Unordered: Merge from trunk.

Faster assign, plus simplified some of the implementation.


[SVN r80558]
This commit is contained in:
Daniel James
2012-09-17 18:53:30 +00:00
parent 05f7c37f54
commit a0ceefc91a
8 changed files with 1109 additions and 930 deletions

View File

@ -20,171 +20,14 @@
#include <boost/limits.hpp>
#include <boost/iterator.hpp>
#if defined(BOOST_MSVC)
#pragma warning(push)
#pragma warning(disable:4127) // conditional expression is constant
#endif
namespace boost { namespace unordered { namespace detail {
template <typename Types> struct table;
template <typename NodePointer> struct bucket;
struct ptr_bucket;
template <typename A, typename Bucket, typename Node, typename Policy>
struct buckets;
template <typename Types> struct table_impl;
template <typename Types> struct grouped_table_impl;
///////////////////////////////////////////////////////////////////
//
// Node construction
template <typename NodeAlloc>
struct node_constructor
{
private:
typedef NodeAlloc node_allocator;
typedef boost::unordered::detail::allocator_traits<NodeAlloc>
node_allocator_traits;
typedef typename node_allocator_traits::value_type node;
typedef typename node_allocator_traits::pointer node_pointer;
typedef typename node::value_type value_type;
node_allocator& alloc_;
node_pointer node_;
bool node_constructed_;
bool value_constructed_;
public:
node_constructor(node_allocator& n) :
alloc_(n),
node_(),
node_constructed_(false),
value_constructed_(false)
{
}
~node_constructor();
void construct_node();
template <BOOST_UNORDERED_EMPLACE_TEMPLATE>
void construct_value(BOOST_UNORDERED_EMPLACE_ARGS)
{
BOOST_ASSERT(node_ && node_constructed_ && !value_constructed_);
boost::unordered::detail::construct_value_impl(
alloc_, node_->value_ptr(), BOOST_UNORDERED_EMPLACE_FORWARD);
value_constructed_ = true;
}
template <typename A0>
void construct_value2(BOOST_FWD_REF(A0) a0)
{
BOOST_ASSERT(node_ && node_constructed_ && !value_constructed_);
boost::unordered::detail::construct_value_impl(
alloc_, node_->value_ptr(),
BOOST_UNORDERED_EMPLACE_ARGS1(boost::forward<A0>(a0)));
value_constructed_ = true;
}
value_type const& value() const {
BOOST_ASSERT(node_ && node_constructed_ && value_constructed_);
return node_->value();
}
// no throw
node_pointer release()
{
node_pointer p = node_;
node_ = node_pointer();
return p;
}
private:
node_constructor(node_constructor const&);
node_constructor& operator=(node_constructor const&);
};
template <typename Alloc>
node_constructor<Alloc>::~node_constructor()
{
if (node_) {
if (value_constructed_) {
boost::unordered::detail::destroy_value_impl(alloc_,
node_->value_ptr());
}
if (node_constructed_) {
node_allocator_traits::destroy(alloc_,
boost::addressof(*node_));
}
node_allocator_traits::deallocate(alloc_, node_, 1);
}
}
template <typename Alloc>
void node_constructor<Alloc>::construct_node()
{
if(!node_) {
node_constructed_ = false;
value_constructed_ = false;
node_ = node_allocator_traits::allocate(alloc_, 1);
node_allocator_traits::construct(alloc_,
boost::addressof(*node_), node());
node_->init(static_cast<typename node::link_pointer>(node_));
node_constructed_ = true;
}
else {
BOOST_ASSERT(node_constructed_);
if (value_constructed_)
{
boost::unordered::detail::destroy_value_impl(alloc_,
node_->value_ptr());
value_constructed_ = false;
}
}
}
///////////////////////////////////////////////////////////////////
//
// Bucket
template <typename NodePointer>
struct bucket
{
typedef NodePointer previous_pointer;
previous_pointer next_;
bucket() : next_() {}
previous_pointer first_from_start()
{
return next_;
}
enum { extra_node = true };
};
struct ptr_bucket
{
typedef ptr_bucket* previous_pointer;
previous_pointer next_;
ptr_bucket() : next_(0) {}
previous_pointer first_from_start()
{
return this;
}
enum { extra_node = false };
};
}}}
namespace boost { namespace unordered { namespace iterator_detail {
@ -340,8 +183,6 @@ namespace boost { namespace unordered { namespace iterator_detail {
friend struct boost::unordered::iterator_detail::cl_iterator;
template <typename>
friend struct boost::unordered::detail::table;
template <typename, typename, typename, typename>
friend struct boost::unordered::detail::buckets;
template <typename>
friend struct boost::unordered::detail::table_impl;
template <typename>
@ -397,8 +238,6 @@ namespace boost { namespace unordered { namespace iterator_detail {
#if !defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS)
template <typename>
friend struct boost::unordered::detail::table;
template <typename, typename, typename, typename>
friend struct boost::unordered::detail::buckets;
template <typename>
friend struct boost::unordered::detail::table_impl;
template <typename>
@ -452,11 +291,283 @@ namespace boost { namespace unordered { namespace iterator_detail {
namespace boost { namespace unordered { namespace detail {
///////////////////////////////////////////////////////////////////
//
// Node construction
template <typename NodeAlloc>
struct node_constructor
{
private:
typedef NodeAlloc node_allocator;
typedef boost::unordered::detail::allocator_traits<NodeAlloc>
node_allocator_traits;
typedef typename node_allocator_traits::value_type node;
typedef typename node_allocator_traits::pointer node_pointer;
typedef typename node::value_type value_type;
protected:
node_allocator& alloc_;
private:
node_pointer node_;
bool node_constructed_;
bool value_constructed_;
public:
node_constructor(node_allocator& n) :
alloc_(n),
node_(),
node_constructed_(false),
value_constructed_(false)
{
}
~node_constructor();
void construct();
template <BOOST_UNORDERED_EMPLACE_TEMPLATE>
void construct_with_value(BOOST_UNORDERED_EMPLACE_ARGS)
{
construct();
boost::unordered::detail::construct_value_impl(
alloc_, node_->value_ptr(), BOOST_UNORDERED_EMPLACE_FORWARD);
value_constructed_ = true;
}
template <typename A0>
void construct_with_value2(BOOST_FWD_REF(A0) a0)
{
construct();
boost::unordered::detail::construct_value_impl(
alloc_, node_->value_ptr(),
BOOST_UNORDERED_EMPLACE_ARGS1(boost::forward<A0>(a0)));
value_constructed_ = true;
}
value_type const& value() const {
BOOST_ASSERT(node_ && node_constructed_ && value_constructed_);
return node_->value();
}
// no throw
node_pointer release()
{
BOOST_ASSERT(node_ && node_constructed_);
node_pointer p = node_;
node_ = node_pointer();
return p;
}
private:
node_constructor(node_constructor const&);
node_constructor& operator=(node_constructor const&);
};
template <typename Alloc>
node_constructor<Alloc>::~node_constructor()
{
if (node_) {
if (value_constructed_) {
boost::unordered::detail::destroy_value_impl(alloc_,
node_->value_ptr());
}
if (node_constructed_) {
node_allocator_traits::destroy(alloc_,
boost::addressof(*node_));
}
node_allocator_traits::deallocate(alloc_, node_, 1);
}
}
template <typename Alloc>
void node_constructor<Alloc>::construct()
{
if(!node_) {
node_constructed_ = false;
value_constructed_ = false;
node_ = node_allocator_traits::allocate(alloc_, 1);
node_allocator_traits::construct(alloc_,
boost::addressof(*node_), node());
node_->init(static_cast<typename node::link_pointer>(node_));
node_constructed_ = true;
}
else {
BOOST_ASSERT(node_constructed_);
if (value_constructed_)
{
boost::unordered::detail::destroy_value_impl(alloc_,
node_->value_ptr());
value_constructed_ = false;
}
}
}
///////////////////////////////////////////////////////////////////
//
// Node Holder
//
// Temporary store for nodes. Deletes any that aren't used.
template <typename NodeAlloc>
struct node_holder : private node_constructor<NodeAlloc>
{
private:
typedef node_constructor<NodeAlloc> base;
typedef NodeAlloc node_allocator;
typedef boost::unordered::detail::allocator_traits<NodeAlloc>
node_allocator_traits;
typedef typename node_allocator_traits::value_type node;
typedef typename node_allocator_traits::pointer node_pointer;
typedef typename node::value_type value_type;
typedef typename node::link_pointer link_pointer;
typedef boost::unordered::iterator_detail::
iterator<node_pointer, value_type> iterator;
node_pointer nodes_;
public:
template <typename Table>
explicit node_holder(Table& b) :
base(b.node_alloc()),
nodes_()
{
typename Table::previous_pointer prev = b.get_previous_start();
nodes_ = static_cast<node_pointer>(prev->next_);
prev->next_ = link_pointer();
b.size_ = 0;
}
~node_holder();
template <typename T>
inline void assign_impl(T const& v) {
nodes_->value() = v;
}
template <typename T1, typename T2>
inline void assign_impl(std::pair<T1 const, T2> const& v) {
const_cast<T1&>(nodes_->value().first) = v.first;
nodes_->value().second = v.second;
}
template <typename T>
inline void move_assign_impl(T& v) {
nodes_->value() = boost::move(v);
}
template <typename T1, typename T2>
inline void move_assign_impl(std::pair<T1 const, T2>& v) {
// TODO: Move key as well?
const_cast<T1&>(nodes_->value().first) =
boost::move(const_cast<T1&>(v.first));
nodes_->value().second = boost::move(v.second);
}
node_pointer copy_of(value_type const& v)
{
if (nodes_) {
assign_impl(v);
node_pointer p = nodes_;
nodes_ = static_cast<node_pointer>(p->next_);
p->init(static_cast<typename node::link_pointer>(p));
p->next_ = link_pointer();
return p;
}
else {
this->construct_with_value2(v);
return base::release();
}
}
node_pointer move_copy_of(value_type& v)
{
if (nodes_) {
move_assign_impl(v);
node_pointer p = nodes_;
nodes_ = static_cast<node_pointer>(p->next_);
p->init(static_cast<typename node::link_pointer>(p));
p->next_ = link_pointer();
return p;
}
else {
this->construct_with_value2(boost::move(v));
return base::release();
}
}
iterator get_start() const
{
return iterator(nodes_);
}
};
template <typename Alloc>
node_holder<Alloc>::~node_holder()
{
while (nodes_) {
node_pointer p = nodes_;
nodes_ = static_cast<node_pointer>(p->next_);
boost::unordered::detail::destroy_value_impl(this->alloc_,
p->value_ptr());
node_allocator_traits::destroy(this->alloc_, boost::addressof(*p));
node_allocator_traits::deallocate(this->alloc_, p, 1);
}
}
