Files
unordered/doc/unordered/unordered_node_map.adoc
2023-05-19 11:17:56 +02:00

1545 lines
64 KiB
Plaintext
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

[#unordered_node_map]
== Class Template unordered_node_map
:idprefix: unordered_node_map_
`boost::unordered_node_map` — A node-based, open-addressing unordered associative container that associates unique keys with another value.
`boost::unordered_node_map` uses an open-addressing layout like `boost::unordered_flat_map`, but,
being node-based, it provides pointer/iterator stability and node handling functionalities.
Its performance lies between those of `boost::unordered_map` and `boost::unordered_flat_map`.
As a result of its using open addressing, the interface of `boost::unordered_node_map` deviates in
a number of aspects from that of `boost::unordered_map`/`std::unordered_map`:
- `begin()` is not constant-time.
- `erase(iterator)` returns `void`.
- There is no API for bucket handling (except `bucket_count`).
- The maximum load factor of the container is managed internally and can't be set by the user.
Other than this, `boost::unordered_node_map` is mostly a drop-in replacement of standard
unordered associative containers.
=== Synopsis
[listing,subs="+macros,+quotes"]
-----
// #include <boost/unordered/unordered_node_map.hpp>
namespace boost {
template<class Key,
class T,
class Hash = boost::hash<Key>,
class Pred = std::equal_to<Key>,
class Allocator = std::allocator<std::pair<const Key, T>>>
class unordered_node_map {
public:
// types
using key_type = Key;
using mapped_type = T;
using value_type = std::pair<const Key, T>;
using init_type = std::pair<
typename std::remove_const<Key>::type,
typename std::remove_const<T>::type
>;
using hasher = Hash;
using key_equal = Pred;
using allocator_type = Allocator;
using pointer = typename std::allocator_traits<Allocator>::pointer;
using const_pointer = typename std::allocator_traits<Allocator>::const_pointer;
using reference = value_type&;
using const_reference = const value_type&;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
using iterator = _implementation-defined_;
using const_iterator = _implementation-defined_;
using node_type = _implementation-defined_;
using insert_return_type = _implementation-defined_;
// construct/copy/destroy
xref:#unordered_node_map_default_constructor[unordered_node_map]();
explicit xref:#unordered_node_map_bucket_count_constructor[unordered_node_map](size_type n,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
template<class InputIterator>
xref:#unordered_node_map_iterator_range_constructor[unordered_node_map](InputIterator f, InputIterator l,
size_type n = _implementation-defined_,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
xref:#unordered_node_map_copy_constructor[unordered_node_map](const unordered_node_map& other);
xref:#unordered_node_map_move_constructor[unordered_node_map](unordered_node_map&& other);
template<class InputIterator>
xref:#unordered_node_map_iterator_range_constructor_with_allocator[unordered_node_map](InputIterator f, InputIterator l, const allocator_type& a);
explicit xref:#unordered_node_map_allocator_constructor[unordered_node_map](const Allocator& a);
xref:#unordered_node_map_copy_constructor_with_allocator[unordered_node_map](const unordered_node_map& other, const Allocator& a);
xref:#unordered_node_map_move_constructor_with_allocator[unordered_node_map](unordered_node_map&& other, const Allocator& a);
xref:#unordered_node_map_initializer_list_constructor[unordered_node_map](std::initializer_list<value_type> il,
size_type n = _implementation-defined_
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
xref:#unordered_node_map_bucket_count_constructor_with_allocator[unordered_node_map](size_type n, const allocator_type& a);
xref:#unordered_node_map_bucket_count_constructor_with_hasher_and_allocator[unordered_node_map](size_type n, const hasher& hf, const allocator_type& a);
template<class InputIterator>
xref:#unordered_node_map_iterator_range_constructor_with_bucket_count_and_allocator[unordered_node_map](InputIterator f, InputIterator l, size_type n, const allocator_type& a);
template<class InputIterator>
xref:#unordered_node_map_iterator_range_constructor_with_bucket_count_and_hasher[unordered_node_map](InputIterator f, InputIterator l, size_type n, const hasher& hf,
const allocator_type& a);
xref:#unordered_node_map_initializer_list_constructor_with_allocator[unordered_node_map](std::initializer_list<value_type> il, const allocator_type& a);
xref:#unordered_node_map_initializer_list_constructor_with_bucket_count_and_allocator[unordered_node_map](std::initializer_list<value_type> il, size_type n,
const allocator_type& a);
xref:#unordered_node_map_initializer_list_constructor_with_bucket_count_and_hasher_and_allocator[unordered_node_map](std::initializer_list<value_type> il, size_type n, const hasher& hf,
