mirror of
https://github.com/boostorg/tuple.git
synced 2025-06-26 12:31:55 +02:00
Compare commits
31 Commits
svn-branch
...
svn-branch
Author | SHA1 | Date | |
---|---|---|---|
9a05a2ebe0 | |||
788896864a | |||
d24e9b9a72 | |||
22d8e8ecc0 | |||
08be3cbe04 | |||
b1621fad71 | |||
001f5b4c14 | |||
75d7917f66 | |||
6d2cb1d793 | |||
ce02fa0c58 | |||
5f196d037f | |||
2ab1b6705f | |||
55a83b6408 | |||
c89357006b | |||
2fe366f263 | |||
8b3b6efe24 | |||
2e825630f8 | |||
8408cc0bd5 | |||
8f29dbe149 | |||
e531e7ce2e | |||
a6d8c4f20c | |||
cd416f50be | |||
9559531c52 | |||
4503ed841b | |||
a9b6ca508a | |||
063758ef7f | |||
66ae617224 | |||
5b40ff62c6 | |||
531fb617eb | |||
2764718489 | |||
e1bba349b3 |
153
doc/design_decisions_rationale.html
Normal file
153
doc/design_decisions_rationale.html
Normal file
@ -0,0 +1,153 @@
|
|||||||
|
<html>
|
||||||
|
|
||||||
|
<title>Design decisions rationale for Boost Tuple Library</title>
|
||||||
|
|
||||||
|
<body bgcolor="#FFFFFF" text="#000000">
|
||||||
|
|
||||||
|
<IMG SRC="../../../c++boost.gif"
|
||||||
|
ALT="C++ Boost" width="277" height="86">
|
||||||
|
|
||||||
|
<h1>Tuple Library : design decisions rationale</h1>
|
||||||
|
|
||||||
|
<h2>About namespaces</h2>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
There was a discussion about whether tuples should be in a separate namespace or directly in the <code>boost</code> namespace.
|
||||||
|
The common principle is that domain libraries (like <i>graph</i>, <i>python</i>) should be on a separate
|
||||||
|
subnamespace, while utility like libraries directly in the <code>boost</code> namespace.
|
||||||
|
Tuples are somewhere in between, as the tuple template is clearly a general utility, but the library introduces quite a lot of names in addition to just the tuple template.
|
||||||
|
Tuples were originally under a subnamespace.
|
||||||
|
As a result of the discussion, tuple definitions were moved directly under the <code>boost</code> namespace.
|
||||||
|
As a result of a continued discussion, the subnamespace was reintroduced.
|
||||||
|
The final (I truly hope so) solution is now to have all definitions in namespace <code>::boost::tuples</code>, and the most common names in the <code>::boost</code> namespace as well.
|
||||||
|
This is accomplished with using declarations (suggested by Dave Abrahams):
|
||||||
|
<code><pre>namespace boost {
|
||||||
|
namespace tuples {
|
||||||
|
...
|
||||||
|
// All library code
|
||||||
|
...
|
||||||
|
}
|
||||||
|
using tuples::tuple;
|
||||||
|
using tuples::make_tuple;
|
||||||
|
using tuples::tie;
|
||||||
|
using tuples::get;
|
||||||
|
}
|
||||||
|
</pre></code>
|
||||||
|
With this arrangement, tuple creation with direct constructor calls, <code>make_tuple</code> or <code>tie</code> functions do not need the namespace qualifier.
|
||||||
|
Further, all functions that manipulate tuples are found with Koenig-lookup.
|
||||||
|
The only exceptions are the <code>get<N></code> functions, which are always called with an explicitly qualified template argument, and thus Koenig-lookup does not apply.
|
||||||
|
Therefore, get is lifted to <code>::boost</code> namespace with a using declaration.
|
||||||
|
Hence, the interface for an application programmer is in practice under the namespace <code>::boost</code>.
|
||||||
|
</p>
|
||||||
|
<p>
|
||||||
|
The other names, forming an interface for library writers (cons lists, metafunctions manipulating cons lists, ...) remain in the subnamespace <code>::boost::tuples</code>.
|
||||||
|
Note, that the names <code>ignore</code>, <code>set_open</code>, <code>set_close</code> and <code>set_delimiter</code> are considered to be part of the application programmer's interface, but are still not under <code>boost</code> namespace.
|
||||||
|
The reason being the danger for name clashes for these common names.
|
||||||
|
Further, the usage of these features is probably not very frequent.
|
||||||
|
</p>
|
||||||
|
|
||||||
|
<h4>For those who are really interested in namespaces</h4>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
The subnamespace name <i>tuples</i> raised some discussion.
|
||||||
|
The rationale for not using the most natural name 'tuple' is to avoid having an identical name with the tuple template.
|
||||||
|
Namespace names are, however, not generally in plural form in boost libraries.
|
||||||
|
First, no real trouble was reported for using the same name for a namespace and a class and we considered changing the name 'tuples' to 'tuple'.
|
||||||
|
But we found some trouble after all.
|
||||||
|
Both gcc and edg compilers reject using declarations where the namespace and class names are identical:
|
||||||
|
|
||||||
|
<code><pre>namespace boost {
|
||||||
|
namespace tuple {
|
||||||
|
... tie(...);
|
||||||
|
class tuple;
|
||||||
|
...
|
||||||
|
}
|
||||||
|
using tuple::tie; // ok
|
||||||
|
using tuple::tuple; // error
|
||||||
|
...
|
||||||
|
}
|
||||||
|
</pre></code>
|
||||||
|
|
||||||
|
Note, however, that a corresponding using declaration in the global namespace seems to be ok:
|
||||||
|
|
||||||
|
<code><pre>
|
||||||
|
using boost::tuple::tuple; // ok;
|
||||||
|
</pre></code>
|
||||||
|
|
||||||
|
|
||||||
|
<h2>The end mark of the cons list (nil, null_type, ...)</h2>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
Tuples are internally represented as <code>cons</code> lists:
|
||||||
|
|
||||||
|
<code><pre>tuple<int, int>
|
||||||
|
</pre></code>
|
||||||
|
inherits from
|
||||||
|
<code><pre>cons<int, cons<int, null_type> >
|
||||||
|
</code></pre>
|
||||||
|
|
||||||
|
<code>null_type</code> is the end mark of the list. Original proposition was <code>nil</code>, but the name is used in MacOS, and might have caused problems, so <code>null_type</code> was chosen instead.
|
||||||
|
Other names considered were <i>null_t</i> and <i>unit</i> (the empty tuple type in SML).
|
||||||
|
<p>
|
||||||
|
Note that <code>null_type</code> is the internal representation of an empty tuple: <code>tuple<></code> inherits from <code>null_type</code>.
|
||||||
|
</p>
|
||||||
|
|
||||||
|
<h2>Element indexing</h2>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
Whether to use 0- or 1-based indexing was discussed more than thoroughly, and the following observations were made:
|
||||||
|
|
||||||
|
<ul>
|
||||||
|
<li> 0-based indexing is 'the C++ way' and used with arrays etc.</li>
|
||||||
|
<li> 1-based 'name like' indexing exists as well, eg. <code>bind1st</code>, <code>bind2nd</code>, <code>pair::first</code>, etc.</li>
|
||||||
|
</ul>
|
||||||
|
Tuple access with the syntax <code>get<N>(a)</code>, or <code>a.get<N>()</code> (where <code>a</code> is a tuple and <code>N</code> an index), was considered to be of the first category, hence, the index of the first element in a tuple is 0.
|
||||||
|
|
||||||
|
<p>
|
||||||
|
A suggestion to provide 1-based 'name like' indexing with constants like <code>_1st</code>, <code>_2nd</code>, <code>_3rd</code>, ... was made.
|
||||||
|
By suitably chosen constant types, this would allow alternative syntaxes:
|
||||||
|
|
||||||
|
<code><pre>a.get<0>() == a.get(_1st) == a[_1st] == a(_1st);
|
||||||
|
</pre></code>
|
||||||
|
|
||||||
|
We chose not to provide more than one indexing method for the following reasons:
|
||||||
|
<ul>
|
||||||
|
<li>0-based indexing might not please everyone, but once its fixed, it is less confusing than having two different methods (would anyone want such constants for arrays?).</li>
|
||||||
|
<li>Adding the other indexing scheme doesn't really provide anything new (like a new feature) to the user of the library.</li>
|
||||||
|
<li>C++ variable and constant naming rules don't give many possibilities for defining short and nice index constants (like <code>_1st</code>, ...).
|
||||||
|
Let the binding and lambda libraries use these for a better purpose.</li>
|
||||||
|
<li>The access syntax <code>a[_1st]</code> (or <code>a(_1st)</code>) is appealing, and almost made us add the index constants after all. However, 0-based subscripting is so deep in C++, that we had a fear for confusion.</li>
|
||||||
|
<li>
|
||||||
|
Such constants are easy to add.
|
||||||
|
</li>
|
||||||
|
</ul>
|
||||||
|
|
||||||
|
|
||||||
|
<h2>Tuple comparison</h2>
|
||||||
|
|
||||||
|
The comparison operator implements lexicographical order.
|
||||||
|
Other orderings were considered, mainly dominance (<i>a < b iff for each i a(i) < b(i)</i>).
|
||||||
|
Our belief is, that lexicographical ordering, though not mathematically the most natural one, is the most frequently needed ordering in everyday programming.
|
||||||
|
|
||||||
|
<h2>Streaming</h2>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
The characters specified with tuple stream manipulators are stored within the space allocated by <code>ios_base::xalloc</code>, which allocates storage for <code>long</code> type objects.
|
||||||
|
<code>static_cast</code> is used in casting between <code>long</code> and the stream's character type.
|
||||||
|
Streams that have character types not convertible back and forth to long thus fail to compile.
|
||||||
|
|
||||||
|
This may be revisited at some point. The two possible solutions are:
|
||||||
|
<ul>
|
||||||
|
<li>Allow only plain <code>char</code> types as the tuple delimiters and use <code>widen</code> and <code>narrow</code> to convert between the real character type of the stream.
|
||||||
|
This would always compile, but some calls to set manipulators might result in a different
|
||||||
|
character than expected (some default character).</li>
|
||||||
|
<li>Allocate enough space to hold the real character type of the stream.
|
||||||
|
This means memory for holding the delimiter characters must be allocated separately, and that pointers to this memory are stored in the space allocated with <code>ios_base::xalloc</code>.
|
||||||
|
Any volunteers?</li>
|
||||||
|
</ul>
|
||||||
|
|
||||||
|
<A href="tuple_users_guide.html">Back to the user's guide</A>
|
||||||
|
<hr><p>© Copyright Jaakko Järvi 2001.
|
||||||
|
</body>
|
||||||
|
</html>
|
||||||
|
|
133
doc/tuple_advanced_interface.html
Normal file
133
doc/tuple_advanced_interface.html
Normal file
@ -0,0 +1,133 @@
|
|||||||
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
|
||||||
|
<html>
|
||||||
|
<head>
|
||||||
|
<title>Tuple library advanced features</title>
|
||||||
|
<body bgcolor="#FFFFFF" text="#000000">
|
||||||
|
|
||||||
|
<IMG SRC="../../../c++boost.gif"
|
||||||
|
ALT="C++ Boost" width="277" height="86">
|
||||||
|
|
||||||
|
</head>
|
||||||
|
|
||||||
|
<body>
|
||||||
|
<h1>Tuple library advanced features</h1>
|
||||||
|
|
||||||
|
The advanced features described in this document are all under namespace <code>::boost::tuples</code>
|
||||||
|
|
||||||
|
<h2>Metafunctions for tuple types</h2>
|
||||||
|
<p>
|
||||||
|
Suppose <code>T</code> is a tuple type, and <code>N</code> is a constant integral expression.
|
||||||
|
|
||||||
|
<code><pre>element<N, T>::type</pre></code>
|
||||||
|
|
||||||
|
gives the type of the <code>N</code>th element in the tuple type <code>T</code>.
|
||||||
|
</p>
|
||||||
|
|
||||||
|
<code><pre>length<T>::value</pre></code>
|
||||||
|
|
||||||
|
gives the length of the tuple type <code>T</code>.
|
||||||
|
</p>
|
||||||
|
|
||||||
|
<h2>Cons lists</h2>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
Tuples are internally represented as <i>cons lists</i>.
|
||||||
|
For example, the tuple
|
||||||
|
|
||||||
|
<code><pre>tuple<A, B, C, D></pre></code>
|
||||||
|
|
||||||
|
inherits from the type
|
||||||
|
<code><pre>cons<A, cons<B, cons<C, cons<D, null_type> > > >
|
||||||
|
</pre></code>
|
||||||
|
|
||||||
|
The tuple template provides the typedef <code>inherited</code> to access the cons list representation. E.g.:
|
||||||
|
<code>tuple<A>::inherited</code> is the type <code>cons<A, null_type></code>.
|
||||||
|
</p>
|
||||||
|
|
||||||
|
<h4>Empty tuple</h4>
|
||||||
|
<p>
|
||||||
|
The internal representation of the empty tuple <code>tuple<></code> is <code>null_type</code>.
|
||||||
|
</p>
|
||||||
|
|
||||||
|
<h4>Head and tail</h4>
|
||||||
|
<p>
|
||||||
|
Both tuple template and the cons templates provide the typedefs <code>head_type</code> and <code>tail_type</code>.
|
||||||
|
The <code>head_type</code> typedef gives the type of the first element of the tuple (or the cons list).
|
||||||
|
The
|
||||||
|
<code>tail_type</code> typedef gives the remaining cons list after removing the first element.
|
||||||
|
The head element is stored in the member variable <code>head</code> and the tail list in the member variable <code>tail</code>.
|
||||||
|
Cons lists provide the member function <code>get_head()</code> for getting a reference to the head of a cons list, and <code>get_tail()</code> for getting a reference to the tail.
|
||||||
|
There are const and non-const versions of both functions.
|
||||||
|
</p>
|
||||||
|
<p>
|
||||||
|
Note that in a one element tuple, <code>tail_type</code> equals <code>null_type</code> and the <code>get_tail()</code> function returns an object of type <code>null_type</code>.
|
||||||
|
</p>
|
||||||
|
<p>
|
||||||
|
The empty tuple (<code>null_type</code>) has no head or tail, hence the <code>get_head</code> and <code>get_tail</code> functions are not provided.
|
||||||
|
</p>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
Treating tuples as cons lists gives a convenient means to define generic functions to manipulate tuples. For example, the following pair of function templates assign 0 to each element of a tuple (obviously, the assignments must be valid operations for the element types):
|
||||||
|
|
||||||
|
<pre><code>inline void set_to_zero(const null_type&) {};
|
||||||
|
|
||||||
|
template <class H, class T>
|
||||||
|
inline void set_to_zero(cons<H, T>& x) { x.get_head() = 0; set_to_zero(x.get_tail()); }
|
||||||
|
</code></pre>
|
||||||
|
<p>
|
||||||
|
|
||||||
|
<h4>Constructing cons lists</h4>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
A cons list can be default constructed provided that all its elements can be default constructed.
|
||||||
|
</p>
|
||||||
|
<p>
|
||||||
|
A cons list can be constructed from its head and tail. The prototype of the constructor is:
|
||||||
|
<pre><code>cons(typename access_traits<head_type>::parameter_type h,
|
||||||
|
const tail_type& t)
|
||||||
|
</code></pre>
|
||||||
|
The traits template for the head parameter selects correct parameter types for different kinds of element types (for reference elements the parameter type equals the element type, for non-reference types the parameter type is a reference to const non-volatile element type).
|
||||||
|
</p>
|
||||||
|
<p>
|
||||||
|
For a one-element cons list the tail argument (<code>null_type</code>) can be omitted.