///////////////////////////////////////////////////////////////////
//
// Bucket
template <typename NodePointer>
struct bucket
{
typedef NodePointer previous_pointer;
previous_pointer next_;
bucket() : next_() {}
previous_pointer first_from_start()
{
return next_;
}
enum { extra_node = true };
};
struct ptr_bucket
{
typedef ptr_bucket* previous_pointer;
previous_pointer next_;
ptr_bucket() : next_(0) {}
previous_pointer first_from_start()
{
return this;
}
enum { extra_node = false };
};
///////////////////////////////////////////////////////////////////
//
// Hash Policy
//
// Don't really want buckets to derive from this, but will for now.
// Don't really want table to derive from this, but will for now.
template <typename SizeT>
struct prime_policy
@ -537,389 +648,6 @@ namespace boost { namespace unordered { namespace detail {
std::numeric_limits<std::size_t>::digits,
std::numeric_limits<std::size_t>::radix> {};
///////////////////////////////////////////////////////////////////
//
// Buckets
template <typename A, typename Bucket, typename Node, typename Policy>
struct buckets : Policy
{
private:
buckets(buckets const&);
buckets& operator=(buckets const&);
public:
typedef boost::unordered::detail::allocator_traits<A> traits;
typedef typename traits::value_type value_type;
typedef Policy policy;
typedef Node node;
typedef Bucket bucket;
typedef typename boost::unordered::detail::rebind_wrap<A, node>::type
node_allocator;
typedef typename boost::unordered::detail::rebind_wrap<A, bucket>::type
bucket_allocator;
typedef boost::unordered::detail::allocator_traits<node_allocator>
node_allocator_traits;
typedef boost::unordered::detail::allocator_traits<bucket_allocator>
bucket_allocator_traits;
typedef typename node_allocator_traits::pointer
node_pointer;
typedef typename node_allocator_traits::const_pointer
const_node_pointer;
typedef typename bucket_allocator_traits::pointer
bucket_pointer;
typedef typename bucket::previous_pointer
previous_pointer;
typedef boost::unordered::detail::node_constructor<node_allocator>
node_constructor;
typedef boost::unordered::iterator_detail::
iterator<node_pointer, value_type> iterator;
typedef boost::unordered::iterator_detail::
c_iterator<const_node_pointer, node_pointer, value_type> c_iterator;
typedef boost::unordered::iterator_detail::
l_iterator<node_pointer, value_type, policy> l_iterator;
typedef boost::unordered::iterator_detail::
cl_iterator<const_node_pointer, node_pointer, value_type, policy>
cl_iterator;
// Members
bucket_pointer buckets_;
std::size_t bucket_count_;
std::size_t size_;
boost::unordered::detail::compressed<bucket_allocator, node_allocator>
allocators_;
// Data access
bucket_allocator const& bucket_alloc() const
{
return allocators_.first();
}
node_allocator const& node_alloc() const
{
return allocators_.second();
}
bucket_allocator& bucket_alloc()
{
return allocators_.first();
}
node_allocator& node_alloc()
{
return allocators_.second();
}
std::size_t max_bucket_count() const
{
// -1 to account for the start bucket.
return policy::prev_bucket_count(
bucket_allocator_traits::max_size(bucket_alloc()) - 1);
}
bucket_pointer get_bucket(std::size_t bucket_index) const
{
return buckets_ + static_cast<std::ptrdiff_t>(bucket_index);
}
previous_pointer get_previous_start() const
{
return this->get_bucket(this->bucket_count_)->first_from_start();
}
previous_pointer get_previous_start(std::size_t bucket_index) const
{
return this->get_bucket(bucket_index)->next_;
}
iterator get_start() const
{
return iterator(static_cast<node_pointer>(
this->get_previous_start()->next_));
}
iterator get_start(std::size_t bucket_index) const
{
previous_pointer prev = this->get_previous_start(bucket_index);
return prev ? iterator(static_cast<node_pointer>(prev->next_)) :
iterator();
}
float load_factor() const
{
BOOST_ASSERT(this->bucket_count_ != 0);
return static_cast<float>(this->size_)
/ static_cast<float>(this->bucket_count_);
}
std::size_t bucket_size(std::size_t index) const
{
if (!this->size_) return 0;
iterator it = this->get_start(index);
if (!it.node_) return 0;
std::size_t count = 0;
while(it.node_ && policy::to_bucket(
this->bucket_count_, it.node_->hash_) == index)
{
++count;
++it;
}
return count;
}
////////////////////////////////////////////////////////////////////////
// Constructors
buckets(node_allocator const& a, std::size_t bucket_count) :
buckets_(),
bucket_count_(bucket_count),
size_(),
allocators_(a,a)
{
}
buckets(buckets& b, boost::unordered::detail::move_tag m) :
buckets_(),
bucket_count_(b.bucket_count_),
size_(),
allocators_(b.allocators_, m)
{
swap(b);
}
template <typename Types>
buckets(boost::unordered::detail::table<Types>& x,
boost::unordered::detail::move_tag m) :
buckets_(),
bucket_count_(x.bucket_count_),
size_(),
allocators_(x.allocators_, m)
{
swap(x);
}
////////////////////////////////////////////////////////////////////////
// Create buckets
// (never called in constructor to avoid exception issues)
void create_buckets()
{
boost::unordered::detail::array_constructor<bucket_allocator>
constructor(bucket_alloc());
// Creates an extra bucket to act as the start node.
constructor.construct(bucket(), this->bucket_count_ + 1);
if (bucket::extra_node)
{
node_constructor a(this->node_alloc());
a.construct_node();
(constructor.get() +
static_cast<std::ptrdiff_t>(this->bucket_count_))->next_ =
a.release();
}
this->buckets_ = constructor.release();
}
////////////////////////////////////////////////////////////////////////
// Swap and Move
void swap(buckets& other, false_type = false_type())
{
BOOST_ASSERT(node_alloc() == other.node_alloc());
boost::swap(buckets_, other.buckets_);
boost::swap(bucket_count_, other.bucket_count_);
boost::swap(size_, other.size_);
}
void swap(buckets& other, true_type)
{
allocators_.swap(other.allocators_);
boost::swap(buckets_, other.buckets_);
boost::swap(bucket_count_, other.bucket_count_);
boost::swap(size_, other.size_);
}
void move_buckets_from(buckets& other)
{
BOOST_ASSERT(node_alloc() == other.node_alloc());
BOOST_ASSERT(!this->buckets_);
this->buckets_ = other.buckets_;
this->bucket_count_ = other.bucket_count_;
this->size_ = other.size_;
other.buckets_ = bucket_pointer();
other.bucket_count_ = 0;
other.size_ = 0;
}
////////////////////////////////////////////////////////////////////////
// Delete/destruct
inline void delete_node(c_iterator n)
{
boost::unordered::detail::destroy_value_impl(node_alloc(),
n.node_->value_ptr());
node_allocator_traits::destroy(node_alloc(),
boost::addressof(*n.node_));
node_allocator_traits::deallocate(node_alloc(), n.node_, 1);
--size_;
}
std::size_t delete_nodes(c_iterator begin, c_iterator end)
{
std::size_t count = 0;
while(begin != end) {
c_iterator n = begin;
++begin;
delete_node(n);
++count;
}
return count;
}
inline void delete_extra_node(bucket_pointer) {}
inline void delete_extra_node(node_pointer n) {
node_allocator_traits::destroy(node_alloc(), boost::addressof(*n));
node_allocator_traits::deallocate(node_alloc(), n, 1);
}
inline ~buckets()
{
this->delete_buckets();
}
void delete_buckets()
{
if(this->buckets_) {
previous_pointer prev = this->get_previous_start();
while(prev->next_) {
node_pointer n = static_cast<node_pointer>(prev->next_);
prev->next_ = n->next_;
delete_node(iterator(n));
}
delete_extra_node(prev);
bucket_pointer end = this->get_bucket(this->bucket_count_ + 1);
for(bucket_pointer it = this->buckets_; it != end; ++it)
{
bucket_allocator_traits::destroy(bucket_alloc(),
boost::addressof(*it));
}
bucket_allocator_traits::deallocate(bucket_alloc(),
this->buckets_, this->bucket_count_ + 1);
this->buckets_ = bucket_pointer();
}
BOOST_ASSERT(!this->size_);
}
void clear()
{
if(!this->size_) return;
previous_pointer prev = this->get_previous_start();
while(prev->next_) {
node_pointer n = static_cast<node_pointer>(prev->next_);
prev->next_ = n->next_;
delete_node(iterator(n));
}
bucket_pointer end = this->get_bucket(this->bucket_count_);
for(bucket_pointer it = this->buckets_; it != end; ++it)
{
it->next_ = node_pointer();
}
BOOST_ASSERT(!this->size_);
}
// This is called after erasing a node or group of nodes to fix up
// the bucket pointers.
void fix_buckets(bucket_pointer this_bucket,
previous_pointer prev, node_pointer next)
{
if (!next)
{
if (this_bucket->next_ == prev)
this_bucket->next_ = node_pointer();
}
else
{
bucket_pointer next_bucket = this->get_bucket(
policy::to_bucket(this->bucket_count_, next->hash_));
if (next_bucket != this_bucket)
{
next_bucket->next_ = prev;
if (this_bucket->next_ == prev)
this_bucket->next_ = node_pointer();
}
}
}
// This is called after erasing a range of nodes to fix any bucket
// pointers into that range.
void fix_buckets_range(std::size_t bucket_index,
previous_pointer prev, node_pointer begin, node_pointer end)
{
node_pointer n = begin;
// If we're not at the start of the current bucket, then
// go to the start of the next bucket.
if (this->get_bucket(bucket_index)->next_ != prev)
{
for(;;) {
n = static_cast<node_pointer>(n->next_);
if (n == end) return;
std::size_t new_bucket_index =
policy::to_bucket(this->bucket_count_, n->hash_);
if (bucket_index != new_bucket_index) {
bucket_index = new_bucket_index;
break;
}
}
}
// Iterate through the remaining nodes, clearing out the bucket
// pointers.
this->get_bucket(bucket_index)->next_ = previous_pointer();
for(;;) {
n = static_cast<node_pointer>(n->next_);
if (n == end) break;
std::size_t new_bucket_index =
policy::to_bucket(this->bucket_count_, n->hash_);
if (bucket_index != new_bucket_index) {
bucket_index = new_bucket_index;
this->get_bucket(bucket_index)->next_ = previous_pointer();
}
};
// Finally fix the bucket containing the trailing node.
if (n) {
this->get_bucket(
policy::to_bucket(this->bucket_count_, n->hash_))->next_
= prev;
}
}
};
////////////////////////////////////////////////////////////////////////////
// Functions
@ -1066,8 +794,4 @@ namespace boost { namespace unordered { namespace detail {
#endif
}}}
#if defined(BOOST_MSVC)
#pragma warning(pop)
#endif
#endif

