN r11274]
2001-09-26 12:27:43 +00:00
9559531c52 Fixed unused variables that show up as warnings when doing regression
tests.


[SVN r11241]
2001-09-24 23:21:16 +00:00
4503ed841b Get rid of unused parameter to avoid warnings.
[SVN r11214]
2001-09-22 19:36:44 +00:00
a9b6ca508a Borland C++ fixes: typedef dependent types before using them.
[SVN r11198]
2001-09-22 11:51:14 +00:00
063758ef7f added full namespace qualifiers in get<N> calls to avoid errors
in edg-strict mode


[SVN r11133]
2001-09-17 10:32:32 +00:00
66ae617224 small change to avoid a warning for an unused variable
[SVN r11132]
2001-09-17 10:31:44 +00:00
5b40ff62c6 merged tuples_subnamespace branch to main trunk
[SVN r11121]
2001-09-14 07:55:58 +00:00
531fb617eb Merged the tuples_subnamespace branch to main trunk.
[SVN r11120]
2001-09-14 07:55:25 +00:00
2764718489 Reintroduced tuples subnamespace, documents now reflect that change
[SVN r11119]
2001-09-14 07:54:33 +00:00
e1bba349b3 tuple_basic_no_partial_spec.hpp:
- Fixed cons construction for compilers with no partial specialization that aren't MSVC


[SVN r11056]
2001-09-06 22:05:24 +00:00
16 changed files with 2110 additions and 705 deletions

View File

@ -0,0 +1,155 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<title>Design decisions rationale for Boost Tuple Library</title>
<body bgcolor="#FFFFFF" text="#000000">
<IMG SRC="../../../boost.png"
ALT="C++ Boost" width="277" height="86">
<h1>Tuple Library : design decisions rationale</h1>
<h2>About namespaces</h2>
<p>
There was a discussion about whether tuples should be in a separate namespace or directly in the <code>boost</code> namespace.
The common principle is that domain libraries (like <i>graph</i>, <i>python</i>) should be on a separate
subnamespace, while utility like libraries directly in the <code>boost</code> namespace.
Tuples are somewhere in between, as the tuple template is clearly a general utility, but the library introduces quite a lot of names in addition to just the tuple template.
Tuples were originally under a subnamespace.
As a result of the discussion, tuple definitions were moved directly under the <code>boost</code> namespace.
As a result of a continued discussion, the subnamespace was reintroduced.
The final (I truly hope so) solution is now to have all definitions in namespace <code>::boost::tuples</code>, and the most common names in the <code>::boost</code> namespace as well.
This is accomplished with using declarations (suggested by Dave Abrahams):</p>
<pre><code>namespace boost {
namespace tuples {
...
// All library code
...
}
using tuples::tuple;
using tuples::make_tuple;
using tuples::tie;
using tuples::get;
}
</code></pre>
<p>With this arrangement, tuple creation with direct constructor calls, <code>make_tuple</code> or <code>tie</code> functions do not need the namespace qualifier.
Further, all functions that manipulate tuples are found with Koenig-lookup.
The only exceptions are the <code>get&lt;N&gt;</code> functions, which are always called with an explicitly qualified template argument, and thus Koenig-lookup does not apply.
Therefore, get is lifted to <code>::boost</code> namespace with a using declaration.
Hence, the interface for an application programmer is in practice under the namespace <code>::boost</code>.
</p>
<p>
The other names, forming an interface for library writers (cons lists, metafunctions manipulating cons lists, ...) remain in the subnamespace <code>::boost::tuples</code>.
Note, that the names <code>ignore</code>, <code>set_open</code>, <code>set_close</code> and <code>set_delimiter</code> are considered to be part of the application programmer's interface, but are still not under <code>boost</code> namespace.
The reason being the danger for name clashes for these common names.
Further, the usage of these features is probably not very frequent.
</p>
<h4>For those who are really interested in namespaces</h4>
<p>
The subnamespace name <i>tuples</i> raised some discussion.
The rationale for not using the most natural name 'tuple' is to avoid having an identical name with the tuple template.
Namespace names are, however, not generally in plural form in boost libraries.
First, no real trouble was reported for using the same name for a namespace and a class and we considered changing the name 'tuples' to 'tuple'.
But we found some trouble after all.
Both gcc and edg compilers reject using declarations where the namespace and class names are identical:</p>
<pre><code>namespace boost {
namespace tuple {
... tie(...);
class tuple;
&nbsp; ...
}
using tuple::tie; // ok
using tuple::tuple; // error
...
}
</code></pre>
<p>Note, however, that a corresponding using declaration in the global namespace seems to be ok:</p>
<pre><code>
using boost::tuple::tuple; // ok;
</code></pre>
<h2>The end mark of the cons list (nil, null_type, ...)</h2>
<p>
Tuples are internally represented as <code>cons</code> lists:
<pre><code>tuple&lt;int, int&gt;
</code></pre>
<p>inherits from</p>
<pre><code>cons&lt;int, cons&lt;int, null_type&gt; &gt;
</code></pre>
<p>
<code>null_type</code> is the end mark of the list. Original proposition was <code>nil</code>, but the name is used in MacOS, and might have caused problems, so <code>null_type</code> was chosen instead.
Other names considered were <i>null_t</i> and <i>unit</i> (the empty tuple type in SML).</p>
<p>
Note that <code>null_type</code> is the internal representation of an empty tuple: <code>tuple&lt;&gt;</code> inherits from <code>null_type</code>.
</p>
<h2>Element indexing</h2>
<p>
Whether to use 0- or 1-based indexing was discussed more than thoroughly, and the following observations were made:</p>
<ul>
<li> 0-based indexing is 'the C++ way' and used with arrays etc.</li>
<li> 1-based 'name like' indexing exists as well, eg. <code>bind1st</code>, <code>bind2nd</code>, <code>pair::first</code>, etc.</li>
</ul>
<p>Tuple access with the syntax <code>get&lt;N&gt;(a)</code>, or <code>a.get&lt;N&gt;()</code> (where <code>a</code> is a tuple and <code>N</code> an index), was considered to be of the first category, hence, the index of the first element in a tuple is 0.</p>
<p>
A suggestion to provide 1-based 'name like' indexing with constants like <code>_1st</code>, <code>_2nd</code>, <code>_3rd</code>, ... was made.
By suitably chosen constant types, this would allow alternative syntaxes:
<pre><code>a.get&lt;0&gt;() == a.get(_1st) == a[_1st] == a(_1st);
</code></pre>
<p>We chose not to provide more than one indexing method for the following reasons:</p>
<ul>
<li>0-based indexing might not please everyone, but once its fixed, it is less confusing than having two different methods (would anyone want such constants for arrays?).</li>
<li>Adding the other indexing scheme doesn't really provide anything new (like a new feature) to the user of the library.</li>
<li>C++ variable and constant naming rules don't give many possibilities for defining short and nice index constants (like <code>_1st</code>, ...).
Let the binding and lambda libraries use these for a better purpose.</li>
<li>The access syntax <code>a[_1st]</code> (or <code>a(_1st)</code>) is appealing, and almost made us add the index constants after all. However, 0-based subscripting is so deep in C++, that we had a fear for confusion.</li>
<li>
Such constants are easy to add.
</li>
</ul>
<h2>Tuple comparison</h2>
<p>The comparison operator implements lexicographical order.
Other orderings were considered, mainly dominance (<i>a &lt; b iff for each i a(i) &lt; b(i)</i>).
Our belief is, that lexicographical ordering, though not mathematically the most natural one, is the most frequently needed ordering in everyday programming.</p>
<h2>Streaming</h2>
<p>
The characters specified with tuple stream manipulators are stored within the space allocated by <code>ios_base::xalloc</code>, which allocates storage for <code>long</code> type objects.
<code>static_cast</code> is used in casting between <code>long</code> and the stream's character type.
Streams that have character types not convertible back and forth to long thus fail to compile.</p>
<p>This may be revisited at some point. The two possible solutions are:</p>
<ul>
<li>Allow only plain <code>char</code> types as the tuple delimiters and use <code>widen</code> and <code>narrow</code> to convert between the real character type of the stream.
This would always compile, but some calls to set manipulators might result in a different
character than expected (some default character).</li>
<li>Allocate enough space to hold the real character type of the stream.
This means memory for holding the delimiter characters must be allocated separately, and that pointers to this memory are stored in the space allocated with <code>ios_base::xalloc</code>.
Any volunteers?</li>
</ul>
<A href="tuple_users_guide.html">Back to the user's guide</A>
<hr><p>&copy; Copyright Jaakko J&auml;rvi 2001.
</body>
</html>

View File

@ -0,0 +1,134 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>Tuple library advanced features</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<IMG SRC="../../../boost.png"
ALT="C++ Boost" width="277" height="86">
<h1>Tuple library advanced features</h1>
The advanced features described in this document are all under namespace <code>::boost::tuples</code>
<h2>Metafunctions for tuple types</h2>
<p>
Suppose <code>T</code> is a tuple type, and <code>N</code> is a constant integral expression.</p>
<pre><code>element&lt;N, T&gt;::type</code></pre>
<p>gives the type of the <code>N</code>th element in the tuple type <code>T</code>. If <code>T</code> is const, the resulting type is const qualified as well.
Note that the constness of <code>T</code> does not affect reference type
elements.
</p>
<pre><code>length&lt;T&gt;::value</code></pre>
<p>gives the length of the tuple type <code>T</code>.
</p>
<h2>Cons lists</h2>
<p>
Tuples are internally represented as <i>cons lists</i>.
For example, the tuple </p>
<pre><code>tuple&lt;A, B, C, D&gt;</code></pre>
<p>inherits from the type</p>
<pre><code>cons&lt;A, cons&lt;B, cons&lt;C, cons&lt;D, null_type&gt; &gt; &gt; &gt;
</code></pre>
<p>The tuple template provides the typedef <code>inherited</code> to access the cons list representation. E.g.:
<code>tuple&lt;A&gt;::inherited</code> is the type <code>cons&lt;A, null_type&gt;</code>.
</p>
<h4>Empty tuple</h4>
<p>
The internal representation of the empty tuple <code>tuple&lt;&gt;</code> is <code>null_type</code>.
</p>
<h4>Head and tail</h4>
<p>
Both tuple template and the cons templates provide the typedefs <code>head_type</code> and <code>tail_type</code>.
The <code>head_type</code> typedef gives the type of the first element of the tuple (or the cons list).
The
<code>tail_type</code> typedef gives the remaining cons list after removing the first element.
The head element is stored in the member variable <code>head</code> and the tail list in the member variable <code>tail</code>.
Cons lists provide the member function <code>get_head()</code> for getting a reference to the head of a cons list, and <code>get_tail()</code> for getting a reference to the tail.
There are const and non-const versions of both functions.
</p>
<p>
Note that in a one element tuple, <code>tail_type</code> equals <code>null_type</code> and the <code>get_tail()</code> function returns an object of type <code>null_type</code>.
</p>
<p>
The empty tuple (<code>null_type</code>) has no head or tail, hence the <code>get_head</code> and <code>get_tail</code> functions are not provided.
</p>
<p>
Treating tuples as cons lists gives a convenient means to define generic functions to manipulate tuples. For example, the following pair of function templates assign 0 to each element of a tuple (obviously, the assignments must be valid operations for the element types):
<pre><code>inline void set_to_zero(const null_type&amp;) {};
template &lt;class H, class T&gt;
inline void set_to_zero(cons&lt;H, T&gt;&amp; x) { x.get_head() = 0; set_to_zero(x.get_tail()); }
</code></pre>
<p>
<h4>Constructing cons lists</h4>
<p>
A cons list can be default constructed provided that all its elements can be default constructed.
</p>
<p>
A cons list can be constructed from its head and tail. The prototype of the constructor is:</p>
<pre><code>cons(typename access_traits&lt;head_type&gt;::parameter_type h,
const tail_type&amp; t)
</code></pre>
<p>The traits template for the head parameter selects correct parameter types for different kinds of element types (for reference elements the parameter type equals the element type, for non-reference types the parameter type is a reference to const non-volatile element type).
</p>
<p>
For a one-element cons list the tail argument (<code>null_type</code>) can be omitted.
</p>
<h2>Traits classes for tuple element types</h2>
<h4><code>access_traits</code></h4>
<p>
The template <code>access_traits</code> defines three type functions. Let <code>T</code> be a type of an element in a tuple:</p>
<ol>
<li><code>access_traits&lt;T&gt;::non_const_type</code> maps <code>T</code> to the return type of the non-const access functions (nonmember and member <code>get</code> functions, and the <code>get_head</code> function).</li>
<li><code>access_traits&lt;T&gt;::const_type</code> maps <code>T</code> to the return type of the const access functions.</li>
<li><code>access_traits&lt;T&gt;::parameter_type</code> maps <code>T</code> to the parameter type of the tuple constructor.</li>
</ol>
<h4><code>make_tuple_traits</code></h4>
<p>The element types of the tuples that are created with the <code>make_tuple</code> functions are computed with the type function <code>make_tuple_traits</code>.
The type function call <code>make_tuple_traits&lt;T&gt;::type</code> implements the following type mapping:</p>
<ul>
<li><i>any reference type</i> -&gt; <i>compile time error</i>
</li>
<li><i>any array type</i> -&gt; <i>constant reference to the array type</i>
</li>
<li><code>reference_wrapper&lt;T&gt;</code> -&gt; <code>T&amp;</code>
</li>
<li><code>T</code> -&gt; <code>T</code>
</li>
</ul>
<p>Objects of type <code>reference_wrapper</code> are created with the <code>ref</code> and <code>cref</code> functions (see <A href="tuple_users_guide.html#make_tuple">The <code>make_tuple</code> function</A>.)
</p>
<p>Reference wrappers were originally part of the tuple library, but they are now a general utility of boost.
The <code>reference_wrapper</code> template and the <code>ref</code> and <code>cref</code> functions are defined in a separate file <code>ref.hpp</code> in the main boost include directory; and directly in the <code>boost</code> namespace.
</p>
<A href="tuple_users_guide.html">Back to the user's guide</A>
<hr>
<p>&copy; Copyright Jaakko J&auml;rvi 2001.</p>
</body>
</html>