|
||||||
|
</p>
|
||||||
|
|
||||||
|
|
||||||
|
<h2>Traits classes for tuple element types</h2>
|
||||||
|
|
||||||
|
<h4><code>access_traits</code></h4>
|
||||||
|
<p>
|
||||||
|
The template <code>access_traits</code> defines three type functions. Let <code>T</code> be a type of an element in a tuple:
|
||||||
|
<ol>
|
||||||
|
<li><code>access_traits<T>::type</code> maps <code>T</code> to the return type of the non-const access functions (nonmeber and member <code>get</code> functions, and the <code>get_head</code> function).</li>
|
||||||
|
<li><code>access_traits<T>::const_type</code> maps <code>T</code> to the return type of the const access functions.</li>
|
||||||
|
<li><code>access_traits<T>::parameter_type</code> maps <code>T</code> to the parameter type of the tuple constructor.</li>
|
||||||
|
</ol>
|
||||||
|
<h4><code>make_tuple_traits</code></h4>
|
||||||
|
|
||||||
|
The element types of the tuples that are created with the <code>make_tuple</code> functions are computed with the type function <code>make_tuple_traits</code>.
|
||||||
|
The type function call <code>make_tuple_traits<T>::type</code> implements the following type mapping:
|
||||||
|
<ul>
|
||||||
|
<li><i>any reference type</i> -> <i>compile time error</i>
|
||||||
|
</li>
|
||||||
|
<li><i>any array type</i> -> <i>constant reference to the array type</i>
|
||||||
|
</li>
|
||||||
|
<li><code>reference_wrapper<T></code> -> <code>T&</code>
|
||||||
|
</li>
|
||||||
|
<li><code>T</code> -> <code>T</code>
|
||||||
|
</li>
|
||||||
|
</ul>
|
||||||
|
|
||||||
|
Objects of type <code>reference_wrapper</code> are created with the <code>ref</code> and <code>cref</code> functions (see <A href="tuple_users_guide.html#make_tuple">The <code>make_tuple</code> function</A>.)
|
||||||
|
</p>
|
||||||
|
|
||||||
|
<p>Reference wrappers were originally part of the tuple library, but they are now a general utility of boost.
|
||||||
|
The <code>reference_wrapper</code> template and the <code>ref</code> and <code>cref</code> functions are defined in a separate file <code>ref.hpp</code> in the main boost include directory; and directly in the <code>boost</code> namespace.
|
||||||
|
</p>
|
||||||
|
|
||||||
|
<A href="tuple_users_guide.html">Back to the user's guide</A>
|
||||||
|
<hr>
|
||||||
|
|
||||||
|
<p>© Copyright Jaakko Järvi 2001.</p>
|
||||||
|
</body>
|
||||||
|
</html>
|
529
doc/tuple_users_guide.html
Normal file
529
doc/tuple_users_guide.html
Normal file
@ -0,0 +1,529 @@
|
|||||||
|
<html>
|
||||||
|
<head>
|
||||||
|
<title>The Boost Tuple Library</title>
|
||||||
|
</head>
|
||||||
|
<body bgcolor="#FFFFFF" text="#000000">
|
||||||
|
|
||||||
|
<IMG SRC="../../../c++boost.gif"
|
||||||
|
ALT="C++ Boost" width="277" height="86">
|
||||||
|
|
||||||
|
<h1>The Boost Tuple Library</h1>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
A tuple (or <i>n</i>-tuple) is a fixed size collection of elements.
|
||||||
|
Pairs, triples, quadruples etc. are tuples.
|
||||||
|
In a programming language, a tuple is a data object containing other objects as elements.
|
||||||
|
These element objects may be of different types.
|
||||||
|
</p>
|
||||||
|
|
||||||
|
<p>Tuples are convenient in many circumstances.
|
||||||
|
For instance, tuples make it easy to define functions that return more than one value.
|
||||||
|
</p>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
Some programming languages, such as ML, Python and Haskell, have built-in tuple constructs.
|
||||||
|
Unfortunately C++ does not.
|
||||||
|
To compensate for this "deficiency", the Boost Tuple Library implements a tuple construct using templates.
|
||||||
|
</p>
|
||||||
|
|
||||||
|
<h2>Table of Contents</h2>
|
||||||
|
|
||||||
|
<ol>
|
||||||
|
<li><a href = "#using_library">Using the library</a></li>
|
||||||
|
<li><a href = "#tuple_types">Tuple types</a></li>
|
||||||
|
<li><a href = "#constructing_tuples">Constructing tuples</a></li>
|
||||||
|
<li><a href = "#accessing_elements">Accessing tuple elements</a></li>
|
||||||
|
<li><a href = "#construction_and_assignment">Copy construction and tuple assignment</a></li>
|
||||||
|
<li><a href = "#relational_operators">Relational operators</a></li>
|
||||||
|
<li><a href = "#tiers">Tiers</a></li>
|
||||||
|
<li><a href = "#streaming">Streaming</a></li>
|
||||||
|
<li><a href = "#performance">Performance</a></li>
|
||||||
|
<li><a href = "#portability">Portability</a></li>
|
||||||
|
<li><a href = "#thanks">Acknowledgements</a></li>
|
||||||
|
<li><a href = "#references">References</a></li>
|
||||||
|
</ol>
|
||||||
|
|
||||||
|
<h4>More details</h4>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
<a href = "tuple_advanced_interface.html">Advanced features</a> (describes some metafunctions etc.).</p>
|
||||||
|
<p>
|
||||||
|
<a href = "design_decisions_rationale.html">Rationale behind some design/implementation decisions.</a></p>
|
||||||
|
|
||||||
|
|
||||||
|
<h2><a name="using_library">Using the library</a></h2>
|
||||||
|
|
||||||
|
<p>To use the library, just include:
|
||||||
|
|
||||||
|
<pre><code>#include "boost/tuple/tuple.hpp"</code></pre>
|
||||||
|
|
||||||
|
<p>Comparison operators can be included with:
|
||||||
|
<pre><code>#include "boost/tuple/tuple_comparison.hpp"</code></pre>
|
||||||
|
|
||||||
|
<p>To use tuple input and output operators,
|
||||||
|
|
||||||
|
<pre><code>#include "boost/tuple/tuple_io.hpp"</code></pre>
|
||||||
|
|
||||||
|
Both <code>tuple_io.hpp</code> and <code>tuple_comparison.hpp</code> include <code>tuple.hpp</code>.
|
||||||
|
|
||||||
|
<p>All definitions are in namespace <code>::boost::tuples</code>, but the most common names are lifted to namespace <code>::boost</code> with using declarations. These names are: <code>tuple</code>, <code>make_tuple</code>, <code>tie</code> and <code>get</code>. Further, <code>ref</code> and <code>cref</code> are defined directly under the <code>::boost</code> namespace.
|
||||||
|
|
||||||
|
<h2><a name = "tuple_types">Tuple types</a></h2>
|
||||||
|
|
||||||
|
<p>A tuple type is an instantiation of the <code>tuple</code> template.
|
||||||
|
The template parameters specify the types of the tuple elements.
|
||||||
|
The current version supports tuples with 0-10 elements.
|
||||||
|
If necessary, the upper limit can be increased up to, say, a few dozen elements.
|
||||||
|
The data element can be any C++ type.
|
||||||
|
Note that <code>void</code> and plain function types are valid
|
||||||
|
C++ types, but objects of such types cannot exist.
|
||||||
|
Hence, if a tuple type contains such types as elements, the tuple type
|
||||||
|
can exist, but not an object of that type.
|
||||||
|
There are natural limitations for element types that cannot
|
||||||
|
be be copied, or that are not default constructible (see 'Constructing tuples'
|
||||||
|
below).
|
||||||
|
|
||||||
|
<p>
|
||||||
|
For example, the following definitions are valid tuple instantiations (<code>A</code>, <code>B</code> and <code>C</code> are some user defined classes):
|
||||||
|
|
||||||
|
<pre><code>tuple<int>
|
||||||
|
tuple<double&, const double&, const double, double*, const double*>
|
||||||
|
tuple<A, int(*)(char, int), B(A::*)(C&), C>
|
||||||
|
tuple<std::string, std::pair<A, B> >
|
||||||
|
tuple<A*, tuple<const A*, const B&, C>, bool, void*>
|
||||||
|
</code></pre>
|
||||||
|
|
||||||
|
<h2><a name = "constructing_tuples">Constructing tuples</a></h2>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
The tuple constructor takes the tuple elements as arguments.
|
||||||
|
For an <i>n</i>-element tuple, the constructor can be invoked with <i>k</i> arguments, where 0 < <i>k</i> <= <i>n</i>.
|
||||||
|
For example:
|
||||||
|
<pre><code>tuple<int, double>()
|
||||||
|
tuple<int, double>(1)
|
||||||
|
tuple<int, double>(1, 3.14)
|
||||||
|
</code></pre>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
If no initial value for an element is provided, it is default initialized (and hence must be default initializable).
|
||||||
|
For example.
|
||||||
|
|
||||||
|
<pre><code>class X {
|
||||||
|
X();
|
||||||
|
public:
|
||||||
|
X(std::string);
|
||||||
|
};
|
||||||
|
|
||||||
|
tuple<X,X,X>() // error: no default constructor for X
|
||||||
|
tuple<X,X,X>(string("Jaba"), string("Daba"), string("Duu")) // ok
|
||||||
|
</code></pre>
|
||||||
|
|
||||||
|
In particular, reference types do not have a default initialization:
|
||||||
|
|
||||||
|
<pre><code>tuple<double&>() // error: reference must be
|
||||||
|
// initialized explicitly
|
||||||
|
|
||||||
|
double d = 5;
|
||||||
|
tuple<double&>(d) // ok
|
||||||
|
|
||||||
|
tuple<double&>(d+3.14) // error: cannot initialize
|
||||||
|
// non-const reference with a temporary
|
||||||
|
|
||||||
|
tuple<const double&>(d+3.14) // ok, but dangerous:
|
||||||
|
// the element becomes a dangling reference
|
||||||
|
</code></pre>
|
||||||
|
|
||||||
|
<p>Using an initial value for an element that cannot be copied, is a compile
|
||||||
|
time error:
|
||||||
|
|
||||||
|
<pre><code>class Y {
|
||||||
|
Y(const Y&);
|
||||||
|
public:
|
||||||
|
Y();
|
||||||
|
};
|
||||||
|
|
||||||
|
char a[10];
|
||||||
|
|
||||||
|
tuple<char[10], Y>(a, Y()); // error, neither arrays nor Y can be copied
|
||||||
|
tuple<char[10], Y>(); // ok
|
||||||
|
</code></pre>
|
||||||
|
|
||||||
|
Note particularly that the following is perfectly ok:
|
||||||
|
<code><pre>Y y;
|
||||||
|
tuple<char(&)[10], Y&>(a, y);
|
||||||
|
</code></pre>
|
||||||
|
|
||||||
|
It is possible to come up with a tuple type that cannot be constructed.
|
||||||
|
This occurs if an element that cannot be initialized has a lower
|
||||||
|
index than an element that requires initialization.
|
||||||
|
For example: <code>tuple<char[10], int&></code>.
|
||||||
|
|
||||||
|
<p>In sum, the tuple construction is semantically just a group of individual elementary constructions.
|
||||||
|
</p>
|
||||||
|
|
||||||
|
<h4><a name="make_tuple">The <code>make_tuple</code> function</a></h4>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
Tuples can also be constructed using the <code>make_tuple</code> (cf. <code>std::make_pair</code>) helper functions.
|
||||||
|
This makes the construction more convenient, saving the programmer from explicitly specifying the element types:
|
||||||
|
<pre><code>tuple<int, int, double> add_multiply_divide(int a, int b) {
|
||||||
|
return make_tuple(a+b, a*b, double(a)/double(b));
|
||||||
|
}
|
||||||
|
</code></pre>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
By default, the element types are deduced to the plain non-reference types. E.g:
|
||||||
|
<pre><code>void foo(const A& a, B& b) {
|
||||||
|
...
|
||||||
|
make_tuple(a, b);
|
||||||
|
</code></pre>
|
||||||
|
The <code>make_tuple</code> invocation results in a tuple of type <code>tuple<A, B></code>.
|
||||||
|
|
||||||
|
<p>
|
||||||
|
Sometimes the plain non-reference type is not desired, e.g. if the element type cannot be copied.
|
||||||
|
Therefore, the programmer can control the type deduction and state that a reference to const or reference to
|
||||||
|
non-const type should be used as the element type instead.
|
||||||
|
This is accomplished with two helper template functions: <code>ref</code> and <code>cref</code>.
|
||||||
|
Any argument can be wrapped with these functions to get the desired type.
|
||||||
|
The mechanism does not compromise const correctness since a const object wrapped with <code>ref</code> results in a tuple element with const reference type (see the fifth code line below).
|
||||||
|
For example:
|
||||||
|
|
||||||
|
<pre><code>A a; B b; const A ca = a;
|
||||||
|
make_tuple(cref(a), b); // creates tuple<const A&, B>
|
||||||
|
make_tuple(ref(a), b); // creates tuple<A&, B>
|
||||||
|
make_tuple(ref(a), cref(b)); // creates tuple<A&, const B&>
|
||||||
|
make_tuple(cref(ca)); // creates tuple<const A&>
|
||||||
|
make_tuple(ref(ca)); // creates tuple<const A&>
|
||||||
|
</code></pre>
|
||||||
|
|
||||||
|
|
||||||
|
<p>
|
||||||
|
Array arguments to <code>make_tuple</code> functions are deduced to reference to const types by default; there is no need to wrap them with <code>cref</code>. For example:
|
||||||
|
<pre><code>make_tuple("Donald", "Daisy");
|
||||||
|
</code></pre>
|
||||||
|
|
||||||
|
This creates an object of type <code>tuple<const char (&)[5], const char (&)[6]></code>
|
||||||
|
(note that the type of a string literal is an array of const characters, not <code>const char*</code>).
|
||||||
|
However, to get <code>make_tuple</code> to create a tuple with an element of a
|
||||||
|
non-const array type one must use the <code>ref</code> wrapper.
|
||||||
|
|
||||||
|
<p>
|
||||||
|
Function pointers are deduced to the plain non-reference type, that is, to plain function pointer.
|
||||||
|
A tuple can also hold a reference to a function,
|
||||||
|
but such a tuple cannot be constructed with <code>make_tuple</code> (a const qualified function type would result, which is illegal):
|
||||||
|
<pre><code>void f(int i);
|
||||||
|
...
|
||||||
|
make_tuple(&f); // tuple<void (*)(int)>
|
||||||
|
...
|
||||||
|
tuple<tuple<void (&)(int)> > a(f) // ok
|
||||||
|
make_tuple(f); // not ok
|
||||||
|
</code></pre>
|
||||||
|
|
||||||
|
<h2><a name = "accessing_elements">Accessing tuple elements</a></h2>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
Tuple elements are accessed with the expression:
|
||||||
|
|
||||||
|
<pre><code>t.get<N>()
|
||||||
|
</code></pre>
|
||||||
|
or
|
||||||
|
<pre><code>get<N>(t)
|
||||||
|
</code></pre>
|
||||||
|
where <code>t</code> is a tuple object and <code>N</code> is a constant integral expression specifying the index of the element to be accessed.
|
||||||
|
Depending on whether <code>t</code> is const or not, <code>get</code> returns the <code>N</code>th element as a reference to const or
|
||||||
|
non-const type.
|
||||||
|
The index of the first element is 0 and thus<code>
|
||||||
|
N</code> must be between 0 and <code>k-1</code>, where <code>k</code> is the number of elements in the tuple.
|
||||||
|
Violations of these constrains are detected at compile time. Examples:
|
||||||
|
|
||||||
|
<pre><code>double d = 2.7; A a;
|
||||||
|
tuple<int, double&, const A&> t(1, d, a);
|
||||||
|
const tuple<int, double&, const A&> ct = t;
|
||||||
|
...
|
||||||
|
int i = get<0>(t); i = t.get<0>(); // ok
|
||||||
|
int j = get<0>(ct); // ok
|
||||||
|
get<0>(t) = 5; // ok
|
||||||
|
get<0>(ct) = 5; // error, can't assign to const
|
||||||
|
...