View File

@ -125,16 +125,15 @@ namespace boost { namespace unordered { namespace detail {
{
typedef boost::unordered::detail::multiset<A, T, H, P> types;
typedef A allocator;
typedef T value_type;
typedef H hasher;
typedef P key_equal;
typedef T key_type;
typedef typename boost::unordered::detail::rebind_wrap<
A, value_type>::type allocator;
typedef boost::unordered::detail::allocator_traits<allocator> traits;
typedef boost::unordered::detail::pick_grouped_node<allocator, value_type> pick;
typedef boost::unordered::detail::pick_grouped_node<allocator,
value_type> pick;
typedef typename pick::node node;
typedef typename pick::bucket bucket;
typedef typename pick::link_pointer link_pointer;
@ -150,16 +149,15 @@ namespace boost { namespace unordered { namespace detail {
{
typedef boost::unordered::detail::multimap<A, K, M, H, P> types;
typedef A allocator;
typedef std::pair<K const, M> value_type;
typedef H hasher;
typedef P key_equal;
typedef K key_type;
typedef typename boost::unordered::detail::rebind_wrap<
A, value_type>::type allocator;
typedef boost::unordered::detail::allocator_traits<allocator> traits;
typedef boost::unordered::detail::pick_grouped_node<allocator, value_type> pick;
typedef boost::unordered::detail::pick_grouped_node<allocator,
value_type> pick;
typedef typename pick::node node;
typedef typename pick::bucket bucket;
typedef typename pick::link_pointer link_pointer;
@ -177,7 +175,6 @@ namespace boost { namespace unordered { namespace detail {
typedef boost::unordered::detail::table<Types> table;
typedef typename table::value_type value_type;
typedef typename table::bucket bucket;
typedef typename table::buckets buckets;
typedef typename table::policy policy;
typedef typename table::node_pointer node_pointer;
typedef typename table::node_allocator node_allocator;
@ -204,12 +201,17 @@ namespace boost { namespace unordered { namespace detail {
grouped_table_impl(grouped_table_impl const& x)
: table(x, node_allocator_traits::
select_on_container_copy_construction(x.node_alloc())) {}
select_on_container_copy_construction(x.node_alloc()))
{
this->init(x);
}
grouped_table_impl(grouped_table_impl const& x,
node_allocator const& a)
: table(x, a)
{}
{
this->init(x);
}
grouped_table_impl(grouped_table_impl& x,
boost::unordered::detail::move_tag m)
@ -220,7 +222,9 @@ namespace boost { namespace unordered { namespace detail {
node_allocator const& a,
boost::unordered::detail::move_tag m)
: table(x, a, m)
{}
{
this->move_init(x);
}
// Accessors
@ -230,6 +234,8 @@ namespace boost { namespace unordered { namespace detail {
Key const& k,
Pred const& eq) const
{
if (!this->size_) return iterator();
std::size_t bucket_index =
policy::to_bucket(this->bucket_count_, key_hash);
iterator n = this->get_start(bucket_index);
@ -487,8 +493,7 @@ namespace boost { namespace unordered { namespace detail {
iterator emplace(BOOST_UNORDERED_EMPLACE_ARGS)
{
node_constructor a(this->node_alloc());
a.construct_node();
a.construct_value(BOOST_UNORDERED_EMPLACE_FORWARD);
a.construct_with_value(BOOST_UNORDERED_EMPLACE_FORWARD);
return iterator(emplace_impl(a));
}
@ -507,8 +512,7 @@ namespace boost { namespace unordered { namespace detail {
std::size_t distance = boost::unordered::detail::distance(i, j);
if(distance == 1) {
node_constructor a(this->node_alloc());
a.construct_node();
a.construct_value2(*i);
a.construct_with_value2(*i);
emplace_impl(a);
}
else {
@ -517,8 +521,7 @@ namespace boost { namespace unordered { namespace detail {
node_constructor a(this->node_alloc());
for (; i != j; ++i) {
a.construct_node();
a.construct_value2(*i);
a.construct_with_value2(*i);
emplace_impl_no_rehash(a);
}
}
@ -530,8 +533,7 @@ namespace boost { namespace unordered { namespace detail {
{
node_constructor a(this->node_alloc());
for (; i != j; ++i) {
a.construct_node();
a.construct_value2(*i);
a.construct_with_value2(*i);
emplace_impl(a);
}
}
@ -710,20 +712,12 @@ namespace boost { namespace unordered { namespace detail {
}
////////////////////////////////////////////////////////////////////////
// copy_buckets_to
//
// Basic exception safety. If an exception is thrown this will
// leave dst partially filled and the buckets unset.
// fill_buckets
static void copy_buckets_to(buckets const& src, buckets& dst)
template <class NodeCreator>
static void fill_buckets(iterator n, table& dst,
NodeCreator& creator)
{
BOOST_ASSERT(!dst.buckets_);
dst.create_buckets();
node_constructor a(dst.node_alloc());
iterator n = src.get_start();
previous_pointer prev = dst.get_previous_start();
while (n.node_) {
@ -733,10 +727,7 @@ namespace boost { namespace unordered { namespace detail {
static_cast<node_pointer>(n.node_->group_prev_)->next_
));
a.construct_node();
a.construct_value2(*n);
node_pointer first_node = a.release();
node_pointer first_node = creator.create(*n);
node_pointer end = first_node;
first_node->hash_ = key_hash;
prev->next_ = static_cast<link_pointer>(first_node);
@ -744,56 +735,7 @@ namespace boost { namespace unordered { namespace detail {
for (++n; n != group_end; ++n)
{
a.construct_node();
a.construct_value2(*n);
end = a.release();
end->hash_ = key_hash;
add_after_node(end, first_node);
++dst.size_;
}
prev = place_in_bucket(dst, prev, end);
}
}
////////////////////////////////////////////////////////////////////////
// move_buckets_to
//
// Basic exception safety. The source nodes are left in an unusable
// state if an exception throws.
static void move_buckets_to(buckets& src, buckets& dst)
{
BOOST_ASSERT(!dst.buckets_);
dst.create_buckets();
node_constructor a(dst.node_alloc());
iterator n = src.get_start();
previous_pointer prev = dst.get_previous_start();
while (n.node_) {
std::size_t key_hash = n.node_->hash_;
iterator group_end(
static_cast<node_pointer>(
static_cast<node_pointer>(n.node_->group_prev_)->next_
));
a.construct_node();
a.construct_value2(boost::move(*n));
node_pointer first_node = a.release();
node_pointer end = first_node;
first_node->hash_ = key_hash;
prev->next_ = static_cast<link_pointer>(first_node);
++dst.size_;
for(++n; n != group_end; ++n)
{
a.construct_node();
a.construct_value2(boost::move(*n));
end = a.release();
end = creator.create(*n);
end->hash_ = key_hash;
add_after_node(end, first_node);
++dst.size_;
@ -806,33 +748,19 @@ namespace boost { namespace unordered { namespace detail {
// strong otherwise exception safety
void rehash_impl(std::size_t num_buckets)
{
BOOST_ASSERT(this->size_);
BOOST_ASSERT(this->buckets_);
buckets dst(this->node_alloc(), num_buckets);
dst.create_buckets();
previous_pointer src_start = this->get_previous_start();
previous_pointer dst_start = dst.get_previous_start();
dst_start->next_ = src_start->next_;
src_start->next_ = link_pointer();
dst.size_ = this->size_;
this->size_ = 0;
previous_pointer prev = dst_start;
this->create_buckets(num_buckets);
previous_pointer prev = this->get_previous_start();
while (prev->next_)
prev = place_in_bucket(dst, prev,
prev = place_in_bucket(*this, prev,
static_cast<node_pointer>(
static_cast<node_pointer>(prev->next_)->group_prev_));
// Swap the new nodes back into the container and setup the
// variables.
dst.swap(*this); // no throw
}
// Iterate through the nodes placing them in the correct buckets.
// pre: prev->next_ is not null.
static previous_pointer place_in_bucket(buckets& dst,
static previous_pointer place_in_bucket(table& dst,
previous_pointer prev, node_pointer end)
{
bucket_pointer b = dst.get_bucket(policy::to_bucket(