535
doc/tuple_users_guide.html Normal file
View File

@ -0,0 +1,535 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>The Boost Tuple Library</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<IMG SRC="../../../boost.png"
ALT="C++ Boost" width="277" height="86">
<h1>The Boost Tuple Library</h1>
<p>
A tuple (or <i>n</i>-tuple) is a fixed size collection of elements.
Pairs, triples, quadruples etc. are tuples.
In a programming language, a tuple is a data object containing other objects as elements.
These element objects may be of different types.
</p>
<p>Tuples are convenient in many circumstances.
For instance, tuples make it easy to define functions that return more than one value.
</p>
<p>
Some programming languages, such as ML, Python and Haskell, have built-in tuple constructs.
Unfortunately C++ does not.
To compensate for this &quot;deficiency&quot;, the Boost Tuple Library implements a tuple construct using templates.
</p>
<h2>Table of Contents</h2>
<ol>
<li><a href = "#using_library">Using the library</a></li>
<li><a href = "#tuple_types">Tuple types</a></li>
<li><a href = "#constructing_tuples">Constructing tuples</a></li>
<li><a href = "#accessing_elements">Accessing tuple elements</a></li>
<li><a href = "#construction_and_assignment">Copy construction and tuple assignment</a></li>
<li><a href = "#relational_operators">Relational operators</a></li>
<li><a href = "#tiers">Tiers</a></li>
<li><a href = "#streaming">Streaming</a></li>
<li><a href = "#performance">Performance</a></li>
<li><a href = "#portability">Portability</a></li>
<li><a href = "#thanks">Acknowledgements</a></li>
<li><a href = "#references">References</a></li>
</ol>
<h4>More details</h4>
<p>
<a href = "tuple_advanced_interface.html">Advanced features</a> (describes some metafunctions etc.).</p>
<p>
<a href = "design_decisions_rationale.html">Rationale behind some design/implementation decisions.</a></p>
<h2><a name="using_library">Using the library</a></h2>
<p>To use the library, just include:</p>
<pre><code>#include &quot;boost/tuple/tuple.hpp&quot;</code></pre>
<p>Comparison operators can be included with:</p>
<pre><code>#include &quot;boost/tuple/tuple_comparison.hpp&quot;</code></pre>
<p>To use tuple input and output operators,</p>
<pre><code>#include &quot;boost/tuple/tuple_io.hpp&quot;</code></pre>
<p>Both <code>tuple_io.hpp</code> and <code>tuple_comparison.hpp</code> include <code>tuple.hpp</code>.</p>
<p>All definitions are in namespace <code>::boost::tuples</code>, but the most common names are lifted to namespace
<code>::boost</code> with using declarations. These names are: <code>tuple</code>, <code>make_tuple</code>, <code>tie</code> and <code>get</code>.
Further, <code>ref</code> and <code>cref</code> are defined directly under the <code>::boost</code> namespace.</p>
<h2><a name = "tuple_types">Tuple types</a></h2>
<p>A tuple type is an instantiation of the <code>tuple</code> template.
The template parameters specify the types of the tuple elements.
The current version supports tuples with 0-10 elements.
If necessary, the upper limit can be increased up to, say, a few dozen elements.
The data element can be any C++ type.
Note that <code>void</code> and plain function types are valid
C++ types, but objects of such types cannot exist.
Hence, if a tuple type contains such types as elements, the tuple type
can exist, but not an object of that type.
There are natural limitations for element types that cannot
be copied, or that are not default constructible (see 'Constructing tuples'
below). </p>
<p>
For example, the following definitions are valid tuple instantiations (<code>A</code>, <code>B</code> and <code>C</code> are some user defined classes):</p>
<pre><code>tuple&lt;int&gt;
tuple&lt;double&amp;, const double&amp;, const double, double*, const double*&gt;
tuple&lt;A, int(*)(char, int), B(A::*)(C&amp;), C&gt;
tuple&lt;std::string, std::pair&lt;A, B&gt; &gt;
tuple&lt;A*, tuple&lt;const A*, const B&amp;, C&gt;, bool, void*&gt;
</code></pre>
<h2><a name = "constructing_tuples">Constructing tuples</a></h2>
<p>
The tuple constructor takes the tuple elements as arguments.
For an <i>n</i>-element tuple, the constructor can be invoked with <i>k</i> arguments, where 0 &lt;= <i>k</i> &lt;= <i>n</i>.
For example:</p>
<pre><code>tuple&lt;int, double&gt;()
tuple&lt;int, double&gt;(1)
tuple&lt;int, double&gt;(1, 3.14)
</code></pre>
<p>
If no initial value for an element is provided, it is default initialized (and hence must be default initializable).
For example.</p>
<pre><code>class X {
X();
public:
X(std::string);
};
tuple&lt;X,X,X&gt;() // error: no default constructor for X
tuple&lt;X,X,X&gt;(string(&quot;Jaba&quot;), string(&quot;Daba&quot;), string(&quot;Duu&quot;)) // ok
</code></pre>
<p>In particular, reference types do not have a default initialization: </p>
<pre><code>tuple&lt;double&amp;&gt;() // error: reference must be
// initialized explicitly
double d = 5;
tuple&lt;double&amp;&gt;(d) // ok
tuple&lt;double&amp;&gt;(d+3.14) // error: cannot initialize
// non-const reference with a temporary
tuple&lt;const double&amp;&gt;(d+3.14) // ok, but dangerous:
// the element becomes a dangling reference
</code></pre>
<p>Using an initial value for an element that cannot be copied, is a compile
time error:</p>
<pre><code>class Y {
Y(const Y&amp;);
public:
Y();
};
char a[10];
tuple&lt;char[10], Y&gt;(a, Y()); // error, neither arrays nor Y can be copied
tuple&lt;char[10], Y&gt;(); // ok
</code></pre>
<p>Note particularly that the following is perfectly ok:</p>
<pre><code>Y y;
tuple&lt;char(&amp;)[10], Y&amp;&gt;(a, y);
</code></pre>
<p>It is possible to come up with a tuple type that cannot be constructed.
This occurs if an element that cannot be initialized has a lower
index than an element that requires initialization.
For example: <code>tuple&lt;char[10], int&amp;&gt;</code>.</p>
<p>In sum, the tuple construction is semantically just a group of individual elementary constructions.
</p>
<h4><a name="make_tuple">The <code>make_tuple</code> function</a></h4>
<p>
Tuples can also be constructed using the <code>make_tuple</code> (cf. <code>std::make_pair</code>) helper functions.
This makes the construction more convenient, saving the programmer from explicitly specifying the element types:</p>
<pre><code>tuple&lt;int, int, double&gt; add_multiply_divide(int a, int b) {
return make_tuple(a+b, a*b, double(a)/double(b));
}
</code></pre>
<p>
By default, the element types are deduced to the plain non-reference types. E.g.: </p>
<pre><code>void foo(const A&amp; a, B&amp; b) {
...
make_tuple(a, b);
</code></pre>
<p>The <code>make_tuple</code> invocation results in a tuple of type <code>tuple&lt;A, B&gt;</code>.</p>
<p>
Sometimes the plain non-reference type is not desired, e.g. if the element type cannot be copied.
Therefore, the programmer can control the type deduction and state that a reference to const or reference to
non-const type should be used as the element type instead.
This is accomplished with two helper template functions: <code>ref</code> and <code>cref</code>.
Any argument can be wrapped with these functions to get the desired type.
The mechanism does not compromise const correctness since a const object wrapped with <code>ref</code> results
in a tuple element with const reference type (see the fifth example below).
For example:</p>
<pre><code>A a; B b; const A ca = a;
make_tuple(cref(a), b); // creates tuple&lt;const A&amp;, B&gt;
make_tuple(ref(a), b); // creates tuple&lt;A&amp;, B&gt;
make_tuple(ref(a), cref(b)); // creates tuple&lt;A&amp;, const B&amp;&gt;
make_tuple(cref(ca)); // creates tuple&lt;const A&amp;&gt;
make_tuple(ref(ca)); // creates tuple&lt;const A&amp;&gt;
</code></pre>
<p>
Array arguments to <code>make_tuple</code> functions are deduced to reference to const types by default; there is no need to wrap them with <code>cref</code>. For example:</p>
<pre><code>make_tuple(&quot;Donald&quot;, &quot;Daisy&quot;);
</code></pre>
<p>This creates an object of type <code>tuple&lt;const char (&amp;)[7], const char (&amp;)[6]&gt;</code>
(note that the type of a string literal is an array of const characters, not <code>const char*</code>).
However, to get <code>make_tuple</code> to create a tuple with an element of a
non-const array type one must use the <code>ref</code> wrapper.</p>
<p>
Function pointers are deduced to the plain non-reference type, that is, to plain function pointer.
A tuple can also hold a reference to a function,
but such a tuple cannot be constructed with <code>make_tuple</code> (a const qualified function type would result, which is illegal):</p>
<pre><code>void f(int i);
...
make_tuple(&amp;f); // tuple&lt;void (*)(int)&gt;
...
tuple&lt;tuple&lt;void (&amp;)(int)&gt; &gt; a(f) // ok
make_tuple(f); // not ok
</code></pre>
<h2><a name = "accessing_elements">Accessing tuple elements</a></h2>
<p>
Tuple elements are accessed with the expression:</p>
<pre><code>t.get&lt;N&gt;()
</code></pre>
<p>or</p>
<pre><code>get&lt;N&gt;(t)
</code></pre>
<p>where <code>t</code> is a tuple object and <code>N</code> is a constant integral expression specifying the index of the element to be accessed.
Depending on whether <code>t</code> is const or not, <code>get</code> returns the <code>N</code>th element as a reference to const or
non-const type.
The index of the first element is 0 and thus<code>
N</code> must be between 0 and <code>k-1</code>, where <code>k</code> is the number of elements in the tuple.
Violations of these constraints are detected at compile time. Examples:</p>
<pre><code>double d = 2.7; A a;
tuple&lt;int, double&amp;, const A&amp;&gt; t(1, d, a);
const tuple&lt;int, double&amp;, const A&amp;&gt; ct = t;
...
int i = get&lt;0&gt;(t); i = t.get&lt;0&gt;(); // ok
int j = get&lt;0&gt;(ct); // ok
get&lt;0&gt;(t) = 5; // ok
get&lt;0&gt;(ct) = 5; // error, can't assign to const
...
double e = get&lt;1&gt;(t); // ok
get&lt;1&gt;(t) = 3.14; // ok
get&lt;2&gt;(t) = A(); // error, can't assign to const
A aa = get&lt;3&gt;(t); // error: index out of bounds
...
++get&lt;0&gt;(t); // ok, can be used as any variable
</code></pre>
<p>
Note! The member get functions are not supported with MS Visual C++ compiler.
Further, the compiler has trouble with finding the non-member get functions without an explicit namespace qualifier.
Hence, all <code>get</code> calls should be qualified as: <code>tuples::get&lt;N&gt;(a_tuple)</code> when writing code that should compile with MSVC++ 6.0.
</p>
<h2><a name = "construction_and_assignment">Copy construction and tuple assignment</a></h2>
<p>
A tuple can be copy constructed from another tuple, provided that the element types are element-wise copy constructible.
Analogously, a tuple can be assigned to another tuple, provided that the element types are element-wise assignable.
For example:</p>
<pre><code>class A {};
class B : public A {};
struct C { C(); C(const B&amp;); };
struct D { operator C() const; };
tuple&lt;char, B*, B, D&gt; t;
...
tuple&lt;int, A*, C, C&gt; a(t); // ok
a = t; // ok
</code></pre>
<p>In both cases, the conversions performed are: <code>char -> int</code>, <code>B* -> A*</code> (derived class pointer to base class pointer), <code>B -> C</code> (a user defined conversion) and <code>D -> C</code> (a user defined conversion).</p>
<p>
Note that assignment is also defined from <code>std::pair</code> types:</p>
<pre><code>tuple&lt;float, int&gt; a = std::make_pair(1, 'a');
</code></pre>
<h2><a name = "relational_operators">Relational operators</a></h2>
<p>
Tuples reduce the operators <code>==, !=, &lt;, &gt;, &lt;=</code> and <code>>=</code> to the corresponding elementary operators.
This means, that if any of these operators is defined between all elements of two tuples, then the same operator is defined between the tuples as well.
The equality operators for two tuples <code>a</code> and <code>b</code> are defined as:</p>
<ul>
<li><code>a == b</code> iff for each <code>i</code>: <code>a<sub>i</sub> == b<sub>i</sub></code></li>
<li><code>a != b</code> iff exists <code>i</code>: <code>a<sub>i</sub> != b<sub>i</sub></code></li>
</ul>
<p>The operators <code>&lt;, &gt;, &lt;=</code> and <code>&gt;=</code> implement a lexicographical ordering.</p>
<p>
Note that an attempt to compare two tuples of different lengths results in a compile time error.
Also, the comparison operators are <i>"short-circuited"</i>: elementary comparisons start from the first elements and are performed only until the result is clear.</p>
<p>Examples:</p>
<pre><code>tuple&lt;std::string, int, A&gt; t1(std::string(&quot;same?&quot;), 2, A());
tuple&lt;std::string, long, A&gt; t2(std::string(&quot;same?&quot;), 2, A());
tuple&lt;std::string, long, A&gt; t3(std::string(&quot;different&quot;), 3, A());
bool operator==(A, A) { std::cout &lt;&lt; &quot;All the same to me...&quot;; return true; }
t1 == t2; // true
t1 == t3; // false, does not print &quot;All the...&quot;
</code></pre>
<h2><a name = "tiers">Tiers</a></h2>
<p>
<i>Tiers</i> are tuples, where all elements are of non-const reference types.
They are constructed with a call to the <code>tie</code> function template (cf. <code>make_tuple</code>):</p>
<pre><code>int i; char c; double d;
...
tie(i, c, a);
</code></pre>
<p>
The above <code>tie</code> function creates a tuple of type <code>tuple&lt;int&amp;, char&amp;, double&amp;&gt;</code>.
The same result could be achieved with the call <code>make_tuple(ref(i), ref(c), ref(a))</code>.
</p>
<p>
A tuple that contains non-const references as elements can be used to 'unpack' another tuple into variables. E.g.:</p>
<pre><code>int i; char c; double d;
tie(i, c, d) = make_tuple(1,'a', 5.5);
std::cout &lt;&lt; i &lt;&lt; &quot; &quot; &lt;&lt; c &lt;&lt; &quot; &quot; &lt;&lt; d;
</code></pre>
<p>This code prints <code>1 a 5.5</code> to the standard output stream.
A tuple unpacking operation like this is found for example in ML and Python.
It is convenient when calling functions which return tuples.</p>
<p>
The tying mechanism works with <code>std::pair</code> templates as well:</p>
<pre><code>int i; char c;
tie(i, c) = std::make_pair(1, 'a');
</code></pre>
<h4>Ignore</h4>
<p>There is also an object called <code>ignore</code> which allows you to ignore an element assigned by a tuple.
The idea is that a function may return a tuple, only part of which you are interested in. For example (note, that <code>ignore</code> is under the <code>tuples</code> subnamespace):</p>
<pre><code>char c;
tie(tuples::ignore, c) = std::make_pair(1, 'a');
</code></pre>
<h2><a name = "streaming">Streaming</a></h2>
<p>
The global <code>operator&lt;&lt;</code> has been overloaded for <code>std::ostream</code> such that tuples are
output by recursively calling <code>operator&lt;&lt;</code> for each element.
</p>
<p>
Analogously, the global <code>operator&gt;&gt;</code> has been overloaded to extract tuples from <code>std::istream</code> by recursively calling <code>operator&gt;&gt;</code> for each element.
</p>
<p>
The default delimiter between the elements is space, and the tuple is enclosed
in parenthesis.
For Example:
<pre><code>tuple&lt;float, int, std::string&gt; a(1.0f, 2, std::string(&quot;Howdy folks!&quot;);
cout &lt;&lt; a;
</code></pre>
<p>outputs the tuple as: <code>(1.0 2 Howdy folks!)</code></p>
<p>
The library defines three <i>manipulators</i> for changing the default behavior:</p>
<ul>
<li><code>set_open(char)</code> defines the character that is output before the first
element.</li>
<li><code>set_close(char)</code> defines the character that is output after the
last element.</li>
<li><code>set_delimiter(char)</code> defines the delimiter character between
elements.</li>
</ul>
<p>Note, that these manipulators are defined in the <code>tuples</code> subnamespace.
For example:</p>
<pre><code>cout &lt;&lt; tuples::set_open('[') &lt;&lt; tuples::set_close(']') &lt;&lt; tuples::set_delimiter(',') &lt;&lt; a;
</code></pre>
<p>outputs the same tuple <code>a</code> as: <code>[1.0,2,Howdy folks!]</code></p>
<p>The same manipulators work with <code>operator&gt;&gt;</code> and <code>istream</code> as well. Suppose the <code>cin</code> stream contains the following data:
<pre><code>(1 2 3) [4:5]</code></pre>
<p>The code:</p>
<pre><code>tuple&lt;int, int, int&gt; i;
tuple&lt;int, int&gt; j;
cin &gt;&gt; i;
cin &gt;&gt; tuples::set_open('[') &gt;&gt; tuples::set_close(']') &gt;&gt; tuples::set_delimiter(':');
cin &gt;&gt; j;
</code></pre>
<p>reads the data into the tuples <code>i</code> and <code>j</code>.</p>
<p>
Note that extracting tuples with <code>std::string</code> or C-style string
elements does not generally work, since the streamed tuple representation may not be unambiguously
parseable.
</p>
<h2><a name = "performance">Performance</a></h2>
<p>All tuple access and construction functions are small inlined one-liners.
Therefore, a decent compiler can eliminate any extra cost of using tuples compared to using hand-written tuple like classes.
Particularly, with a decent compiler there is no performance difference between this code:</p>
<pre><code>class hand_made_tuple {
A a; B b; C c;
public:
hand_made_tuple(const A&amp; aa, const B&amp; bb, const C&amp; cc)
: a(aa), b(bb), c(cc) {};
A&amp; getA() { return a; };
B&amp; getB() { return b; };
C&amp; getC() { return c; };
};
hand_made_tuple hmt(A(), B(), C());
hmt.getA(); hmt.getB(); hmt.getC();
</code></pre>
<p>and this code:</p>
<pre><code>tuple&lt;A, B, C&gt; t(A(), B(), C());
t.get&lt;0&gt;(); t.get&lt;1&gt;(); t.get&lt;2&gt;();
</code></pre>
<p>Note, that there are widely used compilers (e.g. bcc 5.5.1) which fail to optimize this kind of tuple usage.
</p>
<p>
Depending on the optimizing ability of the compiler, the tier mechanism may have a small performance penalty compared to using
non-const reference parameters as a mechanism for returning multiple values from a function.
For example, suppose that the following functions <code>f1</code> and <code>f2</code> have equivalent functionalities:</p>
<pre><code>void f1(int&amp;, double&amp;);
tuple&lt;int, double&gt; f2();
</code></pre>
<p>Then, the call #1 may be slightly faster than #2 in the code below:</p>
<pre><code>int i; double d;
...
f1(i,d); // #1
tie(i,d) = f2(); // #2
</code></pre>
<p>See
[<a href="#publ_1">1</a>,
<a href="#publ_2">2</a>]
for more in-depth discussions about efficiency.</p>
<h4>Effect on Compile Time</h4>
<p>
Compiling tuples can be slow due to the excessive amount of template instantiations.
Depending on the compiler and the tuple length, it may be more than 10 times slower to compile a tuple construct, compared to compiling an equivalent explicitly written class, such as the <code>hand_made_tuple</code> class above.
However, as a realistic program is likely to contain a lot of code in addition to tuple definitions, the difference is probably unnoticeable.
Compile time increases between 5 and 10 percent were measured for programs which used tuples very frequently.
With the same test programs, memory consumption of compiling increased between 22% to 27%. See
[<a href="#publ_1">1</a>,
<a href="#publ_2">2</a>]
for details.
</p>
<h2><a name = "portability">Portability</a></h2>
<p>The library code is(?) standard C++ and thus the library works with a standard conforming compiler.
Below is a list of compilers and known problems with each compiler:
</p>
<table>
<tr><td><u>Compiler</u></td><td><u>Problems</u></td></tr>
<tr><td>gcc 2.95</td><td>-</td></tr>
<tr><td>edg 2.44</td><td>-</td></tr>
<tr><td>Borland 5.5</td><td>Can't use function pointers or member pointers as tuple elements</td></tr>
<tr><td>Metrowerks 6.2</td><td>Can't use <code>ref</code> and <code>cref</code> wrappers</td></tr>
<tr><td>MS Visual C++</td><td>No reference elements (<code>tie</code> still works). Can't use <code>ref</code> and <code>cref</code> wrappers</td></tr>
</table>
<h2><a name = "thanks">Acknowledgements</a></h2>
<p>Gary Powell has been an indispensable helping hand. In particular, stream manipulators for tuples were his idea. Doug Gregor came up with a working version for MSVC, David Abrahams found a way to get rid of most of the restrictions for compilers not supporting partial specialization. Thanks to Jeremy Siek, William Kempf and Jens Maurer for their help and suggestions.
The comments by Vesa Karvonen, John Max Skaller, Ed Brey, Beman Dawes, David Abrahams and Hartmut Kaiser helped to improve the
library.
The idea for the tie mechanism came from an old usenet article by Ian McCulloch, where he proposed something similar for std::pairs.</p>
<h2><a name = "references">References</a></h2>
<p>
<a name="publ_1"></a>[1]
J&auml;rvi J.: <i>Tuples and multiple return values in C++</i>, TUCS Technical Report No 249, 1999<!-- (<a href="http://www.tucs.fi/Publications">http://www.tucs.fi/Publications</a>)-->.
</p>
<p>
<a name="publ_2"></a>[2]
J&auml;rvi J.: <i>ML-Style Tuple Assignment in Standard C++ - Extending the Multiple Return Value Formalism</i>, TUCS Technical Report No 267, 1999<!-- (<a href="http://www.tucs.fi/Publications">http://www.tucs.fi/Publications</a>)-->.
</p>
<p>
[3] J&auml;rvi J.:<i>Tuple Types and Multiple Return Values</i>, C/C++ Users Journal, August 2001.
</p>
<hr>
<p>Last modified 2003-09-07</p>
<p>&copy; Copyright <a href="http://www.boost.org/people/jaakko_jarvi.htm"> Jaakko J&auml;rvi</a> 2001.
Permission to copy, use, modify, sell and distribute this software and its documentation is granted provided this copyright notice appears in all copies.
This software and its documentation is provided "as is" without express or implied warranty, and with no claim as to its suitability for any purpose.
</p>
</body>
</html>

