Files
unordered/test/objects/minimal.hpp
Daniel James dac1dc5837 Unordered: Reorganization to use void pointers and other things.
Helps allocators which can't use incomplete pointers, and avoid using
base pointers where that might not be possible.  And some other
reorganization. Storing arguments to emplace in a structure when
variadic template parameters aren't available. Changed some of the odd
design for working with older compilers.

[SVN r74742]
2011-10-05 19:45:14 +00:00

495 lines
14 KiB
C++

// Copyright 2006-2009 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// Define some minimal classes which provide the bare minimum concepts to
// test that the containers don't rely on something that they shouldn't.
// They are not intended to be good examples of how to implement the concepts.
#if !defined(BOOST_UNORDERED_OBJECTS_MINIMAL_HEADER)
#define BOOST_UNORDERED_OBJECTS_MINIMAL_HEADER
#include <cstddef>
#include <boost/move/move.hpp>
#include <utility>
#if defined(BOOST_MSVC)
#pragma warning(push)
#pragma warning(disable:4100) // unreferenced formal parameter
#endif
namespace test
{
namespace minimal
{
class destructible;
class copy_constructible;
class copy_constructible_equality_comparable;
class default_copy_constructible;
class assignable;
struct ampersand_operator_used {};
template <class T> class hash;
template <class T> class equal_to;
template <class T> class ptr;
template <class T> class const_ptr;
template <class T> class allocator;
template <class T> class cxx11_allocator;
struct constructor_param
{
operator int() const { return 0; }
};
class destructible
{
public:
destructible(constructor_param const&) {}
~destructible() {}
private:
destructible(destructible const&);
destructible& operator=(destructible const&);
};
class copy_constructible
{
public:
copy_constructible(constructor_param const&) {}
copy_constructible(copy_constructible const&) {}
~copy_constructible() {}
private:
copy_constructible& operator=(copy_constructible const&);
copy_constructible() {}
};
class copy_constructible_equality_comparable
{
public:
copy_constructible_equality_comparable(constructor_param const&) {}
copy_constructible_equality_comparable(
copy_constructible_equality_comparable const&)
{
}
~copy_constructible_equality_comparable()
{
}
private:
copy_constructible_equality_comparable& operator=(
copy_constructible_equality_comparable const&);
copy_constructible_equality_comparable() {}
ampersand_operator_used operator&() const { return ampersand_operator_used(); }
};
bool operator==(
copy_constructible_equality_comparable,
copy_constructible_equality_comparable)
{
return true;
}
bool operator!=(
copy_constructible_equality_comparable,
copy_constructible_equality_comparable)
{
return false;
}
class default_copy_constructible
{
public:
default_copy_constructible(constructor_param const&) {}
default_copy_constructible()
{
}
default_copy_constructible(default_copy_constructible const&)
{
}
~default_copy_constructible()
{
}
private:
default_copy_constructible& operator=(
default_copy_constructible const&);
ampersand_operator_used operator&() const {
return ampersand_operator_used(); }
};
class assignable
{
public:
assignable(constructor_param const&) {}
assignable(assignable const&) {}
assignable& operator=(assignable const&) { return *this; }
~assignable() {}
private:
assignable() {}
// TODO: This messes up a concept check in the tests.
//ampersand_operator_used operator&() const { return ampersand_operator_used(); }
};
struct movable_init {};
class movable1
{
BOOST_MOVABLE_BUT_NOT_COPYABLE(movable1)
public:
movable1(constructor_param const&) {}
movable1() {}
explicit movable1(movable_init) {}
movable1(BOOST_RV_REF(movable1)) {}
movable1& operator=(BOOST_RV_REF(movable1));
~movable1() {}
};
#if !defined(BOOST_NO_RVALUE_REFERENCES)
class movable2
{
public:
movable2(constructor_param const&) {}
explicit movable2(movable_init) {}
movable2(movable2&&) {}
~movable2() {}
private:
movable2() {}
movable2(movable2 const&);
movable2& operator=(movable2 const&);
};
#else
typedef movable1 movable2;
#endif
template <class T>
class hash
{
public:
hash(constructor_param const&) {}
hash() {}
hash(hash const&) {}
hash& operator=(hash const&) { return *this; }
~hash() {}
std::size_t operator()(T const&) const { return 0; }
private:
ampersand_operator_used operator&() const { return ampersand_operator_used(); }
};
template <class T>
class equal_to
{
public:
equal_to(constructor_param const&) {}
equal_to() {}
equal_to(equal_to const&) {}
equal_to& operator=(equal_to const&) { return *this; }
~equal_to() {}
bool operator()(T const&, T const&) const { return true; }
private:
ampersand_operator_used operator&() const { return ampersand_operator_used(); }
};
template <class T> class ptr;
template <class T> class const_ptr;
struct void_ptr
{
#if !defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS)
template <typename T>
friend class ptr;
private:
#endif
void* ptr_;
public:
void_ptr() : ptr_(0) {}
template <typename T>
explicit void_ptr(ptr<T> const& x) : ptr_(x.ptr_) {}
// I'm not using the safe bool idiom because the containers should be
// able to cope with bool conversions.