View File

@ -13,6 +13,11 @@
#include <boost/type_traits/alignment_of.hpp>
#include <cmath>
#if defined(BOOST_MSVC)
#pragma warning(push)
#pragma warning(disable:4127) // conditional expression is constant
#endif
namespace boost { namespace unordered { namespace detail {
////////////////////////////////////////////////////////////////////////////
@ -54,13 +59,73 @@ namespace boost { namespace unordered { namespace detail {
value_base& operator=(value_base const&);
};
template <typename NodeAlloc>
struct copy_nodes
{
typedef boost::unordered::detail::allocator_traits<NodeAlloc>
node_allocator_traits;
node_constructor<NodeAlloc> constructor;
explicit copy_nodes(NodeAlloc& a) : constructor(a) {}
typename node_allocator_traits::pointer create(
typename node_allocator_traits::value_type::value_type const& v)
{
constructor.construct_with_value2(v);
return constructor.release();
}
};
template <typename NodeAlloc>
struct move_nodes
{
typedef boost::unordered::detail::allocator_traits<NodeAlloc>
node_allocator_traits;
node_constructor<NodeAlloc> constructor;
explicit move_nodes(NodeAlloc& a) : constructor(a) {}
typename node_allocator_traits::pointer create(
typename node_allocator_traits::value_type::value_type& v)
{
constructor.construct_with_value2(boost::move(v));
return constructor.release();
}
};
template <typename Buckets>
struct assign_nodes
{
node_holder<typename Buckets::node_allocator> holder;
explicit assign_nodes(Buckets& b) : holder(b) {}
typename Buckets::node_pointer create(
typename Buckets::value_type const& v)
{
return holder.copy_of(v);
}
};
template <typename Buckets>
struct move_assign_nodes
{
node_holder<typename Buckets::node_allocator> holder;
explicit move_assign_nodes(Buckets& b) : holder(b) {}
typename Buckets::node_pointer create(
typename Buckets::value_type& v)
{
return holder.move_copy_of(v);
}
};
template <typename Types>
struct table :
boost::unordered::detail::buckets<
typename Types::allocator,
typename Types::bucket,
typename Types::node,
typename Types::policy>,
Types::policy,
boost::unordered::detail::functions<
typename Types::hasher,
typename Types::key_equal>
@ -69,6 +134,8 @@ namespace boost { namespace unordered { namespace detail {
table(table const&);
table& operator=(table const&);
public:
typedef typename Types::node node;
typedef typename Types::bucket bucket;
typedef typename Types::hasher hasher;
typedef typename Types::key_equal key_equal;
typedef typename Types::key_type key_type;
@ -82,23 +149,128 @@ namespace boost { namespace unordered { namespace detail {
typename Types::hasher,
typename Types::key_equal> functions;
typedef boost::unordered::detail::buckets<
typename Types::allocator,
typename Types::bucket,
typename Types::node,
typename Types::policy> buckets;
typedef typename Types::allocator allocator;
typedef typename boost::unordered::detail::
rebind_wrap<allocator, node>::type node_allocator;
typedef typename boost::unordered::detail::
rebind_wrap<allocator, bucket>::type bucket_allocator;
typedef boost::unordered::detail::allocator_traits<node_allocator>
node_allocator_traits;
typedef boost::unordered::detail::allocator_traits<bucket_allocator>
bucket_allocator_traits;
typedef typename node_allocator_traits::pointer
node_pointer;
typedef typename node_allocator_traits::const_pointer
const_node_pointer;
typedef typename bucket_allocator_traits::pointer
bucket_pointer;
typedef typename bucket::previous_pointer
previous_pointer;
typedef boost::unordered::detail::node_constructor<node_allocator>
node_constructor;
typedef typename buckets::node_allocator node_allocator;
typedef typename buckets::node_allocator_traits node_allocator_traits;
typedef typename buckets::node_pointer node_pointer;
typedef typename buckets::const_node_pointer const_node_pointer;
typedef typename table::iterator iterator;
typedef boost::unordered::iterator_detail::
iterator<node_pointer, value_type> iterator;
typedef boost::unordered::iterator_detail::
c_iterator<const_node_pointer, node_pointer, value_type> c_iterator;
typedef boost::unordered::iterator_detail::
l_iterator<node_pointer, value_type, policy> l_iterator;
typedef boost::unordered::iterator_detail::
cl_iterator<const_node_pointer, node_pointer, value_type, policy>
cl_iterator;
////////////////////////////////////////////////////////////////////////
// Members
boost::unordered::detail::compressed<bucket_allocator, node_allocator>
allocators_;
std::size_t bucket_count_;
std::size_t size_;
float mlf_;
std::size_t max_load_; // Only use if this->buckets_.
std::size_t max_load_; // Only use if buckets_.
bucket_pointer buckets_;
////////////////////////////////////////////////////////////////////////
// Data access
bucket_allocator const& bucket_alloc() const
{
return allocators_.first();
}
node_allocator const& node_alloc() const
{
return allocators_.second();
}
bucket_allocator& bucket_alloc()
{
return allocators_.first();
}
node_allocator& node_alloc()
{
return allocators_.second();
}
std::size_t max_bucket_count() const
{
// -1 to account for the start bucket.
return policy::prev_bucket_count(
bucket_allocator_traits::max_size(bucket_alloc()) - 1);
}
bucket_pointer get_bucket(std::size_t bucket_index) const
{
return buckets_ + static_cast<std::ptrdiff_t>(bucket_index);
}
previous_pointer get_previous_start() const
{
return get_bucket(bucket_count_)->first_from_start();
}
previous_pointer get_previous_start(std::size_t bucket_index) const
{
return get_bucket(bucket_index)->next_;
}
iterator get_start() const
{
return iterator(static_cast<node_pointer>(
get_previous_start()->next_));
}
iterator get_start(std::size_t bucket_index) const
{
previous_pointer prev = get_previous_start(bucket_index);
return prev ? iterator(static_cast<node_pointer>(prev->next_)) :
iterator();
}
float load_factor() const
{
BOOST_ASSERT(bucket_count_ != 0);
return static_cast<float>(size_)
/ static_cast<float>(bucket_count_);
}
std::size_t bucket_size(std::size_t index) const
{
if (!size_) return 0;
iterator it = get_start(index);
if (!it.node_) return 0;
std::size_t count = 0;
while(it.node_ && policy::to_bucket(
bucket_count_, it.node_->hash_) == index)
{
++count;
++it;
}
return count;
}
////////////////////////////////////////////////////////////////////////
// Load methods
@ -109,34 +281,34 @@ namespace boost { namespace unordered { namespace detail {
// size < mlf_ * count
return boost::unordered::detail::double_to_size(ceil(
static_cast<double>(this->mlf_) *
static_cast<double>(this->max_bucket_count())
static_cast<double>(mlf_) *
static_cast<double>(max_bucket_count())
)) - 1;
}
std::size_t calculate_max_load()
void recalculate_max_load()
{
using namespace std;
// From 6.3.1/13:
// Only resize when size >= mlf_ * count
return boost::unordered::detail::double_to_size(ceil(
static_cast<double>(this->mlf_) *
static_cast<double>(this->bucket_count_)
max_load_ = boost::unordered::detail::double_to_size(ceil(
static_cast<double>(mlf_) *
static_cast<double>(bucket_count_)
));
}
void max_load_factor(float z)
{
BOOST_ASSERT(z > 0);
mlf_ = (std::max)(z, minimum_max_load_factor);
if (this->buckets_)
this->max_load_ = this->calculate_max_load();
if (buckets_) recalculate_max_load();
}
std::size_t min_buckets_for_size(std::size_t size) const
{
BOOST_ASSERT(this->mlf_ >= minimum_max_load_factor);
BOOST_ASSERT(mlf_ >= minimum_max_load_factor);
using namespace std;
@ -160,127 +332,450 @@ namespace boost { namespace unordered { namespace detail {
hasher const& hf,
key_equal const& eq,
node_allocator const& a) :
buckets(a, policy::new_bucket_count(num_buckets)),
functions(hf, eq),
allocators_(a,a),
bucket_count_(policy::new_bucket_count(num_buckets)),
size_(0),
mlf_(1.0f),
max_load_(0)
max_load_(0),
buckets_()
{}
table(table const& x, node_allocator const& a) :
buckets(a, x.min_buckets_for_size(x.size_)),
functions(x),
allocators_(a,a),
bucket_count_(x.min_buckets_for_size(x.size_)),
size_(0),
mlf_(x.mlf_),
max_load_(0)
{
if(x.size_) {