View File

@ -1,15 +1,10 @@
// tuple_basic.hpp ----------------------------------------------------- // tuple_basic.hpp -----------------------------------------------------
// Copyright (C) 1999, 2000 Jaakko J<EFBFBD>rvi (jaakko.jarvi@cs.utu.fi) // Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
// //
// Permission to copy, use, sell and distribute this software is granted // Distributed under the Boost Software License, Version 1.0. (See
// provided this copyright notice appears in all copies. // accompanying file LICENSE_1_0.txt or copy at
// Permission to modify the code and to distribute modified code is granted // http://www.boost.org/LICENSE_1_0.txt)
// provided this copyright notice appears in all copies, and a notice
// that the code was modified is included with the copyright notice.
//
// This software is provided "as is" without express or implied warranty,
// and with no claim as to its suitability for any purpose.
// For more information, see http://www.boost.org // For more information, see http://www.boost.org
@ -18,11 +13,18 @@
// Fixed return types for get_head/get_tail // Fixed return types for get_head/get_tail
// ( and other bugs ) per suggestion of Jens Maurer // ( and other bugs ) per suggestion of Jens Maurer
// simplified element type accessors + bug fix (Jeremy Siek) // simplified element type accessors + bug fix (Jeremy Siek)
// Several changes/additions according to suggestions by Doug Gregor, // Several changes/additions according to suggestions by Douglas Gregor,
// William Kempf, Vesa Karvonen, John Max Skaller, Ed Brey, Beman Davis, // William Kempf, Vesa Karvonen, John Max Skaller, Ed Brey, Beman Dawes,
// David Abrahams. // David Abrahams.
// Revision history: // Revision history:
// 2002 05 01 Hugo Duncan: Fix for Borland after Jaakko's previous changes
// 2002 04 18 Jaakko: tuple element types can be void or plain function
// types, as long as no object is created.
// Tuple objects can no hold even noncopyable types
// such as arrays.
// 2001 10 22 John Maddock
// Fixes for Borland C++
// 2001 08 30 David Abrahams // 2001 08 30 David Abrahams
// Added default constructor for cons<>. // Added default constructor for cons<>.
// ----------------------------------------------------------------- // -----------------------------------------------------------------
@ -34,6 +36,10 @@
#include <utility> // needed for the assignment from pair to tuple #include <utility> // needed for the assignment from pair to tuple
#include "boost/type_traits/cv_traits.hpp" #include "boost/type_traits/cv_traits.hpp"
#include "boost/type_traits/function_traits.hpp"
#include "boost/utility/swap.hpp"
#include "boost/detail/workaround.hpp" // needed for BOOST_WORKAROUND
namespace boost { namespace boost {
namespace tuples { namespace tuples {
@ -43,7 +49,18 @@ struct null_type {};
// a helper function to provide a const null_type type temporary // a helper function to provide a const null_type type temporary
namespace detail { namespace detail {
inline const null_type cnull_type() { return null_type(); } inline const null_type cnull() { return null_type(); }
// -- if construct ------------------------------------------------
// Proposed by Krzysztof Czarnecki and Ulrich Eisenecker
template <bool If, class Then, class Else> struct IF { typedef Then RET; };
template <class Then, class Else> struct IF<false, Then, Else> {
typedef Else RET;
};
} // end detail } // end detail
// - cons forward declaration ----------------------------------------------- // - cons forward declaration -----------------------------------------------
@ -70,70 +87,28 @@ namespace detail {
template<class T> template<class T>
class generate_error; class generate_error;
// tuple default argument wrappers --------------------------------------- template<int N>
// Work for non-reference types, intentionally not for references struct drop_front {
template <class T> template<class Tuple>
struct default_arg { struct apply {
typedef BOOST_DEDUCED_TYPENAME drop_front<N-1>::BOOST_NESTED_TEMPLATE
// Non-class temporaries cannot have qualifiers. apply<Tuple> next;
// To prevent f to return for example const int, we remove cv-qualifiers typedef BOOST_DEDUCED_TYPENAME next::type::tail_type type;
// from all temporaries. static const type& call(const Tuple& tup) {
static typename boost::remove_cv<T>::type f() { return T(); } return next::call(tup).tail;
};
// This is just to produce a more informative error message
// The code would fail in any case
template<class T, int N>
struct default_arg<T[N]> {
static T* f() {
return generate_error<T[N]>::arrays_are_not_valid_tuple_elements; }
};
template <class T>
struct default_arg<T&> {
static T& f() {
#ifndef __sgi
return generate_error<T>::no_default_values_for_reference_types;
#else
// MIPSpro instantiates functions even when it should not, so
// this technique can not be used for error checking.
// The simple workaround is to just not have this error checking
// with MIPSpro.
static T x;
return x;
#endif
}
};
// - cons getters --------------------------------------------------------
// called: get_class<N>::get<RETURN_TYPE>(aTuple)
template< int N >
struct get_class {
template<class RET, class HT, class TT >
inline static RET get(const cons<HT, TT>& t)
{
return get_class<N-1>::template get<RET>(t.tail);
}
template<class RET, class HT, class TT >
inline static RET get(cons<HT, TT>& t)
{
return get_class<N-1>::template get<RET>(t.tail);
} }
};
}; };
template<> template<>
struct get_class<0> { struct drop_front<0> {
template<class RET, class HT, class TT> template<class Tuple>
inline static RET get(const cons<HT, TT>& t) struct apply {
{ typedef Tuple type;
return t.head; static const type& call(const Tuple& tup) {
} return tup;
template<class RET, class HT, class TT>
inline static RET get(cons<HT, TT>& t)
{
return t.head;
} }
};
}; };
} // end of namespace detail } // end of namespace detail
@ -144,19 +119,58 @@ struct get_class<0> {
// Nth element ot T, first element is at index 0 // Nth element ot T, first element is at index 0
// ------------------------------------------------------- // -------------------------------------------------------
#ifndef BOOST_NO_CV_SPECIALIZATIONS
template<int N, class T> template<int N, class T>
struct element struct element
{ {
private: typedef BOOST_DEDUCED_TYPENAME detail::drop_front<N>::BOOST_NESTED_TEMPLATE
typedef typename T::tail_type Next; apply<T>::type::head_type type;
public:
typedef typename element<N-1, Next>::type type;
}; };
template<class T>
struct element<0,T> template<int N, class T>
struct element<N, const T>
{ {
typedef typename T::head_type type; private:
typedef BOOST_DEDUCED_TYPENAME detail::drop_front<N>::BOOST_NESTED_TEMPLATE
apply<T>::type::head_type unqualified_type;
public:
#if BOOST_WORKAROUND(__BORLANDC__,<0x600)
typedef const unqualified_type type;
#else
typedef BOOST_DEDUCED_TYPENAME boost::add_const<unqualified_type>::type type;
#endif
}; };
#else // def BOOST_NO_CV_SPECIALIZATIONS
namespace detail {
template<int N, class T, bool IsConst>
struct element_impl
{
typedef BOOST_DEDUCED_TYPENAME detail::drop_front<N>::BOOST_NESTED_TEMPLATE
apply<T>::type::head_type type;
};
template<int N, class T>
struct element_impl<N, T, true /* IsConst */>
{
typedef BOOST_DEDUCED_TYPENAME detail::drop_front<N>::BOOST_NESTED_TEMPLATE
apply<T>::type::head_type unqualified_type;
typedef const unqualified_type type;
};
} // end of namespace detail
template<int N, class T>
struct element:
public detail::element_impl<N, T, ::boost::is_const<T>::value>
{
};
#endif
// -get function templates ----------------------------------------------- // -get function templates -----------------------------------------------
// Usage: get<N>(aTuple) // Usage: get<N>(aTuple)
@ -172,6 +186,7 @@ template <class T> struct access_traits {
typedef T& non_const_type; typedef T& non_const_type;
typedef const typename boost::remove_cv<T>::type& parameter_type; typedef const typename boost::remove_cv<T>::type& parameter_type;
// used as the tuple constructors parameter types // used as the tuple constructors parameter types
// Rationale: non-reference tuple element types can be cv-qualified. // Rationale: non-reference tuple element types can be cv-qualified.
// It should be possible to initialize such types with temporaries, // It should be possible to initialize such types with temporaries,
@ -187,19 +202,17 @@ template <class T> struct access_traits<T&> {
typedef T& parameter_type; typedef T& parameter_type;
}; };
// get function for non-const cons-lists, returns a reference to the element // get function for non-const cons-lists, returns a reference to the element
template<int N, class HT, class TT> template<int N, class HT, class TT>
inline typename access_traits< inline typename access_traits<
typename element<N, cons<HT, TT> >::type typename element<N, cons<HT, TT> >::type
>::non_const_type >::non_const_type
get(cons<HT, TT>& c) { get(cons<HT, TT>& c BOOST_APPEND_EXPLICIT_TEMPLATE_NON_TYPE(int, N)) {
return detail::get_class<N>::template typedef BOOST_DEDUCED_TYPENAME detail::drop_front<N>::BOOST_NESTED_TEMPLATE
get< apply<cons<HT, TT> > impl;
typename access_traits< typedef BOOST_DEDUCED_TYPENAME impl::type cons_element;
typename element<N, cons<HT, TT> >::type return const_cast<cons_element&>(impl::call(c)).head;
>::non_const_type>(c);
} }
// get function for const cons-lists, returns a const reference to // get function for const cons-lists, returns a const reference to
@ -209,18 +222,36 @@ template<int N, class HT, class TT>
inline typename access_traits< inline typename access_traits<
typename element<N, cons<HT, TT> >::type typename element<N, cons<HT, TT> >::type
>::const_type >::const_type
get(const cons<HT, TT>& c) { get(const cons<HT, TT>& c BOOST_APPEND_EXPLICIT_TEMPLATE_NON_TYPE(int, N)) {
return detail::get_class<N>::template typedef BOOST_DEDUCED_TYPENAME detail::drop_front<N>::BOOST_NESTED_TEMPLATE
get< apply<cons<HT, TT> > impl;
typename access_traits< typedef BOOST_DEDUCED_TYPENAME impl::type cons_element;
typename element<N, cons<HT, TT> >::type return impl::call(c).head;
>::const_type>(c);
} }
// -- the cons template -------------------------------------------------- // -- the cons template --------------------------------------------------
namespace detail {
// These helper templates wrap void types and plain function types.
// The reationale is to allow one to write tuple types with those types
// as elements, even though it is not possible to instantiate such object.
// E.g: typedef tuple<void> some_type; // ok
// but: some_type x; // fails
template <class T> class non_storeable_type {
non_storeable_type();
};
template <class T> struct wrap_non_storeable_type {
typedef typename IF<
::boost::is_function<T>::value, non_storeable_type<T>, T
>::RET type;
};
template <> struct wrap_non_storeable_type<void> {
typedef non_storeable_type<void> type;
};
} // detail
template <class HT, class TT> template <class HT, class TT>
struct cons { struct cons {
@ -228,28 +259,33 @@ struct cons {
typedef HT head_type; typedef HT head_type;
typedef TT tail_type; typedef TT tail_type;
head_type head; typedef typename
detail::wrap_non_storeable_type<head_type>::type stored_head_type;
stored_head_type head;
tail_type tail; tail_type tail;
typename access_traits<head_type>::non_const_type typename access_traits<stored_head_type>::non_const_type
get_head() { return head; } get_head() { return head; }
typename access_traits<tail_type>::non_const_type typename access_traits<tail_type>::non_const_type
get_tail() { return tail; } get_tail() { return tail; }
typename access_traits<head_type>::const_type typename access_traits<stored_head_type>::const_type
get_head() const { return head; } get_head() const { return head; }
typename access_traits<tail_type>::const_type typename access_traits<tail_type>::const_type
get_tail() const { return tail; } get_tail() const { return tail; }
cons() : head(detail::default_arg<HT>::f()), tail() {} cons() : head(), tail() {}
// cons() : head(detail::default_arg<HT>::f()), tail() {}
// the argument for head is not strictly needed, but it prevents // the argument for head is not strictly needed, but it prevents
// array type elements. This is good, since array type elements // array type elements. This is good, since array type elements
// cannot be supported properly in any case (no assignment, // cannot be supported properly in any case (no assignment,
// copy works only if the tails are exactly the same type, ...) // copy works only if the tails are exactly the same type, ...)
cons(typename access_traits<head_type>::parameter_type h, cons(typename access_traits<stored_head_type>::parameter_type h,
const tail_type& t) const tail_type& t)
: head (h), tail(t) {} : head (h), tail(t) {}
@ -258,9 +294,18 @@ struct cons {
cons( T1& t1, T2& t2, T3& t3, T4& t4, T5& t5, cons( T1& t1, T2& t2, T3& t3, T4& t4, T5& t5,
T6& t6, T7& t7, T8& t8, T9& t9, T10& t10 ) T6& t6, T7& t7, T8& t8, T9& t9, T10& t10 )
: head (t1), : head (t1),
tail (t2, t3, t4, t5, t6, t7, t8, t9, t10, detail::cnull_type()) tail (t2, t3, t4, t5, t6, t7, t8, t9, t10, detail::cnull())
{} {}
template <class T2, class T3, class T4, class T5,
class T6, class T7, class T8, class T9, class T10>
cons( const null_type& /*t1*/, T2& t2, T3& t3, T4& t4, T5& t5,
T6& t6, T7& t7, T8& t8, T9& t9, T10& t10 )
: head (),
tail (t2, t3, t4, t5, t6, t7, t8, t9, t10, detail::cnull())
{}
template <class HT2, class TT2> template <class HT2, class TT2>
cons( const cons<HT2, TT2>& u ) : head(u.head), tail(u.tail) {} cons( const cons<HT2, TT2>& u ) : head(u.head), tail(u.tail) {}
@ -287,7 +332,7 @@ struct cons {
typename element<N, cons<HT, TT> >::type typename element<N, cons<HT, TT> >::type
>::non_const_type >::non_const_type
get() { get() {
return boost::get<N>(*this); // delegate to non-member get return boost::tuples::get<N>(*this); // delegate to non-member get
} }
template <int N> template <int N>
@ -295,7 +340,7 @@ struct cons {
typename element<N, cons<HT, TT> >::type typename element<N, cons<HT, TT> >::type
>::const_type >::const_type
get() const { get() const {
return boost::get<N>(*this); // delegate to non-member get return boost::tuples::get<N>(*this); // delegate to non-member get
} }
}; };
@ -304,22 +349,26 @@ struct cons<HT, null_type> {
typedef HT head_type; typedef HT head_type;
typedef null_type tail_type; typedef null_type tail_type;
typedef cons<HT, null_type> self_type;
head_type head; typedef typename
detail::wrap_non_storeable_type<head_type>::type stored_head_type;
stored_head_type head;
typename access_traits<head_type>::non_const_type typename access_traits<stored_head_type>::non_const_type
get_head() { return head; } get_head() { return head; }
null_type get_tail() { return null_type(); } null_type get_tail() { return null_type(); }
typename access_traits<head_type>::const_type typename access_traits<stored_head_type>::const_type
get_head() const { return head; } get_head() const { return head; }
const null_type get_tail() const { return null_type(); } const null_type get_tail() const { return null_type(); }
cons() : head(detail::default_arg<HT>::f()) {} // cons() : head(detail::default_arg<HT>::f()) {}
cons() : head() {}
cons(typename access_traits<head_type>::parameter_type h, cons(typename access_traits<stored_head_type>::parameter_type h,
const null_type& = null_type()) const null_type& = null_type())
: head (h) {} : head (h) {}
@ -329,6 +378,12 @@ struct cons<HT, null_type> {
const null_type&, const null_type&, const null_type&) const null_type&, const null_type&, const null_type&)
: head (t1) {} : head (t1) {}
cons(const null_type&,
const null_type&, const null_type&, const null_type&,
const null_type&, const null_type&, const null_type&,
const null_type&, const null_type&, const null_type&)
: head () {}
template <class HT2> template <class HT2>
cons( const cons<HT2, null_type>& u ) : head(u.head) {} cons( const cons<HT2, null_type>& u ) : head(u.head) {}
@ -342,18 +397,18 @@ struct cons<HT, null_type> {
template <int N> template <int N>
typename access_traits< typename access_traits<
typename element<N, cons>::type typename element<N, self_type>::type
>::non_const_type >::non_const_type
get() { get(BOOST_EXPLICIT_TEMPLATE_NON_TYPE(int, N)) {
return boost::get<N>(*this); return boost::tuples::get<N>(*this);
} }
template <int N> template <int N>
typename access_traits< typename access_traits<
typename element<N, cons>::type typename element<N, self_type>::type
>::const_type >::const_type
get() const { get(BOOST_EXPLICIT_TEMPLATE_NON_TYPE(int, N)) const {
return boost::get<N>(*this); return boost::tuples::get<N>(*this);
} }
}; };
@ -365,11 +420,25 @@ struct length {
BOOST_STATIC_CONSTANT(int, value = 1 + length<typename T::tail_type>::value); BOOST_STATIC_CONSTANT(int, value = 1 + length<typename T::tail_type>::value);
}; };
template<>
struct length<tuple<> > {
BOOST_STATIC_CONSTANT(int, value = 0);
};
template<>
struct length<tuple<> const> {
BOOST_STATIC_CONSTANT(int, value = 0);
};
template<> template<>
struct length<null_type> { struct length<null_type> {
BOOST_STATIC_CONSTANT(int, value = 0); BOOST_STATIC_CONSTANT(int, value = 0);
}; };
template<>
struct length<null_type const> {
BOOST_STATIC_CONSTANT(int, value = 0);
};
namespace detail { namespace detail {
@ -409,30 +478,96 @@ public:
// access_traits<T>::parameter_type takes non-reference types as const T& // access_traits<T>::parameter_type takes non-reference types as const T&
explicit tuple( tuple() {}
typename access_traits<T0>::parameter_type t0
= detail::default_arg<T0>::f(),
typename access_traits<T1>::parameter_type t1