operator bool() const { return !!ptr_; }
bool operator==(void_ptr const& x) const { return ptr_ == x.ptr_; }
bool operator!=(void_ptr const& x) const { return ptr_ != x.ptr_; }
};
class void_const_ptr
{
#if !defined(BOOST_NO_MEMBER_TEMPLATE_FRIENDS)
template <typename T>
friend class const_ptr;
private:
#endif
void* ptr_;
public:
void_const_ptr() : ptr_(0) {}
template <typename T>
explicit void_const_ptr(const_ptr<T> const& x) : ptr_(x.ptr_) {}
// I'm not using the safe bool idiom because the containers should be
// able to cope with bool conversions.
operator bool() const { return !!ptr_; }
bool operator==(void_const_ptr const& x) const { return ptr_ == x.ptr_; }
bool operator!=(void_const_ptr const& x) const { return ptr_ != x.ptr_; }
};
template <class T>
class ptr
{
friend class allocator<T>;
friend class const_ptr<T>;
friend struct void_ptr;
T* ptr_;
ptr(T* x) : ptr_(x) {}
public:
ptr() : ptr_(0) {}
explicit ptr(void_ptr const& x) : ptr_((T*) x.ptr_) {}
T& operator*() const { return *ptr_; }
T* operator->() const { return ptr_; }
ptr& operator++() { ++ptr_; return *this; }
ptr operator++(int) { ptr tmp(*this); ++ptr_; return tmp; }
ptr operator+(std::ptrdiff_t s) const { return ptr<T>(ptr_ + s); }
friend ptr operator+(std::ptrdiff_t s, ptr p)
{ return ptr<T>(s + p.ptr_); }
T& operator[](std::ptrdiff_t s) const { return ptr_[s]; }
bool operator!() const { return !ptr_; }
// I'm not using the safe bool idiom because the containers should be
// able to cope with bool conversions.
operator bool() const { return !!ptr_; }
bool operator==(ptr const& x) const { return ptr_ == x.ptr_; }
bool operator!=(ptr const& x) const { return ptr_ != x.ptr_; }
bool operator<(ptr const& x) const { return ptr_ < x.ptr_; }
bool operator>(ptr const& x) const { return ptr_ > x.ptr_; }
bool operator<=(ptr const& x) const { return ptr_ <= x.ptr_; }
bool operator>=(ptr const& x) const { return ptr_ >= x.ptr_; }
private:
// TODO:
//ampersand_operator_used operator&() const { return ampersand_operator_used(); }
};
template <class T>
class const_ptr
{
friend class allocator<T>;
friend struct const_void_ptr;
T const* ptr_;
const_ptr(T const* ptr) : ptr_(ptr) {}
public:
const_ptr() : ptr_(0) {}
const_ptr(ptr<T> const& x) : ptr_(x.ptr_) {}
explicit const_ptr(void_const_ptr const& x) : ptr_((T const*) x.ptr_) {}
T const& operator*() const { return *ptr_; }
T const* operator->() const { return ptr_; }
const_ptr& operator++() { ++ptr_; return *this; }
const_ptr operator++(int) { const_ptr tmp(*this); ++ptr_; return tmp; }
const_ptr operator+(std::ptrdiff_t s) const
{ return const_ptr(ptr_ + s); }
friend const_ptr operator+(std::ptrdiff_t s, const_ptr p)
{ return ptr<T>(s + p.ptr_); }
T const& operator[](int s) const { return ptr_[s]; }
bool operator!() const { return !ptr_; }
operator bool() const { return !!ptr_; }
bool operator==(const_ptr const& x) const { return ptr_ == x.ptr_; }
bool operator!=(const_ptr const& x) const { return ptr_ != x.ptr_; }
bool operator<(const_ptr const& x) const { return ptr_ < x.ptr_; }
bool operator>(const_ptr const& x) const { return ptr_ > x.ptr_; }
bool operator<=(const_ptr const& x) const { return ptr_ <= x.ptr_; }
bool operator>=(const_ptr const& x) const { return ptr_ >= x.ptr_; }
private:
// TODO:
//ampersand_operator_used operator&() const { return ampersand_operator_used(); }
};
template <class T>
class allocator
{
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef void_ptr void_pointer;