const allocator_type& a);
xref:#unordered_node_map_destructor[~unordered_node_map]();
unordered_node_map& xref:#unordered_node_map_copy_assignment[operator++=++](const unordered_node_map& other);
unordered_node_map& xref:#unordered_node_map_move_assignment[operator++=++](unordered_node_map&& other)
noexcept(boost::allocator_traits<Allocator>::is_always_equal::value ||
boost::allocator_traits<Allocator>::propagate_on_container_move_assignment::value);
unordered_node_map& xref:#unordered_node_map_initializer_list_assignment[operator++=++](std::initializer_list<value_type>);
allocator_type xref:#unordered_node_map_get_allocator[get_allocator]() const noexcept;
// iterators
iterator xref:#unordered_node_map_begin[begin]() noexcept;
const_iterator xref:#unordered_node_map_begin[begin]() const noexcept;
iterator xref:#unordered_node_map_end[end]() noexcept;
const_iterator xref:#unordered_node_map_end[end]() const noexcept;
const_iterator xref:#unordered_node_map_cbegin[cbegin]() const noexcept;
const_iterator xref:#unordered_node_map_cend[cend]() const noexcept;
// capacity
++[[nodiscard]]++ bool xref:#unordered_node_map_empty[empty]() const noexcept;
size_type xref:#unordered_node_map_size[size]() const noexcept;
size_type xref:#unordered_node_map_max_size[max_size]() const noexcept;
// modifiers
template<class... Args> std::pair<iterator, bool> xref:#unordered_node_map_emplace[emplace](Args&&... args);
template<class... Args> iterator xref:#unordered_node_map_emplace_hint[emplace_hint](const_iterator position, Args&&... args);
std::pair<iterator, bool> xref:#unordered_node_map_copy_insert[insert](const value_type& obj);
std::pair<iterator, bool> xref:#unordered_node_map_copy_insert[insert](const init_type& obj);
std::pair<iterator, bool> xref:#unordered_node_map_move_insert[insert](value_type&& obj);
std::pair<iterator, bool> xref:#unordered_node_map_move_insert[insert](init_type&& obj);
iterator xref:#unordered_node_map_copy_insert_with_hint[insert](const_iterator hint, const value_type& obj);
iterator xref:#unordered_node_map_copy_insert_with_hint[insert](const_iterator hint, const init_type& obj);
iterator xref:#unordered_node_map_move_insert_with_hint[insert](const_iterator hint, value_type&& obj);
iterator xref:#unordered_node_map_copy_insert_with_hint[insert](const_iterator hint, init_type&& obj);
template<class InputIterator> void xref:#unordered_node_map_insert_iterator_range[insert](InputIterator first, InputIterator last);
void xref:#unordered_node_map_insert_initializer_list[insert](std::initializer_list<value_type>);
insert_return_type xref:#unordered_node_map_insert_node[insert](node_type&& nh);
iterator xref:#unordered_node_map_insert_node_with_hint[insert](const_iterator hint, node_type&& nh);
template<class... Args>
std::pair<iterator, bool> xref:#unordered_node_map_try_emplace[try_emplace](const key_type& k, Args&&... args);
template<class... Args>
std::pair<iterator, bool> xref:#unordered_node_map_try_emplace[try_emplace](key_type&& k, Args&&... args);
template<class K, class... Args>
std::pair<iterator, bool> xref:#unordered_node_map_try_emplace[try_emplace](K&& k, Args&&... args);
template<class... Args>
iterator xref:#unordered_node_map_try_emplace_with_hint[try_emplace](const_iterator hint, const key_type& k, Args&&... args);
template<class... Args>
iterator xref:#unordered_node_map_try_emplace_with_hint[try_emplace](const_iterator hint, key_type&& k, Args&&... args);
template<class K, class... Args>
iterator xref:#unordered_node_map_try_emplace_with_hint[try_emplace](const_iterator hint, K&& k, Args&&... args);
template<class M>
std::pair<iterator, bool> xref:#unordered_node_map_insert_or_assign[insert_or_assign](const key_type& k, M&& obj);
template<class M>
std::pair<iterator, bool> xref:#unordered_node_map_insert_or_assign[insert_or_assign](key_type&& k, M&& obj);
template<class K, class M>
std::pair<iterator, bool> xref:#unordered_node_map_insert_or_assign[insert_or_assign](K&& k, M&& obj);
template<class M>
iterator xref:#unordered_node_map_insert_or_assign_with_hint[insert_or_assign](const_iterator hint, const key_type& k, M&& obj);
template<class M>
iterator xref:#unordered_node_map_insert_or_assign_with_hint[insert_or_assign](const_iterator hint, key_type&& k, M&& obj);
template<class K, class M>
iterator xref:#unordered_node_map_insert_or_assign_with_hint[insert_or_assign](const_iterator hint, K&& k, M&& obj);
void xref:#unordered_node_map_erase_by_position[erase](iterator position);
void xref:#unordered_node_map_erase_by_position[erase](const_iterator position);
size_type xref:#unordered_node_map_erase_by_key[erase](const key_type& k);
template<class K> size_type xref:#unordered_node_map_erase_by_key[erase](K&& k);
iterator xref:#unordered_node_map_erase_range[erase](const_iterator first, const_iterator last);