= detail::default_arg<T1>::f(),
typename access_traits<T2>::parameter_type t2
= detail::default_arg<T2>::f(),
typename access_traits<T3>::parameter_type t3
= detail::default_arg<T3>::f(),
typename access_traits<T4>::parameter_type t4
= detail::default_arg<T4>::f(),
typename access_traits<T5>::parameter_type t5
= detail::default_arg<T5>::f(),
typename access_traits<T6>::parameter_type t6
= detail::default_arg<T6>::f(),
typename access_traits<T7>::parameter_type t7
= detail::default_arg<T7>::f(),
typename access_traits<T8>::parameter_type t8
= detail::default_arg<T8>::f(),
typename access_traits<T9>::parameter_type t9
= detail::default_arg<T9>::f())
tuple(typename access_traits<T0>::parameter_type t0)
: inherited(t0, detail::cnull(), detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1)
: inherited(t0, t1, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2)
: inherited(t0, t1, t2, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3)
: inherited(t0, t1, t2, t3, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull(),
detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3,
typename access_traits<T4>::parameter_type t4)
: inherited(t0, t1, t2, t3, t4, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3,
typename access_traits<T4>::parameter_type t4,
typename access_traits<T5>::parameter_type t5)
: inherited(t0, t1, t2, t3, t4, t5, detail::cnull(), detail::cnull(),
detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3,
typename access_traits<T4>::parameter_type t4,
typename access_traits<T5>::parameter_type t5,
typename access_traits<T6>::parameter_type t6)
: inherited(t0, t1, t2, t3, t4, t5, t6, detail::cnull(),
detail::cnull(), detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3,
typename access_traits<T4>::parameter_type t4,
typename access_traits<T5>::parameter_type t5,
typename access_traits<T6>::parameter_type t6,
typename access_traits<T7>::parameter_type t7)
: inherited(t0, t1, t2, t3, t4, t5, t6, t7, detail::cnull(),
detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3,
typename access_traits<T4>::parameter_type t4,
typename access_traits<T5>::parameter_type t5,
typename access_traits<T6>::parameter_type t6,
typename access_traits<T7>::parameter_type t7,
typename access_traits<T8>::parameter_type t8)
: inherited(t0, t1, t2, t3, t4, t5, t6, t7, t8, detail::cnull()) {}
tuple(typename access_traits<T0>::parameter_type t0,
typename access_traits<T1>::parameter_type t1,
typename access_traits<T2>::parameter_type t2,
typename access_traits<T3>::parameter_type t3,
typename access_traits<T4>::parameter_type t4,
typename access_traits<T5>::parameter_type t5,
typename access_traits<T6>::parameter_type t6,
typename access_traits<T7>::parameter_type t7,
typename access_traits<T8>::parameter_type t8,
typename access_traits<T9>::parameter_type t9)
: inherited(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) {} : inherited(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) {}
template<class U1, class U2> template<class U1, class U2>
tuple(const cons<U1, U2>& p) : inherited(p) {} tuple(const cons<U1, U2>& p) : inherited(p) {}
@ -465,20 +600,21 @@ public:
// Swallows any assignment (by Doug Gregor) // Swallows any assignment (by Doug Gregor)
namespace detail { namespace detail {
struct swallow_assign;
typedef void (detail::swallow_assign::*ignore_t)();
struct swallow_assign { struct swallow_assign {
swallow_assign(ignore_t(*)(ignore_t)) {}
template<typename T> template<typename T>
swallow_assign& operator=(const T&) { swallow_assign const& operator=(const T&) const {
return *this; return *this;
} }
}; };
} // namespace detail } // namespace detail
// "ignore" allows tuple positions to be ignored when using "tie". // "ignore" allows tuple positions to be ignored when using "tie".
namespace { inline detail::ignore_t ignore(detail::ignore_t) { return 0; }
detail::swallow_assign ignore;
}
// --------------------------------------------------------------------------- // ---------------------------------------------------------------------------
// The call_traits for make_tuple // The call_traits for make_tuple
@ -560,6 +696,10 @@ struct make_tuple_traits<const reference_wrapper<T> >{
typedef T& type; typedef T& type;
}; };
template<>
struct make_tuple_traits<detail::ignore_t(detail::ignore_t)> {
typedef detail::swallow_assign type;
};
@ -597,51 +737,54 @@ inline tuple<> make_tuple() {
template<class T0> template<class T0>
inline typename detail::make_tuple_mapper<T0>::type inline typename detail::make_tuple_mapper<T0>::type
make_tuple(const T0& t0) { make_tuple(const T0& t0) {
return typename detail::make_tuple_mapper<T0>::type(t0); typedef typename detail::make_tuple_mapper<T0>::type t;
return t(t0);
} }
template<class T0, class T1> template<class T0, class T1>
inline typename detail::make_tuple_mapper<T0, T1>::type inline typename detail::make_tuple_mapper<T0, T1>::type
make_tuple(const T0& t0, const T1& t1) { make_tuple(const T0& t0, const T1& t1) {
return typename detail::make_tuple_mapper<T0, T1>::type(t0, t1); typedef typename detail::make_tuple_mapper<T0, T1>::type t;
return t(t0, t1);
} }
template<class T0, class T1, class T2> template<class T0, class T1, class T2>
inline typename detail::make_tuple_mapper<T0, T1, T2>::type inline typename detail::make_tuple_mapper<T0, T1, T2>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2) { make_tuple(const T0& t0, const T1& t1, const T2& t2) {
return typename detail::make_tuple_mapper<T0, T1, T2>::type(t0, t1, t2); typedef typename detail::make_tuple_mapper<T0, T1, T2>::type t;
return t(t0, t1, t2);
} }
template<class T0, class T1, class T2, class T3> template<class T0, class T1, class T2, class T3>
inline typename detail::make_tuple_mapper<T0, T1, T2, T3>::type inline typename detail::make_tuple_mapper<T0, T1, T2, T3>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3) { make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3) {
return typename detail::make_tuple_mapper<T0, T1, T2, T3>::type typedef typename detail::make_tuple_mapper<T0, T1, T2, T3>::type t;
(t0, t1, t2, t3); return t(t0, t1, t2, t3);
} }
template<class T0, class T1, class T2, class T3, class T4> template<class T0, class T1, class T2, class T3, class T4>
inline typename detail::make_tuple_mapper<T0, T1, T2, T3, T4>::type inline typename detail::make_tuple_mapper<T0, T1, T2, T3, T4>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3, make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
const T4& t4) { const T4& t4) {
return typename detail::make_tuple_mapper<T0, T1, T2, T3, T4>::type typedef typename detail::make_tuple_mapper<T0, T1, T2, T3, T4>::type t;
(t0, t1, t2, t3, t4); return t(t0, t1, t2, t3, t4);
} }
template<class T0, class T1, class T2, class T3, class T4, class T5> template<class T0, class T1, class T2, class T3, class T4, class T5>
inline typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5>::type inline typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3, make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
const T4& t4, const T5& t5) { const T4& t4, const T5& t5) {
return typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5>::type typedef typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5>::type t;
(t0, t1, t2, t3, t4, t5); return t(t0, t1, t2, t3, t4, t5);
} }
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> template<class T0, class T1, class T2, class T3, class T4, class T5, class T6>
inline typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5, T6>::type inline typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5, T6>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3, make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
const T4& t4, const T5& t5, const T6& t6) { const T4& t4, const T5& t5, const T6& t6) {
return typename detail::make_tuple_mapper typedef typename detail::make_tuple_mapper
<T0, T1, T2, T3, T4, T5, T6>::type <T0, T1, T2, T3, T4, T5, T6>::type t;
(t0, t1, t2, t3, t4, t5, t6); return t(t0, t1, t2, t3, t4, t5, t6);
} }
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6, template<class T0, class T1, class T2, class T3, class T4, class T5, class T6,
@ -649,9 +792,9 @@ template<class T0, class T1, class T2, class T3, class T4, class T5, class T6,
inline typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5, T6, T7>::type inline typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5, T6, T7>::type
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3, make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
const T4& t4, const T5& t5, const T6& t6, const T7& t7) { const T4& t4, const T5& t5, const T6& t6, const T7& t7) {
return typename detail::make_tuple_mapper typedef typename detail::make_tuple_mapper
<T0, T1, T2, T3, T4, T5, T6, T7>::type <T0, T1, T2, T3, T4, T5, T6, T7>::type t;
(t0, t1, t2, t3, t4, t5, t6, t7); return t(t0, t1, t2, t3, t4, t5, t6, t7);
} }
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6, template<class T0, class T1, class T2, class T3, class T4, class T5, class T6,
@ -661,9 +804,9 @@ inline typename detail::make_tuple_mapper
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3, make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
const T4& t4, const T5& t5, const T6& t6, const T7& t7, const T4& t4, const T5& t5, const T6& t6, const T7& t7,
const T8& t8) { const T8& t8) {
return typename detail::make_tuple_mapper typedef typename detail::make_tuple_mapper
<T0, T1, T2, T3, T4, T5, T6, T7, T8>::type <T0, T1, T2, T3, T4, T5, T6, T7, T8>::type t;
(t0, t1, t2, t3, t4, t5, t6, t7, t8); return t(t0, t1, t2, t3, t4, t5, t6, t7, t8);
} }
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6, template<class T0, class T1, class T2, class T3, class T4, class T5, class T6,
@ -673,76 +816,159 @@ inline typename detail::make_tuple_mapper
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3, make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
const T4& t4, const T5& t5, const T6& t6, const T7& t7, const T4& t4, const T5& t5, const T6& t6, const T7& t7,
const T8& t8, const T9& t9) { const T8& t8, const T9& t9) {
return typename detail::make_tuple_mapper typedef typename detail::make_tuple_mapper
<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>::type <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>::type t;
(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9); return t(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9);
} }
namespace detail {
template<class T>
struct tie_traits {
typedef T& type;
};
template<>
struct tie_traits<ignore_t(ignore_t)> {
typedef swallow_assign type;
};
template<>
struct tie_traits<void> {
typedef null_type type;
};
template <
class T0 = void, class T1 = void, class T2 = void,
class T3 = void, class T4 = void, class T5 = void,
class T6 = void, class T7 = void, class T8 = void,
class T9 = void
>
struct tie_mapper {
typedef
tuple<typename tie_traits<T0>::type,
typename tie_traits<T1>::type,
typename tie_traits<T2>::type,
typename tie_traits<T3>::type,
typename tie_traits<T4>::type,
typename tie_traits<T5>::type,
typename tie_traits<T6>::type,
typename tie_traits<T7>::type,
typename tie_traits<T8>::type,
typename tie_traits<T9>::type> type;
};
}
// Tie function templates ------------------------------------------------- // Tie function templates -------------------------------------------------
template<class T1> template<class T0>
inline tuple<T1&> tie(T1& t1) { inline typename detail::tie_mapper<T0>::type
return tuple<T1&> (t1); tie(T0& t0) {
typedef typename detail::tie_mapper<T0>::type t;
return t(t0);
} }
template<class T1, class T2> template<class T0, class T1>
inline tuple<T1&, T2&> tie(T1& t1, T2& t2) { inline typename detail::tie_mapper<T0, T1>::type
return tuple<T1&, T2&> (t1, t2); tie(T0& t0, T1& t1) {
typedef typename detail::tie_mapper<T0, T1>::type t;
return t(t0, t1);
} }
template<class T1, class T2, class T3> template<class T0, class T1, class T2>
inline tuple<T1&, T2&, T3&> tie(T1& t1, T2& t2, T3& t3) { inline typename detail::tie_mapper<T0, T1, T2>::type
return tuple<T1&, T2&, T3&> (t1, t2, t3); tie(T0& t0, T1& t1, T2& t2) {
typedef typename detail::tie_mapper<T0, T1, T2>::type t;
return t(t0, t1, t2);
} }
template<class T1, class T2, class T3, class T4> template<class T0, class T1, class T2, class T3>
inline tuple<T1&, T2&, T3&, T4&> tie(T1& t1, T2& t2, T3& t3, T4& t4) { inline typename detail::tie_mapper<T0, T1, T2, T3>::type
return tuple<T1&, T2&, T3&, T4&> (t1, t2, t3, t4); tie(T0& t0, T1& t1, T2& t2, T3& t3) {
typedef typename detail::tie_mapper<T0, T1, T2, T3>::type t;
return t(t0, t1, t2, t3);
} }
template<class T1, class T2, class T3, class T4, class T5> template<class T0, class T1, class T2, class T3, class T4>
inline tuple<T1&, T2&, T3&, T4&, T5&> inline typename detail::tie_mapper<T0, T1, T2, T3, T4>::type
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5& t5) { tie(T0& t0, T1& t1, T2& t2, T3& t3,
return tuple<T1&, T2&, T3&, T4&, T5&> (t1, t2, t3, t4, t5); T4& t4) {
typedef typename detail::tie_mapper<T0, T1, T2, T3, T4>::type t;
return t(t0, t1, t2, t3, t4);
} }
template<class T1, class T2, class T3, class T4, class T5, class T6> template<class T0, class T1, class T2, class T3, class T4, class T5>
inline tuple<T1&, T2&, T3&, T4&, T5&, T6&> inline typename detail::tie_mapper<T0, T1, T2, T3, T4, T5>::type
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5& t5, T6& t6) { tie(T0& t0, T1& t1, T2& t2, T3& t3,
return tuple<T1&, T2&, T3&, T4&, T5&, T6&> (t1, t2, t3, t4, t5, t6); T4& t4, T5& t5) {
typedef typename detail::tie_mapper<T0, T1, T2, T3, T4, T5>::type t;
return t(t0, t1, t2, t3, t4, t5);
} }
template<class T1, class T2, class T3, class T4, class T5, class T6, class T7> template<class T0, class T1, class T2, class T3, class T4, class T5, class T6>
inline tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&> inline typename detail::tie_mapper<T0, T1, T2, T3, T4, T5, T6>::type
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5& t5, T6& t6, T7& t7) { tie(T0& t0, T1& t1, T2& t2, T3& t3,
return tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&> (t1, t2, t3, t4, t5, t6, t7); T4& t4, T5& t5, T6& t6) {
typedef typename detail::tie_mapper
<T0, T1, T2, T3, T4, T5, T6>::type t;
return t(t0, t1, t2, t3, t4, t5, t6);
} }
template<class T1, class T2, class T3, class T4, class T5, class T6, class T7, template<class T0, class T1, class T2, class T3, class T4, class T5, class T6,
class T8> class T7>
inline tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&, T8&> inline typename detail::tie_mapper<T0, T1, T2, T3, T4, T5, T6, T7>::type
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5& t5, T6& t6, T7& t7, T8& t8) { tie(T0& t0, T1& t1, T2& t2, T3& t3,
return tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&, T8&> T4& t4, T5& t5, T6& t6, T7& t7) {
(t1, t2, t3, t4, t5, t6, t7, t8); typedef typename detail::tie_mapper
<T0, T1, T2, T3, T4, T5, T6, T7>::type t;
return t(t0, t1, t2, t3, t4, t5, t6, t7);
} }
template<class T1, class T2, class T3, class T4, class T5, class T6, class T7, template<class T0, class T1, class T2, class T3, class T4, class T5, class T6,
class T8, class T9> class T7, class T8>
inline tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&, T8&, T9&> inline typename detail::tie_mapper
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5& t5, T6& t6, T7& t7, T8& t8, <T0, T1, T2, T3, T4, T5, T6, T7, T8>::type
T9& t9) { tie(T0& t0, T1& t1, T2& t2, T3& t3,
return tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&, T8&, T9&> T4& t4, T5& t5, T6& t6, T7& t7,
(t1, t2, t3, t4, t5, t6, t7, t8, t9); T8& t8) {
typedef typename detail::tie_mapper
<T0, T1, T2, T3, T4, T5, T6, T7, T8>::type t;
return t(t0, t1, t2, t3, t4, t5, t6, t7, t8);
} }
template<class T1, class T2, class T3, class T4, class T5, class T6, class T7, template<class T0, class T1, class T2, class T3, class T4, class T5, class T6,
class T8, class T9, class T10> class T7, class T8, class T9>
inline tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&, T8&, T9&, T10&> inline typename detail::tie_mapper
tie(T1& t1, T2& t2, T3& t3, T4& t4, T5& t5, T6& t6, T7& t7, T8& t8, <T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>::type
T9& t9, T10& t10) { tie(T0& t0, T1& t1, T2& t2, T3& t3,
return tuple<T1&, T2&, T3&, T4&, T5&, T6&, T7&, T8&, T9&, T10&> T4& t4, T5& t5, T6& t6, T7& t7,
(t1, t2, t3, t4, t5, t6, t7, t8, t9, t10); T8& t8, T9& t9) {
typedef typename detail::tie_mapper
<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>::type t;
return t(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9);
}
template <class T0, class T1, class T2, class T3, class T4,
class T5, class T6, class T7, class T8, class T9>
void swap(tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>& lhs,
tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>& rhs);
inline void swap(null_type&, null_type&) {}
template<class HH>
inline void swap(cons<HH, null_type>& lhs, cons<HH, null_type>& rhs) {
::boost::swap(lhs.head, rhs.head);
}
template<class HH, class TT>
inline void swap(cons<HH, TT>& lhs, cons<HH, TT>& rhs) {
::boost::swap(lhs.head, rhs.head);
::boost::tuples::swap(lhs.tail, rhs.tail);
}
template <class T0, class T1, class T2, class T3, class T4,
class T5, class T6, class T7, class T8, class T9>
inline void swap(tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>& lhs,
tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>& rhs) {
typedef tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> tuple_type;
typedef typename tuple_type::inherited base;
::boost::tuples::swap(static_cast<base&>(lhs), static_cast<base&>(rhs));
} }
} // end of namespace tuples } // end of namespace tuples