typedef void_const_ptr void_const_pointer;
typedef ptr<T> pointer;
typedef const_ptr<T> const_pointer;
typedef T& reference;
typedef T const& const_reference;
typedef T value_type;
template <class U> struct rebind { typedef allocator<U> other; };
allocator() {}
template <class Y> allocator(allocator<Y> const&) {}
allocator(allocator const&) {}
~allocator() {}
pointer address(reference r) { return pointer(&r); }
const_pointer address(const_reference r) { return const_pointer(&r); }
pointer allocate(size_type n) {
return pointer(static_cast<T*>(::operator new(n * sizeof(T))));
}
template <class Y>
pointer allocate(size_type n, const_ptr<Y> u)
{
return pointer(static_cast<T*>(::operator new(n * sizeof(T))));
}
void deallocate(pointer p, size_type)
{
::operator delete((void*) p.ptr_);
}
void construct(T* p, T const& t) { new((void*)p) T(t); }
#if defined(BOOST_UNORDERED_STD_FORWARD_MOVE)
template<class... Args> void construct(T* p, Args&&... args) {
new((void*)p) T(std::forward<Args>(args)...);
}
#endif
void destroy(T* p) { p->~T(); }
size_type max_size() const { return 1000; }
#if defined(BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP) || \
BOOST_WORKAROUND(BOOST_MSVC, <= 1300)
public: allocator& operator=(allocator const&) { return *this;}
#else
private: allocator& operator=(allocator const&);
#endif
private:
ampersand_operator_used operator&() const { return ampersand_operator_used(); }
};
template <class T>
inline bool operator==(allocator<T> const&, allocator<T> const&)
{
return true;
}
template <class T>
inline bool operator!=(allocator<T> const&, allocator<T> const&)
{
return false;
}
template <class T>
void swap(allocator<T>&, allocator<T>&)
{
}
// C++11 allocator
//
// Not a fully minimal C++11 allocator, just what I support. Hopefully will
// cut down further in the future.
template <class T>
class cxx11_allocator
{
public:
typedef T value_type;
template <class U> struct rebind { typedef cxx11_allocator<U> other; };
cxx11_allocator() {}
template <class Y> cxx11_allocator(cxx11_allocator<Y> const&) {}
cxx11_allocator(cxx11_allocator const&) {}
~cxx11_allocator() {}
T* address(T& r) { return &r; }
T const* address(T const& r) { return &r; }
T* allocate(std::size_t n) {
return static_cast<T*>(::operator new(n * sizeof(T)));
}
template <class Y>
T* allocate(std::size_t n, const_ptr<Y> u) {
return static_cast<T*>(::operator new(n * sizeof(T)));
}
void deallocate(T* p, std::size_t) {
::operator delete((void*) p);
}
void construct(T* p, T const& t) { new((void*)p) T(t); }
#if defined(BOOST_UNORDERED_STD_FORWARD_MOVE)
template<class... Args> void construct(T* p, Args&&... args) {
new((void*)p) T(std::forward<Args>(args)...);
}
#endif
void destroy(T* p) { p->~T(); }
std::size_t max_size() const { return 1000u; }
};
template <class T>
inline bool operator==(cxx11_allocator<T> const&, cxx11_allocator<T> const&)
{
return true;
}
template <class T>
inline bool operator!=(cxx11_allocator<T> const&, cxx11_allocator<T> const&)
{
return false;
}
template <class T>
void swap(cxx11_allocator<T>&, cxx11_allocator<T>&)
{
}
}
}
#if defined(BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP)
namespace boost {
#else
namespace test {
namespace minimal {
#endif
std::size_t hash_value(
test::minimal::copy_constructible_equality_comparable)
{
return 1;
}
#if !defined(BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP)
}}
#else
}
#endif
#if defined(BOOST_MSVC)
#pragma warning(pop)
#endif
#endif