void xref:#unordered_node_map_swap[swap](unordered_node_map& other)
noexcept(boost::allocator_traits<Allocator>::is_always_equal::value ||
boost::allocator_traits<Allocator>::propagate_on_container_swap::value);
node_type xref:#unordered_node_map_extract_by_position[extract](const_iterator position);
node_type xref:#unordered_node_map_extract_by_key[extract](const key_type& key);
template<class K> node_type xref:#unordered_node_map_extract_by_key[extract](K&& key);
void xref:#unordered_node_map_clear[clear]() noexcept;
template<class H2, class P2>
void xref:#unordered_node_map_merge[merge](unordered_node_map<Key, T, H2, P2, Allocator>& source);
template<class H2, class P2>
void xref:#unordered_node_map_merge[merge](unordered_node_map<Key, T, H2, P2, Allocator>&& source);
// observers
hasher xref:#unordered_node_map_hash_function[hash_function]() const;
key_equal xref:#unordered_node_map_key_eq[key_eq]() const;
// map operations
iterator xref:#unordered_node_map_find[find](const key_type& k);
const_iterator xref:#unordered_node_map_find[find](const key_type& k) const;
template<class K>
iterator xref:#unordered_node_map_find[find](const K& k);
template<class K>
const_iterator xref:#unordered_node_map_find[find](const K& k) const;
size_type xref:#unordered_node_map_count[count](const key_type& k) const;
template<class K>
size_type xref:#unordered_node_map_count[count](const K& k) const;
bool xref:#unordered_node_map_contains[contains](const key_type& k) const;
template<class K>
bool xref:#unordered_node_map_contains[contains](const K& k) const;
std::pair<iterator, iterator> xref:#unordered_node_map_equal_range[equal_range](const key_type& k);
std::pair<const_iterator, const_iterator> xref:#unordered_node_map_equal_range[equal_range](const key_type& k) const;
template<class K>
std::pair<iterator, iterator> xref:#unordered_node_map_equal_range[equal_range](const K& k);
template<class K>
std::pair<const_iterator, const_iterator> xref:#unordered_node_map_equal_range[equal_range](const K& k) const;
// element access
mapped_type& xref:#unordered_node_map_operator[operator[+]+](const key_type& k);
mapped_type& xref:#unordered_node_map_operator[operator[+]+](key_type&& k);
template<class K> mapped_type& xref:#unordered_node_map_operator[operator[+]+](K&& k);
mapped_type& xref:#unordered_node_map_at[at](const key_type& k);
const mapped_type& xref:#unordered_node_map_at[at](const key_type& k) const;
template<class K> mapped_type& xref:#unordered_node_map_at[at](const K& k);
template<class K> const mapped_type& xref:#unordered_node_map_at[at](const K& k) const;
// bucket interface
size_type xref:#unordered_node_map_bucket_count[bucket_count]() const noexcept;
// hash policy
float xref:#unordered_node_map_load_factor[load_factor]() const noexcept;
float xref:#unordered_node_map_max_load_factor[max_load_factor]() const noexcept;
void xref:#unordered_node_map_set_max_load_factor[max_load_factor](float z);
size_type xref:#unordered_node_map_max_load[max_load]() const noexcept;
void xref:#unordered_node_map_rehash[rehash](size_type n);
void xref:#unordered_node_map_reserve[reserve](size_type n);
};
// Deduction Guides
template<class InputIterator,
class Hash = boost::hash<xref:#unordered_node_map_iter_key_type[__iter-key-type__]<InputIterator>>,
class Pred = std::equal_to<xref:#unordered_node_map_iter_key_type[__iter-key-type__]<InputIterator>>,
class Allocator = std::allocator<xref:#unordered_node_map_iter_to_alloc_type[__iter-to-alloc-type__]<InputIterator>>>
unordered_node_map(InputIterator, InputIterator, typename xref:#unordered_node_map_deduction_guides[__see below__]::size_type = xref:#unordered_node_map_deduction_guides[__see below__],
Hash = Hash(), Pred = Pred(), Allocator = Allocator())
-> unordered_node_map<xref:#unordered_node_map_iter_key_type[__iter-key-type__]<InputIterator>, xref:#unordered_node_map_iter_mapped_type[__iter-mapped-type__]<InputIterator>, Hash,
Pred, Allocator>;
template<class Key, class T, class Hash = boost::hash<Key>,
class Pred = std::equal_to<Key>,
class Allocator = std::allocator<std::pair<const Key, T>>>
unordered_node_map(std::initializer_list<std::pair<Key, T>>,
typename xref:#unordered_node_map_deduction_guides[__see below__]::size_type = xref:#unordered_node_map_deduction_guides[__see below__], Hash = Hash(),
Pred = Pred(), Allocator = Allocator())
-> unordered_node_map<Key, T, Hash, Pred, Allocator>;
template<class InputIterator, class Allocator>
unordered_node_map(InputIterator, InputIterator, typename xref:#unordered_node_map_deduction_guides[__see below__]::size_type, Allocator)
-> unordered_node_map<xref:#unordered_node_map_iter_key_type[__iter-key-type__]<InputIterator>, xref:#unordered_node_map_iter_mapped_type[__iter-mapped-type__]<InputIterator>,
boost::hash<xref:#unordered_node_map_iter_key_type[__iter-key-type__]<InputIterator>>,