View File

@ -1,17 +1,12 @@
// - tuple_basic_no_partial_spec.hpp ----------------------------------------- // - tuple_basic_no_partial_spec.hpp -----------------------------------------
// Copyright (C) 1999, 2000 Jaakko J<EFBFBD>rvi (jaakko.jarvi@cs.utu.fi) // Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
// Copyright (C) 2001 Doug Gregor (gregod@rpi.edu) // Copyright (C) 2001 Douglas Gregor (gregod@rpi.edu)
// Copyright (C) 2001 Gary Powell (gary.powell@sierra.com) // Copyright (C) 2001 Gary Powell (gary.powell@sierra.com)
// //
// Permission to copy, use, sell and distribute this software is granted // Distributed under the Boost Software License, Version 1.0. (See
// provided this copyright notice appears in all copies. // accompanying file LICENSE_1_0.txt or copy at
// Permission to modify the code and to distribute modified code is granted // http://www.boost.org/LICENSE_1_0.txt)
// provided this copyright notice appears in all copies, and a notice
// that the code was modified is included with the copyright notice.
//
// This software is provided "as is" without express or implied warranty,
// and with no claim as to its suitability for any purpose.
// For more information, see http://www.boost.org or http://lambda.cs.utu.fi // For more information, see http://www.boost.org or http://lambda.cs.utu.fi
@ -32,6 +27,7 @@
#define BOOST_TUPLE_BASIC_NO_PARTIAL_SPEC_HPP #define BOOST_TUPLE_BASIC_NO_PARTIAL_SPEC_HPP
#include "boost/type_traits.hpp" #include "boost/type_traits.hpp"
#include "boost/utility/swap.hpp"
#include <utility> #include <utility>
#if defined BOOST_MSVC #if defined BOOST_MSVC
@ -53,6 +49,25 @@ namespace tuples {
// a helper function to provide a const null_type type temporary // a helper function to provide a const null_type type temporary
inline const null_type cnull_type() { return null_type(); } inline const null_type cnull_type() { return null_type(); }
// forward declaration of tuple
template<
typename T1 = null_type,
typename T2 = null_type,
typename T3 = null_type,
typename T4 = null_type,
typename T5 = null_type,
typename T6 = null_type,
typename T7 = null_type,
typename T8 = null_type,
typename T9 = null_type,
typename T10 = null_type
>
class tuple;
// forward declaration of cons
template<typename Head, typename Tail = null_type>
struct cons;
namespace detail { namespace detail {
// Takes a pointer and routes all assignments to whatever it points to // Takes a pointer and routes all assignments to whatever it points to
@ -77,57 +92,125 @@ namespace tuples {
struct swallow_assign struct swallow_assign
{ {
template<typename T> template<typename T>
swallow_assign& operator=(const T&) swallow_assign const& operator=(const T&) const
{ {
return *this; return *this;
} }
}; };
template <typename T> struct add_const_reference : add_reference<typename add_const<T>::type> {};
template <class MyTail>
struct init_tail
{
// Each of vc6 and vc7 seem to require a different formulation
// of this return type
template <class H, class T>
#if BOOST_WORKAROUND(BOOST_MSVC, < 1300)
static typename add_reference<typename add_const<T>::type>::type
#else
static typename add_const_reference<T>::type
#endif
execute( cons<H,T> const& u, long )
{
return u.get_tail();
}
};
template <>
struct init_tail<null_type>
{
template <class H>
static null_type execute( cons<H,null_type> const& u, long )
{
return null_type();
}
template <class U>
static null_type execute(U const&, ...)
{
return null_type();
}
private:
template <class H, class T>
void execute( cons<H,T> const&, int);
};
template <class Other>
Other const&
init_head( Other const& u, ... )
{
return u;
}
template <class H, class T>
typename add_reference<typename add_const<H>::type>::type
init_head( cons<H,T> const& u, int )
{
return u.get_head();
}
inline char**** init_head(null_type const&, int);
} // end of namespace detail } // end of namespace detail
// cons builds a heterogenous list of types // cons builds a heterogenous list of types
template<typename Head, typename Tail = null_type> template<typename Head, typename Tail>
struct cons struct cons
{ {
typedef cons self_type; typedef cons self_type;
typedef Head head_type; typedef Head head_type;
typedef Tail tail_type; typedef Tail tail_type;
private:
typedef typename boost::add_reference<head_type>::type head_ref;
typedef typename boost::add_reference<tail_type>::type tail_ref;
typedef typename detail::add_const_reference<head_type>::type head_cref;
typedef typename detail::add_const_reference<tail_type>::type tail_cref;
public:
head_type head; head_type head;
tail_type tail; tail_type tail;
typename boost::add_reference<head_type>::type get_head() { return head; } head_ref get_head() { return head; }
typename boost::add_reference<tail_type>::type get_tail() { return tail; } tail_ref get_tail() { return tail; }
typename boost::add_reference<const head_type>::type get_head() const { return head; } head_cref get_head() const { return head; }
typename boost::add_reference<const tail_type>::type get_tail() const { return tail; } tail_cref get_tail() const { return tail; }
cons() : head(), tail() {}
#if defined BOOST_MSVC #if defined BOOST_MSVC
template<typename Tail> template<typename Tail>
explicit cons(const head_type& h /* = head_type() */, // causes MSVC 6.5 to barf. cons(head_cref h /* = head_type() */, // causes MSVC 6.5 to barf.
const Tail& t) : head(h), tail(t.head, t.tail) const Tail& t) : head(h), tail(t.head, t.tail)
{ {
} }
explicit cons(const head_type& h /* = head_type() */, // causes MSVC 6.5 to barf. cons(head_cref h /* = head_type() */, // causes MSVC 6.5 to barf.
const null_type& t) : head(h), tail(t) const null_type& t) : head(h), tail(t)
{ {
} }
#else #else
template<typename T> template<typename T>
explicit cons(const head_type& h, const T& t) : explicit cons(head_cref h, const T& t) :
head(h), tail(t.head, t.tail) head(h), tail(t.head, t.tail)
{ {
} }
explicit cons(const head_type& h = head_type(), explicit cons(head_cref h = head_type(),
const tail_type& t = tail_type()) : tail_cref t = tail_type()) :
head(h), tail(t) head(h), tail(t)
{ {
} }
#endif #endif
template <class U>
cons( const U& u )
: head(detail::init_head(u, 0))
, tail(detail::init_tail<Tail>::execute(u, 0L))
{
}
template<typename Other> template<typename Other>
cons& operator=(const Other& other) cons& operator=(const Other& other)
@ -231,6 +314,58 @@ namespace tuples {
namespace detail { namespace detail {
#if defined(BOOST_MSVC) && (BOOST_MSVC == 1300)
// special workaround for vc7:
template <bool x>
struct reference_adder
{
template <class T>
struct rebind
{
typedef T& type;
};
};
template <>
struct reference_adder<true>
{
template <class T>
struct rebind
{
typedef T type;
};
};
// Return a reference to the Nth type of the given Tuple
template<int N, typename Tuple>
struct element_ref
{
private:
typedef typename element<N, Tuple>::RET elt_type;
enum { is_ref = is_reference<elt_type>::value };
public:
typedef reference_adder<is_ref>::rebind<elt_type>::type RET;
typedef RET type;
};
// Return a const reference to the Nth type of the given Tuple
template<int N, typename Tuple>
struct element_const_ref
{
private:
typedef typename element<N, Tuple>::RET elt_type;
enum { is_ref = is_reference<elt_type>::value };
public:
typedef reference_adder<is_ref>::rebind<const elt_type>::type RET;
typedef RET type;
};
#else // vc7
// Return a reference to the Nth type of the given Tuple // Return a reference to the Nth type of the given Tuple
template<int N, typename Tuple> template<int N, typename Tuple>
struct element_ref struct element_ref
@ -254,6 +389,7 @@ namespace tuples {
typedef typename add_reference<const elt_type>::type RET; typedef typename add_reference<const elt_type>::type RET;
typedef RET type; typedef RET type;
}; };
#endif // vc7
} // namespace detail } // namespace detail
@ -264,6 +400,10 @@ namespace tuples {
BOOST_STATIC_CONSTANT(int, value = 1 + length<typename Tuple::tail_type>::value); BOOST_STATIC_CONSTANT(int, value = 1 + length<typename Tuple::tail_type>::value);
}; };
template<> struct length<tuple<> > {
BOOST_STATIC_CONSTANT(int, value = 0);
};
template<> template<>
struct length<null_type> struct length<null_type>
{ {
@ -318,15 +458,15 @@ namespace tuples {
// tuple class // tuple class
template< template<
typename T1, typename T1,
typename T2 = null_type, typename T2,
typename T3 = null_type, typename T3,
typename T4 = null_type, typename T4,
typename T5 = null_type, typename T5,
typename T6 = null_type, typename T6,
typename T7 = null_type, typename T7,
typename T8 = null_type, typename T8,
typename T9 = null_type, typename T9,
typename T10 = null_type typename T10
> >
class tuple : class tuple :
public detail::map_tuple_to_cons<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>::cons1 public detail::map_tuple_to_cons<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>::cons1
@ -344,25 +484,45 @@ namespace tuples {
typedef typename mapped_tuple::cons2 cons2; typedef typename mapped_tuple::cons2 cons2;
typedef typename mapped_tuple::cons1 cons1; typedef typename mapped_tuple::cons1 cons1;
typedef typename detail::add_const_reference<T1>::type t1_cref;
typedef typename detail::add_const_reference<T2>::type t2_cref;
typedef typename detail::add_const_reference<T3>::type t3_cref;
typedef typename detail::add_const_reference<T4>::type t4_cref;
typedef typename detail::add_const_reference<T5>::type t5_cref;
typedef typename detail::add_const_reference<T6>::type t6_cref;
typedef typename detail::add_const_reference<T7>::type t7_cref;
typedef typename detail::add_const_reference<T8>::type t8_cref;
typedef typename detail::add_const_reference<T9>::type t9_cref;
typedef typename detail::add_const_reference<T10>::type t10_cref;
public: public:
typedef cons1 inherited;
typedef tuple self_type; typedef tuple self_type;
explicit tuple(const T1& t1 = T1(), tuple() : cons1(T1(), cons2(T2(), cons3(T3(), cons4(T4(), cons5(T5(), cons6(T6(),cons7(T7(),cons8(T8(),cons9(T9(),cons10(T10()))))))))))
const T2& t2 = T2(), {}
const T3& t3 = T3(),
const T4& t4 = T4(), tuple(
const T5& t5 = T5(), t1_cref t1,
const T6& t6 = T6(), t2_cref t2,
const T7& t7 = T7(), t3_cref t3 = T3(),
const T8& t8 = T8(), t4_cref t4 = T4(),
const T9& t9 = T9(), t5_cref t5 = T5(),
const T10& t10 = T10()) : t6_cref t6 = T6(),
t7_cref t7 = T7(),
t8_cref t8 = T8(),
t9_cref t9 = T9(),
t10_cref t10 = T10()
) :
cons1(t1, cons2(t2, cons3(t3, cons4(t4, cons5(t5, cons6(t6,cons7(t7,cons8(t8,cons9(t9,cons10(t10)))))))))) cons1(t1, cons2(t2, cons3(t3, cons4(t4, cons5(t5, cons6(t6,cons7(t7,cons8(t8,cons9(t9,cons10(t10))))))))))
{ {
} }
explicit tuple(t1_cref t1)
: cons1(t1, cons2(T2(), cons3(T3(), cons4(T4(), cons5(T5(), cons6(T6(),cons7(T7(),cons8(T8(),cons9(T9(),cons10(T10()))))))))))
{}
template<typename Head, typename Tail> template<typename Head, typename Tail>
explicit tuple(const cons<Head, Tail>& other) : tuple(const cons<Head, Tail>& other) :
cons1(other.head, other.tail) cons1(other.head, other.tail)
{ {
} }
@ -575,8 +735,8 @@ namespace tuples {
detail::assign_to_pointee<T2>(&t2), detail::assign_to_pointee<T2>(&t2),
detail::assign_to_pointee<T3>(&t3), detail::assign_to_pointee<T3>(&t3),
detail::assign_to_pointee<T4>(&t4), detail::assign_to_pointee<T4>(&t4),
detail::assign_to_pointee<T6>(&t5), detail::assign_to_pointee<T5>(&t5),
detail::assign_to_pointee<T5>(&t6)); detail::assign_to_pointee<T6>(&t6));
} }
// Tie variables into a tuple // Tie variables into a tuple
@ -674,9 +834,31 @@ namespace tuples {
detail::assign_to_pointee<T10>(&t10)); detail::assign_to_pointee<T10>(&t10));
} }
// "ignore" allows tuple positions to be ignored when using "tie". // "ignore" allows tuple positions to be ignored when using "tie".
namespace {
detail::swallow_assign ignore; detail::swallow_assign const ignore = detail::swallow_assign();
}
template <class T0, class T1, class T2, class T3, class T4,
class T5, class T6, class T7, class T8, class T9>
void swap(tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>& lhs,
tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>& rhs);
inline void swap(null_type&, null_type&) {}
template<class HH>
inline void swap(cons<HH, null_type>& lhs, cons<HH, null_type>& rhs) {
::boost::swap(lhs.head, rhs.head);
}
template<class HH, class TT>
inline void swap(cons<HH, TT>& lhs, cons<HH, TT>& rhs) {
::boost::swap(lhs.head, rhs.head);
::boost::tuples::swap(lhs.tail, rhs.tail);
}
template <class T0, class T1, class T2, class T3, class T4,
class T5, class T6, class T7, class T8, class T9>
inline void swap(tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>& lhs,
tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>& rhs) {
typedef tuple<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9> tuple_type;
typedef typename tuple_type::inherited base;
::boost::tuples::swap(static_cast<base&>(lhs), static_cast<base&>(rhs));
}
} // namespace tuples } // namespace tuples
} // namespace boost } // namespace boost