|
||||||
|
double e = get<1>(t); // ok
|
||||||
|
get<1>(t) = 3.14; // ok
|
||||||
|
get<2>(t) = A(); // error, can't assign to const
|
||||||
|
A aa = get<3>(t); // error: index out of bounds
|
||||||
|
...
|
||||||
|
++get<0>(t); // ok, can be used as any variable
|
||||||
|
</code></pre>
|
||||||
|
|
||||||
|
Note! The member get functions are not supported with MS Visual C++ compiler.
|
||||||
|
Further, the compiler has trouble with finding the non-member get functions without an explicit namespace qualifier.
|
||||||
|
Hence, all <code>get</code> calls should be qualified as: <code>tuples::get<N>(a_tuple)</code> when writing code that shoud compile with MSVC++ 6.0.
|
||||||
|
|
||||||
|
<h2><a name = "construction_and_assignment">Copy construction and tuple assignment</a></h2>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
A tuple can be copy constructed from another tuple, provided that the element types are element-wise copy constructible.
|
||||||
|
Analogously, a tuple can be assigned to another tuple, provided that the element types are element-wise assignable.
|
||||||
|
For example:
|
||||||
|
|
||||||
|
<pre><code>class A;
|
||||||
|
class B : public A {};
|
||||||
|
struct C { C(); C(const B&); }
|
||||||
|
struct D { operator C() const; }
|
||||||
|
tuple<char, B*, B, D> t;
|
||||||
|
...
|
||||||
|
tuple<int, A*, C, C> a(t); // ok
|
||||||
|
a = t; // ok
|
||||||
|
</code></pre>
|
||||||
|
|
||||||
|
In both cases, the conversions performed are: <code>char -> int</code>, <code>B* -> A*</code> (derived class pointer to base class pointer), <code>B -> C</code> (a user defined conversion) and <code>D -> C</code> (a user defined conversion).
|
||||||
|
|
||||||
|
<p>
|
||||||
|
Note that assignment is also defined from <code>std::pair</code> types:
|
||||||
|
|
||||||
|
<pre><code>tuple<float, int> a = std::make_pair(1, 'a');
|
||||||
|
</code></pre>
|
||||||
|
|
||||||
|
<h2><a name = "relational_operators">Relational operators</a></h2>
|
||||||
|
<p>
|
||||||
|
Tuples reduce the operators <code>==, !=, <, >, <=</code> and <code>>=</code> to the corresponding elementary operators.
|
||||||
|
This means, that if any of these operators is defined between all elements of two tuples, then the same operator is defined between the tuples as well.
|
||||||
|
|
||||||
|
The equality operators for two tuples <code>a</code> and <code>b</code> are defined as:
|
||||||
|
<ul>
|
||||||
|
<li><code>a == b</code> iff for each <code>i</code>: <code>a<sub>i</sub> == b<sub>i</sub></code></li>
|
||||||
|
<li><code>a != b</code> iff exists <code>i</code>: <code>a<sub>i</sub> != b<sub>i</sub></code></li>
|
||||||
|
</ul>
|
||||||
|
|
||||||
|
The operators <code><, >, <=</code> and <code>>=</code> implement a lexicographical ordering.
|
||||||
|
|
||||||
|
<p>
|
||||||
|
Note that an attempt to compare two tuples of different lengths results in a compile time error.</p>
|
||||||
|
Also, the comparison operators are <i>"short-circuited"</i>: elementary comparisons start from the first elements and are performed only until the result is clear.
|
||||||
|
|
||||||
|
<p>Examples:
|
||||||
|
|
||||||
|
<pre><code>tuple<std::string, int, A> t1(std::string("same?"), 2, A());
|
||||||
|
tuple<std::string, long, A> t2(std::string("same?"), 2, A());
|
||||||
|
tuple<std::string, long, A> t3(std::string("different"), 3, A());
|
||||||
|
|
||||||
|
bool operator==(A, A) { std::cout << "All the same to me..."; return true; }
|
||||||
|
|
||||||
|
t1 == t2; // true
|
||||||
|
t1 == t3; // false, does not print "All the..."
|
||||||
|
</code></pre>
|
||||||
|
|
||||||
|
|
||||||
|
<h2><a name = "tiers">Tiers</a></h2>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
<i>Tiers</i> are tuples, where all elements are of non-const reference types.
|
||||||
|
They are constructed with a call to the <code>tie</code> function template (cf. <code>make_tuple</code>):
|
||||||
|
|
||||||
|
<pre><code>int i; char c; double d;
|
||||||
|
...
|
||||||
|
tie(i, c, a);
|
||||||
|
</code></pre>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
The above <code>tie</code> function creates a tuple of type <code>tuple<int&, char&, double&></code>.
|
||||||
|
The same result could be achieved with the call <code>make_tuple(ref(i), ref(c), ref(a))</code>.
|
||||||
|
</p>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
A tuple that contains non-const references as elements can be used to 'unpack' another tuple into variables. E.g.:
|
||||||
|
|
||||||
|
<pre><code>int i; char c; double d;
|
||||||
|
tie(i, c, d) = make_tuple(1,'a', 5.5);
|
||||||
|
std::cout << i << " " << c << " " << d;
|
||||||
|
</code></pre>
|
||||||
|
This code prints <code>1 a 5.5</code> to the standard output stream.
|
||||||
|
|
||||||
|
A tuple unpacking operation like this is found for example in ML and Python.
|
||||||
|
It is convenient when calling functions which return tuples.
|
||||||
|
|
||||||
|
<p>
|
||||||
|
The tying mechanism works with <code>std::pair</code> templates as well:
|
||||||
|
|
||||||
|
<pre><code>int i; char c;
|
||||||
|
tie(i, c) = std::make_pair(1, 'a');
|
||||||
|
</code></pre>
|
||||||
|
<h4>Ignore</h4>
|
||||||
|
There is also an object called <code>ignore</code> which allows you to ignore an element assigned by a tuple.
|
||||||
|
The idea is that a function may return a tuple, only part of which you are interested in. For example (note, that <code>ignore</code> is under the <code>tuples</code> subnamespace):
|
||||||
|
|
||||||
|
<pre><code>char c;
|
||||||
|
tie(tuples::ignore, c) = std::make_pair(1, 'a');
|
||||||
|
</code></pre>
|
||||||
|
|
||||||
|
<h2><a name = "streaming">Streaming</a></h2>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
The global <code>operator<<</code> has been overloaded for <code>std::ostream</code> such that tuples are
|
||||||
|
output by recursively calling <code>operator<<</code> for each element.
|
||||||
|
</p>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
Analogously, the global <code>operator>></code> has been overloaded to extract tuples from <code>std::istream</code> by recursively calling <code>operator>></code> for each element.
|
||||||
|
</p>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
The default delimiter between the elements is space, and the tuple is enclosed
|
||||||
|
in parenthesis.
|
||||||
|
For Example:
|
||||||
|
|
||||||
|
<pre><code>tuple<float, int, std::string> a(1.0f, 2, std::string("Howdy folks!");
|
||||||
|
|
||||||
|
cout << a;
|
||||||
|
</code></pre>
|
||||||
|
outputs the tuple as: <code>(1.0 2 Howdy folks!)</code>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
The library defines three <i>manipulators</i> for changing the default behavior:
|
||||||
|
<ul>
|
||||||
|
<li><code>set_open(char)</code> defines the character that is output before the first
|
||||||
|
element.</li>
|
||||||
|
<li><code>set_close(char)</code> defines the character that is output after the
|
||||||
|
last element.</li>
|
||||||
|
<li><code>set_delimiter(char)</code> defines the delimiter character between
|
||||||
|
elements.</li>
|
||||||
|
</ul>
|
||||||
|
|
||||||
|
Note, that these manipulators are defined in the <code>tuples</code> subnamespace.
|
||||||
|
For example:
|
||||||
|
<code><pre>cout << tuples::set_open('[') << tuples::set_close(']') << tuples::set_delimiter(',') << a;
|
||||||
|
</code></pre>
|
||||||
|
outputs the same tuple <code>a</code> as: <code>[1.0,2,Howdy folks!]</code>
|
||||||
|
|
||||||
|
<p>The same manipulators work with <code>operator>></code> and <code>istream</code> as well. Suppose the <code>cin</code> stream contains the following data:
|
||||||
|
|
||||||
|
<pre><code>(1 2 3) [4:5]</code></pre>
|
||||||
|
|
||||||
|
The code:
|
||||||
|
|
||||||
|
<code><pre>tuple<int, int, int> i;
|
||||||
|
tuple<int, int> j;
|
||||||
|
|
||||||
|
cin >> i;
|
||||||
|
cin >> tuples::set_open('[') >> tuples::set_close(']') >> tules::set_delimiter(':');
|
||||||
|
cin >> j;
|
||||||
|
</code></pre>
|
||||||
|
|
||||||
|
reads the data into the tuples <code>i</code> and <code>j</code>.
|
||||||
|
|
||||||
|
<p>
|
||||||
|
Note that extracting tuples with <code>std::string</code> or C-style string
|
||||||
|
elements does not generally work, since the streamed tuple representation may not be unambiguously
|
||||||
|
parseable.
|
||||||
|
</p>
|
||||||
|
|
||||||
|
<h2><a name = "performance">Performance</a></h2>
|
||||||
|
|
||||||
|
All tuple access and construction functions are small inlined one-liners.
|
||||||
|
Therefore, a decent compiler can eliminate any extra cost of using tuples compared to using hand written tuple like classes.
|
||||||
|
Particularly, with a decent compiler there is no performance difference between this code:
|
||||||
|
|
||||||
|
<pre><code>class hand_made_tuple {
|
||||||
|
A a; B b; C c;
|
||||||
|
public:
|
||||||
|
hand_made_tuple(const A& aa, const B& bb, const C& cc)
|
||||||
|
: a(aa), b(bb), c(cc) {};
|
||||||
|
A& getA() { return a; };
|
||||||
|
B& getB() { return b; };
|
||||||
|
C& getC() { return c; };
|
||||||
|
};
|
||||||
|
|
||||||
|
hand_made_tuple hmt(A(), B(), C());
|
||||||
|
hmt.getA(); hmt.getB(); hmt.getC();
|
||||||
|
</code></pre>
|
||||||
|
|
||||||
|
and this code:
|
||||||
|
|
||||||
|
<pre><code>tuple<A, B, C> t(A(), B(), C());
|
||||||
|
t.get<0>(); t.get<1>(); t.get<2>();
|
||||||
|
</code></pre>
|
||||||
|
|
||||||
|
<p>Note, that there are widely used compilers (e.g. bcc 5.5.1) which fail to optimize this kind of tuple usage.
|
||||||
|
</p>
|
||||||
|
<p>
|
||||||
|
Depending on the optimizing ability of the compiler, the tier mechanism may have a small performance penalty compared to using
|
||||||
|
non-const reference parameters as a mechanism for returning multiple values from a function.
|
||||||
|
For example, suppose that the following functions <code>f1</code> and <code>f2</code> have equivalent functionalities:
|
||||||
|
|
||||||
|
<pre><code>void f1(int&, double&);
|
||||||
|
tuple<int, double> f2();
|
||||||
|
</code></pre>
|
||||||
|
|
||||||
|
Then, the call #1 may be slightly faster than #2 in the code below:
|
||||||
|
|
||||||
|
<pre><code>int i; double d;
|
||||||
|
...
|
||||||
|
f1(i,d); // #1
|
||||||
|
tie(i,d) = f2(); // #2
|
||||||
|
</code></pre>
|
||||||
|
See
|
||||||
|
[<a href=#publ_1>1</a>,
|
||||||
|
<a href=#publ_2>2</a>]
|
||||||
|
for more in-depth discussions about efficiency.
|
||||||
|
|
||||||
|
<h4>Effect on Compile Time</h4>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
Compiling tuples can be slow due to the excessive amount of template instantiations.
|
||||||
|
Depending on the compiler and the tuple length, it may be more than 10 times slower to compile a tuple construct, compared to compiling an equivalent explicitly written class, such as the <code>hand_made_tuple</code> class above.
|
||||||
|
However, as a realistic program is likely to contain a lot of code in addition to tuple definitions, the difference is probably unnoticeable.
|
||||||
|
Compile time increases between 5 to 10 percentages were measured for programs which used tuples very frequently.
|
||||||
|
With the same test programs, memory consumption of compiling increased between 22% to 27%. See
|
||||||
|
[<a href=#publ_1>1</a>,
|
||||||
|
<a href=#publ_2>2</a>]
|
||||||
|
for details.
|
||||||
|
</p>
|
||||||
|
|
||||||
|
<h2><a name = "portability">Portability</a></h2>
|
||||||
|
|
||||||
|
<p>The library code is(?) standard C++ and thus the library works with a standard conforming compiler.
|
||||||
|
Below is a list of compilers and known problems with each compiler:
|
||||||
|
</p>
|
||||||
|
<table>
|
||||||
|
<tr><td><u>Compiler</u></td><td><u>Problems</u></td></tr>
|
||||||
|
<tr><td>gcc 2.95</td><td>-</td></tr>
|
||||||
|
<tr><td>edg 2.44</td><td>-</td></tr>
|
||||||
|
<tr><td>Borland 5.5</td><td>Can't use function pointers or member pointers as tuple elements</td></tr>
|
||||||
|
<tr><td>Metrowerks 6.2</td><td>Can't use <code>ref</code> and <code>cref</code> wrappers</td></tr>
|
||||||
|
<tr><td>MS Visual C++</td><td>No reference elements (<code>tie</code> still works). Can't use <code>ref</code> and <code>cref</code> wrappers</td></tr>
|
||||||
|
</table>
|
||||||
|
|
||||||
|
<h2><a name = "thanks">Acknowledgements</a></h2>
|
||||||
|
Gary Powell has been an indispensable helping hand. In particular, stream manipulators for tuples were his idea. Doug Gregor came up with a working version for MSVC. Thanks to Jeremy Siek, William Kempf and Jens Maurer for their help and suggestions.
|
||||||
|
The comments by Vesa Karvonen, John Max Skaller, Ed Brey, Beman Dawes, David Abrahams and Hartmut Kaiser helped to improve the
|
||||||
|
library.
|
||||||
|
The idea for the tie mechanism came from an old usenet article by Ian McCulloch, where he proposed something similar for std::pairs.
|
||||||
|
<h2><a name = "references">References</a></h2>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
<a name="publ_1"></a>[1]
|
||||||
|
Järvi J.: <i>Tuples and multiple return values in C++</i>, TUCS Technical Report No 249, 1999 (<a href="http://www.tucs.fi/publications">http://www.tucs.fi/publications</a>).
|
||||||
|
</p>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
<a name="publ_2"></a>[2]
|
||||||
|
Järvi J.: <i>ML-Style Tuple Assignment in Standard C++ - Extending the Multiple Return Value Formalism</i>, TUCS Technical Report No 267, 1999 (<a href="http://www.tucs.fi/publications">http://www.tucs.fi/publications</a>).
|
||||||
|
</p>
|
||||||
|
|
||||||
|
<p>
|
||||||
|
[3] Järvi J.:<i>Tuple Types and Multiple Return Values</i>, C/C++ Users Journal, August 2001.
|
||||||
|
</p>
|
||||||
|
|
||||||
|
<hr>
|
||||||
|
|
||||||
|
<p>Last modified 2001-09-13</p>
|
||||||
|
|
||||||
|
<p>© Copyright <a href="../../../people/jaakko_jarvi.htm"> Jaakko Järvi</a> 2001.
|
||||||
|
|
||||||
|
Permission to copy, use, modify, sell and distribute this software and its documentation is granted provided this copyright notice appears in all copies.
|
||||||
|
This software and its documentation is provided "as is" without express or implied warranty, and with no claim as to its suitability for any purpose.
|
||||||
|
</p>
|
||||||
|
</body>
|
||||||
|
</html>
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
@ -23,6 +23,13 @@
|
|||||||
// David Abrahams.
|
// David Abrahams.
|
||||||
|
|
||||||
// Revision history:
|
// Revision history:
|
||||||
|
// 2002 05 01 Hugo Duncan: Fix for Borland after Jaakko's previous changes
|
||||||
|
// 2002 04 18 Jaakko: tuple element types can be void or plain function
|
||||||
|
// types, as long as no object is created.