table_impl::copy_buckets_to(x, *this);
this->max_load_ = calculate_max_load();
}
}
// TODO: Why calculate_max_load?
table(table& x, boost::unordered::detail::move_tag m) :
buckets(x, m),
functions(x),
mlf_(x.mlf_),
max_load_(calculate_max_load())
max_load_(0),
buckets_()
{}
// TODO: Why not calculate_max_load?
// TODO: Why do I use x's bucket count?
table(table& x, node_allocator const& a,
boost::unordered::detail::move_tag m) :
buckets(a, x.bucket_count_),
table(table& x, boost::unordered::detail::move_tag m) :
functions(x),
allocators_(x.allocators_, m),
bucket_count_(x.bucket_count_),
size_(x.size_),
mlf_(x.mlf_),
max_load_(x.max_load_)
max_load_(x.max_load_),
buckets_(x.buckets_)
{
if(a == x.node_alloc()) {
this->buckets::swap(x, false_type());
}
else if(x.size_) {
// Use a temporary table because move_buckets_to leaves the
// source container in a complete mess.
x.buckets_ = bucket_pointer();
x.size_ = 0;
}
buckets tmp(x, m);
table_impl::move_buckets_to(tmp, *this);
this->max_load_ = calculate_max_load();
table(table& x, node_allocator const& a,
boost::unordered::detail::move_tag) :
functions(x),
allocators_(a, a),
bucket_count_(x.bucket_count_),
size_(0),
mlf_(x.mlf_),
max_load_(x.max_load_),
buckets_()
{}
////////////////////////////////////////////////////////////////////////
// Initialisation.
void init(table const& x)
{
if (x.size_) {
create_buckets(bucket_count_);
copy_nodes<node_allocator> copy(node_alloc());
table_impl::fill_buckets(x.get_start(), *this, copy);
}
}
void move_init(table& x)
{
if(node_alloc() == x.node_alloc()) {
move_buckets_from(x);
}
else if(x.size_) {
// TODO: Could pick new bucket size?
create_buckets(bucket_count_);
move_nodes<node_allocator> move(node_alloc());
node_holder<node_allocator> nodes(x);
table_impl::fill_buckets(nodes.get_start(), *this, move);
}
}
////////////////////////////////////////////////////////////////////////
// Create buckets
void create_buckets(std::size_t new_count)
{
boost::unordered::detail::array_constructor<bucket_allocator>
constructor(bucket_alloc());
// Creates an extra bucket to act as the start node.
constructor.construct(bucket(), new_count + 1);
if (buckets_)
{
// Copy the nodes to the new buckets, including the dummy
// node if there is one.
(constructor.get() +
static_cast<std::ptrdiff_t>(new_count))->next_ =
(buckets_ + static_cast<std::ptrdiff_t>(
bucket_count_))->next_;
destroy_buckets();
}
else if (bucket::extra_node)
{
node_constructor a(node_alloc());
a.construct();
(constructor.get() +
static_cast<std::ptrdiff_t>(new_count))->next_ =
a.release();
}
bucket_count_ = new_count;
buckets_ = constructor.release();
recalculate_max_load();
}
////////////////////////////////////////////////////////////////////////
// Swap and Move
void swap_allocators(table& other, false_type)
{
// According to 23.2.1.8, if propagate_on_container_swap is
// false the behaviour is undefined unless the allocators
// are equal.
BOOST_ASSERT(node_alloc() == other.node_alloc());
}
void swap_allocators(table& other, true_type)
{
allocators_.swap(other.allocators_);
}
// Only swaps the allocators if propagate_on_container_swap
void swap(table& x)
{
boost::unordered::detail::set_hash_functions<hasher, key_equal>
op1(*this, x);
boost::unordered::detail::set_hash_functions<hasher, key_equal>
op2(x, *this);
// I think swap can throw if Propagate::value,
// since the allocators' swap can throw. Not sure though.
swap_allocators(x,
boost::unordered::detail::integral_constant<bool,
allocator_traits<node_allocator>::
propagate_on_container_swap::value>());
boost::swap(buckets_, x.buckets_);
boost::swap(bucket_count_, x.bucket_count_);
boost::swap(size_, x.size_);
std::swap(mlf_, x.mlf_);
std::swap(max_load_, x.max_load_);
op1.commit();
op2.commit();
}
void move_buckets_from(table& other)
{
BOOST_ASSERT(node_alloc() == other.node_alloc());
BOOST_ASSERT(!buckets_);
buckets_ = other.buckets_;
bucket_count_ = other.bucket_count_;
size_ = other.size_;
other.buckets_ = bucket_pointer();
other.size_ = 0;
}
////////////////////////////////////////////////////////////////////////
// Delete/destruct
~table()
{
delete_buckets();
}
void delete_node(c_iterator n)
{
boost::unordered::detail::destroy_value_impl(node_alloc(),
n.node_->value_ptr());
node_allocator_traits::destroy(node_alloc(),
boost::addressof(*n.node_));
node_allocator_traits::deallocate(node_alloc(), n.node_, 1);
--size_;
}
std::size_t delete_nodes(c_iterator begin, c_iterator end)
{
std::size_t count = 0;
while(begin != end) {
c_iterator n = begin;
++begin;
delete_node(n);
++count;
}
return count;
}
void delete_buckets()
{
if(buckets_) {
delete_nodes(get_start(), iterator());
if (bucket::extra_node) {
node_pointer n = static_cast<node_pointer>(
get_bucket(bucket_count_)->next_);
node_allocator_traits::destroy(node_alloc(),
boost::addressof(*n));
node_allocator_traits::deallocate(node_alloc(), n, 1);
}
destroy_buckets();
buckets_ = bucket_pointer();
}
BOOST_ASSERT(!size_);
}
void clear()
{
if(!size_) return;
delete_nodes(get_start(), iterator());
get_previous_start()->next_ = link_pointer();
clear_buckets();
BOOST_ASSERT(!size_);
}
void clear_buckets()
{
bucket_pointer end = get_bucket(bucket_count_);
for(bucket_pointer it = buckets_; it != end; ++it)
{
it->next_ = node_pointer();
}
}
void destroy_buckets()
{
bucket_pointer end = get_bucket(bucket_count_ + 1);
for(bucket_pointer it = buckets_; it != end; ++it)
{
bucket_allocator_traits::destroy(bucket_alloc(),
boost::addressof(*it));
}
bucket_allocator_traits::deallocate(bucket_alloc(),
buckets_, bucket_count_ + 1);
}
////////////////////////////////////////////////////////////////////////
// Fix buckets after erase
// This is called after erasing a node or group of nodes to fix up
// the bucket pointers.
void fix_buckets(bucket_pointer this_bucket,
previous_pointer prev, node_pointer next)
{
if (!next)
{
if (this_bucket->next_ == prev)
this_bucket->next_ = node_pointer();
}
else
{
bucket_pointer next_bucket = get_bucket(
policy::to_bucket(bucket_count_, next->hash_));
if (next_bucket != this_bucket)
{
next_bucket->next_ = prev;
if (this_bucket->next_ == prev)
this_bucket->next_ = node_pointer();
}
}
}
// This is called after erasing a range of nodes to fix any bucket
// pointers into that range.
void fix_buckets_range(std::size_t bucket_index,
previous_pointer prev, node_pointer begin, node_pointer end)
{
node_pointer n = begin;
// If we're not at the start of the current bucket, then
// go to the start of the next bucket.
if (get_bucket(bucket_index)->next_ != prev)
{
for(;;) {
n = static_cast<node_pointer>(n->next_);
if (n == end) return;
std::size_t new_bucket_index =
policy::to_bucket(bucket_count_, n->hash_);
if (bucket_index != new_bucket_index) {
bucket_index = new_bucket_index;
break;
}
}
}
// Iterate through the remaining nodes, clearing out the bucket
// pointers.
get_bucket(bucket_index)->next_ = previous_pointer();
for(;;) {
n = static_cast<node_pointer>(n->next_);
if (n == end) break;
std::size_t new_bucket_index =
policy::to_bucket(bucket_count_, n->hash_);
if (bucket_index != new_bucket_index) {
bucket_index = new_bucket_index;
get_bucket(bucket_index)->next_ = previous_pointer();
}
};
// Finally fix the bucket containing the trailing node.
if (n) {
get_bucket(
policy::to_bucket(bucket_count_, n->hash_))->next_
= prev;
}
}
////////////////////////////////////////////////////////////////////////
// Iterators
iterator begin() const {
return !this->buckets_ ?
iterator() : this->get_start();
return !buckets_ ? iterator() : get_start();
}
////////////////////////////////////////////////////////////////////////
// Assignment
void assign(table const& x)
{
assign(x,
boost::unordered::detail::integral_constant<bool,
allocator_traits<node_allocator>::
propagate_on_container_copy_assignment::value>());
if (this != boost::addressof(x))
{
assign(x,
boost::unordered::detail::integral_constant<bool,
allocator_traits<node_allocator>::
propagate_on_container_copy_assignment::value>());