View File

@ -1,57 +0,0 @@
// -- reference_wrappers - Boost Tuple Library -----------------------------
// Copyright (C) 1999, 2000 Jaakko J<>rvi (jaakko.jarvi@cs.utu.fi)
//
// Permission to copy, use, sell and distribute this software is granted
// provided this copyright notice appears in all copies.
// Permission to modify the code and to distribute modified code is granted
// provided this copyright notice appears in all copies, and a notice
// that the code was modified is included with the copyright notice.
//
// This software is provided "as is" without express or implied warranty,
// and with no claim as to its suitability for any purpose.
//
// For more information, see http://www.boost.org
// -----------------------------------------------------------------
#ifndef BOOST_TUPLE_REFERENCE_WRAPPERS_HPP
#define BOOST_TUPLE_REFERENCE_WRAPPERS_HPP
namespace boost {
// reference wrappers -------------------------------------------------------
// These wrappers are handle classes that hold references to objects.
// reference_wrapper is used to specify that a tuple element should be
// a reference to the wrapped object - rather than a copy of it.
// The wrapper acts as a disguise for passing non-const reference
// parameters via a reference to const parameter.
template<class T>
class reference_wrapper {
T& x;
public:
explicit
reference_wrapper(T& t) : x(t) {}
operator T&() const { return x; }
};
// store as a reference to T
template<class T>
inline const reference_wrapper<T> ref(T& t) {
return reference_wrapper<T>(t);
}
// store as a reference to const T
template<class T>
inline const reference_wrapper<const T> cref(const T& t) {
return reference_wrapper<const T>(t);
}
} // end of namespace boost
#endif // BOOST_TUPLE_REFERENCE_WRAPPERS_HPP

View File

@ -1,15 +1,10 @@
// tuple.hpp - Boost Tuple Library -------------------------------------- // tuple.hpp - Boost Tuple Library --------------------------------------
// Copyright (C) 1999, 2000 Jaakko J<EFBFBD>rvi (jaakko.jarvi@cs.utu.fi) // Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
// //
// Permission to copy, use, sell and distribute this software is granted // Distributed under the Boost Software License, Version 1.0. (See
// provided this copyright notice appears in all copies. // accompanying file LICENSE_1_0.txt or copy at
// Permission to modify the code and to distribute modified code is granted // http://www.boost.org/LICENSE_1_0.txt)
// provided this copyright notice appears in all copies, and a notice
// that the code was modified is included with the copyright notice.
//
// This software is provided "as is" without express or implied warranty,
// and with no claim as to its suitability for any purpose.
// For more information, see http://www.boost.org // For more information, see http://www.boost.org
@ -18,6 +13,13 @@
#ifndef BOOST_TUPLE_HPP #ifndef BOOST_TUPLE_HPP
#define BOOST_TUPLE_HPP #define BOOST_TUPLE_HPP
#if defined(__sgi) && defined(_COMPILER_VERSION) && _COMPILER_VERSION <= 730
// Work around a compiler bug.
// boost::python::tuple has to be seen by the compiler before the
// boost::tuple class template.
namespace boost { namespace python { class tuple; }}
#endif
#include "boost/config.hpp" #include "boost/config.hpp"
#include "boost/static_assert.hpp" #include "boost/static_assert.hpp"
@ -27,7 +29,7 @@
#else #else
// other compilers // other compilers
#include "boost/tuple/reference_wrappers.hpp" #include "boost/ref.hpp"
#include "boost/tuple/detail/tuple_basic.hpp" #include "boost/tuple/detail/tuple_basic.hpp"
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION #endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
@ -37,7 +39,50 @@ namespace boost {
using tuples::tuple; using tuples::tuple;
using tuples::make_tuple; using tuples::make_tuple;
using tuples::tie; using tuples::tie;
#if !defined(BOOST_NO_USING_TEMPLATE)
using tuples::get; using tuples::get;
#elif !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
//
// The "using tuples::get" statement causes the
// Borland compiler to ICE, use forwarding
// functions instead:
//
template<int N, class HT, class TT>
inline typename tuples::access_traits<
typename tuples::element<N, tuples::cons<HT, TT> >::type
>::non_const_type
get(tuples::cons<HT, TT>& c) {
return tuples::get<N,HT,TT>(c);
}
// get function for const cons-lists, returns a const reference to
// the element. If the element is a reference, returns the reference
// as such (that is, can return a non-const reference)
template<int N, class HT, class TT>
inline typename tuples::access_traits<
typename tuples::element<N, tuples::cons<HT, TT> >::type
>::const_type
get(const tuples::cons<HT, TT>& c) {
return tuples::get<N,HT,TT>(c);
}
#else // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
//
// MSVC, using declarations don't mix with templates well,
// so use forwarding functions instead:
//
template<int N, typename Head, typename Tail>
typename tuples::detail::element_ref<N, tuples::cons<Head, Tail> >::RET
get(tuples::cons<Head, Tail>& t, tuples::detail::workaround_holder<N>* = 0)
{
return tuples::detail::get_class<N>::get(t);
}
template<int N, typename Head, typename Tail>
typename tuples::detail::element_const_ref<N, tuples::cons<Head, Tail> >::RET
get(const tuples::cons<Head, Tail>& t, tuples::detail::workaround_holder<N>* = 0)
{
return tuples::detail::get_class<N>::get(t);
}
#endif // BOOST_NO_USING_TEMPLATE
} // end namespace boost } // end namespace boost

View File

@ -1,16 +1,11 @@
// tuple_comparison.hpp ----------------------------------------------------- // tuple_comparison.hpp -----------------------------------------------------
// //
// Copyright (C) 2001 Jaakko J<EFBFBD>rvi (jaakko.jarvi@cs.utu.fi) // Copyright (C) 2001 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
// Copyright (C) 2001 Gary Powell (gary.powell@sierra.com) // Copyright (C) 2001 Gary Powell (gary.powell@sierra.com)
// //
// Permission to copy, use, sell and distribute this software is granted // Distributed under the Boost Software License, Version 1.0. (See
// provided this copyright notice appears in all copies. // accompanying file LICENSE_1_0.txt or copy at
// Permission to modify the code and to distribute modified code is granted // http://www.boost.org/LICENSE_1_0.txt)
// provided this copyright notice appears in all copies, and a notice
// that the code was modified is included with the copyright notice.
//
// This software is provided "as is" without express or implied warranty,
// and with no claim as to its suitability for any purpose.
// //
// For more information, see http://www.boost.org // For more information, see http://www.boost.org
// //
@ -69,13 +64,13 @@ inline bool neq(const T1& lhs, const T2& rhs) {
neq(lhs.get_tail(), rhs.get_tail()); neq(lhs.get_tail(), rhs.get_tail());
} }
template<> template<>
inline bool neq<null_type,null_type>(const null_type&, const null_type&) { return true; } inline bool neq<null_type,null_type>(const null_type&, const null_type&) { return false; }
template<class T1, class T2> template<class T1, class T2>
inline bool lt(const T1& lhs, const T2& rhs) { inline bool lt(const T1& lhs, const T2& rhs) {
return lhs.get_head() < rhs.get_head() || return lhs.get_head() < rhs.get_head() ||
!(rhs.get_head() < lhs.get_head()) && ( !(rhs.get_head() < lhs.get_head()) &&
lt(lhs.get_tail(), rhs.get_tail()); lt(lhs.get_tail(), rhs.get_tail()));
} }
template<> template<>
inline bool lt<null_type,null_type>(const null_type&, const null_type&) { return false; } inline bool lt<null_type,null_type>(const null_type&, const null_type&) { return false; }
@ -83,8 +78,8 @@ inline bool lt<null_type,null_type>(const null_type&, const null_type&) { return
template<class T1, class T2> template<class T1, class T2>
inline bool gt(const T1& lhs, const T2& rhs) { inline bool gt(const T1& lhs, const T2& rhs) {
return lhs.get_head() > rhs.get_head() || return lhs.get_head() > rhs.get_head() ||
!(rhs.get_head() > lhs.get_head()) && ( !(rhs.get_head() > lhs.get_head()) &&
gt(lhs.get_tail(), rhs.get_tail()); gt(lhs.get_tail(), rhs.get_tail()));
} }
template<> template<>
inline bool gt<null_type,null_type>(const null_type&, const null_type&) { return false; } inline bool gt<null_type,null_type>(const null_type&, const null_type&) { return false; }

View File

@ -1,16 +1,11 @@
// tuple_io.hpp -------------------------------------------------------------- // tuple_io.hpp --------------------------------------------------------------
// Copyright (C) 2001 Jaakko J<EFBFBD>rvi (jaakko.jarvi@cs.utu.fi) // Copyright (C) 2001 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
// 2001 Gary Powell (gary.powell@sierra.com) // 2001 Gary Powell (gary.powell@sierra.com)
// //
// Permission to copy, use, sell and distribute this software is granted // Distributed under the Boost Software License, Version 1.0. (See
// provided this copyright notice appears in all copies. // accompanying file LICENSE_1_0.txt or copy at
// Permission to modify the code and to distribute modified code is granted // http://www.boost.org/LICENSE_1_0.txt)
// provided this copyright notice appears in all copies, and a notice
// that the code was modified is included with the copyright notice.
//
// This software is provided "as is" without express or implied warranty,
// and with no claim as to its suitability for any purpose.
// For more information, see http://www.boost.org // For more information, see http://www.boost.org
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
@ -34,9 +29,26 @@
#include <ostream> #include <ostream>
#endif #endif
#include <sstream>
#include "boost/tuple/tuple.hpp" #include "boost/tuple/tuple.hpp"
// This is ugly: one should be using twoargument isspace since whitspace can
// be locale dependent, in theory at least.
// not all libraries implement have the two-arg version, so we need to
// use the one-arg one, which one should get with <cctype> but there seem
// to be exceptions to this.
#if !defined (BOOST_NO_STD_LOCALE)
#include <locale> // for two-arg isspace
#else
#include <cctype> // for one-arg (old) isspace
#include <ctype.h> // Metrowerks does not find one-arg isspace from cctype
#endif
namespace boost { namespace boost {
namespace tuples { namespace tuples {
@ -45,11 +57,19 @@ namespace detail {
class format_info { class format_info {
public: public:
enum manipulator_type { open, close, delimiter }; enum manipulator_type { open, close, delimiter };
BOOST_STATIC_CONSTANT(int, number_of_manipulators = delimiter + 1); BOOST_STATIC_CONSTANT(int, number_of_manipulators = delimiter + 1);
private: private:
static const int stream_index[number_of_manipulators]; static int get_stream_index (int m)
{
static const int stream_index[number_of_manipulators]
= { std::ios::xalloc(), std::ios::xalloc(), std::ios::xalloc() };
return stream_index[m];
}
format_info(const format_info&); format_info(const format_info&);
format_info(); format_info();
@ -58,21 +78,21 @@ public:
#if defined (BOOST_NO_TEMPLATED_STREAMS) #if defined (BOOST_NO_TEMPLATED_STREAMS)
static char get_manipulator(std::ios& i, manipulator_type m) { static char get_manipulator(std::ios& i, manipulator_type m) {
char c = static_cast<char>(i.iword(stream_index[m])); char c = static_cast<char>(i.iword(get_stream_index(m)));
// parentheses and space are the default manipulators // parentheses and space are the default manipulators
if (!c) { if (!c) {
switch(m) { switch(m) {
case open : c = '('; break; case detail::format_info::open : c = '('; break;
case close : c = ')'; break; case detail::format_info::close : c = ')'; break;
case delimiter : c = ' '; break; case detail::format_info::delimiter : c = ' '; break;
} }
} }
return c; return c;
} }
static void set_manipulator(std::ios& i, manipulator_type m, char c) { static void set_manipulator(std::ios& i, manipulator_type m, char c) {
i.iword(stream_index[m]) = static_cast<long>(c); i.iword(get_stream_index(m)) = static_cast<long>(c);
} }
#else #else
template<class CharType, class CharTrait> template<class CharType, class CharTrait>
@ -82,13 +102,13 @@ public:
// A valid instanitation of basic_stream allows CharType to be any POD, // A valid instanitation of basic_stream allows CharType to be any POD,
// hence, the static_cast may fail (it fails if long is not convertible // hence, the static_cast may fail (it fails if long is not convertible
// to CharType // to CharType
CharType c = static_cast<CharType>(i.iword(stream_index[m]) ); CharType c = static_cast<CharType>(i.iword(get_stream_index(m)) );
// parentheses and space are the default manipulators // parentheses and space are the default manipulators
if (!c) { if (!c) {
switch(m) { switch(m) {
case open : c = i.widen('('); break; case detail::format_info::open : c = i.widen('('); break;
case close : c = i.widen(')'); break; case detail::format_info::close : c = i.widen(')'); break;
case delimiter : c = i.widen(' '); break; case detail::format_info::delimiter : c = i.widen(' '); break;
} }
} }
return c; return c;
@ -102,7 +122,7 @@ public:
// A valid instanitation of basic_stream allows CharType to be any POD, // A valid instanitation of basic_stream allows CharType to be any POD,
// hence, the static_cast may fail (it fails if CharType is not // hence, the static_cast may fail (it fails if CharType is not
// convertible long. // convertible long.
i.iword(stream_index[m]) = static_cast<long>(c); i.iword(get_stream_index(m)) = static_cast<long>(c);
} }
#endif // BOOST_NO_TEMPLATED_STREAMS #endif // BOOST_NO_TEMPLATED_STREAMS
}; };
@ -226,6 +246,22 @@ print(std::ostream& o, const cons<T1, T2>& t) {
} }
template<class T>
inline bool handle_width(std::ostream& o, const T& t) {
std::streamsize width = o.width();
if(width == 0) return false;
std::ostringstream ss;
ss.copyfmt(o);
ss.tie(0);
ss.width(0);
ss << t;
o << ss.str();
return true;
}
#else #else
@ -262,14 +298,48 @@ print(std::basic_ostream<CharType, CharTrait>& o, const cons<T1, T2>& t) {
return print(o, t.tail); return print(o, t.tail);
} }
template<class CharT, class Traits, class T>
inline bool handle_width(std::basic_ostream<CharT, Traits>& o, const T& t) {
std::streamsize width = o.width();
if(width == 0) return false;
std::basic_ostringstream<CharT, Traits> ss;
ss.copyfmt(o);
ss.tie(0);
ss.width(0);
ss << t;
o << ss.str();
return true;
}
#endif // BOOST_NO_TEMPLATED_STREAMS #endif // BOOST_NO_TEMPLATED_STREAMS
} // namespace detail } // namespace detail
#if defined (BOOST_NO_TEMPLATED_STREAMS) #if defined (BOOST_NO_TEMPLATED_STREAMS)
inline std::ostream& operator<<(std::ostream& o, const null_type& t) {
if (!o.good() ) return o;
if (detail::handle_width(o, t)) return o;
const char l =
detail::format_info::get_manipulator(o, detail::format_info::open);
const char r =
detail::format_info::get_manipulator(o, detail::format_info::close);
o << l;
o << r;
return o;
}
template<class T1, class T2> template<class T1, class T2>
inline std::ostream& operator<<(std::ostream& o, const cons<T1, T2>& t) { inline std::ostream& operator<<(std::ostream& o, const cons<T1, T2>& t) {
if (!o.good() ) return o; if (!o.good() ) return o;
if (detail::handle_width(o, t)) return o;
const char l = const char l =
detail::format_info::get_manipulator(o, detail::format_info::open); detail::format_info::get_manipulator(o, detail::format_info::open);
@ -287,11 +357,30 @@ inline std::ostream& operator<<(std::ostream& o, const cons<T1, T2>& t) {
#else #else
template<class CharType, class CharTrait>
inline std::basic_ostream<CharType, CharTrait>&
operator<<(std::basic_ostream<CharType, CharTrait>& o,
const null_type& t) {
if (!o.good() ) return o;
if (detail::handle_width(o, t)) return o;
const CharType l =
detail::format_info::get_manipulator(o, detail::format_info::open);
const CharType r =
detail::format_info::get_manipulator(o, detail::format_info::close);
o << l;
o << r;
return o;
}
template<class CharType, class CharTrait, class T1, class T2> template<class CharType, class CharTrait, class T1, class T2>
inline std::basic_ostream<CharType, CharTrait>& inline std::basic_ostream<CharType, CharTrait>&
operator<<(std::basic_ostream<CharType, CharTrait>& o, operator<<(std::basic_ostream<CharType, CharTrait>& o,
const cons<T1, T2>& t) { const cons<T1, T2>& t) {
if (!o.good() ) return o; if (!o.good() ) return o;
if (detail::handle_width(o, t)) return o;
const CharType l = const CharType l =
detail::format_info::get_manipulator(o, detail::format_info::open); detail::format_info::get_manipulator(o, detail::format_info::open);
@ -322,14 +411,20 @@ extract_and_check_delimiter(
{ {
const char d = format_info::get_manipulator(is, del); const char d = format_info::get_manipulator(is, del);
const bool is_delimiter = (!isspace(d) ); #if defined (BOOST_NO_STD_LOCALE)
const bool is_delimiter = !isspace(d);
#else
const bool is_delimiter = (!std::isspace(d, is.getloc()) );
#endif
char c; char c;
if (is_delimiter) { if (is_delimiter) {
is >> c; is >> c;
if (c!=d) { if (is.good() && c!=d) {
is.setstate(std::ios::failbit); is.setstate(std::ios::failbit);
} }
} else {
is >> std::ws;
} }
return is; return is;
} }
@ -409,14 +504,23 @@ extract_and_check_delimiter(
{ {
const CharType d = format_info::get_manipulator(is, del); const CharType d = format_info::get_manipulator(is, del);
const bool is_delimiter = (!isspace(d) ); #if defined (BOOST_NO_STD_LOCALE)
const bool is_delimiter = !isspace(d);
#elif defined ( __BORLANDC__ )
const bool is_delimiter = !std::use_facet< std::ctype< CharType > >
(is.getloc() ).is( std::ctype_base::space, d);
#else
const bool is_delimiter = (!std::isspace(d, is.getloc()) );
#endif
CharType c; CharType c;
if (is_delimiter) { if (is_delimiter) {
is >> c; is >> c;
if (c!=d) { if (is.good() && c!=d) {
is.setstate(std::ios::failbit); is.setstate(std::ios::failbit);
} }
} else {
is >> std::ws;
} }
return is; return is;
} }