std::equal_to<xref:#unordered_node_map_iter_key_type[__iter-key-type__]<InputIterator>>, Allocator>;
template<class InputIterator, class Allocator>
unordered_node_map(InputIterator, InputIterator, Allocator)
-> unordered_node_map<xref:#unordered_node_map_iter_key_type[__iter-key-type__]<InputIterator>, xref:#unordered_node_map_iter_mapped_type[__iter-mapped-type__]<InputIterator>,
boost::hash<xref:#unordered_node_map_iter_key_type[__iter-key-type__]<InputIterator>>,
std::equal_to<xref:#unordered_node_map_iter_key_type[__iter-key-type__]<InputIterator>>, Allocator>;
template<class InputIterator, class Hash, class Allocator>
unordered_node_map(InputIterator, InputIterator, typename xref:#unordered_node_map_deduction_guides[__see below__]::size_type, Hash,
Allocator)
-> unordered_node_map<xref:#unordered_node_map_iter_key_type[__iter-key-type__]<InputIterator>, xref:#unordered_node_map_iter_mapped_type[__iter-mapped-type__]<InputIterator>, Hash,
std::equal_to<xref:#unordered_node_map_iter_key_type[__iter-key-type__]<InputIterator>>, Allocator>;
template<class Key, class T, class Allocator>
unordered_node_map(std::initializer_list<std::pair<Key, T>>, typename xref:#unordered_node_map_deduction_guides[__see below__]::size_type,
Allocator)
-> unordered_node_map<Key, T, boost::hash<Key>, std::equal_to<Key>, Allocator>;
template<class Key, class T, class Allocator>
unordered_node_map(std::initializer_list<std::pair<Key, T>>, Allocator)
-> unordered_node_map<Key, T, boost::hash<Key>, std::equal_to<Key>, Allocator>;
template<class Key, class T, class Hash, class Allocator>
unordered_node_map(std::initializer_list<std::pair<Key, T>>, typename xref:#unordered_node_map_deduction_guides[__see below__]::size_type,
Hash, Allocator)
-> unordered_node_map<Key, T, Hash, std::equal_to<Key>, Allocator>;
// Equality Comparisons
template<class Key, class T, class Hash, class Pred, class Alloc>
bool xref:#unordered_node_map_operator_2[operator==](const unordered_node_map<Key, T, Hash, Pred, Alloc>& x,
const unordered_node_map<Key, T, Hash, Pred, Alloc>& y);
template<class Key, class T, class Hash, class Pred, class Alloc>
bool xref:#unordered_node_map_operator_3[operator!=](const unordered_node_map<Key, T, Hash, Pred, Alloc>& x,
const unordered_node_map<Key, T, Hash, Pred, Alloc>& y);
// swap
template<class Key, class T, class Hash, class Pred, class Alloc>
void xref:#unordered_node_map_swap_2[swap](unordered_node_map<Key, T, Hash, Pred, Alloc>& x,
unordered_node_map<Key, T, Hash, Pred, Alloc>& y)
noexcept(noexcept(x.swap(y)));
template<class K, class T, class H, class P, class A, class Predicate>
typename unordered_node_map<K, T, H, P, A>::size_type
xref:#unordered_node_map_erase_if[erase_if](unordered_node_map<K, T, H, P, A>& c, Predicate pred);
}
-----
---
=== Description
*Template Parameters*
[cols="1,1"]
|===
|_Key_
.2+|`std::pair<const Key, T>` must be https://en.cppreference.com/w/cpp/named_req/EmplaceConstructible[EmplaceConstructible^]
into the container from any `std::pair` object convertible to it, and it also must be
https://en.cppreference.com/w/cpp/named_req/Erasable[Erasable^] from the container.
|_T_
|_Hash_
|A unary function object type that acts a hash function for a `Key`. It takes a single argument of type `Key` and returns a value of type `std::size_t`.
|_Pred_
|A binary function object that induces an equivalence relation on values of type `Key`. It takes two arguments of type `Key` and returns a value of type `bool`.
|_Allocator_
|An allocator whose value type is the same as the container's value type.
`std::allocator_traits<Allocator>::pointer` and `std::allocator_traits<Allocator>::const_pointer`
must be convertible to/from `value_type*` and `const value_type*`, respectively.
|===
The element nodes of the container are held into an internal _bucket array_. A node is inserted into a bucket determined by the
hash code of its element, but if the bucket is already occupied (a _collision_), an available one in the vicinity of the
original position is used.
The size of the bucket array can be automatically increased by a call to `insert`/`emplace`, or as a result of calling
`rehash`/`reserve`. The _load factor_ of the container (number of elements divided by number of buckets) is never
greater than `max_load_factor()`, except possibly for small sizes where the implementation may decide to
allow for higher loads.
If `xref:hash_traits_hash_is_avalanching[hash_is_avalanching]<Hash>::value` is `true`, the hash function
is used as-is; otherwise, a bit-mixing post-processing stage is added to increase the quality of hashing
at the expense of extra computational cost.
---
=== Typedefs
[source,c++,subs=+quotes]
----
typedef _implementation-defined_ iterator;
----
An iterator whose value type is `value_type`.
The iterator category is at least a forward iterator.
Convertible to `const_iterator`.