|
||||||
|
// Tuple objects can no hold even noncopyable types
|
||||||
|
// such as arrays.
|
||||||
|
// 2001 10 22 John Maddock
|
||||||
|
// Fixes for Borland C++
|
||||||
// 2001 08 30 David Abrahams
|
// 2001 08 30 David Abrahams
|
||||||
// Added default constructor for cons<>.
|
// Added default constructor for cons<>.
|
||||||
// -----------------------------------------------------------------
|
// -----------------------------------------------------------------
|
||||||
@ -34,7 +41,8 @@
|
|||||||
#include <utility> // needed for the assignment from pair to tuple
|
#include <utility> // needed for the assignment from pair to tuple
|
||||||
|
|
||||||
#include "boost/type_traits/cv_traits.hpp"
|
#include "boost/type_traits/cv_traits.hpp"
|
||||||
|
#include "boost/type_traits/function_traits.hpp"
|
||||||
|
|
||||||
namespace boost {
|
namespace boost {
|
||||||
namespace tuples {
|
namespace tuples {
|
||||||
|
|
||||||
@ -43,7 +51,18 @@ struct null_type {};
|
|||||||
|
|
||||||
// a helper function to provide a const null_type type temporary
|
// a helper function to provide a const null_type type temporary
|
||||||
namespace detail {
|
namespace detail {
|
||||||
inline const null_type cnull_type() { return null_type(); }
|
inline const null_type cnull() { return null_type(); }
|
||||||
|
|
||||||
|
|
||||||
|
// -- if construct ------------------------------------------------
|
||||||
|
// Proposed by Krzysztof Czarnecki and Ulrich Eisenecker
|
||||||
|
|
||||||
|
template <bool If, class Then, class Else> struct IF { typedef Then RET; };
|
||||||
|
|
||||||
|
template <class Then, class Else> struct IF<false, Then, Else> {
|
||||||
|
typedef Else RET;
|
||||||
|
};
|
||||||
|
|
||||||
} // end detail
|
} // end detail
|
||||||
|
|
||||||
// - cons forward declaration -----------------------------------------------
|
// - cons forward declaration -----------------------------------------------
|
||||||
@ -65,46 +84,22 @@ template<class T> struct length;
|
|||||||
|
|
||||||
namespace detail {
|
namespace detail {
|
||||||
|
|
||||||
|
#ifdef BOOST_NO_EXPLICIT_FUNCTION_TEMPLATE_ARGUMENTS
|
||||||
|
|
||||||
|
template<int N> struct workaround_holder {};
|
||||||
|
|
||||||
|
# define BOOST_TUPLE_DUMMY_PARM , detail::workaround_holder<N>* = 0
|
||||||
|
# define BOOST_TUPLE_SINGLE_DUMMY_PARM detail::workaround_holder<N>* = 0
|
||||||
|
#else
|
||||||
|
# define BOOST_TUPLE_DUMMY_PARM
|
||||||
|
# define BOOST_TUPLE_SINGLE_DUMMY_PARM
|
||||||
|
#endif
|
||||||
|
|
||||||
// -- generate error template, referencing to non-existing members of this
|
// -- generate error template, referencing to non-existing members of this
|
||||||
// template is used to produce compilation errors intentionally
|
// template is used to produce compilation errors intentionally
|
||||||
template<class T>
|
template<class T>
|
||||||
class generate_error;
|
class generate_error;
|
||||||
|
|
||||||
// tuple default argument wrappers ---------------------------------------
|
|
||||||
// Work for non-reference types, intentionally not for references
|
|
||||||
template <class T>
|
|
||||||
struct default_arg {
|
|
||||||
|
|
||||||
// Non-class temporaries cannot have qualifiers.
|
|
||||||
// To prevent f to return for example const int, we remove cv-qualifiers
|
|
||||||
// from all temporaries.
|
|
||||||
static typename boost::remove_cv<T>::type f() { return T(); }
|
|
||||||
};
|
|
||||||
|
|
||||||
// This is just to produce a more informative error message
|
|
||||||
// The code would fail in any case
|
|
||||||
template<class T, int N>
|
|
||||||
struct default_arg<T[N]> {
|
|
||||||
static T* f() {
|
|
||||||
return generate_error<T[N]>::arrays_are_not_valid_tuple_elements; }
|
|
||||||
};
|
|
||||||
|
|
||||||
template <class T>
|
|
||||||
struct default_arg<T&> {
|
|
||||||
static T& f() {
|
|
||||||
#ifndef __sgi
|
|
||||||
return generate_error<T>::no_default_values_for_reference_types;
|
|
||||||
#else
|
|
||||||
// MIPSpro instantiates functions even when it should not, so
|
|
||||||
// this technique can not be used for error checking.
|
|
||||||
// The simple workaround is to just not have this error checking
|
|
||||||
// with MIPSpro.
|
|
||||||
static T x;
|
|
||||||
return x;
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
// - cons getters --------------------------------------------------------
|
// - cons getters --------------------------------------------------------
|
||||||
// called: get_class<N>::get<RETURN_TYPE>(aTuple)
|
// called: get_class<N>::get<RETURN_TYPE>(aTuple)
|
||||||
|
|
||||||
@ -172,6 +167,7 @@ template <class T> struct access_traits {
|
|||||||
typedef T& non_const_type;
|
typedef T& non_const_type;
|
||||||
|
|
||||||
typedef const typename boost::remove_cv<T>::type& parameter_type;
|
typedef const typename boost::remove_cv<T>::type& parameter_type;
|
||||||
|
|
||||||
// used as the tuple constructors parameter types
|
// used as the tuple constructors parameter types
|
||||||
// Rationale: non-reference tuple element types can be cv-qualified.
|
// Rationale: non-reference tuple element types can be cv-qualified.
|
||||||
// It should be possible to initialize such types with temporaries,
|
// It should be possible to initialize such types with temporaries,
|
||||||
@ -187,14 +183,13 @@ template <class T> struct access_traits<T&> {
|
|||||||
typedef T& parameter_type;
|
typedef T& parameter_type;
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
// get function for non-const cons-lists, returns a reference to the element
|
// get function for non-const cons-lists, returns a reference to the element
|
||||||
|
|
||||||
template<int N, class HT, class TT>
|
template<int N, class HT, class TT>
|
||||||
inline typename access_traits<
|
inline typename access_traits<
|
||||||
typename element<N, cons<HT, TT> >::type
|
typename element<N, cons<HT, TT> >::type
|
||||||
>::non_const_type
|
>::non_const_type
|
||||||
get(cons<HT, TT>& c) {
|
get(cons<HT, TT>& c BOOST_TUPLE_DUMMY_PARM) {
|
||||||
return detail::get_class<N>::template
|
return detail::get_class<N>::template
|
||||||
get<
|
get<
|
||||||
typename access_traits<
|
typename access_traits<
|
||||||
@ -209,7 +204,7 @@ template<int N, class HT, class TT>
|
|||||||
inline typename access_traits<
|
inline typename access_traits<
|
||||||
typename element<N, cons<HT, TT> >::type
|
typename element<N, cons<HT, TT> >::type
|
||||||
>::const_type
|
>::const_type
|
||||||
get(const cons<HT, TT>& c) {
|
get(const cons<HT, TT>& c BOOST_TUPLE_DUMMY_PARM) {
|
||||||
return detail::get_class<N>::template
|
return detail::get_class<N>::template
|
||||||
get<
|
get<
|
||||||
typename access_traits<
|
typename access_traits<
|
||||||
@ -217,10 +212,29 @@ get(const cons<HT, TT>& c) {
|
|||||||
>::const_type>(c);
|
>::const_type>(c);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// -- the cons template --------------------------------------------------
|
// -- the cons template --------------------------------------------------
|
||||||
|
namespace detail {
|
||||||
|
|
||||||
|
// These helper templates wrap void types and plain function types.
|
||||||
|
// The reationale is to allow one to write tuple types with those types
|
||||||
|
// as elements, even though it is not possible to instantiate such object.
|
||||||
|
// E.g: typedef tuple<void> some_type; // ok
|
||||||
|
// but: some_type x; // fails
|
||||||
|
|
||||||
|
template <class T> class non_storeable_type {
|
||||||
|
non_storeable_type();
|
||||||
|
};
|
||||||
|
|
||||||
|
template <class T> struct wrap_non_storeable_type {
|
||||||
|
typedef typename IF<
|
||||||
|
::boost::is_function<T>::value, non_storeable_type<T>, T
|
||||||
|
>::RET type;
|
||||||
|
};
|
||||||
|
template <> struct wrap_non_storeable_type<void> {
|
||||||
|
typedef non_storeable_type<void> type;
|
||||||
|
};
|
||||||
|
|
||||||
|
} // detail
|
||||||
|
|
||||||
template <class HT, class TT>
|
template <class HT, class TT>
|
||||||
struct cons {
|
struct cons {
|
||||||
@ -228,28 +242,33 @@ struct cons {
|
|||||||
typedef HT head_type;
|
typedef HT head_type;
|
||||||
typedef TT tail_type;
|
typedef TT tail_type;
|
||||||
|
|
||||||
head_type head;
|
typedef typename
|
||||||
|
detail::wrap_non_storeable_type<head_type>::type stored_head_type;
|
||||||
|
|
||||||
|
stored_head_type head;
|
||||||
tail_type tail;
|
tail_type tail;
|
||||||
|
|
||||||
typename access_traits<head_type>::non_const_type
|
typename access_traits<stored_head_type>::non_const_type
|
||||||
get_head() { return head; }
|
get_head() { return head; }
|
||||||
|
|
||||||
typename access_traits<tail_type>::non_const_type
|
typename access_traits<tail_type>::non_const_type
|
||||||
get_tail() { return tail; }
|
get_tail() { return tail; }
|
||||||
|
|
||||||
typename access_traits<head_type>::const_type
|
typename access_traits<stored_head_type>::const_type
|
||||||
get_head() const { return head; }
|
get_head() const { return head; }
|
||||||
|
|
||||||
typename access_traits<tail_type>::const_type
|
typename access_traits<tail_type>::const_type
|
||||||
get_tail() const { return tail; }
|
get_tail() const { return tail; }
|
||||||
|
|
||||||
cons() : head(detail::default_arg<HT>::f()), tail() {}
|
cons() : head(), tail() {}
|
||||||
|
// cons() : head(detail::default_arg<HT>::f()), tail() {}
|
||||||
|
|
||||||
// the argument for head is not strictly needed, but it prevents
|
// the argument for head is not strictly needed, but it prevents
|
||||||
// array type elements. This is good, since array type elements
|
// array type elements. This is good, since array type elements
|
||||||
// cannot be supported properly in any case (no assignment,
|
// cannot be supported properly in any case (no assignment,
|
||||||
// copy works only if the tails are exactly the same type, ...)
|
// copy works only if the tails are exactly the same type, ...)
|
||||||
|
|
||||||
cons(typename access_traits<head_type>::parameter_type h,
|
cons(typename access_traits<stored_head_type>::parameter_type h,
|
||||||
const tail_type& t)
|
const tail_type& t)
|
||||||
: head (h), tail(t) {}
|
: head (h), tail(t) {}
|
||||||
|
|
||||||
@ -258,9 +277,18 @@ struct cons {
|
|||||||
cons( T1& t1, T2& t2, T3& t3, T4& t4, T5& t5,
|
cons( T1& t1, T2& t2, T3& t3, T4& t4, T5& t5,
|
||||||
T6& t6, T7& t7, T8& t8, T9& t9, T10& t10 )
|
T6& t6, T7& t7, T8& t8, T9& t9, T10& t10 )
|
||||||
: head (t1),
|
: head (t1),
|
||||||
tail (t2, t3, t4, t5, t6, t7, t8, t9, t10, detail::cnull_type())
|
tail (t2, t3, t4, t5, t6, t7, t8, t9, t10, detail::cnull())
|
||||||
{}
|
{}
|
||||||
|
|
||||||
|
template <class T2, class T3, class T4, class T5,
|
||||||
|
class T6, class T7, class T8, class T9, class T10>
|
||||||
|
cons( const null_type& t1, T2& t2, T3& t3, T4& t4, T5& t5,
|
||||||
|
T6& t6, T7& t7, T8& t8, T9& t9, T10& t10 )
|
||||||
|
: head (),
|
||||||
|
tail (t2, t3, t4, t5, t6, t7, t8, t9, t10, detail::cnull())
|
||||||
|
{}
|
||||||
|
|
||||||
|
|
||||||
template <class HT2, class TT2>
|
template <class HT2, class TT2>
|
||||||
cons( const cons<HT2, TT2>& u ) : head(u.head), tail(u.tail) {}
|
cons( const cons<HT2, TT2>& u ) : head(u.head), tail(u.tail) {}
|
||||||
|
|
||||||
@ -287,7 +315,7 @@ struct cons {
|
|||||||
typename element<N, cons<HT, TT> >::type
|
typename element<N, cons<HT, TT> >::type
|
||||||
>::non_const_type
|
>::non_const_type
|
||||||
get() {
|
get() {
|
||||||
return boost::get<N>(*this); // delegate to non-member get
|
return boost::tuples::get<N>(*this); // delegate to non-member get
|
||||||
}
|
}
|
||||||
|
|
||||||
template <int N>
|
template <int N>
|
||||||
@ -295,7 +323,7 @@ struct cons {
|
|||||||
typename element<N, cons<HT, TT> >::type
|
typename element<N, cons<HT, TT> >::type
|
||||||
>::const_type
|
>::const_type
|
||||||
get() const {
|
get() const {
|
||||||
return boost::get<N>(*this); // delegate to non-member get
|
return boost::tuples::get<N>(*this); // delegate to non-member get
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
@ -305,21 +333,24 @@ struct cons<HT, null_type> {
|
|||||||
typedef HT head_type;
|
typedef HT head_type;
|
||||||
typedef null_type tail_type;
|
typedef null_type tail_type;
|
||||||
|
|
||||||
head_type head;
|
typedef typename
|
||||||
|
detail::wrap_non_storeable_type<head_type>::type stored_head_type;
|
||||||
|
stored_head_type head;
|
||||||
|
|
||||||
typename access_traits<head_type>::non_const_type
|
typename access_traits<stored_head_type>::non_const_type
|
||||||
get_head() { return head; }
|
get_head() { return head; }
|
||||||
|
|
||||||
null_type get_tail() { return null_type(); }
|
null_type get_tail() { return null_type(); }
|
||||||
|
|
||||||
typename access_traits<head_type>::const_type
|
typename access_traits<stored_head_type>::const_type
|
||||||
get_head() const { return head; }
|
get_head() const { return head; }
|
||||||
|
|
||||||
const null_type get_tail() const { return null_type(); }
|
const null_type get_tail() const { return null_type(); }
|
||||||
|
|
||||||
cons() : head(detail::default_arg<HT>::f()) {}
|
// cons() : head(detail::default_arg<HT>::f()) {}
|
||||||
|
cons() : head() {}
|
||||||
|
|
||||||
cons(typename access_traits<head_type>::parameter_type h,
|
cons(typename access_traits<stored_head_type>::parameter_type h,
|
||||||
const null_type& = null_type())
|
const null_type& = null_type())
|
||||||
: head (h) {}
|
: head (h) {}
|
||||||
|
|
||||||
@ -329,6 +360,12 @@ struct cons<HT, null_type> {
|
|||||||
const null_type&, const null_type&, const null_type&)
|
const null_type&, const null_type&, const null_type&)
|
||||||
: head (t1) {}
|
: head (t1) {}
|
||||||
|
|
||||||
|
cons(const null_type& t1,
|
||||||
|
const null_type&, const null_type&, const null_type&,
|
||||||
|
const null_type&, const null_type&, const null_type&,
|
||||||
|
const null_type&, const null_type&, const null_type&)
|
||||||
|
: head () {}
|
||||||
|
|
||||||
template <class HT2>
|
template <class HT2>
|
||||||
cons( const cons<HT2, null_type>& u ) : head(u.head) {}
|
cons( const cons<HT2, null_type>& u ) : head(u.head) {}
|
||||||
|
|
||||||
@ -344,16 +381,16 @@ struct cons<HT, null_type> {
|
|||||||
typename access_traits<
|
typename access_traits<
|
||||||
typename element<N, cons>::type
|
typename element<N, cons>::type
|
||||||
>::non_const_type
|
>::non_const_type
|
||||||
get() {
|
get(BOOST_TUPLE_SINGLE_DUMMY_PARM) {
|
||||||
return boost::get<N>(*this);
|
return boost::tuples::get<N>(*this);
|
||||||
}
|
}
|
||||||
|
|
||||||
template <int N>
|
template <int N>
|
||||||
typename access_traits<
|
typename access_traits<
|
||||||
typename element<N, cons>::type
|
typename element<N, cons>::type
|
||||||
>::const_type
|
>::const_type
|
||||||
get() const {
|
get(BOOST_TUPLE_SINGLE_DUMMY_PARM) const {
|
||||||
return boost::get<N>(*this);
|
return boost::tuples::get<N>(*this);
|
||||||
}
|
}
|
||||||
|
|
||||||
};
|
};