13
index.html Normal file
View File

@ -0,0 +1,13 @@
<html>
<head>
<meta http-equiv="refresh" content="0; URL=doc/tuple_users_guide.html">
</head>
<body>
Automatic redirection failed, please go to <a href="doc/tuple_users_guide.html">doc/tuple_users_guide.html</a>
&nbsp;<hr>
<p><EFBFBD> Copyright Beman Dawes, 2001</p>
<p>Distributed under the Boost Software License, Version 1.0. (See accompanying
file <a href="../../LICENSE_1_0.txt">LICENSE_1_0.txt</a> or copy
at <a href="http://www.boost.org/LICENSE_1_0.txt">www.boost.org/LICENSE_1_0.txt</a>)</p>
</body>
</html>

View File

@ -1,34 +0,0 @@
// tuple.cpp -----------------------------------------------------
// Copyright (C) 1999, 2000, 2001 Jaakko J<>rvi (jaakko.jarvi@cs.utu.fi)
// Copyright (C) 2001 Gary Powell (gary.powell@sierra.com)
//
// Permission to copy, use, sell and distribute this software is granted
// provided this copyright notice appears in all copies.
// Permission to modify the code and to distribute modified code is granted
// provided this copyright notice appears in all copies, and a notice
// that the code was modified is included with the copyright notice.
//
// This software is provided "as is" without express or implied warranty,
// and with no claim as to its suitability for any purpose.
// For more information, see http://lambda.cs.utu.fi
// Revision History
// 16 02 01 Initial Version (GWP)
// -----------------------------------------------------------------
#include "boost/tuple/tuple_io.hpp"
namespace boost {
namespace tuples {
namespace detail {
const int
format_info::stream_index[number_of_manipulators]
= { std::ios::xalloc(), std::ios::xalloc(), std::ios::xalloc() };
} // namespace detail
} // namespace tuples
} // namespace boost

8
test/Jamfile Normal file
View File

@ -0,0 +1,8 @@
project : requirements <library>/boost/test//boost_test_exec_monitor ;
test-suite tuple :
[ run tuple_test_bench.cpp ]
[ run io_test.cpp ]
[ run another_tuple_test_bench.cpp ]
;

View File

@ -8,7 +8,9 @@ For example, in libs/tuple/test directory you would type (using g++):
g++ -I../../.. tuple_test_bench.cpp g++ -I../../.. tuple_test_bench.cpp
If you want to use tuple_io, you need to compile and link src/tuple.cpp: The following is not true anymore:
g++ -I../../.. ../src/tuple.cpp io_test.cpp If you want to use tuple_io, you need to compile and link src/tuple.cpp:
g++ -I../../.. ../src/tuple.cpp io_test.cpp
Thanks to Hartmut Kaiser's suggestion, the tuple.cpp is not needed anymore.

View File

@ -1,3 +1,12 @@
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// For more information, see http://www.boost.org
// another_test_bench.cpp -------------------------------- // another_test_bench.cpp --------------------------------
// This file has various tests to see that things that shouldn't // This file has various tests to see that things that shouldn't
@ -14,7 +23,6 @@
#include <string> #include <string>
#include <utility> #include <utility>
using namespace std;
using namespace boost; using namespace boost;
using namespace boost::tuples; using namespace boost::tuples;
@ -65,9 +73,8 @@ void foo2() {
dummy(tuple<const double&>()); // likewise dummy(tuple<const double&>()); // likewise
#endif #endif
double dd = 5;
#ifdef E5 #ifdef E5
double dd = 5;
dummy(tuple<double&>(dd+3.14)); // should fail, temporary to non-const reference dummy(tuple<double&>(dd+3.14)); // should fail, temporary to non-const reference
#endif #endif
} }
@ -90,12 +97,11 @@ void foo2() {
void foo4() void foo4()
{ {
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
double d = 2.7; double d = 2.7;
A a; A a;
tuple<int, double&, const A&> t(1, d, a); tuple<int, double&, const A&> t(1, d, a);
const tuple<int, double&, const A> ct = t; const tuple<int, double&, const A> ct = t;
(void)ct;
#ifdef E8 #ifdef E8
get<0>(ct) = 5; // can't assign to const get<0>(ct) = 5; // can't assign to const
#endif #endif
@ -106,8 +112,6 @@ void foo4()
#ifdef E10 #ifdef E10
dummy(get<5>(ct)); // illegal index dummy(get<5>(ct)); // illegal index
#endif #endif
#endif
} }
// testing copy and assignment with implicit conversions between elements // testing copy and assignment with implicit conversions between elements
@ -120,9 +124,10 @@ void foo4()
void foo5() { void foo5() {
tuple<char, BB*, BB, DD> t; tuple<char, BB*, BB, DD> t;
(void)t;
tuple<char, char> aaa; tuple<char, char> aaa;
tuple<int, int> bbb(aaa); tuple<int, int> bbb(aaa);
(void)bbb;
// tuple<int, AA*, CC, CC> a = t; // tuple<int, AA*, CC, CC> a = t;
// a = t; // a = t;
} }

View File

@ -1,3 +1,11 @@
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// For more information, see http://www.boost.org
// -- io_test.cpp ----------------------------------------------- // -- io_test.cpp -----------------------------------------------
// //
// Testing the I/O facilities of tuples // Testing the I/O facilities of tuples
@ -12,6 +20,7 @@
#include <iterator> #include <iterator>
#include <algorithm> #include <algorithm>
#include <string> #include <string>
#include <iomanip>
#if defined BOOST_NO_STRINGSTREAM #if defined BOOST_NO_STRINGSTREAM
#include <strstream> #include <strstream>
@ -19,21 +28,19 @@
#include <sstream> #include <sstream>
#endif #endif
#include "boost/config.hpp"
using namespace std;
using namespace boost; using namespace boost;
#if defined BOOST_NO_STRINGSTREAM #if defined BOOST_NO_STRINGSTREAM
typedef ostrstream useThisOStringStream; typedef std::ostrstream useThisOStringStream;
typedef istrstream useThisIStringStream; typedef std::istrstream useThisIStringStream;
#else #else
typedef ostringstream useThisOStringStream; typedef std::ostringstream useThisOStringStream;
typedef istringstream useThisIStringStream; typedef std::istringstream useThisIStringStream;
#endif #endif
int test_main(int argc, char * argv[] ) { int test_main(int argc, char * argv[] ) {
(void)argc;
(void)argv;
using boost::tuples::set_close; using boost::tuples::set_close;
using boost::tuples::set_open; using boost::tuples::set_open;
using boost::tuples::set_delimiter; using boost::tuples::set_delimiter;
@ -45,7 +52,7 @@ int test_main(int argc, char * argv[] ) {
os1 << set_close(']'); os1 << set_close(']');
os1 << set_delimiter(','); os1 << set_delimiter(',');
os1 << make_tuple(1, 2, 3); os1 << make_tuple(1, 2, 3);
BOOST_TEST (os1.str() == std::string("[1,2,3]") ); BOOST_CHECK (os1.str() == std::string("[1,2,3]") );
{ {
useThisOStringStream os2; useThisOStringStream os2;
@ -55,48 +62,76 @@ int test_main(int argc, char * argv[] ) {
os2 << set_delimiter(':'); os2 << set_delimiter(':');
#if !defined (BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) #if !defined (BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
os2 << make_tuple("TUPU", "HUPU", "LUPU", 4.5); os2 << make_tuple("TUPU", "HUPU", "LUPU", 4.5);
BOOST_TEST (os2.str() == std::string("(TUPU:HUPU:LUPU:4.5)") ); BOOST_CHECK (os2.str() == std::string("(TUPU:HUPU:LUPU:4.5)") );
#endif #endif
} }
// The format is still [a, b, c] for os1 // The format is still [a, b, c] for os1
os1 << make_tuple(1, 2, 3); os1 << make_tuple(1, 2, 3);
BOOST_TEST (os1.str() == std::string("[1,2,3][1,2,3]") ); BOOST_CHECK (os1.str() == std::string("[1,2,3][1,2,3]") );
ofstream tmp("temp.tmp"); // check empty tuple.
useThisOStringStream os3;
os3 << make_tuple();
BOOST_CHECK (os3.str() == std::string("()") );
os3 << set_open('[');
os3 << set_close(']');
os3 << make_tuple();
BOOST_CHECK (os3.str() == std::string("()[]") );
// check width
useThisOStringStream os4;
os4 << std::setw(10) << make_tuple(1, 2, 3);
BOOST_CHECK (os4.str() == std::string(" (1 2 3)") );
std::ofstream tmp("temp.tmp");
#if !defined (BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) #if !defined (BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
tmp << make_tuple("One", "Two", 3); tmp << make_tuple("One", "Two", 3);
#endif #endif
tmp << set_delimiter(':'); tmp << set_delimiter(':');
tmp << make_tuple(1000, 2000, 3000) << endl; tmp << make_tuple(1000, 2000, 3000) << std::endl;
tmp.close(); tmp.close();
// When teading tuples from a stream, manipulators must be set correctly: // When teading tuples from a stream, manipulators must be set correctly:
ifstream tmp3("temp.tmp"); std::ifstream tmp3("temp.tmp");
tuple<string, string, int> j; tuple<std::string, std::string, int> j;
#if !defined (BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) #if !defined (BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
tmp3 >> j; tmp3 >> j;
BOOST_TEST (tmp3.good() ); BOOST_CHECK (tmp3.good() );
#endif #endif
tmp3 >> set_delimiter(':'); tmp3 >> set_delimiter(':');
tuple<int, int, int> i; tuple<int, int, int> i;
tmp3 >> i; tmp3 >> i;
BOOST_TEST (tmp3.good() ); BOOST_CHECK (tmp3.good() );
tmp3.close(); tmp3.close();
// reading tuple<int, int, int> in format (a b c); // reading tuple<int, int, int> in format (a b c);
useThisIStringStream is("(100 200 300)"); useThisIStringStream is1("(100 200 300)");
tuple<int, int, int> ti; tuple<int, int, int> ti1;
BOOST_TEST(is >> ti); BOOST_CHECK(bool(is1 >> ti1));
BOOST_TEST(ti == make_tuple(100, 200, 300)); BOOST_CHECK(ti1 == make_tuple(100, 200, 300));
useThisIStringStream is2("()");
tuple<> ti2;
BOOST_CHECK(bool(is2 >> ti2));
useThisIStringStream is3("[]");
is3 >> set_open('[');
is3 >> set_close(']');
BOOST_CHECK(bool(is3 >> ti2));
// Make sure that whitespace between elements
// is skipped.
useThisIStringStream is4("(100 200 300)");
BOOST_CHECK(bool(is4 >> std::noskipws >> ti1));
BOOST_CHECK(ti1 == make_tuple(100, 200, 300));
// Note that strings are problematic: // Note that strings are problematic:
// writing a tuple on a stream and reading it back doesn't work in // writing a tuple on a stream and reading it back doesn't work in