---
[source,c++,subs=+quotes]
----
typedef _implementation-defined_ const_iterator;
----
A constant iterator whose value type is `value_type`.
The iterator category is at least a forward iterator.
---
[source,c++,subs=+quotes]
----
typedef _implementation-defined_ node_type;
----
A class for holding extracted container elements, modelling
https://en.cppreference.com/w/cpp/container/node_handle[NodeHandle].
---
[source,c++,subs=+quotes]
----
typedef _implementation-defined_ insert_return_type;
----
A specialization of an internal class template:
[source,c++,subs=+quotes]
----
template<class Iterator, class NodeType>
struct _insert_return_type_ // name is exposition only
{
Iterator position;
bool inserted;
NodeType node;
};
----
with `Iterator` = `iterator` and `NodeType` = `node_type`.
---
=== Constructors
==== Default Constructor
```c++
unordered_node_map();
```
Constructs an empty container using `hasher()` as the hash function,
`key_equal()` as the key equality predicate and `allocator_type()` as the allocator.
[horizontal]
Postconditions:;; `size() == 0`
Requires:;; If the defaults are used, `hasher`, `key_equal` and `allocator_type` need to be https://en.cppreference.com/w/cpp/named_req/DefaultConstructible[DefaultConstructible^].
---
==== Bucket Count Constructor
```c++
explicit unordered_node_map(size_type n,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
```
Constructs an empty container with at least `n` buckets, using `hf` as the hash
function, `eql` as the key equality predicate, and `a` as the allocator.
[horizontal]
Postconditions:;; `size() == 0`
Requires:;; If the defaults are used, `hasher`, `key_equal` and `allocator_type` need to be https://en.cppreference.com/w/cpp/named_req/DefaultConstructible[DefaultConstructible^].
---
==== Iterator Range Constructor
[source,c++,subs="+quotes"]
----
template<class InputIterator>
unordered_node_map(InputIterator f, InputIterator l,
size_type n = _implementation-defined_,
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
----
Constructs an empty container with at least `n` buckets, using `hf` as the hash function, `eql` as the key equality predicate and `a` as the allocator, and inserts the elements from `[f, l)` into it.
[horizontal]
Requires:;; If the defaults are used, `hasher`, `key_equal` and `allocator_type` need to be https://en.cppreference.com/w/cpp/named_req/DefaultConstructible[DefaultConstructible^].
---
==== Copy Constructor
```c++
unordered_node_map(unordered_node_map const& other);
```
The copy constructor. Copies the contained elements, hash function, predicate and allocator.
If `Allocator::select_on_container_copy_construction` exists and has the right signature, the allocator will be constructed from its result.
---
==== Move Constructor
```c++
unordered_node_map(unordered_node_map&& other);
```
The move constructor. The internal bucket array of `other` is transferred directly to the new container.
The hash function, predicate and allocator are moved-constructed from `other`.
---
==== Iterator Range Constructor with Allocator
```c++
template<class InputIterator>
unordered_node_map(InputIterator f, InputIterator l, const allocator_type& a);
```
Constructs an empty container using `a` as the allocator, with the default hash function and key equality predicate and inserts the elements from `[f, l)` into it.
[horizontal]
Requires:;; `hasher`, `key_equal` need to be https://en.cppreference.com/w/cpp/named_req/DefaultConstructible[DefaultConstructible^].
---
==== Allocator Constructor
```c++
explicit unordered_node_map(Allocator const& a);
```
Constructs an empty container, using allocator `a`.
---
==== Copy Constructor with Allocator
```c++
unordered_node_map(unordered_node_map const& other, Allocator const& a);
```
Constructs a container, copying ``other``'s contained elements, hash function, and predicate, but using allocator `a`.
---
==== Move Constructor with Allocator
```c++
unordered_node_map(unordered_node_map&& other, Allocator const& a);
```
If `a == other.get_allocator()`, the element nodes of `other` are transferred directly to the new container;
otherwise, elements are moved-constructed from those of `other`. The hash function and predicate are moved-constructed
from `other`, and the allocator is copy-constructed from `a`.
---
==== Initializer List Constructor
[source,c++,subs="+quotes"]
----
unordered_node_map(std::initializer_list<value_type> il,
size_type n = _implementation-defined_
const hasher& hf = hasher(),
const key_equal& eql = key_equal(),
const allocator_type& a = allocator_type());
----
Constructs an empty container with at least `n` buckets, using `hf` as the hash function, `eql` as the key equality predicate and `a`, and inserts the elements from `il` into it.
[horizontal]
Requires:;; If the defaults are used, `hasher`, `key_equal` and `allocator_type` need to be https://en.cppreference.com/w/cpp/named_req/DefaultConstructible[DefaultConstructible^].
---
==== Bucket Count Constructor with Allocator
```c++
unordered_node_map(size_type n, allocator_type const& a);
```
Constructs an empty container with at least `n` buckets, using `hf` as the hash function, the default hash function and key equality predicate and `a` as the allocator.
[horizontal]
Postconditions:;; `size() == 0`
Requires:;; `hasher` and `key_equal` need to be https://en.cppreference.com/w/cpp/named_req/DefaultConstructible[DefaultConstructible^].