|
||||||
@ -365,6 +402,11 @@ struct length {
|
|||||||
BOOST_STATIC_CONSTANT(int, value = 1 + length<typename T::tail_type>::value);
|
BOOST_STATIC_CONSTANT(int, value = 1 + length<typename T::tail_type>::value);
|
||||||
};
|
};
|
||||||
|
|
||||||
|
template<>
|
||||||
|
struct length<tuple<> > {
|
||||||
|
BOOST_STATIC_CONSTANT(int, value = 0);
|
||||||
|
};
|
||||||
|
|
||||||
template<>
|
template<>
|
||||||
struct length<null_type> {
|
struct length<null_type> {
|
||||||
BOOST_STATIC_CONSTANT(int, value = 0);
|
BOOST_STATIC_CONSTANT(int, value = 0);
|
||||||
@ -409,29 +451,95 @@ public:
|
|||||||
|
|
||||||
|
|
||||||
// access_traits<T>::parameter_type takes non-reference types as const T&
|
// access_traits<T>::parameter_type takes non-reference types as const T&
|
||||||
explicit tuple(
|
tuple() {}
|
||||||
typename access_traits<T0>::parameter_type t0
|
|
||||||
= detail::default_arg<T0>::f(),
|
tuple(typename access_traits<T0>::parameter_type t0)
|
||||||
typename access_traits<T1>::parameter_type t1
|
: inherited(t0, detail::cnull(), detail::cnull(), detail::cnull(),
|
||||||
= detail::default_arg<T1>::f(),
|
detail::cnull(), detail::cnull(), detail::cnull(),
|
||||||
typename access_traits<T2>::parameter_type t2
|
detail::cnull(), detail::cnull(), detail::cnull()) {}
|
||||||
= detail::default_arg<T2>::f(),
|
|
||||||
typename access_traits<T3>::parameter_type t3
|
tuple(typename access_traits<T0>::parameter_type t0,
|
||||||
= detail::default_arg<T3>::f(),
|
typename access_traits<T1>::parameter_type t1)
|
||||||
typename access_traits<T4>::parameter_type t4
|
: inherited(t0, t1, detail::cnull(), detail::cnull(),
|
||||||
= detail::default_arg<T4>::f(),
|
detail::cnull(), detail::cnull(), detail::cnull(),
|
||||||
typename access_traits<T5>::parameter_type t5
|
detail::cnull(), detail::cnull(), detail::cnull()) {}
|
||||||
= detail::default_arg<T5>::f(),
|
|
||||||
typename access_traits<T6>::parameter_type t6
|
tuple(typename access_traits<T0>::parameter_type t0,
|
||||||
= detail::default_arg<T6>::f(),
|
typename access_traits<T1>::parameter_type t1,
|
||||||
typename access_traits<T7>::parameter_type t7
|
typename access_traits<T2>::parameter_type t2)
|
||||||
= detail::default_arg<T7>::f(),
|
: inherited(t0, t1, t2, detail::cnull(), detail::cnull(),
|
||||||
typename access_traits<T8>::parameter_type t8
|
detail::cnull(), detail::cnull(), detail::cnull(),
|
||||||
= detail::default_arg<T8>::f(),
|
detail::cnull(), detail::cnull()) {}
|
||||||
typename access_traits<T9>::parameter_type t9
|
|
||||||
= detail::default_arg<T9>::f())
|
tuple(typename access_traits<T0>::parameter_type t0,
|
||||||
|
typename access_traits<T1>::parameter_type t1,
|
||||||
|
typename access_traits<T2>::parameter_type t2,
|
||||||
|
typename access_traits<T3>::parameter_type t3)
|
||||||
|
: inherited(t0, t1, t2, t3, detail::cnull(), detail::cnull(),
|
||||||
|
detail::cnull(), detail::cnull(), detail::cnull(),
|
||||||
|
detail::cnull()) {}
|
||||||
|
|
||||||
|
tuple(typename access_traits<T0>::parameter_type t0,
|
||||||
|
typename access_traits<T1>::parameter_type t1,
|
||||||
|
typename access_traits<T2>::parameter_type t2,
|
||||||
|
typename access_traits<T3>::parameter_type t3,
|
||||||
|
typename access_traits<T4>::parameter_type t4)
|
||||||
|
: inherited(t0, t1, t2, t3, t4, detail::cnull(), detail::cnull(),
|
||||||
|
detail::cnull(), detail::cnull(), detail::cnull()) {}
|
||||||
|
|
||||||
|
tuple(typename access_traits<T0>::parameter_type t0,
|
||||||
|
typename access_traits<T1>::parameter_type t1,
|
||||||
|
typename access_traits<T2>::parameter_type t2,
|
||||||
|
typename access_traits<T3>::parameter_type t3,
|
||||||
|
typename access_traits<T4>::parameter_type t4,
|
||||||
|
typename access_traits<T5>::parameter_type t5)
|
||||||
|
: inherited(t0, t1, t2, t3, t4, t5, detail::cnull(), detail::cnull(),
|
||||||
|
detail::cnull(), detail::cnull()) {}
|
||||||
|
|
||||||
|
tuple(typename access_traits<T0>::parameter_type t0,
|
||||||
|
typename access_traits<T1>::parameter_type t1,
|
||||||
|
typename access_traits<T2>::parameter_type t2,
|
||||||
|
typename access_traits<T3>::parameter_type t3,
|
||||||
|
typename access_traits<T4>::parameter_type t4,
|
||||||
|
typename access_traits<T5>::parameter_type t5,
|
||||||
|
typename access_traits<T6>::parameter_type t6)
|
||||||
|
: inherited(t0, t1, t2, t3, t4, t5, t6, detail::cnull(),
|
||||||
|
detail::cnull(), detail::cnull()) {}
|
||||||
|
|
||||||
|
tuple(typename access_traits<T0>::parameter_type t0,
|
||||||
|
typename access_traits<T1>::parameter_type t1,
|
||||||
|
typename access_traits<T2>::parameter_type t2,
|
||||||
|
typename access_traits<T3>::parameter_type t3,
|
||||||
|
typename access_traits<T4>::parameter_type t4,
|
||||||
|
typename access_traits<T5>::parameter_type t5,
|
||||||
|
typename access_traits<T6>::parameter_type t6,
|
||||||
|
typename access_traits<T7>::parameter_type t7)
|
||||||
|
: inherited(t0, t1, t2, t3, t4, t5, t6, t7, detail::cnull(),
|
||||||
|
detail::cnull()) {}
|
||||||
|
|
||||||
|
tuple(typename access_traits<T0>::parameter_type t0,
|
||||||
|
typename access_traits<T1>::parameter_type t1,
|
||||||
|
typename access_traits<T2>::parameter_type t2,
|
||||||
|
typename access_traits<T3>::parameter_type t3,
|
||||||
|
typename access_traits<T4>::parameter_type t4,
|
||||||
|
typename access_traits<T5>::parameter_type t5,
|
||||||
|
typename access_traits<T6>::parameter_type t6,
|
||||||
|
typename access_traits<T7>::parameter_type t7,
|
||||||
|
typename access_traits<T8>::parameter_type t8)
|
||||||
|
: inherited(t0, t1, t2, t3, t4, t5, t6, t7, t8, detail::cnull()) {}
|
||||||
|
|
||||||
|
tuple(typename access_traits<T0>::parameter_type t0,
|
||||||
|
typename access_traits<T1>::parameter_type t1,
|
||||||
|
typename access_traits<T2>::parameter_type t2,
|
||||||
|
typename access_traits<T3>::parameter_type t3,
|
||||||
|
typename access_traits<T4>::parameter_type t4,
|
||||||
|
typename access_traits<T5>::parameter_type t5,
|
||||||
|
typename access_traits<T6>::parameter_type t6,
|
||||||
|
typename access_traits<T7>::parameter_type t7,
|
||||||
|
typename access_traits<T8>::parameter_type t8,
|
||||||
|
typename access_traits<T9>::parameter_type t9)
|
||||||
|
: inherited(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) {}
|
||||||
|
|
||||||
: inherited(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9) {}
|
|
||||||
|
|
||||||
template<class U1, class U2>
|
template<class U1, class U2>
|
||||||
tuple(const cons<U1, U2>& p) : inherited(p) {}
|
tuple(const cons<U1, U2>& p) : inherited(p) {}
|
||||||
@ -597,51 +705,54 @@ inline tuple<> make_tuple() {
|
|||||||
template<class T0>
|
template<class T0>
|
||||||
inline typename detail::make_tuple_mapper<T0>::type
|
inline typename detail::make_tuple_mapper<T0>::type
|
||||||
make_tuple(const T0& t0) {
|
make_tuple(const T0& t0) {
|
||||||
return typename detail::make_tuple_mapper<T0>::type(t0);
|
typedef typename detail::make_tuple_mapper<T0>::type t;
|
||||||
|
return t(t0);
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class T0, class T1>
|
template<class T0, class T1>
|
||||||
inline typename detail::make_tuple_mapper<T0, T1>::type
|
inline typename detail::make_tuple_mapper<T0, T1>::type
|
||||||
make_tuple(const T0& t0, const T1& t1) {
|
make_tuple(const T0& t0, const T1& t1) {
|
||||||
return typename detail::make_tuple_mapper<T0, T1>::type(t0, t1);
|
typedef typename detail::make_tuple_mapper<T0, T1>::type t;
|
||||||
|
return t(t0, t1);
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class T0, class T1, class T2>
|
template<class T0, class T1, class T2>
|
||||||
inline typename detail::make_tuple_mapper<T0, T1, T2>::type
|
inline typename detail::make_tuple_mapper<T0, T1, T2>::type
|
||||||
make_tuple(const T0& t0, const T1& t1, const T2& t2) {
|
make_tuple(const T0& t0, const T1& t1, const T2& t2) {
|
||||||
return typename detail::make_tuple_mapper<T0, T1, T2>::type(t0, t1, t2);
|
typedef typename detail::make_tuple_mapper<T0, T1, T2>::type t;
|
||||||
|
return t(t0, t1, t2);
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class T0, class T1, class T2, class T3>
|
template<class T0, class T1, class T2, class T3>
|
||||||
inline typename detail::make_tuple_mapper<T0, T1, T2, T3>::type
|
inline typename detail::make_tuple_mapper<T0, T1, T2, T3>::type
|
||||||
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3) {
|
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3) {
|
||||||
return typename detail::make_tuple_mapper<T0, T1, T2, T3>::type
|
typedef typename detail::make_tuple_mapper<T0, T1, T2, T3>::type t;
|
||||||
(t0, t1, t2, t3);
|
return t(t0, t1, t2, t3);
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class T0, class T1, class T2, class T3, class T4>
|
template<class T0, class T1, class T2, class T3, class T4>
|
||||||
inline typename detail::make_tuple_mapper<T0, T1, T2, T3, T4>::type
|
inline typename detail::make_tuple_mapper<T0, T1, T2, T3, T4>::type
|
||||||
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
|
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
|
||||||
const T4& t4) {
|
const T4& t4) {
|
||||||
return typename detail::make_tuple_mapper<T0, T1, T2, T3, T4>::type
|
typedef typename detail::make_tuple_mapper<T0, T1, T2, T3, T4>::type t;
|
||||||
(t0, t1, t2, t3, t4);
|
return t(t0, t1, t2, t3, t4);
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class T0, class T1, class T2, class T3, class T4, class T5>
|
template<class T0, class T1, class T2, class T3, class T4, class T5>
|
||||||
inline typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5>::type
|
inline typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5>::type
|
||||||
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
|
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
|
||||||
const T4& t4, const T5& t5) {
|
const T4& t4, const T5& t5) {
|
||||||
return typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5>::type
|
typedef typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5>::type t;
|
||||||
(t0, t1, t2, t3, t4, t5);
|
return t(t0, t1, t2, t3, t4, t5);
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6>
|
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6>
|
||||||
inline typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5, T6>::type
|
inline typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5, T6>::type
|
||||||
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
|
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
|
||||||
const T4& t4, const T5& t5, const T6& t6) {
|
const T4& t4, const T5& t5, const T6& t6) {
|
||||||
return typename detail::make_tuple_mapper
|
typedef typename detail::make_tuple_mapper
|
||||||
<T0, T1, T2, T3, T4, T5, T6>::type
|
<T0, T1, T2, T3, T4, T5, T6>::type t;
|
||||||
(t0, t1, t2, t3, t4, t5, t6);
|
return t(t0, t1, t2, t3, t4, t5, t6);
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6,
|
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6,
|
||||||
@ -649,9 +760,9 @@ template<class T0, class T1, class T2, class T3, class T4, class T5, class T6,
|
|||||||
inline typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5, T6, T7>::type
|
inline typename detail::make_tuple_mapper<T0, T1, T2, T3, T4, T5, T6, T7>::type
|
||||||
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
|
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
|
||||||
const T4& t4, const T5& t5, const T6& t6, const T7& t7) {
|
const T4& t4, const T5& t5, const T6& t6, const T7& t7) {
|
||||||
return typename detail::make_tuple_mapper
|
typedef typename detail::make_tuple_mapper
|
||||||
<T0, T1, T2, T3, T4, T5, T6, T7>::type
|
<T0, T1, T2, T3, T4, T5, T6, T7>::type t;
|
||||||
(t0, t1, t2, t3, t4, t5, t6, t7);
|
return t(t0, t1, t2, t3, t4, t5, t6, t7);
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6,
|
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6,
|
||||||
@ -661,9 +772,9 @@ inline typename detail::make_tuple_mapper
|
|||||||
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
|
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
|
||||||
const T4& t4, const T5& t5, const T6& t6, const T7& t7,
|
const T4& t4, const T5& t5, const T6& t6, const T7& t7,
|
||||||
const T8& t8) {
|
const T8& t8) {
|
||||||
return typename detail::make_tuple_mapper
|
typedef typename detail::make_tuple_mapper
|
||||||
<T0, T1, T2, T3, T4, T5, T6, T7, T8>::type
|
<T0, T1, T2, T3, T4, T5, T6, T7, T8>::type t;
|
||||||
(t0, t1, t2, t3, t4, t5, t6, t7, t8);
|
return t(t0, t1, t2, t3, t4, t5, t6, t7, t8);
|
||||||
}
|
}
|
||||||
|
|
||||||
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6,
|
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6,
|
||||||
@ -673,9 +784,9 @@ inline typename detail::make_tuple_mapper
|
|||||||
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
|
make_tuple(const T0& t0, const T1& t1, const T2& t2, const T3& t3,
|
||||||
const T4& t4, const T5& t5, const T6& t6, const T7& t7,
|
const T4& t4, const T5& t5, const T6& t6, const T7& t7,
|
||||||
const T8& t8, const T9& t9) {
|
const T8& t8, const T9& t9) {
|
||||||
return typename detail::make_tuple_mapper
|
typedef typename detail::make_tuple_mapper
|
||||||
<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>::type
|
<T0, T1, T2, T3, T4, T5, T6, T7, T8, T9>::type t;
|
||||||
(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9);
|
return t(t0, t1, t2, t3, t4, t5, t6, t7, t8, t9);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -748,7 +859,9 @@ tie(T1& t1, T2& t2, T3& t3, T4& t4, T5& t5, T6& t6, T7& t7, T8& t8,
|
|||||||
} // end of namespace tuples
|
} // end of namespace tuples
|
||||||
} // end of namespace boost
|
} // end of namespace boost
|
||||||
|
|
||||||
|
#undef BOOST_TUPLE_DUMMY_PARM
|
||||||
|
#undef BOOST_TUPLE_SINGLE_DUMMY_PARM
|
||||||
|
|
||||||
#endif // BOOST_TUPLE_BASIC_HPP
|
#endif // BOOST_TUPLE_BASIC_HPP
|
||||||
|
|
||||||
|
|
||||||
|
@ -53,6 +53,21 @@ namespace tuples {
|
|||||||
// a helper function to provide a const null_type type temporary
|
// a helper function to provide a const null_type type temporary
|
||||||
inline const null_type cnull_type() { return null_type(); }
|
inline const null_type cnull_type() { return null_type(); }
|
||||||
|
|
||||||
|
// forward declaration of tuple
|
||||||
|
template<
|
||||||
|
typename T1 = null_type,
|
||||||
|
typename T2 = null_type,
|
||||||
|
typename T3 = null_type,
|
||||||
|
typename T4 = null_type,
|
||||||
|
typename T5 = null_type,
|
||||||
|
typename T6 = null_type,
|
||||||
|
typename T7 = null_type,
|
||||||
|
typename T8 = null_type,
|
||||||
|
typename T9 = null_type,
|
||||||
|
typename T10 = null_type
|
||||||
|
>
|
||||||
|
class tuple;
|
||||||
|
|
||||||
namespace detail {
|
namespace detail {
|
||||||
|
|
||||||
// Takes a pointer and routes all assignments to whatever it points to
|
// Takes a pointer and routes all assignments to whatever it points to