}
}
void assign(table const& x, false_type)
{
table tmp(x, this->node_alloc());
this->swap(tmp, false_type());
// Strong exception safety.
boost::unordered::detail::set_hash_functions<hasher, key_equal>
new_func_this(*this, x);
new_func_this.commit();
mlf_ = x.mlf_;
recalculate_max_load();
if (!size_ && !x.size_) return;
if (!buckets_ || x.size_ >= max_load_) {
create_buckets(min_buckets_for_size(x.size_));
}
else {
clear_buckets();
}
// assign_nodes takes ownership of the container's elements,
// assigning to them if possible, and deleting any that are
// left over.
assign_nodes<table> assign(*this);
if (x.size_) {
table_impl::fill_buckets(x.get_start(), *this, assign);
}
}
void assign(table const& x, true_type)
{
table tmp(x, x.node_alloc());
// Need to delete before setting the allocator so that buckets
// aren't deleted with the wrong allocator.
if(this->buckets_) this->delete_buckets();
// TODO: Can allocator assignment throw?
this->allocators_.assign(x.allocators_);
this->swap(tmp, false_type());
}
void move_assign(table& x)
{
move_assign(x,
boost::unordered::detail::integral_constant<bool,
allocator_traits<node_allocator>::
propagate_on_container_move_assignment::value>());
}
void move_assign(table& x, true_type)
{
if(this->buckets_) this->delete_buckets();
this->allocators_.move_assign(x.allocators_);
move_assign_no_alloc(x);
}
void move_assign(table& x, false_type)
{
if(this->node_alloc() == x.node_alloc()) {
if(this->buckets_) this->delete_buckets();
move_assign_no_alloc(x);
if (node_alloc() == x.node_alloc()) {
allocators_.assign(x.allocators_);
assign(x, false_type());
}
else {
boost::unordered::detail::set_hash_functions<hasher, key_equal>
new_func_this(*this, x);
// Delete everything with current allocators before assigning
// the new ones.
if (buckets_) delete_buckets();
allocators_.assign(x.allocators_);
// Copy over other data, all no throw.
new_func_this.commit();
mlf_ = x.mlf_;
bucket_count_ = min_buckets_for_size(x.size_);
max_load_ = 0;
// Finally copy the elements.
if (x.size_) {
buckets b(this->node_alloc(),
x.min_buckets_for_size(x.size_));
buckets tmp(x, move_tag());
table_impl::move_buckets_to(tmp, b);
b.swap(*this);
create_buckets(bucket_count_);
copy_nodes<node_allocator> copy(node_alloc());
table_impl::fill_buckets(x.get_start(), *this, copy);
}
}
}
void move_assign(table& x)
{
if (this != boost::addressof(x))
{
move_assign(x,
boost::unordered::detail::integral_constant<bool,
allocator_traits<node_allocator>::
propagate_on_container_move_assignment::value>());
}
}
void move_assign(table& x, true_type)
{
if(buckets_) delete_buckets();
allocators_.move_assign(x.allocators_);
move_assign_no_alloc(x);
}
void move_assign(table& x, false_type)
{
if (node_alloc() == x.node_alloc()) {
if(buckets_) delete_buckets();
move_assign_no_alloc(x);
}
else {
boost::unordered::detail::set_hash_functions<hasher, key_equal>
new_func_this(*this, x);
new_func_this.commit();
mlf_ = x.mlf_;
recalculate_max_load();
if (!size_ && !x.size_) return;
if (!buckets_ || x.size_ >= max_load_) {
create_buckets(min_buckets_for_size(x.size_));
}
else {
this->clear();
clear_buckets();
}
this->mlf_ = x.mlf_;
if (this->buckets_) this->max_load_ = calculate_max_load();
new_func_this.commit();
// move_assign_nodes takes ownership of the container's
// elements, assigning to them if possible, and deleting
// any that are left over.
move_assign_nodes<table> assign(*this);
if (x.size_) {
node_holder<node_allocator> nodes(x);
table_impl::fill_buckets(nodes.get_start(), *this, assign);
}
}
}
@ -289,53 +784,12 @@ namespace boost { namespace unordered { namespace detail {
boost::unordered::detail::set_hash_functions<hasher, key_equal>
new_func_this(*this, x);
// No throw from here.
this->move_buckets_from(x);
this->mlf_ = x.mlf_;
this->max_load_ = x.max_load_;
move_buckets_from(x);
mlf_ = x.mlf_;
max_load_ = x.max_load_;
new_func_this.commit();
}
////////////////////////////////////////////////////////////////////////
// Swap & Move
void swap(table& x)
{
swap(x,
boost::unordered::detail::integral_constant<bool,
allocator_traits<node_allocator>::
propagate_on_container_swap::value>());
}
// Only swaps the allocators if Propagate::value
template <typename Propagate>
void swap(table& x, Propagate p)
{
// According to 23.2.1.8, if propagate_on_container_swap is
// false the behaviour is undefined unless the allocators
// are equal.
BOOST_ASSERT(p.value || this->node_alloc() == x.node_alloc());
boost::unordered::detail::set_hash_functions<hasher, key_equal>
op1(*this, x);
boost::unordered::detail::set_hash_functions<hasher, key_equal>
op2(x, *this);
// I think swap can throw if Propagate::value,
// since the allocators' swap can throw. Not sure though.
this->buckets::swap(x, p);
std::swap(this->mlf_, x.mlf_);
std::swap(this->max_load_, x.max_load_);
op1.commit();
op2.commit();
}
// Swap everything but the allocators, and the functions objects.
void swap_contents(table& x)
{
this->buckets::swap(x, false_type());
std::swap(this->mlf_, x.mlf_);
std::swap(this->max_load_, x.max_load_);
}
// Accessors
key_type const& get_key(value_type const& x) const
@ -356,7 +810,6 @@ namespace boost { namespace unordered { namespace detail {
Hash const& hf,
Pred const& eq) const
{
if (!this->size_) return iterator();
return static_cast<table_impl const*>(this)->
find_node_impl(policy::apply_hash(hf, k), k, eq);
}
@ -365,16 +818,14 @@ namespace boost { namespace unordered { namespace detail {
std::size_t key_hash,
key_type const& k) const
{
if (!this->size_) return iterator();
return static_cast<table_impl const*>(this)->
find_node_impl(key_hash, k, this->key_eq());
}
iterator find_node(key_type const& k) const
{
if (!this->size_) return iterator();
return static_cast<table_impl const*>(this)->
find_node_impl(this->hash(k), k, this->key_eq());
find_node_impl(hash(k), k, this->key_eq());
}
iterator find_matching_node(iterator n) const
@ -402,22 +853,19 @@ namespace boost { namespace unordered { namespace detail {
template <typename Types>
inline void table<Types>::reserve_for_insert(std::size_t size)
{
if (!this->buckets_) {
this->bucket_count_ = (std::max)(this->bucket_count_,
this->min_buckets_for_size(size));
this->create_buckets();
this->max_load_ = this->calculate_max_load();
if (!buckets_) {
create_buckets((std::max)(bucket_count_,
min_buckets_for_size(size)));
}
// According to the standard this should be 'size >= max_load_',
// but I think this is better, defect report filed.
else if(size > max_load_) {
std::size_t num_buckets
= this->min_buckets_for_size((std::max)(size,
this->size_ + (this->size_ >> 1)));
if (num_buckets != this->bucket_count_) {
= min_buckets_for_size((std::max)(size,
size_ + (size_ >> 1)));
if (num_buckets != bucket_count_)
static_cast<table_impl*>(this)->rehash_impl(num_buckets);
this->max_load_ = this->calculate_max_load();
}
}
}
@ -429,20 +877,18 @@ namespace boost { namespace unordered { namespace detail {
{
using namespace std;
if(!this->size_) {
if(this->buckets_) this->delete_buckets();
this->bucket_count_ = policy::new_bucket_count(min_buckets);
if(!size_) {
if(buckets_) delete_buckets();
bucket_count_ = policy::new_bucket_count(min_buckets);
}
else {
min_buckets = policy::new_bucket_count((std::max)(min_buckets,
boost::unordered::detail::double_to_size(floor(
static_cast<double>(this->size_) /
static_cast<double>(size_) /
static_cast<double>(mlf_))) + 1));
if(min_buckets != this->bucket_count_) {
if(min_buckets != bucket_count_)
static_cast<table_impl*>(this)->rehash_impl(min_buckets);
this->max_load_ = this->calculate_max_load();
}
}
}
@ -450,8 +896,12 @@ namespace boost { namespace unordered { namespace detail {
inline void table<Types>::reserve(std::size_t num_elements)
{
rehash(static_cast<std::size_t>(
std::ceil(static_cast<double>(num_elements) / this->mlf_)));
std::ceil(static_cast<double>(num_elements) / mlf_)));
}
}}}
#if defined(BOOST_MSVC)
#pragma warning(pop)
#endif
#endif