View File

@ -1,3 +1,11 @@
// Copyright (C) 1999, 2000 Jaakko Jarvi (jaakko.jarvi@cs.utu.fi)
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// For more information, see http://www.boost.org
// tuple_test_bench.cpp -------------------------------- // tuple_test_bench.cpp --------------------------------
#define BOOST_INCLUDE_MAIN // for testing, include rather than link #define BOOST_INCLUDE_MAIN // for testing, include rather than link
@ -7,10 +15,12 @@
#include "boost/tuple/tuple_comparison.hpp" #include "boost/tuple/tuple_comparison.hpp"
#include "boost/type_traits/is_const.hpp"
#include "boost/ref.hpp"
#include <string> #include <string>
#include <utility> #include <utility>
using namespace std;
using namespace boost; using namespace boost;
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
@ -24,7 +34,7 @@ class C {};
// classes with different kinds of conversions // classes with different kinds of conversions
class AA {}; class AA {};
class BB : public AA {}; class BB : public AA {};
struct CC { CC() {} CC(const BB& b) {} }; struct CC { CC() {} CC(const BB&) {} };
struct DD { operator CC() const { return CC(); }; }; struct DD { operator CC() const { return CC(); }; };
// something to prevent warnings for unused variables // something to prevent warnings for unused variables
@ -66,7 +76,6 @@ public:
typedef tuple<int> t1; typedef tuple<int> t1;
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
typedef tuple<double&, const double&, const double, double*, const double*> t2; typedef tuple<double&, const double&, const double, double*, const double*> t2;
typedef tuple<A, int(*)(char, int), C> t3; typedef tuple<A, int(*)(char, int), C> t3;
typedef tuple<std::string, std::pair<A, B> > t4; typedef tuple<std::string, std::pair<A, B> > t4;
@ -77,22 +86,16 @@ typedef tuple<volatile int, const volatile char&, int(&)(float) > t6;
typedef tuple<B(A::*)(C&), A&> t7; typedef tuple<B(A::*)(C&), A&> t7;
#endif #endif
#endif
// ----------------------------------------------------------------------- // -----------------------------------------------------------------------
// -tuple construction tests --------------------------------------------- // -tuple construction tests ---------------------------------------------
// ----------------------------------------------------------------------- // -----------------------------------------------------------------------
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
no_copy y; no_copy y;
tuple<no_copy&> x = tuple<no_copy&>(y); // ok tuple<no_copy&> x = tuple<no_copy&>(y); // ok
#endif
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
char cs[10]; char cs[10];
tuple<char(&)[10]> v2(cs); // ok tuple<char(&)[10]> v2(cs); // ok
#endif
void void
construction_test() construction_test()
@ -103,32 +106,32 @@ construction_test()
// MSVC 6.0 just cannot find get without the namespace qualifier // MSVC 6.0 just cannot find get without the namespace qualifier
tuple<int> t1; tuple<int> t1;
BOOST_TEST(tuples::get<0>(t1) == int()); BOOST_CHECK(get<0>(t1) == int());
tuple<float> t2(5.5f); tuple<float> t2(5.5f);
BOOST_TEST(tuples::get<0>(t2) > 5.4f && tuples::get<0>(t2) < 5.6f); BOOST_CHECK(get<0>(t2) > 5.4f && get<0>(t2) < 5.6f);
tuple<foo> t3(foo(12)); tuple<foo> t3(foo(12));
BOOST_TEST(tuples::get<0>(t3) == foo(12)); BOOST_CHECK(get<0>(t3) == foo(12));
tuple<double> t4(t2); tuple<double> t4(t2);
BOOST_TEST(tuples::get<0>(t4) > 5.4 && tuples::get<0>(t4) < 5.6); BOOST_CHECK(get<0>(t4) > 5.4 && get<0>(t4) < 5.6);
tuple<int, float> t5; tuple<int, float> t5;
BOOST_TEST(tuples::get<0>(t5) == int()); BOOST_CHECK(get<0>(t5) == int());
BOOST_TEST(tuples::get<1>(t5) == float()); BOOST_CHECK(get<1>(t5) == float());
tuple<int, float> t6(12, 5.5f); tuple<int, float> t6(12, 5.5f);
BOOST_TEST(tuples::get<0>(t6) == 12); BOOST_CHECK(get<0>(t6) == 12);
BOOST_TEST(tuples::get<1>(t6) > 5.4f && tuples::get<1>(t6) < 5.6f); BOOST_CHECK(get<1>(t6) > 5.4f && get<1>(t6) < 5.6f);
tuple<int, float> t7(t6); tuple<int, float> t7(t6);
BOOST_TEST(tuples::get<0>(t7) == 12); BOOST_CHECK(get<0>(t7) == 12);
BOOST_TEST(tuples::get<1>(t7) > 5.4f && tuples::get<1>(t7) < 5.6f); BOOST_CHECK(get<1>(t7) > 5.4f && get<1>(t7) < 5.6f);
tuple<long, double> t8(t6); tuple<long, double> t8(t6);
BOOST_TEST(tuples::get<0>(t8) == 12); BOOST_CHECK(get<0>(t8) == 12);
BOOST_TEST(tuples::get<1>(t8) > 5.4f && tuples::get<1>(t8) < 5.6f); BOOST_CHECK(get<1>(t8) > 5.4f && get<1>(t8) < 5.6f);
dummy( dummy(
tuple<no_def_constructor, no_def_constructor, no_def_constructor>( tuple<no_def_constructor, no_def_constructor, no_def_constructor>(
@ -147,16 +150,13 @@ construction_test()
// dummy(tuple<double&>()); // should fail, not defaults for references // dummy(tuple<double&>()); // should fail, not defaults for references
// dummy(tuple<const double&>()); // likewise // dummy(tuple<const double&>()); // likewise
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
double dd = 5; double dd = 5;
dummy(tuple<double&>(dd)); // ok dummy(tuple<double&>(dd)); // ok
dummy(tuple<const double&>(dd+3.14)); // ok, but dangerous dummy(tuple<const double&>(dd+3.14)); // ok, but dangerous
#endif
// dummy(tuple<double&>(dd+3.14)); // should fail, // dummy(tuple<double&>(dd+3.14)); // should fail,
// // temporary to non-const reference // // temporary to non-const reference
} }
@ -166,35 +166,48 @@ construction_test()
void element_access_test() void element_access_test()
{ {
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
double d = 2.7; double d = 2.7;
A a; A a;
tuple<int, double&, const A&> t(1, d, a); tuple<int, double&, const A&, int> t(1, d, a, 2);
const tuple<int, double&, const A> ct = t; const tuple<int, double&, const A, int> ct = t;
int i = tuples::get<0>(t); int i = get<0>(t);
int j = tuples::get<0>(ct); int i2 = get<3>(t);
BOOST_TEST(i == 1 && j == 1);
tuples::get<0>(t) = 5; BOOST_CHECK(i == 1 && i2 == 2);
BOOST_TEST(t.head == 5);
// tuples::get<0>(ct) = 5; // can't assign to const int j = get<0>(ct);
BOOST_CHECK(j == 1);
double e = tuples::get<1>(t); get<0>(t) = 5;
BOOST_TEST(e > 2.69 && e < 2.71); BOOST_CHECK(t.head == 5);
tuples::get<1>(t) = 3.14+i; // get<0>(ct) = 5; // can't assign to const
BOOST_TEST(tuples::get<1>(t) > 4.13 && tuples::get<1>(t) < 4.15);
// tuples::get<4>(t) = A(); // can't assign to const double e = get<1>(t);
// dummy(tuples::get<5>(ct)); // illegal index BOOST_CHECK(e > 2.69 && e < 2.71);
++tuples::get<0>(t); get<1>(t) = 3.14+i;
BOOST_TEST(tuples::get<0>(t) == 6); BOOST_CHECK(get<1>(t) > 4.13 && get<1>(t) < 4.15);
dummy(i); dummy(j); dummy(e); // avoid warns for unused variables // get<4>(t) = A(); // can't assign to const
// dummy(get<5>(ct)); // illegal index
++get<0>(t);
BOOST_CHECK(get<0>(t) == 6);
BOOST_STATIC_ASSERT((boost::is_const<boost::tuples::element<0, tuple<int, float> >::type>::value != true));
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
BOOST_STATIC_ASSERT((boost::is_const<boost::tuples::element<0, const tuple<int, float> >::type>::value));
#endif #endif
BOOST_STATIC_ASSERT((boost::is_const<boost::tuples::element<1, tuple<int, float> >::type>::value != true));
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
BOOST_STATIC_ASSERT((boost::is_const<boost::tuples::element<1, const tuple<int, float> >::type>::value));
#endif
dummy(i); dummy(i2); dummy(j); dummy(e); // avoid warns for unused variables
} }
@ -210,13 +223,13 @@ copy_test()
tuple<int, char> t1(4, 'a'); tuple<int, char> t1(4, 'a');
tuple<int, char> t2(5, 'b'); tuple<int, char> t2(5, 'b');
t2 = t1; t2 = t1;
BOOST_TEST(tuples::get<0>(t1) == tuples::get<0>(t2)); BOOST_CHECK(get<0>(t1) == get<0>(t2));
BOOST_TEST(tuples::get<1>(t1) == tuples::get<1>(t2)); BOOST_CHECK(get<1>(t1) == get<1>(t2));
tuple<long, std::string> t3(2, "a"); tuple<long, std::string> t3(2, "a");
t3 = t1; t3 = t1;
BOOST_TEST((double)tuples::get<0>(t1) == tuples::get<0>(t3)); BOOST_CHECK((double)get<0>(t1) == get<0>(t3));
BOOST_TEST(tuples::get<1>(t1) == tuples::get<1>(t3)[0]); BOOST_CHECK(get<1>(t1) == get<1>(t3)[0]);
// testing copy and assignment with implicit conversions between elements // testing copy and assignment with implicit conversions between elements
// testing tie // testing tie
@ -228,24 +241,24 @@ copy_test()
int i; char c; double d; int i; char c; double d;
tie(i, c, d) = make_tuple(1, 'a', 5.5); tie(i, c, d) = make_tuple(1, 'a', 5.5);
BOOST_TEST(i==1); BOOST_CHECK(i==1);
BOOST_TEST(c=='a'); BOOST_CHECK(c=='a');
BOOST_TEST(d>5.4 && d<5.6); BOOST_CHECK(d>5.4 && d<5.6);
} }
void void
mutate_test() mutate_test()
{ {
tuple<int, float, bool, foo> t1(5, 12.2f, true, foo(4)); tuple<int, float, bool, foo> t1(5, 12.2f, true, foo(4));
tuples::get<0>(t1) = 6; get<0>(t1) = 6;
tuples::get<1>(t1) = 2.2f; get<1>(t1) = 2.2f;
tuples::get<2>(t1) = false; get<2>(t1) = false;
tuples::get<3>(t1) = foo(5); get<3>(t1) = foo(5);
BOOST_TEST(tuples::get<0>(t1) == 6); BOOST_CHECK(get<0>(t1) == 6);
BOOST_TEST(tuples::get<1>(t1) > 2.1f && tuples::get<1>(t1) < 2.3f); BOOST_CHECK(get<1>(t1) > 2.1f && get<1>(t1) < 2.3f);
BOOST_TEST(tuples::get<2>(t1) == false); BOOST_CHECK(get<2>(t1) == false);
BOOST_TEST(tuples::get<3>(t1) == foo(5)); BOOST_CHECK(get<3>(t1) == foo(5));
} }
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
@ -256,40 +269,36 @@ void
make_tuple_test() make_tuple_test()
{ {
tuple<int, char> t1 = make_tuple(5, 'a'); tuple<int, char> t1 = make_tuple(5, 'a');
BOOST_TEST(tuples::get<0>(t1) == 5); BOOST_CHECK(get<0>(t1) == 5);
BOOST_TEST(tuples::get<1>(t1) == 'a'); BOOST_CHECK(get<1>(t1) == 'a');
tuple<int, std::string> t2; tuple<int, std::string> t2;
t2 = make_tuple((short int)2, std::string("Hi")); t2 = boost::make_tuple((short int)2, std::string("Hi"));
BOOST_TEST(tuples::get<0>(t2) == 2); BOOST_CHECK(get<0>(t2) == 2);
BOOST_TEST(tuples::get<1>(t2) == "Hi"); BOOST_CHECK(get<1>(t2) == "Hi");
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) A a = A(); B b;
A a; B b;
const A ca = a; const A ca = a;
make_tuple(cref(a), b); make_tuple(boost::cref(a), b);
make_tuple(ref(a), b); make_tuple(boost::ref(a), b);
make_tuple(ref(a), cref(b)); make_tuple(boost::ref(a), boost::cref(b));
make_tuple(ref(ca)); make_tuple(boost::ref(ca));
#endif
// the result of make_tuple is assignable: // the result of make_tuple is assignable:
BOOST_TEST(make_tuple(2, 4, 6) == BOOST_CHECK(make_tuple(2, 4, 6) ==
(make_tuple(1, 2, 3) = make_tuple(2, 4, 6))); (make_tuple(1, 2, 3) = make_tuple(2, 4, 6)));
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION) #ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
make_tuple("Donald", "Daisy"); // should work; make_tuple("Donald", "Daisy"); // should work;
#endif #endif
// std::make_pair("Doesn't","Work"); // fails // std::make_pair("Doesn't","Work"); // fails
// You can store a reference to a function in a tuple // You can store a reference to a function in a tuple
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
tuple<void(&)()> adf(make_tuple_test); tuple<void(&)()> adf(make_tuple_test);
dummy(adf); // avoid warning for unused variable dummy(adf); // avoid warning for unused variable
#endif
// But make_tuple doesn't work // But make_tuple doesn't work
// with function references, since it creates a const qualified function type // with function references, since it creates a const qualified function type
@ -326,19 +335,19 @@ tie_test()
foo c(5); foo c(5);
tie(a, b, c) = make_tuple(2, 'a', foo(3)); tie(a, b, c) = make_tuple(2, 'a', foo(3));
BOOST_TEST(a == 2); BOOST_CHECK(a == 2);
BOOST_TEST(b == 'a'); BOOST_CHECK(b == 'a');
BOOST_TEST(c == foo(3)); BOOST_CHECK(c == foo(3));
tie(a, tuples::ignore, c) = make_tuple((short int)5, false, foo(5)); tie(a, tuples::ignore, c) = make_tuple((short int)5, false, foo(5));
BOOST_TEST(a == 5); BOOST_CHECK(a == 5);
BOOST_TEST(b == 'a'); BOOST_CHECK(b == 'a');
BOOST_TEST(c == foo(5)); BOOST_CHECK(c == foo(5));
// testing assignment from std::pair // testing assignment from std::pair
int i, j; int i, j;
tie (i, j) = std::make_pair(1, 2); tie (i, j) = std::make_pair(1, 2);
BOOST_TEST(i == 1 && j == 2); BOOST_CHECK(i == 1 && j == 2);
tuple<int, int, float> ta; tuple<int, int, float> ta;
#ifdef E11 #ifdef E11
@ -358,12 +367,13 @@ equality_test()
{ {
tuple<int, char> t1(5, 'a'); tuple<int, char> t1(5, 'a');
tuple<int, char> t2(5, 'a'); tuple<int, char> t2(5, 'a');
BOOST_TEST(t1 == t2); BOOST_CHECK(t1 == t2);
tuple<int, char> t3(5, 'b'); tuple<int, char> t3(5, 'b');
tuple<int, char> t4(2, 'a'); tuple<int, char> t4(2, 'a');
BOOST_TEST(t1 != t3); BOOST_CHECK(t1 != t3);
BOOST_TEST(t1 != t4); BOOST_CHECK(t1 != t4);
BOOST_CHECK(!(t1 != t2));
} }
@ -377,14 +387,14 @@ ordering_test()
tuple<int, float> t1(4, 3.3f); tuple<int, float> t1(4, 3.3f);
tuple<short, float> t2(5, 3.3f); tuple<short, float> t2(5, 3.3f);
tuple<long, double> t3(5, 4.4); tuple<long, double> t3(5, 4.4);
BOOST_TEST(t1 < t2); BOOST_CHECK(t1 < t2);
BOOST_TEST(t1 <= t2); BOOST_CHECK(t1 <= t2);
BOOST_TEST(t2 > t1); BOOST_CHECK(t2 > t1);
BOOST_TEST(t2 >= t1); BOOST_CHECK(t2 >= t1);
BOOST_TEST(t2 < t3); BOOST_CHECK(t2 < t3);
BOOST_TEST(t2 <= t3); BOOST_CHECK(t2 <= t3);
BOOST_TEST(t3 > t2); BOOST_CHECK(t3 > t2);
BOOST_TEST(t3 >= t2); BOOST_CHECK(t3 >= t2);
} }
@ -394,7 +404,6 @@ ordering_test()
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
void cons_test() void cons_test()
{ {
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
using tuples::cons; using tuples::cons;
using tuples::null_type; using tuples::null_type;
@ -402,11 +411,10 @@ void cons_test()
cons<const int, cons<volatile float, null_type> > b(2,a); cons<const int, cons<volatile float, null_type> > b(2,a);
int i = 3; int i = 3;
cons<int&, cons<const int, cons<volatile float, null_type> > > c(i, b); cons<int&, cons<const int, cons<volatile float, null_type> > > c(i, b);
BOOST_TEST(make_tuple(3,2,1)==c); BOOST_CHECK(make_tuple(3,2,1)==c);
cons<char, cons<int, cons<float, null_type> > > x; cons<char, cons<int, cons<float, null_type> > > x;
dummy(x);
#endif
} }
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
@ -415,10 +423,50 @@ void cons_test()
void const_tuple_test() void const_tuple_test()
{ {
const tuple<int, float> t1(5, 3.3f); const tuple<int, float> t1(5, 3.3f);
BOOST_TEST(tuples::get<0>(t1) == 5); BOOST_CHECK(get<0>(t1) == 5);
BOOST_TEST(tuples::get<1>(t1) == 3.3f); BOOST_CHECK(get<1>(t1) == 3.3f);
} }
// ----------------------------------------------------------------------------
// - testing length -----------------------------------------------------------
// ----------------------------------------------------------------------------
void tuple_length_test()
{
typedef tuple<int, float, double> t1;
using tuples::cons;
typedef cons<int, cons< float, cons <double, tuples::null_type> > > t1_cons;
typedef tuple<> t2;
typedef tuples::null_type t3;
BOOST_STATIC_ASSERT(tuples::length<t1>::value == 3);
BOOST_STATIC_ASSERT(tuples::length<t1_cons>::value == 3);
BOOST_STATIC_ASSERT(tuples::length<t2>::value == 0);
BOOST_STATIC_ASSERT(tuples::length<t3>::value == 0);
}
// ----------------------------------------------------------------------------
// - testing swap -----------------------------------------------------------
// ----------------------------------------------------------------------------
void tuple_swap_test()
{
tuple<int, float, double> t1(1, 2.0f, 3.0), t2(4, 5.0f, 6.0);
swap(t1, t2);
BOOST_CHECK(get<0>(t1) == 4);
BOOST_CHECK(get<1>(t1) == 5.0f);
BOOST_CHECK(get<2>(t1) == 6.0);
BOOST_CHECK(get<0>(t2) == 1);
BOOST_CHECK(get<1>(t2) == 2.0f);
BOOST_CHECK(get<2>(t2) == 3.0);
int i = 1,j = 2;
boost::tuple<int&> t3(i), t4(j);
swap(t3, t4);
BOOST_CHECK(i == 2);
BOOST_CHECK(j == 1);
}
// ---------------------------------------------------------------------------- // ----------------------------------------------------------------------------
// - main --------------------------------------------------------------------- // - main ---------------------------------------------------------------------
@ -436,5 +484,14 @@ int test_main(int, char *[]) {
ordering_test(); ordering_test();
cons_test(); cons_test();
const_tuple_test(); const_tuple_test();
tuple_length_test();
tuple_swap_test();
return 0; return 0;
} }