---
==== Bucket Count Constructor with Hasher and Allocator
```c++
unordered_node_map(size_type n, hasher const& hf, allocator_type const& a);
```
Constructs an empty container with at least `n` buckets, using `hf` as the hash function, the default key equality predicate and `a` as the allocator.
[horizontal]
Postconditions:;; `size() == 0`
Requires:;; `key_equal` needs to be https://en.cppreference.com/w/cpp/named_req/DefaultConstructible[DefaultConstructible^].
---
==== Iterator Range Constructor with Bucket Count and Allocator
[source,c++,subs="+quotes"]
----
template<class InputIterator>
unordered_node_map(InputIterator f, InputIterator l, size_type n, const allocator_type& a);
----
Constructs an empty container with at least `n` buckets, using `a` as the allocator and default hash function and key equality predicate, and inserts the elements from `[f, l)` into it.
[horizontal]
Requires:;; `hasher`, `key_equal` need to be https://en.cppreference.com/w/cpp/named_req/DefaultConstructible[DefaultConstructible^].
---
==== Iterator Range Constructor with Bucket Count and Hasher
[source,c++,subs="+quotes"]
----
template<class InputIterator>
unordered_node_map(InputIterator f, InputIterator l, size_type n, const hasher& hf,
const allocator_type& a);
----
Constructs an empty container with at least `n` buckets, using `hf` as the hash function, `a` as the allocator, with the default key equality predicate, and inserts the elements from `[f, l)` into it.
[horizontal]
Requires:;; `key_equal` needs to be https://en.cppreference.com/w/cpp/named_req/DefaultConstructible[DefaultConstructible^].
---
==== initializer_list Constructor with Allocator
```c++
unordered_node_map(std::initializer_list<value_type> il, const allocator_type& a);
```
Constructs an empty container using `a` and default hash function and key equality predicate, and inserts the elements from `il` into it.
[horizontal]
Requires:;; `hasher` and `key_equal` need to be https://en.cppreference.com/w/cpp/named_req/DefaultConstructible[DefaultConstructible^].
---
==== initializer_list Constructor with Bucket Count and Allocator
```c++
unordered_node_map(std::initializer_list<value_type> il, size_type n, const allocator_type& a);
```
Constructs an empty container with at least `n` buckets, using `a` and default hash function and key equality predicate, and inserts the elements from `il` into it.
[horizontal]
Requires:;; `hasher` and `key_equal` need to be https://en.cppreference.com/w/cpp/named_req/DefaultConstructible[DefaultConstructible^].
---
==== initializer_list Constructor with Bucket Count and Hasher and Allocator
```c++
unordered_node_map(std::initializer_list<value_type> il, size_type n, const hasher& hf,
const allocator_type& a);
```
Constructs an empty container with at least `n` buckets, using `hf` as the hash function, `a` as the allocator and default key equality predicate,and inserts the elements from `il` into it.
[horizontal]
Requires:;; `key_equal` needs to be https://en.cppreference.com/w/cpp/named_req/DefaultConstructible[DefaultConstructible^].
---
=== Destructor
```c++
~unordered_node_map();
```
[horizontal]
Note:;; The destructor is applied to every element, and all memory is deallocated
---
=== Assignment
==== Copy Assignment
```c++
unordered_node_map& operator=(unordered_node_map const& other);
```
The assignment operator. Destroys previously existing elements, copy-assigns the hash function and predicate from `other`,
copy-assigns the allocator from `other` if `Alloc::propagate_on_container_copy_assignment` exists and `Alloc::propagate_on_container_copy_assignment::value` is `true`,
and finally inserts copies of the elements of `other`.
[horizontal]
Requires:;; `value_type` is https://en.cppreference.com/w/cpp/named_req/CopyInsertable[CopyInsertable^]
---
==== Move Assignment
```c++
unordered_node_map& operator=(unordered_node_map&& other)
noexcept(boost::allocator_traits<Allocator>::is_always_equal::value ||
boost::allocator_traits<Allocator>::propagate_on_container_move_assignment::value);
```
The move assignment operator. Destroys previously existing elements, swaps the hash function and predicate from `other`,
and move-assigns the allocator from `other` if `Alloc::propagate_on_container_move_assignment` exists and `Alloc::propagate_on_container_move_assignment::value` is `true`.
If at this point the allocator is equal to `other.get_allocator()`, the internal bucket array of `other` is transferred directly to the new container;
otherwise, inserts move-constructed copies of the elements of `other`.
---
==== Initializer List Assignment
```c++
unordered_node_map& operator=(std::initializer_list<value_type> il);
```
Assign from values in initializer list. All previously existing elements are destroyed.
[horizontal]
Requires:;; `value_type` is https://en.cppreference.com/w/cpp/named_req/CopyInsertable[CopyInsertable^]
=== Iterators
==== begin
```c++
iterator begin() noexcept;
const_iterator begin() const noexcept;
```
[horizontal]
Returns:;; An iterator referring to the first element of the container, or if the container is empty the past-the-end value for the container.