View File

@ -121,14 +121,12 @@ namespace boost { namespace unordered { namespace detail {
{
typedef boost::unordered::detail::set<A, T, H, P> types;
typedef A allocator;
typedef T value_type;
typedef H hasher;
typedef P key_equal;
typedef T key_type;
typedef typename boost::unordered::detail::rebind_wrap<
A, value_type>::type allocator;
typedef boost::unordered::detail::allocator_traits<allocator> traits;
typedef boost::unordered::detail::pick_node<allocator, value_type> pick;
typedef typename pick::node node;
@ -146,15 +144,14 @@ namespace boost { namespace unordered { namespace detail {
{
typedef boost::unordered::detail::map<A, K, M, H, P> types;
typedef A allocator;
typedef std::pair<K const, M> value_type;
typedef H hasher;
typedef P key_equal;
typedef K key_type;
typedef typename boost::unordered::detail::rebind_wrap<
A, value_type>::type allocator;
typedef boost::unordered::detail::allocator_traits<allocator> traits;
typedef boost::unordered::detail::allocator_traits<allocator>
traits;
typedef boost::unordered::detail::pick_node<allocator, value_type> pick;
typedef typename pick::node node;
typedef typename pick::bucket bucket;
@ -173,7 +170,6 @@ namespace boost { namespace unordered { namespace detail {
typedef boost::unordered::detail::table<Types> table;
typedef typename table::value_type value_type;
typedef typename table::bucket bucket;
typedef typename table::buckets buckets;
typedef typename table::policy policy;
typedef typename table::node_pointer node_pointer;
typedef typename table::node_allocator node_allocator;
@ -202,12 +198,17 @@ namespace boost { namespace unordered { namespace detail {
table_impl(table_impl const& x)
: table(x, node_allocator_traits::
select_on_container_copy_construction(x.node_alloc())) {}
select_on_container_copy_construction(x.node_alloc()))
{
this->init(x);
}
table_impl(table_impl const& x,
node_allocator const& a)
: table(x, a)
{}
{
this->init(x);
}
table_impl(table_impl& x,
boost::unordered::detail::move_tag m)
@ -218,7 +219,9 @@ namespace boost { namespace unordered { namespace detail {
node_allocator const& a,
boost::unordered::detail::move_tag m)
: table(x, a, m)
{}
{
this->move_init(x);
}
// Accessors
@ -228,6 +231,8 @@ namespace boost { namespace unordered { namespace detail {
Key const& k,
Pred const& eq) const
{
if (!this->size_) return iterator();
std::size_t bucket_index =
policy::to_bucket(this->bucket_count_, key_hash);
iterator n = this->get_start(bucket_index);
@ -349,9 +354,7 @@ namespace boost { namespace unordered { namespace detail {
// Create the node before rehashing in case it throws an
// exception (need strong safety in such a case).
node_constructor a(this->node_alloc());
a.construct_node();
a.construct_value(BOOST_UNORDERED_EMPLACE_ARGS3(
a.construct_with_value(BOOST_UNORDERED_EMPLACE_ARGS3(
boost::unordered::piecewise_construct,
boost::make_tuple(k),
boost::make_tuple()));
@ -413,8 +416,7 @@ namespace boost { namespace unordered { namespace detail {
// Create the node before rehashing in case it throws an
// exception (need strong safety in such a case).
node_constructor a(this->node_alloc());
a.construct_node();
a.construct_value(BOOST_UNORDERED_EMPLACE_FORWARD);
a.construct_with_value(BOOST_UNORDERED_EMPLACE_FORWARD);
// reserve has basic exception safety if the hash function
// throws, strong otherwise.
@ -442,8 +444,7 @@ namespace boost { namespace unordered { namespace detail {
// Don't have a key, so construct the node first in order
// to be able to lookup the position.
node_constructor a(this->node_alloc());
a.construct_node();
a.construct_value(BOOST_UNORDERED_EMPLACE_FORWARD);
a.construct_with_value(BOOST_UNORDERED_EMPLACE_FORWARD);
return emplace_impl_with_node(a);
}
@ -490,8 +491,7 @@ namespace boost { namespace unordered { namespace detail {
InputIt i, InputIt j)
{
std::size_t key_hash = this->hash(k);
a.construct_node();
a.construct_value2(*i);
a.construct_with_value2(*i);
this->reserve_for_insert(this->size_ +
boost::unordered::detail::insert_size(i, j));
this->add_node(a, key_hash);
@ -506,9 +506,7 @@ namespace boost { namespace unordered { namespace detail {
iterator pos = this->find_node(key_hash, k);
if (!pos.node_) {
a.construct_node();
a.construct_value2(*i);
a.construct_with_value2(*i);
if(this->size_ + 1 > this->max_load_)
this->reserve_for_insert(this->size_ +
boost::unordered::detail::insert_size(i, j));
@ -524,8 +522,7 @@ namespace boost { namespace unordered { namespace detail {
node_constructor a(this->node_alloc());
do {
a.construct_node();
a.construct_value2(*i);
a.construct_with_value2(*i);
emplace_impl_with_node(a);
} while(++i != j);
}
@ -617,58 +614,16 @@ namespace boost { namespace unordered { namespace detail {
}
////////////////////////////////////////////////////////////////////////
// copy_buckets_to
//
// Basic exception safety. If an exception is thrown this will
// leave dst partially filled and the buckets unset.
// fill_buckets
static void copy_buckets_to(buckets const& src, buckets& dst)
template <class NodeCreator>
static void fill_buckets(iterator n, table& dst,
NodeCreator& creator)
{
BOOST_ASSERT(!dst.buckets_);
dst.create_buckets();
node_constructor a(dst.node_alloc());
iterator n = src.get_start();
previous_pointer prev = dst.get_previous_start();
while(n.node_) {
a.construct_node();
a.construct_value2(*n);
node_pointer node = a.release();
node->hash_ = n.node_->hash_;
prev->next_ = static_cast<link_pointer>(node);
++dst.size_;
++n;
prev = place_in_bucket(dst, prev);
}
}
////////////////////////////////////////////////////////////////////////
// move_buckets_to
//
// Basic exception safety. The source nodes are left in an unusable
// state if an exception throws.
static void move_buckets_to(buckets& src, buckets& dst)
{
BOOST_ASSERT(!dst.buckets_);
dst.create_buckets();
node_constructor a(dst.node_alloc());
iterator n = src.get_start();
previous_pointer prev = dst.get_previous_start();
while (n.node_) {
a.construct_node();
a.construct_value2(boost::move(*n));
node_pointer node = a.release();
node_pointer node = creator.create(*n);
node->hash_ = n.node_->hash_;
prev->next_ = static_cast<link_pointer>(node);
++dst.size_;
@ -681,36 +636,22 @@ namespace boost { namespace unordered { namespace detail {
// strong otherwise exception safety
void rehash_impl(std::size_t num_buckets)
{
BOOST_ASSERT(this->size_);
BOOST_ASSERT(this->buckets_);
buckets dst(this->node_alloc(), num_buckets);
dst.create_buckets();
previous_pointer src_start = this->get_previous_start();
previous_pointer dst_start = dst.get_previous_start();
dst_start->next_ = src_start->next_;
src_start->next_ = link_pointer();
dst.size_ = this->size_;
this->size_ = 0;
previous_pointer prev = dst.get_previous_start();
this->create_buckets(num_buckets);
previous_pointer prev = this->get_previous_start();
while (prev->next_)
prev = place_in_bucket(dst, prev);
// Swap the new nodes back into the container and setup the
// variables.
dst.swap(*this); // no throw
prev = place_in_bucket(*this, prev);
}
// Iterate through the nodes placing them in the correct buckets.
// pre: prev->next_ is not null.
static previous_pointer place_in_bucket(buckets& dst,
static previous_pointer place_in_bucket(table& dst,
previous_pointer prev)
{
node_pointer n = static_cast<node_pointer>(prev->next_);
bucket_pointer b = dst.get_bucket(
buckets::to_bucket(dst.bucket_count_, n->hash_));
table::to_bucket(dst.bucket_count_, n->hash_));
if (!b->next_) {
b->next_ = prev;