|
||||||
@ -231,6 +246,58 @@ namespace tuples {
|
|||||||
|
|
||||||
namespace detail {
|
namespace detail {
|
||||||
|
|
||||||
|
#if defined(BOOST_MSVC) && (BOOST_MSVC == 1300)
|
||||||
|
// special workaround for vc7:
|
||||||
|
|
||||||
|
template <bool x>
|
||||||
|
struct reference_adder
|
||||||
|
{
|
||||||
|
template <class T>
|
||||||
|
struct rebind
|
||||||
|
{
|
||||||
|
typedef T& type;
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
template <>
|
||||||
|
struct reference_adder<true>
|
||||||
|
{
|
||||||
|
template <class T>
|
||||||
|
struct rebind
|
||||||
|
{
|
||||||
|
typedef T type;
|
||||||
|
};
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
// Return a reference to the Nth type of the given Tuple
|
||||||
|
template<int N, typename Tuple>
|
||||||
|
struct element_ref
|
||||||
|
{
|
||||||
|
private:
|
||||||
|
typedef typename element<N, Tuple>::RET elt_type;
|
||||||
|
enum { is_ref = is_reference<elt_type>::value };
|
||||||
|
|
||||||
|
public:
|
||||||
|
typedef reference_adder<is_ref>::rebind<elt_type>::type RET;
|
||||||
|
typedef RET type;
|
||||||
|
};
|
||||||
|
|
||||||
|
// Return a const reference to the Nth type of the given Tuple
|
||||||
|
template<int N, typename Tuple>
|
||||||
|
struct element_const_ref
|
||||||
|
{
|
||||||
|
private:
|
||||||
|
typedef typename element<N, Tuple>::RET elt_type;
|
||||||
|
enum { is_ref = is_reference<elt_type>::value };
|
||||||
|
|
||||||
|
public:
|
||||||
|
typedef reference_adder<is_ref>::rebind<const elt_type>::type RET;
|
||||||
|
typedef RET type;
|
||||||
|
};
|
||||||
|
|
||||||
|
#else // vc7
|
||||||
|
|
||||||
// Return a reference to the Nth type of the given Tuple
|
// Return a reference to the Nth type of the given Tuple
|
||||||
template<int N, typename Tuple>
|
template<int N, typename Tuple>
|
||||||
struct element_ref
|
struct element_ref
|
||||||
@ -254,6 +321,7 @@ namespace tuples {
|
|||||||
typedef typename add_reference<const elt_type>::type RET;
|
typedef typename add_reference<const elt_type>::type RET;
|
||||||
typedef RET type;
|
typedef RET type;
|
||||||
};
|
};
|
||||||
|
#endif // vc7
|
||||||
|
|
||||||
} // namespace detail
|
} // namespace detail
|
||||||
|
|
||||||
@ -263,6 +331,10 @@ namespace tuples {
|
|||||||
{
|
{
|
||||||
BOOST_STATIC_CONSTANT(int, value = 1 + length<typename Tuple::tail_type>::value);
|
BOOST_STATIC_CONSTANT(int, value = 1 + length<typename Tuple::tail_type>::value);
|
||||||
};
|
};
|
||||||
|
|
||||||
|
template<> struct length<tuple<> > {
|
||||||
|
BOOST_STATIC_CONSTANT(int, value = 0);
|
||||||
|
};
|
||||||
|
|
||||||
template<>
|
template<>
|
||||||
struct length<null_type>
|
struct length<null_type>
|
||||||
@ -318,15 +390,15 @@ namespace tuples {
|
|||||||
// tuple class
|
// tuple class
|
||||||
template<
|
template<
|
||||||
typename T1,
|
typename T1,
|
||||||
typename T2 = null_type,
|
typename T2,
|
||||||
typename T3 = null_type,
|
typename T3,
|
||||||
typename T4 = null_type,
|
typename T4,
|
||||||
typename T5 = null_type,
|
typename T5,
|
||||||
typename T6 = null_type,
|
typename T6,
|
||||||
typename T7 = null_type,
|
typename T7,
|
||||||
typename T8 = null_type,
|
typename T8,
|
||||||
typename T9 = null_type,
|
typename T9,
|
||||||
typename T10 = null_type
|
typename T10
|
||||||
>
|
>
|
||||||
class tuple :
|
class tuple :
|
||||||
public detail::map_tuple_to_cons<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>::cons1
|
public detail::map_tuple_to_cons<T1, T2, T3, T4, T5, T6, T7, T8, T9, T10>::cons1
|
||||||
@ -345,6 +417,7 @@ namespace tuples {
|
|||||||
typedef typename mapped_tuple::cons1 cons1;
|
typedef typename mapped_tuple::cons1 cons1;
|
||||||
|
|
||||||
public:
|
public:
|
||||||
|
typedef cons1 inherited;
|
||||||
typedef tuple self_type;
|
typedef tuple self_type;
|
||||||
|
|
||||||
explicit tuple(const T1& t1 = T1(),
|
explicit tuple(const T1& t1 = T1(),
|
||||||
@ -575,8 +648,8 @@ namespace tuples {
|
|||||||
detail::assign_to_pointee<T2>(&t2),
|
detail::assign_to_pointee<T2>(&t2),
|
||||||
detail::assign_to_pointee<T3>(&t3),
|
detail::assign_to_pointee<T3>(&t3),
|
||||||
detail::assign_to_pointee<T4>(&t4),
|
detail::assign_to_pointee<T4>(&t4),
|
||||||
detail::assign_to_pointee<T6>(&t5),
|
detail::assign_to_pointee<T5>(&t5),
|
||||||
detail::assign_to_pointee<T5>(&t6));
|
detail::assign_to_pointee<T6>(&t6));
|
||||||
}
|
}
|
||||||
|
|
||||||
// Tie variables into a tuple
|
// Tie variables into a tuple
|
||||||
|
@ -1,57 +0,0 @@
|
|||||||
// -- reference_wrappers - Boost Tuple Library -----------------------------
|
|
||||||
|
|
||||||
// Copyright (C) 1999, 2000 Jaakko J<>rvi (jaakko.jarvi@cs.utu.fi)
|
|
||||||
//
|
|
||||||
// Permission to copy, use, sell and distribute this software is granted
|
|
||||||
// provided this copyright notice appears in all copies.
|
|
||||||
// Permission to modify the code and to distribute modified code is granted
|
|
||||||
// provided this copyright notice appears in all copies, and a notice
|
|
||||||
// that the code was modified is included with the copyright notice.
|
|
||||||
//
|
|
||||||
// This software is provided "as is" without express or implied warranty,
|
|
||||||
// and with no claim as to its suitability for any purpose.
|
|
||||||
//
|
|
||||||
// For more information, see http://www.boost.org
|
|
||||||
|
|
||||||
// -----------------------------------------------------------------
|
|
||||||
|
|
||||||
#ifndef BOOST_TUPLE_REFERENCE_WRAPPERS_HPP
|
|
||||||
#define BOOST_TUPLE_REFERENCE_WRAPPERS_HPP
|
|
||||||
|
|
||||||
namespace boost {
|
|
||||||
|
|
||||||
|
|
||||||
// reference wrappers -------------------------------------------------------
|
|
||||||
|
|
||||||
// These wrappers are handle classes that hold references to objects.
|
|
||||||
|
|
||||||
// reference_wrapper is used to specify that a tuple element should be
|
|
||||||
// a reference to the wrapped object - rather than a copy of it.
|
|
||||||
// The wrapper acts as a disguise for passing non-const reference
|
|
||||||
// parameters via a reference to const parameter.
|
|
||||||
|
|
||||||
template<class T>
|
|
||||||
class reference_wrapper {
|
|
||||||
T& x;
|
|
||||||
public:
|
|
||||||
explicit
|
|
||||||
reference_wrapper(T& t) : x(t) {}
|
|
||||||
operator T&() const { return x; }
|
|
||||||
};
|
|
||||||
|
|
||||||
// store as a reference to T
|
|
||||||
template<class T>
|
|
||||||
inline const reference_wrapper<T> ref(T& t) {
|
|
||||||
return reference_wrapper<T>(t);
|
|
||||||
}
|
|
||||||
|
|
||||||
// store as a reference to const T
|
|
||||||
template<class T>
|
|
||||||
inline const reference_wrapper<const T> cref(const T& t) {
|
|
||||||
return reference_wrapper<const T>(t);
|
|
||||||
}
|
|
||||||
|
|
||||||
} // end of namespace boost
|
|
||||||
|
|
||||||
|
|
||||||
#endif // BOOST_TUPLE_REFERENCE_WRAPPERS_HPP
|
|
@ -27,19 +27,62 @@
|
|||||||
|
|
||||||
#else
|
#else
|
||||||
// other compilers
|
// other compilers
|
||||||
#include "boost/tuple/reference_wrappers.hpp"
|
#include "boost/ref.hpp"
|
||||||
#include "boost/tuple/detail/tuple_basic.hpp"
|
#include "boost/tuple/detail/tuple_basic.hpp"
|
||||||
|
|
||||||
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
|
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
|
||||||
|
|
||||||
namespace boost {
|
namespace boost {
|
||||||
|
|
||||||
using tuples::tuple;
|
using tuples::tuple;
|
||||||
using tuples::make_tuple;
|
using tuples::make_tuple;
|
||||||
using tuples::tie;
|
using tuples::tie;
|
||||||
|
#if !defined(BOOST_NO_USING_TEMPLATE)
|
||||||
using tuples::get;
|
using tuples::get;
|
||||||
|
#elif !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
|
||||||
|
//
|
||||||
|
// The "using tuples::get" statement causes the
|
||||||
|
// Borland compiler to ICE, use forwarding
|
||||||
|
// functions instead:
|
||||||
|
//
|
||||||
|
template<int N, class HT, class TT>
|
||||||
|
inline typename tuples::access_traits<
|
||||||
|
typename tuples::element<N, tuples::cons<HT, TT> >::type
|
||||||
|
>::non_const_type
|
||||||
|
get(tuples::cons<HT, TT>& c) {
|
||||||
|
return tuples::get<N,HT,TT>(c);
|
||||||
|
}
|
||||||
|
// get function for const cons-lists, returns a const reference to
|
||||||
|
// the element. If the element is a reference, returns the reference
|
||||||
|
// as such (that is, can return a non-const reference)
|
||||||
|
template<int N, class HT, class TT>
|
||||||
|
inline typename tuples::access_traits<
|
||||||
|
typename tuples::element<N, tuples::cons<HT, TT> >::type
|
||||||
|
>::const_type
|
||||||
|
get(const tuples::cons<HT, TT>& c) {
|
||||||
|
return tuples::get<N,HT,TT>(c);
|
||||||
|
}
|
||||||
|
#else // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
|
||||||
|
//
|
||||||
|
// MSVC, using declarations don't mix with templates well,
|
||||||
|
// so use forwarding functions instead:
|
||||||
|
//
|
||||||
|
template<int N, typename Head, typename Tail>
|
||||||
|
typename tuples::detail::element_ref<N, tuples::cons<Head, Tail> >::RET
|
||||||
|
get(tuples::cons<Head, Tail>& t, tuples::detail::workaround_holder<N>* = 0)
|
||||||
|
{
|
||||||
|
return tuples::detail::get_class<N>::get(t);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<int N, typename Head, typename Tail>
|
||||||
|
typename tuples::detail::element_const_ref<N, tuples::cons<Head, Tail> >::RET
|
||||||
|
get(const tuples::cons<Head, Tail>& t, tuples::detail::workaround_holder<N>* = 0)
|
||||||
|
{
|
||||||
|
return tuples::detail::get_class<N>::get(t);
|
||||||
|
}
|
||||||
|
#endif // BOOST_NO_USING_TEMPLATE
|
||||||
|
|
||||||
} // end namespace boost
|
} // end namespace boost
|
||||||
|
|
||||||
|
|
||||||
#endif // BOOST_TUPLE_HPP
|
#endif // BOOST_TUPLE_HPP
|
||||||
|
@ -69,7 +69,7 @@ inline bool neq(const T1& lhs, const T2& rhs) {
|
|||||||
neq(lhs.get_tail(), rhs.get_tail());
|
neq(lhs.get_tail(), rhs.get_tail());
|
||||||
}
|
}
|
||||||
template<>
|
template<>
|
||||||
inline bool neq<null_type,null_type>(const null_type&, const null_type&) { return true; }
|
inline bool neq<null_type,null_type>(const null_type&, const null_type&) { return false; }
|
||||||
|
|
||||||
template<class T1, class T2>
|
template<class T1, class T2>
|
||||||
inline bool lt(const T1& lhs, const T2& rhs) {
|
inline bool lt(const T1& lhs, const T2& rhs) {
|
||||||
@ -177,4 +177,4 @@ inline bool operator>=(const cons<T1, T2>& lhs, const cons<S1, S2>& rhs)
|
|||||||
} // end of namespace boost
|
} // end of namespace boost
|
||||||
|
|
||||||
|
|
||||||
#endif // BOOST_TUPLE_COMPARISON_HPP
|
#endif // BOOST_TUPLE_COMPARISON_HPP
|
||||||
|
@ -25,7 +25,7 @@
|
|||||||
# if (__GNUC__ == 2 && __GNUC_MINOR__ <= 97)
|
# if (__GNUC__ == 2 && __GNUC_MINOR__ <= 97)
|
||||||
#define BOOST_NO_TEMPLATED_STREAMS
|
#define BOOST_NO_TEMPLATED_STREAMS
|
||||||
#endif
|
#endif
|
||||||
#endif // __GNUC__
|
#endif // __GNUC__
|
||||||
|
|
||||||
#if defined BOOST_NO_TEMPLATED_STREAMS
|
#if defined BOOST_NO_TEMPLATED_STREAMS
|
||||||
#include <iostream>
|
#include <iostream>
|
||||||
@ -36,8 +36,6 @@
|
|||||||
|
|
||||||
#include "boost/tuple/tuple.hpp"
|
#include "boost/tuple/tuple.hpp"
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
namespace boost {
|
namespace boost {
|
||||||
namespace tuples {
|
namespace tuples {
|
||||||
|
|
||||||
@ -45,11 +43,19 @@ namespace detail {
|
|||||||
|
|
||||||
class format_info {
|
class format_info {
|
||||||
public:
|
public:
|
||||||
|
|
||||||
enum manipulator_type { open, close, delimiter };
|
enum manipulator_type { open, close, delimiter };
|
||||||
BOOST_STATIC_CONSTANT(int, number_of_manipulators = delimiter + 1);
|
BOOST_STATIC_CONSTANT(int, number_of_manipulators = delimiter + 1);
|
||||||
private:
|
private:
|
||||||
|
|
||||||
static const int stream_index[number_of_manipulators];
|
static int get_stream_index (int m)
|
||||||
|
{
|
||||||
|
static const int stream_index[number_of_manipulators]
|
||||||
|
= { std::ios::xalloc(), std::ios::xalloc(), std::ios::xalloc() };
|
||||||
|
|
||||||
|
return stream_index[m];
|
||||||
|
}
|
||||||
|
|
||||||
format_info(const format_info&);
|
format_info(const format_info&);
|
||||||
format_info();
|
format_info();
|
||||||
|
|
||||||
@ -58,13 +64,13 @@ public:
|
|||||||
|
|
||||||
#if defined (BOOST_NO_TEMPLATED_STREAMS)
|
#if defined (BOOST_NO_TEMPLATED_STREAMS)
|
||||||
static char get_manipulator(std::ios& i, manipulator_type m) {
|
static char get_manipulator(std::ios& i, manipulator_type m) {
|
||||||
char c = static_cast<char>(i.iword(stream_index[m]));
|
char c = static_cast<char>(i.iword(get_stream_index(m)));
|
||||||
|
|
||||||
// parentheses and space are the default manipulators
|
// parentheses and space are the default manipulators
|
||||||
if (!c) {
|
if (!c) {
|
||||||
switch(m) {
|
switch(m) {
|
||||||
case open : c = '('; break;
|
case open : c = '('; break;
|
||||||
case close : c = ')'; break;
|
case close : c = ')'; break;
|
||||||
case delimiter : c = ' '; break;
|
case delimiter : c = ' '; break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -72,7 +78,7 @@ public:
|
|||||||
}
|
}
|
||||||
|
|
||||||
static void set_manipulator(std::ios& i, manipulator_type m, char c) {
|
static void set_manipulator(std::ios& i, manipulator_type m, char c) {
|
||||||
i.iword(stream_index[m]) = static_cast<long>(c);
|
i.iword(get_stream_index(m)) = static_cast<long>(c);
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
template<class CharType, class CharTrait>
|
template<class CharType, class CharTrait>
|
||||||
@ -82,12 +88,12 @@ public:
|
|||||||
// A valid instanitation of basic_stream allows CharType to be any POD,
|
// A valid instanitation of basic_stream allows CharType to be any POD,
|
||||||
// hence, the static_cast may fail (it fails if long is not convertible
|
// hence, the static_cast may fail (it fails if long is not convertible
|
||||||
// to CharType
|
// to CharType
|
||||||
CharType c = static_cast<CharType>(i.iword(stream_index[m]) );
|
CharType c = static_cast<CharType>(i.iword(get_stream_index(m)) );
|
||||||
// parentheses and space are the default manipulators
|
// parentheses and space are the default manipulators
|
||||||
if (!c) {
|
if (!c) {
|
||||||
switch(m) {
|
switch(m) {
|
||||||
case open : c = i.widen('('); break;
|
case open : c = i.widen('('); break;
|
||||||
case close : c = i.widen(')'); break;
|
case close : c = i.widen(')'); break;
|
||||||
case delimiter : c = i.widen(' '); break;
|
case delimiter : c = i.widen(' '); break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -102,9 +108,9 @@ public:
|
|||||||
// A valid instanitation of basic_stream allows CharType to be any POD,
|
// A valid instanitation of basic_stream allows CharType to be any POD,
|
||||||
// hence, the static_cast may fail (it fails if CharType is not
|
// hence, the static_cast may fail (it fails if CharType is not
|
||||||
// convertible long.