Complexity:;; O(`bucket_count()`)
---
==== end
```c++
iterator end() noexcept;
const_iterator end() const noexcept;
```
[horizontal]
Returns:;; An iterator which refers to the past-the-end value for the container.
---
==== cbegin
```c++
const_iterator cbegin() const noexcept;
```
[horizontal]
Returns:;; A `const_iterator` referring to the first element of the container, or if the container is empty the past-the-end value for the container.
Complexity:;; O(`bucket_count()`)
---
==== cend
```c++
const_iterator cend() const noexcept;
```
[horizontal]
Returns:;; A `const_iterator` which refers to the past-the-end value for the container.
---
=== Size and Capacity
==== empty
```c++
[[nodiscard]] bool empty() const noexcept;
```
[horizontal]
Returns:;; `size() == 0`
---
==== size
```c++
size_type size() const noexcept;
```
[horizontal]
Returns:;; `std::distance(begin(), end())`
---
==== max_size
```c++
size_type max_size() const noexcept;
```
[horizontal]
Returns:;; `size()` of the largest possible container.
---
=== Modifiers
==== emplace
```c++
template<class... Args> std::pair<iterator, bool> emplace(Args&&... args);
```
Inserts an object, constructed with the arguments `args`, in the container if and only if there is no element in the container with an equivalent key.
[horizontal]
Requires:;; `value_type` is constructible from `args`.
Returns:;; The `bool` component of the return type is `true` if an insert took place. +
+
If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element with equivalent key.
Throws:;; If an exception is thrown by an operation other than a call to `hasher` the function has no effect.
Notes:;; Can invalidate iterators, but only if the insert causes the load to be greater than the maximum load. +
---
==== emplace_hint
```c++
template<class... Args> iterator emplace_hint(const_iterator position, Args&&... args);
```
Inserts an object, constructed with the arguments `args`, in the container if and only if there is no element in the container with an equivalent key.
`position` is a suggestion to where the element should be inserted. This implementation ignores it.
[horizontal]
Requires:;; `value_type` is constructible from `args`.
Returns:;; The `bool` component of the return type is `true` if an insert took place. +
+
If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element with equivalent key.
Throws:;; If an exception is thrown by an operation other than a call to `hasher` the function has no effect.
Notes:;; Can invalidate iterators, but only if the insert causes the load to be greater than the maximum load. +
---
==== Copy Insert
```c++
std::pair<iterator, bool> insert(const value_type& obj);
std::pair<iterator, bool> insert(const init_type& obj);
```
Inserts `obj` in the container if and only if there is no element in the container with an equivalent key.
[horizontal]
Requires:;; `value_type` is https://en.cppreference.com/w/cpp/named_req/CopyInsertable[CopyInsertable^].
Returns:;; The `bool` component of the return type is `true` if an insert took place. +
+
If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element with equivalent key.
Throws:;; If an exception is thrown by an operation other than a call to `hasher` the function has no effect.
Notes:;; Can invalidate iterators, but only if the insert causes the load to be greater than the maximum load. +
+
A call of the form `insert(x)`, where `x` is equally convertible to both `const value_type&` and `const init_type&`, is not ambiguous and selects the `init_type` overload.
---
==== Move Insert
```c++
std::pair<iterator, bool> insert(value_type&& obj);
std::pair<iterator, bool> insert(init_type&& obj);
```
Inserts `obj` in the container if and only if there is no element in the container with an equivalent key.
[horizontal]
Requires:;; `value_type` is https://en.cppreference.com/w/cpp/named_req/MoveInsertable[MoveInsertable^].
Returns:;; The `bool` component of the return type is `true` if an insert took place. +
+
If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element with equivalent key.
Throws:;; If an exception is thrown by an operation other than a call to `hasher` the function has no effect.
Notes:;; Can invalidate iterators, but only if the insert causes the load to be greater than the maximum load. +
+
A call of the form `insert(x)`, where `x` is equally convertible to both `value_type&&` and `init_type&&`, is not ambiguous and selects the `init_type` overload.
---
==== Copy Insert with Hint
```c++
iterator insert(const_iterator hint, const value_type& obj);
iterator insert(const_iterator hint, const init_type& obj);
```
Inserts `obj` in the container if and only if there is no element in the container with an equivalent key.
`hint` is a suggestion to where the element should be inserted. This implementation ignores it.
[horizontal]
Requires:;; `value_type` is https://en.cppreference.com/w/cpp/named_req/CopyInsertable[CopyInsertable^].
Returns:;; The `bool` component of the return type is `true` if an insert took place. +
+
If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element with equivalent key.
Throws:;; If an exception is thrown by an operation other than a call to `hasher` the function has no effect.
Notes:;; Can invalidate iterators, but only if the insert causes the load to be greater than the maximum load. +
+
A call of the form `insert(hint, x)`, where `x` is equally convertible to both `const value_type&` and `const init_type&`, is not ambiguous and selects the `init_type` overload.
---
==== Move Insert with Hint
```c++
iterator insert(const_iterator hint, value_type&& obj);
iterator insert(const_iterator hint, init_type&& obj);
```
Inserts `obj` in the container if and only if there is no element in the container with an equivalent key.
`hint` is a suggestion to where the element should be inserted. This implementation ignores it.