View File

@ -56,7 +56,6 @@ namespace unordered
private:
typedef boost::unordered::detail::map<A, K, T, H, P> types;
typedef typename types::allocator value_allocator;
typedef typename types::traits allocator_traits;
typedef typename types::table table;
@ -542,7 +541,6 @@ namespace unordered
private:
typedef boost::unordered::detail::multimap<A, K, T, H, P> types;
typedef typename types::allocator value_allocator;
typedef typename types::traits allocator_traits;
typedef typename types::table table;

View File

@ -54,7 +54,6 @@ namespace unordered
private:
typedef boost::unordered::detail::set<A, T, H, P> types;
typedef typename types::allocator value_allocator;
typedef typename types::traits allocator_traits;
typedef typename types::table table;
@ -526,7 +525,6 @@ namespace unordered
private:
typedef boost::unordered::detail::multiset<A, T, H, P> types;
typedef typename types::allocator value_allocator;
typedef typename types::traits allocator_traits;
typedef typename types::table table;

View File

@ -186,9 +186,8 @@ namespace test
}
};
// allocator1 and allocator2 are pretty similar.
// allocator1 only has the old fashioned 'construct' method and has
// a few less typedefs
// a few less typedefs. allocator2 uses a custom pointer class.
template <class T>
class allocator1
@ -273,6 +272,127 @@ namespace test
};
};
template <class T> class ptr;
template <class T> class const_ptr;
struct void_ptr
{
#if !defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS)
template <typename T>
friend class ptr;
private:
#endif
void* ptr_;
public:
void_ptr() : ptr_(0) {}
template <typename T>
explicit void_ptr(ptr<T> const& x) : ptr_(x.ptr_) {}
// I'm not using the safe bool idiom because the containers should be
// able to cope with bool conversions.
operator bool() const { return !!ptr_; }
bool operator==(void_ptr const& x) const { return ptr_ == x.ptr_; }
bool operator!=(void_ptr const& x) const { return ptr_ != x.ptr_; }
};
class void_const_ptr
{
#if !defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS)
template <typename T>
friend class const_ptr;
private:
#endif
void* ptr_;
public:
void_const_ptr() : ptr_(0) {}
template <typename T>
explicit void_const_ptr(const_ptr<T> const& x) : ptr_(x.ptr_) {}
// I'm not using the safe bool idiom because the containers should be
// able to cope with bool conversions.
operator bool() const { return !!ptr_; }
bool operator==(void_const_ptr const& x) const { return ptr_ == x.ptr_; }
bool operator!=(void_const_ptr const& x) const { return ptr_ != x.ptr_; }
};
template <class T>
class ptr
{
friend class allocator2<T>;
friend class const_ptr<T>;
friend struct void_ptr;
T* ptr_;
ptr(T* x) : ptr_(x) {}
public:
ptr() : ptr_(0) {}
explicit ptr(void_ptr const& x) : ptr_((T*) x.ptr_) {}
T& operator*() const { return *ptr_; }
T* operator->() const { return ptr_; }
ptr& operator++() { ++ptr_; return *this; }
ptr operator++(int) { ptr tmp(*this); ++ptr_; return tmp; }
ptr operator+(std::ptrdiff_t s) const { return ptr<T>(ptr_ + s); }
friend ptr operator+(std::ptrdiff_t s, ptr p)
{ return ptr<T>(s + p.ptr_); }
T& operator[](std::ptrdiff_t s) const { return ptr_[s]; }
bool operator!() const { return !ptr_; }
// I'm not using the safe bool idiom because the containers should be
// able to cope with bool conversions.
operator bool() const { return !!ptr_; }
bool operator==(ptr const& x) const { return ptr_ == x.ptr_; }
bool operator!=(ptr const& x) const { return ptr_ != x.ptr_; }
bool operator<(ptr const& x) const { return ptr_ < x.ptr_; }
bool operator>(ptr const& x) const { return ptr_ > x.ptr_; }
bool operator<=(ptr const& x) const { return ptr_ <= x.ptr_; }
bool operator>=(ptr const& x) const { return ptr_ >= x.ptr_; }
};
template <class T>
class const_ptr
{
friend class allocator2<T>;
friend struct const_void_ptr;
T const* ptr_;
const_ptr(T const* ptr) : ptr_(ptr) {}
public:
const_ptr() : ptr_(0) {}
const_ptr(ptr<T> const& x) : ptr_(x.ptr_) {}
explicit const_ptr(void_const_ptr const& x) : ptr_((T const*) x.ptr_) {}
T const& operator*() const { return *ptr_; }
T const* operator->() const { return ptr_; }
const_ptr& operator++() { ++ptr_; return *this; }
const_ptr operator++(int) { const_ptr tmp(*this); ++ptr_; return tmp; }
const_ptr operator+(std::ptrdiff_t s) const
{ return const_ptr(ptr_ + s); }
friend const_ptr operator+(std::ptrdiff_t s, const_ptr p)
{ return ptr<T>(s + p.ptr_); }
T const& operator[](int s) const { return ptr_[s]; }
bool operator!() const { return !ptr_; }
operator bool() const { return !!ptr_; }
bool operator==(const_ptr const& x) const { return ptr_ == x.ptr_; }
bool operator!=(const_ptr const& x) const { return ptr_ != x.ptr_; }
bool operator<(const_ptr const& x) const { return ptr_ < x.ptr_; }
bool operator>(const_ptr const& x) const { return ptr_ > x.ptr_; }
bool operator<=(const_ptr const& x) const { return ptr_ <= x.ptr_; }
bool operator>=(const_ptr const& x) const { return ptr_ >= x.ptr_; }
};
template <class T>
class allocator2
{
@ -285,8 +405,10 @@ namespace test
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T* pointer;
typedef T const* const_pointer;
typedef void_ptr void_pointer;
typedef void_const_ptr const_void_pointer;
typedef ptr<T> pointer;
typedef const_ptr<T> const_pointer;
typedef T& reference;
typedef T const& const_reference;
typedef T value_type;
@ -326,9 +448,9 @@ namespace test
}
pointer allocate(size_type n) {
pointer ptr(static_cast<T*>(::operator new(n * sizeof(T))));
detail::tracker.track_allocate((void*) ptr, n, sizeof(T), tag_);
return ptr;
pointer p(static_cast<T*>(::operator new(n * sizeof(T))));
detail::tracker.track_allocate((void*) p.ptr_, n, sizeof(T), tag_);
return p;
}
pointer allocate(size_type n, void const* u)
@ -340,8 +462,8 @@ namespace test
void deallocate(pointer p, size_type n)
{
detail::tracker.track_deallocate((void*) p, n, sizeof(T), tag_);
::operator delete((void*) p);
detail::tracker.track_deallocate((void*) p.ptr_, n, sizeof(T), tag_);
::operator delete((void*) p.ptr_);
}
void construct(T* p, T const& t) {

View File

@ -229,6 +229,24 @@ void insert_tests2(X*, test::random_generator generator)
test::check_equivalent_keys(x);
}
std::cerr<<"insert range with rehash tests.\n";
{
test::check_instances check_;
X x;
test::random_values<X> v(1000, generator);
x.insert(*v.begin());
x.clear();
x.insert(v.begin(), v.end());
test::check_container(x, v);
test::check_equivalent_keys(x);
}
std::cerr<<"insert input iterator range tests.\n";
{