|
// convertible long.
|
||||||
i.iword(stream_index[m]) = static_cast<long>(c);
|
i.iword(get_stream_index(m)) = static_cast<long>(c);
|
||||||
}
|
}
|
||||||
#endif // BOOST_NO_TEMPLATED_STREAMS
|
#endif // BOOST_NO_TEMPLATED_STREAMS
|
||||||
};
|
};
|
||||||
|
|
||||||
} // end of namespace detail
|
} // end of namespace detail
|
||||||
@ -133,8 +139,8 @@ public:
|
|||||||
void set(std::basic_ios<CharType, CharTrait> &io) const {
|
void set(std::basic_ios<CharType, CharTrait> &io) const {
|
||||||
detail::format_info::set_manipulator(io, mt, f_c);
|
detail::format_info::set_manipulator(io, mt, f_c);
|
||||||
}
|
}
|
||||||
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
|
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
|
||||||
#endif // BOOST_NO_TEMPLATED_STREAMS
|
#endif // BOOST_NO_TEMPLATED_STREAMS
|
||||||
};
|
};
|
||||||
|
|
||||||
#if defined (BOOST_NO_TEMPLATED_STREAMS)
|
#if defined (BOOST_NO_TEMPLATED_STREAMS)
|
||||||
@ -204,7 +210,7 @@ template<class T1>
|
|||||||
inline std::ostream& print(std::ostream& o, const cons<T1, null_type>& t) {
|
inline std::ostream& print(std::ostream& o, const cons<T1, null_type>& t) {
|
||||||
return o << t.head;
|
return o << t.head;
|
||||||
}
|
}
|
||||||
#endif // BOOST_NO_TEMPLATED_STREAMS
|
#endif // BOOST_NO_TEMPLATED_STREAMS
|
||||||
|
|
||||||
inline std::ostream& print(std::ostream& o, const null_type&) { return o; }
|
inline std::ostream& print(std::ostream& o, const null_type&) { return o; }
|
||||||
|
|
||||||
@ -218,7 +224,7 @@ print(std::ostream& o, const cons<T1, T2>& t) {
|
|||||||
|
|
||||||
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
|
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
|
||||||
if (tuples::length<T2>::value == 0)
|
if (tuples::length<T2>::value == 0)
|
||||||
return o;
|
return o;
|
||||||
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
|
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
|
||||||
o << d;
|
o << d;
|
||||||
|
|
||||||
@ -255,14 +261,14 @@ print(std::basic_ostream<CharType, CharTrait>& o, const cons<T1, T2>& t) {
|
|||||||
|
|
||||||
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
|
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
|
||||||
if (tuples::length<T2>::value == 0)
|
if (tuples::length<T2>::value == 0)
|
||||||
return o;
|
return o;
|
||||||
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
|
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
|
||||||
o << d;
|
o << d;
|
||||||
|
|
||||||
return print(o, t.tail);
|
return print(o, t.tail);
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif // BOOST_NO_TEMPLATED_STREAMS
|
#endif // BOOST_NO_TEMPLATED_STREAMS
|
||||||
|
|
||||||
} // namespace detail
|
} // namespace detail
|
||||||
|
|
||||||
@ -306,7 +312,7 @@ operator<<(std::basic_ostream<CharType, CharTrait>& o,
|
|||||||
|
|
||||||
return o;
|
return o;
|
||||||
}
|
}
|
||||||
#endif // BOOST_NO_TEMPLATED_STREAMS
|
#endif // BOOST_NO_TEMPLATED_STREAMS
|
||||||
|
|
||||||
|
|
||||||
// -------------------------------------------------------------
|
// -------------------------------------------------------------
|
||||||
@ -349,7 +355,7 @@ read (std::istream &is, cons<T1, null_type>& t1) {
|
|||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
inline std::istream& read(std::istream& i, const null_type&) { return i; }
|
inline std::istream& read(std::istream& i, const null_type&) { return i; }
|
||||||
#endif // !BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
|
#endif // !BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
|
||||||
|
|
||||||
template<class T1, class T2>
|
template<class T1, class T2>
|
||||||
inline std::istream&
|
inline std::istream&
|
||||||
@ -361,7 +367,7 @@ read(std::istream &is, cons<T1, T2>& t1) {
|
|||||||
|
|
||||||
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
|
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
|
||||||
if (tuples::length<T2>::value == 0)
|
if (tuples::length<T2>::value == 0)
|
||||||
return is;
|
return is;
|
||||||
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
|
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
|
||||||
|
|
||||||
extract_and_check_delimiter(is, format_info::delimiter);
|
extract_and_check_delimiter(is, format_info::delimiter);
|
||||||
@ -436,7 +442,7 @@ template<class CharType, class CharTrait>
|
|||||||
inline std::basic_istream<CharType, CharTrait>&
|
inline std::basic_istream<CharType, CharTrait>&
|
||||||
read(std::basic_istream<CharType, CharTrait>& i, const null_type&) { return i; }
|
read(std::basic_istream<CharType, CharTrait>& i, const null_type&) { return i; }
|
||||||
|
|
||||||
#endif // !BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
|
#endif // !BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
|
||||||
|
|
||||||
template<class CharType, class CharTrait, class T1, class T2>
|
template<class CharType, class CharTrait, class T1, class T2>
|
||||||
inline std::basic_istream<CharType, CharTrait>&
|
inline std::basic_istream<CharType, CharTrait>&
|
||||||
@ -448,7 +454,7 @@ read(std::basic_istream<CharType, CharTrait> &is, cons<T1, T2>& t1) {
|
|||||||
|
|
||||||
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
|
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
|
||||||
if (tuples::length<T2>::value == 0)
|
if (tuples::length<T2>::value == 0)
|
||||||
return is;
|
return is;
|
||||||
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
|
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
|
||||||
|
|
||||||
extract_and_check_delimiter(is, format_info::delimiter);
|
extract_and_check_delimiter(is, format_info::delimiter);
|
||||||
@ -486,11 +492,11 @@ operator>>(std::basic_istream<CharType, CharTrait>& is, cons<T1, T2>& t1) {
|
|||||||
return is;
|
return is;
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif // BOOST_NO_TEMPLATED_STREAMS
|
#endif // BOOST_NO_TEMPLATED_STREAMS
|
||||||
|
|
||||||
} // end of namespace tuples
|
} // end of namespace tuples
|
||||||
} // end of namespace boost
|
} // end of namespace boost
|
||||||
|
|
||||||
#endif // BOOST_TUPLE_IO_HPP
|
#endif // BOOST_TUPLE_IO_HPP
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,34 +0,0 @@
|
|||||||
// tuple.cpp -----------------------------------------------------
|
|
||||||
|
|
||||||
// Copyright (C) 1999, 2000, 2001 Jaakko J<>rvi (jaakko.jarvi@cs.utu.fi)
|
|
||||||
// Copyright (C) 2001 Gary Powell (gary.powell@sierra.com)
|
|
||||||
//
|
|
||||||
// Permission to copy, use, sell and distribute this software is granted
|
|
||||||
// provided this copyright notice appears in all copies.
|
|
||||||
// Permission to modify the code and to distribute modified code is granted
|
|
||||||
// provided this copyright notice appears in all copies, and a notice
|
|
||||||
// that the code was modified is included with the copyright notice.
|
|
||||||
//
|
|
||||||
// This software is provided "as is" without express or implied warranty,
|
|
||||||
// and with no claim as to its suitability for any purpose.
|
|
||||||
|
|
||||||
// For more information, see http://lambda.cs.utu.fi
|
|
||||||
|
|
||||||
// Revision History
|
|
||||||
|
|
||||||
// 16 02 01 Initial Version (GWP)
|
|
||||||
// -----------------------------------------------------------------
|
|
||||||
|
|
||||||
#include "boost/tuple/tuple_io.hpp"
|
|
||||||
|
|
||||||
namespace boost {
|
|
||||||
namespace tuples {
|
|
||||||
namespace detail {
|
|
||||||
|
|
||||||
const int
|
|
||||||
format_info::stream_index[number_of_manipulators]
|
|
||||||
= { std::ios::xalloc(), std::ios::xalloc(), std::ios::xalloc() };
|
|
||||||
|
|
||||||
} // namespace detail
|
|
||||||
} // namespace tuples
|
|
||||||
} // namespace boost
|
|
@ -8,7 +8,9 @@ For example, in libs/tuple/test directory you would type (using g++):
|
|||||||
|
|
||||||
g++ -I../../.. tuple_test_bench.cpp
|
g++ -I../../.. tuple_test_bench.cpp
|
||||||
|
|
||||||
If you want to use tuple_io, you need to compile and link src/tuple.cpp:
|
The following is not true anymore:
|
||||||
|
|
||||||
g++ -I../../.. ../src/tuple.cpp io_test.cpp
|
If you want to use tuple_io, you need to compile and link src/tuple.cpp:
|
||||||
|
g++ -I../../.. ../src/tuple.cpp io_test.cpp
|
||||||
|
|
||||||
|
Thanks to Hartmut Kaiser's suggestion, the tuple.cpp is not needed anymore.
|
||||||
|
@ -65,9 +65,8 @@ void foo2() {
|
|||||||
dummy(tuple<const double&>()); // likewise
|
dummy(tuple<const double&>()); // likewise
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
double dd = 5;
|
|
||||||
|
|
||||||
#ifdef E5
|
#ifdef E5
|
||||||
|
double dd = 5;
|
||||||
dummy(tuple<double&>(dd+3.14)); // should fail, temporary to non-const reference
|
dummy(tuple<double&>(dd+3.14)); // should fail, temporary to non-const reference
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
@ -75,7 +75,7 @@ int test_main(int argc, char * argv[] ) {
|
|||||||
|
|
||||||
// When teading tuples from a stream, manipulators must be set correctly:
|
// When teading tuples from a stream, manipulators must be set correctly:
|
||||||
ifstream tmp3("temp.tmp");
|
ifstream tmp3("temp.tmp");
|
||||||
tuple<string, string, int> j;
|
tuple<string, string, int> j;
|
||||||
|
|
||||||
#if !defined (BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
|
#if !defined (BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
|
||||||
tmp3 >> j;
|
tmp3 >> j;
|
||||||
|
@ -24,7 +24,7 @@ class C {};
|
|||||||
// classes with different kinds of conversions
|
// classes with different kinds of conversions
|
||||||
class AA {};
|
class AA {};
|
||||||
class BB : public AA {};
|
class BB : public AA {};
|
||||||
struct CC { CC() {} CC(const BB& b) {} };
|
struct CC { CC() {} CC(const BB&) {} };
|
||||||
struct DD { operator CC() const { return CC(); }; };
|
struct DD { operator CC() const { return CC(); }; };
|
||||||
|
|
||||||
// something to prevent warnings for unused variables
|
// something to prevent warnings for unused variables
|
||||||
@ -97,42 +97,42 @@ tuple<char(&)[10]> v2(cs); // ok
|
|||||||
void
|
void
|
||||||
construction_test()
|
construction_test()
|
||||||
{
|
{
|
||||||
|
|
||||||
// Note, the get function can be called without the tuples:: qualifier,
|
// Note, the get function can be called without the tuples:: qualifier,
|
||||||
// as it is lifted to namespace boost with a "using tuples::get" but
|
// as it is lifted to namespace boost with a "using tuples::get" but
|
||||||
// MSVC 6.0 just cannot find get without the namespace qualifier
|
// MSVC 6.0 just cannot find get without the namespace qualifier
|
||||||
|
|
||||||
tuple<int> t1;
|
tuple<int> t1;
|
||||||
BOOST_TEST(tuples::get<0>(t1) == int());
|
BOOST_TEST(get<0>(t1) == int());
|
||||||
|
|
||||||
tuple<float> t2(5.5f);
|
tuple<float> t2(5.5f);
|
||||||
BOOST_TEST(tuples::get<0>(t2) > 5.4f && tuples::get<0>(t2) < 5.6f);
|
BOOST_TEST(get<0>(t2) > 5.4f && get<0>(t2) < 5.6f);
|
||||||
|
|
||||||
tuple<foo> t3(foo(12));
|
tuple<foo> t3(foo(12));
|
||||||
BOOST_TEST(tuples::get<0>(t3) == foo(12));
|
BOOST_TEST(get<0>(t3) == foo(12));
|
||||||
|
|
||||||
tuple<double> t4(t2);
|
tuple<double> t4(t2);
|
||||||
BOOST_TEST(tuples::get<0>(t4) > 5.4 && tuples::get<0>(t4) < 5.6);
|
BOOST_TEST(get<0>(t4) > 5.4 && get<0>(t4) < 5.6);
|
||||||
|
|
||||||
tuple<int, float> t5;
|
tuple<int, float> t5;
|
||||||
BOOST_TEST(tuples::get<0>(t5) == int());
|
BOOST_TEST(get<0>(t5) == int());
|
||||||
BOOST_TEST(tuples::get<1>(t5) == float());
|
BOOST_TEST(get<1>(t5) == float());
|
||||||
|
|
||||||
tuple<int, float> t6(12, 5.5f);
|
tuple<int, float> t6(12, 5.5f);
|
||||||
BOOST_TEST(tuples::get<0>(t6) == 12);
|
BOOST_TEST(get<0>(t6) == 12);
|
||||||
BOOST_TEST(tuples::get<1>(t6) > 5.4f && tuples::get<1>(t6) < 5.6f);
|
BOOST_TEST(get<1>(t6) > 5.4f && get<1>(t6) < 5.6f);
|
||||||
|
|
||||||
tuple<int, float> t7(t6);
|
tuple<int, float> t7(t6);
|
||||||
BOOST_TEST(tuples::get<0>(t7) == 12);
|
BOOST_TEST(get<0>(t7) == 12);
|
||||||
BOOST_TEST(tuples::get<1>(t7) > 5.4f && tuples::get<1>(t7) < 5.6f);
|
BOOST_TEST(get<1>(t7) > 5.4f && get<1>(t7) < 5.6f);
|
||||||
|
|
||||||
tuple<long, double> t8(t6);
|
tuple<long, double> t8(t6);
|
||||||
BOOST_TEST(tuples::get<0>(t8) == 12);
|
BOOST_TEST(get<0>(t8) == 12);
|
||||||
BOOST_TEST(tuples::get<1>(t8) > 5.4f && tuples::get<1>(t8) < 5.6f);
|
BOOST_TEST(get<1>(t8) > 5.4f && get<1>(t8) < 5.6f);
|
||||||
|
|
||||||
dummy(
|
dummy(
|
||||||
tuple<no_def_constructor, no_def_constructor, no_def_constructor>(
|
tuple<no_def_constructor, no_def_constructor, no_def_constructor>(
|
||||||
std::string("Jaba"), // ok, since the default
|
std::string("Jaba"), // ok, since the default
|
||||||
std::string("Daba"), // constructor is not used
|
std::string("Daba"), // constructor is not used
|
||||||
std::string("Doo")
|
std::string("Doo")
|
||||||
)
|
)
|
||||||
@ -141,7 +141,7 @@ construction_test()
|
|||||||
// testing default values
|
// testing default values
|
||||||
dummy(tuple<int, double>());
|
dummy(tuple<int, double>());
|
||||||
dummy(tuple<int, double>(1));
|
dummy(tuple<int, double>(1));
|
||||||
dummy(tuple<int, double>(1,3.14));
|
dummy(tuple<int, double>(1,3.14));
|
||||||
|
|
||||||
|
|
||||||
// dummy(tuple<double&>()); // should fail, not defaults for references
|
// dummy(tuple<double&>()); // should fail, not defaults for references
|
||||||
@ -154,9 +154,8 @@ construction_test()
|
|||||||
dummy(tuple<const double&>(dd+3.14)); // ok, but dangerous
|
dummy(tuple<const double&>(dd+3.14)); // ok, but dangerous
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// dummy(tuple<double&>(dd+3.14)); // should fail,
|
// dummy(tuple<double&>(dd+3.14)); // should fail,
|
||||||
// // temporary to non-const reference
|
// // temporary to non-const reference
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -164,36 +163,68 @@ construction_test()
|
|||||||
// - testing element access ---------------------------------------------------
|
// - testing element access ---------------------------------------------------
|
||||||
// ----------------------------------------------------------------------------
|
// ----------------------------------------------------------------------------
|
||||||
|
|
||||||
void element_access_test()
|
void element_access_test()
|
||||||
{
|
{
|
||||||
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
|
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
|
||||||
double d = 2.7;
|
double d = 2.7;
|
||||||
A a;
|
A a;
|
||||||
tuple<int, double&, const A&> t(1, d, a);
|
tuple<int, double&, const A&, int> t(1, d, a, 2);
|
||||||
const tuple<int, double&, const A> ct = t;
|
const tuple<int, double&, const A, int> ct = t;
|
||||||
|
|
||||||
int i = tuples::get<0>(t);
|
int i = get<0>(t);
|
||||||
int j = tuples::get<0>(ct);
|
int i2 = get<3>(t);
|
||||||
BOOST_TEST(i == 1 && j == 1);
|
|
||||||
|
BOOST_TEST(i == 1 && i2 == 2);
|
||||||
|
|
||||||
|
int j = get<0>(ct);
|
||||||
|
BOOST_TEST(j == 1);
|
||||||
|
|
||||||
tuples::get<0>(t) = 5;
|
get<0>(t) = 5;
|
||||||
BOOST_TEST(t.head == 5);
|
BOOST_TEST(t.head == 5);
|
||||||
|
|
||||||
// tuples::get<0>(ct) = 5; // can't assign to const
|
// get<0>(ct) = 5; // can't assign to const
|
||||||
|
|
||||||
double e = tuples::get<1>(t);
|
double e = get<1>(t);
|
||||||
BOOST_TEST(e > 2.69 && e < 2.71);
|
BOOST_TEST(e > 2.69 && e < 2.71);
|
||||||
|
|
||||||
tuples::get<1>(t) = 3.14+i;
|
get<1>(t) = 3.14+i;
|
||||||
BOOST_TEST(tuples::get<1>(t) > 4.13 && tuples::get<1>(t) < 4.15);
|
BOOST_TEST(get<1>(t) > 4.13 && get<1>(t) < 4.15);
|
||||||
|
|
||||||
// tuples::get<4>(t) = A(); // can't assign to const
|
// get<4>(t) = A(); // can't assign to const
|
||||||
// dummy(tuples::get<5>(ct)); // illegal index
|
// dummy(get<5>(ct)); // illegal index
|
||||||
|
|
||||||
++tuples::get<0>(t);
|
++get<0>(t);
|
||||||
BOOST_TEST(tuples::get<0>(t) == 6);
|
BOOST_TEST(get<0>(t) == 6);
|
||||||
|
|
||||||
dummy(i); dummy(j); dummy(e); // avoid warns for unused variables
|
dummy(i); dummy(i2); dummy(j); dummy(e); // avoid warns for unused variables
|
||||||
|
#else
|
||||||
|
double d = 2.7;
|
||||||
|
A a;
|
||||||
|
tuple<int, double, const A, int> t(1, d, a, 2);
|
||||||
|
|
||||||
|
int i = get<0>(t);
|
||||||
|
int i2 = get<3>(t);
|
||||||
|
|
||||||
|
BOOST_TEST(i == 1 && i2 == 2);
|
||||||
|
|
||||||
|
get<0>(t) = 5;
|
||||||
|
BOOST_TEST(t.head == 5);
|
||||||
|
|
||||||
|
// get<0>(ct) = 5; // can't assign to const
|
||||||
|
|
||||||
|
double e = get<1>(t);
|
||||||
|
BOOST_TEST(e > 2.69 && e < 2.71);
|
||||||
|
|
||||||
|
get<1>(t) = 3.14+i;
|
||||||
|
BOOST_TEST(get<1>(t) > 4.13 && get<1>(t) < 4.15);
|
||||||
|
|
||||||
|
// get<4>(t) = A(); // can't assign to const
|
||||||
|
// dummy(get<5>(ct)); // illegal index
|
||||||
|
|
||||||
|
++get<0>(t);
|
||||||
|
BOOST_TEST(get<0>(t) == 6);
|
||||||
|
|
||||||
|
dummy(i); dummy(i2); dummy(e); // avoid warns for unused variables
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -210,13 +241,13 @@ copy_test()
|
|||||||
tuple<int, char> t1(4, 'a');
|
tuple<int, char> t1(4, 'a');
|
||||||
tuple<int, char> t2(5, 'b');
|
tuple<int, char> t2(5, 'b');
|
||||||
t2 = t1;
|
t2 = t1;
|
||||||
BOOST_TEST(tuples::get<0>(t1) == tuples::get<0>(t2));
|
BOOST_TEST(get<0>(t1) == get<0>(t2));
|
||||||
BOOST_TEST(tuples::get<1>(t1) == tuples::get<1>(t2));
|
BOOST_TEST(get<1>(t1) == get<1>(t2));
|
||||||
|
|
||||||
tuple<long, std::string> t3(2, "a");
|
tuple<long, std::string> t3(2, "a");
|
||||||
t3 = t1;
|
t3 = t1;
|
||||||
BOOST_TEST((double)tuples::get<0>(t1) == tuples::get<0>(t3));
|
BOOST_TEST((double)get<0>(t1) == get<0>(t3));
|
||||||
BOOST_TEST(tuples::get<1>(t1) == tuples::get<1>(t3)[0]);
|
BOOST_TEST(get<1>(t1) == get<1>(t3)[0]);
|
||||||
|
|
||||||
// testing copy and assignment with implicit conversions between elements
|
// testing copy and assignment with implicit conversions between elements
|
||||||
// testing tie
|
// testing tie
|
||||||
@ -237,15 +268,15 @@ void
|
|||||||
mutate_test()
|
mutate_test()
|
||||||
{
|
{
|
||||||
tuple<int, float, bool, foo> t1(5, 12.2f, true, foo(4));
|
tuple<int, float, bool, foo> t1(5, 12.2f, true, foo(4));
|
||||||
tuples::get<0>(t1) = 6;
|
get<0>(t1) = 6;
|
||||||
tuples::get<1>(t1) = 2.2f;
|
get<1>(t1) = 2.2f;
|
||||||
tuples::get<2>(t1) = false;
|
get<2>(t1) = false;
|
||||||
tuples::get<3>(t1) = foo(5);
|
get<3>(t1) = foo(5);
|
||||||
|
|
||||||
BOOST_TEST(tuples::get<0>(t1) == 6);
|
BOOST_TEST(get<0>(t1) == 6);
|
||||||
BOOST_TEST(tuples::get<1>(t1) > 2.1f && tuples::get<1>(t1) < 2.3f);
|
BOOST_TEST(get<1>(t1) > 2.1f && get<1>(t1) < 2.3f);
|
||||||
BOOST_TEST(tuples::get<2>(t1) == false);
|
BOOST_TEST(get<2>(t1) == false);
|
||||||
BOOST_TEST(tuples::get<3>(t1) == foo(5));
|
BOOST_TEST(get<3>(t1) == foo(5));
|
||||||
}
|
}
|
||||||
|
|
||||||
// ----------------------------------------------------------------------------
|
// ----------------------------------------------------------------------------
|
||||||
@ -256,13 +287,13 @@ void
|
|||||||
make_tuple_test()
|
make_tuple_test()
|
||||||
{
|
{
|
||||||
tuple<int, char> t1 = make_tuple(5, 'a');
|
tuple<int, char> t1 = make_tuple(5, 'a');
|
||||||
BOOST_TEST(tuples::get<0>(t1) == 5);
|
BOOST_TEST(get<0>(t1) == 5);
|
||||||
BOOST_TEST(tuples::get<1>(t1) == 'a');
|
BOOST_TEST(get<1>(t1) == 'a');
|
||||||
|
|
||||||
tuple<int, std::string> t2;
|
tuple<int, std::string> t2;
|
||||||
t2 = make_tuple((short int)2, std::string("Hi"));
|
t2 = make_tuple((short int)2, std::string("Hi"));
|
||||||
BOOST_TEST(tuples::get<0>(t2) == 2);
|
BOOST_TEST(get<0>(t2) == 2);
|
||||||
BOOST_TEST(tuples::get<1>(t2) == "Hi");
|
BOOST_TEST(get<1>(t2) == "Hi");
|
||||||
|
|
||||||
|
|
||||||
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
|
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
|
||||||
@ -277,7 +308,7 @@ make_tuple_test()
|
|||||||
|
|
||||||
// the result of make_tuple is assignable:
|
// the result of make_tuple is assignable:
|
||||||
BOOST_TEST(make_tuple(2, 4, 6) ==
|
BOOST_TEST(make_tuple(2, 4, 6) ==
|
||||||
(make_tuple(1, 2, 3) = make_tuple(2, 4, 6)));
|
(make_tuple(1, 2, 3) = make_tuple(2, 4, 6)));
|
||||||
|
|
||||||
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
|
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
|
||||||
make_tuple("Donald", "Daisy"); // should work;
|
make_tuple("Donald", "Daisy"); // should work;
|
||||||
@ -364,6 +395,7 @@ equality_test()
|
|||||||
tuple<int, char> t4(2, 'a');
|
tuple<int, char> t4(2, 'a');
|
||||||
BOOST_TEST(t1 != t3);
|
BOOST_TEST(t1 != t3);
|
||||||
BOOST_TEST(t1 != t4);
|
BOOST_TEST(t1 != t4);
|
||||||
|
BOOST_TEST(!(t1 != t2));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -405,7 +437,7 @@ void cons_test()
|
|||||||
BOOST_TEST(make_tuple(3,2,1)==c);
|
BOOST_TEST(make_tuple(3,2,1)==c);
|
||||||
|
|
||||||
cons<char, cons<int, cons<float, null_type> > > x;
|
cons<char, cons<int, cons<float, null_type> > > x;
|
||||||
|
dummy(x);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -415,10 +447,30 @@ void cons_test()
|
|||||||
void const_tuple_test()
|
void const_tuple_test()
|
||||||
{
|
{
|
||||||
const tuple<int, float> t1(5, 3.3f);
|
const tuple<int, float> t1(5, 3.3f);
|
||||||
BOOST_TEST(tuples::get<0>(t1) == 5);
|
BOOST_TEST(get<0>(t1) == 5);
|
||||||
BOOST_TEST(tuples::get<1>(t1) == 3.3f);
|
BOOST_TEST(get<1>(t1) == 3.3f);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// ----------------------------------------------------------------------------
|
||||||
|
// - testing length -----------------------------------------------------------
|
||||||
|
// ----------------------------------------------------------------------------
|
||||||
|
void tuple_length_test()
|
||||||
|
{
|
||||||
|
typedef tuple<int, float, double> t1;
|
||||||
|
using tuples::cons;
|
||||||
|
typedef cons<int, cons< float, cons <double, tuples::null_type> > > t1_cons;
|
||||||
|
typedef tuple<> t2;
|
||||||
|
typedef tuples::null_type t3;
|
||||||
|
|
||||||
|
BOOST_STATIC_ASSERT(tuples::length<t1>::value == 3);
|
||||||
|
BOOST_STATIC_ASSERT(tuples::length<t1_cons>::value == 3);
|
||||||
|
BOOST_STATIC_ASSERT(tuples::length<t2>::value == 0);
|
||||||
|
BOOST_STATIC_ASSERT(tuples::length<t3>::value == 0);
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// ----------------------------------------------------------------------------
|
// ----------------------------------------------------------------------------
|
||||||
// - main ---------------------------------------------------------------------
|
// - main ---------------------------------------------------------------------
|
||||||
@ -436,5 +488,13 @@ int test_main(int, char *[]) {
|
|||||||
ordering_test();
|
ordering_test();
|
||||||
cons_test();
|
cons_test();
|
||||||
const_tuple_test();
|
const_tuple_test();
|
||||||
|
tuple_length_test();
|
||||||
return 0;
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Reference in New Issue
Block a user