[horizontal]
Requires:;; `value_type` is https://en.cppreference.com/w/cpp/named_req/MoveInsertable[MoveInsertable^].
Returns:;; The `bool` component of the return type is `true` if an insert took place. +
+
If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element with equivalent key.
Throws:;; If an exception is thrown by an operation other than a call to `hasher` the function has no effect.
Notes:;; Can invalidate iterators, but only if the insert causes the load to be greater than the maximum load. +
+
A call of the form `insert(hint, x)`, where `x` is equally convertible to both `value_type&&` and `init_type&&`, is not ambiguous and selects the `init_type` overload.
---
==== Insert Iterator Range
```c++
template<class InputIterator> void insert(InputIterator first, InputIterator last);
```
Inserts a range of elements into the container. Elements are inserted if and only if there is no element in the container with an equivalent key.
[horizontal]
Requires:;; `value_type` is https://en.cppreference.com/w/cpp/named_req/EmplaceConstructible[EmplaceConstructible^] into the container from `*first`.
Throws:;; When inserting a single element, if an exception is thrown by an operation other than a call to `hasher` the function has no effect.
Notes:;; Can invalidate iterators, but only if the insert causes the load to be greater than the maximum load.
---
==== Insert Initializer List
```c++
void insert(std::initializer_list<value_type>);
```
Inserts a range of elements into the container. Elements are inserted if and only if there is no element in the container with an equivalent key.
[horizontal]
Requires:;; `value_type` is https://en.cppreference.com/w/cpp/named_req/EmplaceConstructible[EmplaceConstructible^] into the container from `*first`.
Throws:;; When inserting a single element, if an exception is thrown by an operation other than a call to `hasher` the function has no effect.
Notes:;; Can invalidate iterators, but only if the insert causes the load to be greater than the maximum load.
---
==== Insert Node
```c++
insert_return_type insert(node_type&& nh);
```
If `nh` is not empty, inserts the associated element in the container if and only if there is no element in the container with a key equivalent to `nh.key()`.
`nh` is empty when the function returns.
[horizontal]
Returns:;; An `insert_return_type` object constructed from `position`, `inserted` and `node`: +
* If `nh` is empty, `inserted` is `false`, `position` is `end()`, and `node` is empty.
* Otherwise if the insertion took place, `inserted` is true, `position` points to the inserted element, and `node` is empty.
* If the insertion failed, `inserted` is false, `node` has the previous value of `nh`, and `position` points to an element with a key equivalent to `nh.key()`.
Throws:;; If an exception is thrown by an operation other than a call to `hasher` the function has no effect.
Notes:;; Behavior is undefined if `nh` is not empty and the allocators of `nh` and the container are not equal.
---
==== Insert Node with Hint
```c++
iterator insert(const_iterator hint, node_type&& nh);
```
If `nh` is not empty, inserts the associated element in the container if and only if there is no element in the container with a key equivalent to `nh.key()`.
`nh` becomes empty if insertion took place, otherwise it is not changed.
`hint` is a suggestion to where the element should be inserted. This implementation ignores it.
[horizontal]
Returns:;; The iterator returned is `end()` if `nh` is empty.
If insertion took place, then the iterator points to the newly inserted element; otherwise, it points to the element with equivalent key.
Throws:;; If an exception is thrown by an operation other than a call to `hasher` the function has no effect.
Notes:;; Behavior is undefined if `nh` is not empty and the allocators of `nh` and the container are not equal.
---
==== try_emplace
```c++
template<class... Args>
std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args);
template<class... Args>
std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args);
template<class K, class... Args>
std::pair<iterator, bool> try_emplace(K&& k, Args&&... args);
```
Inserts a new node into the container if there is no existing element with key `k` contained within it.
If there is an existing element with key `k` this function does nothing.
[horizontal]
Returns:;; The `bool` component of the return type is `true` if an insert took place. +
+
If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element with equivalent key.
Throws:;; If an exception is thrown by an operation other than a call to `hasher` the function has no effect.
Notes:;; This function is similiar to xref:#unordered_node_map_emplace[emplace], with the difference that no `value_type` is constructed
if there is an element with an equivalent key; otherwise, the construction is of the form: +
+
--
```c++
// first two overloads
value_type(std::piecewise_construct,
std::forward_as_tuple(boost::forward<Key>(k)),
std::forward_as_tuple(boost::forward<Args>(args)...))
// third overload
value_type(std::piecewise_construct,
std::forward_as_tuple(boost::forward<K>(k)),
std::forward_as_tuple(boost::forward<Args>(args)...))
```
unlike xref:#unordered_node_map_emplace[emplace], which simply forwards all arguments to ``value_type``'s constructor.
Can invalidate iterators, but only if the insert causes the load to be greater than the maximum load.
The `template <class K, class... Args>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
--
---
==== try_emplace with Hint
```c++
template<class... Args>
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args);
template<class... Args>
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args);
template<class K, class... Args>
iterator try_emplace(const_iterator hint, K&& k, Args&&... args);
```
Inserts a new node into the container if there is no existing element with key `k` contained within it.
If there is an existing element with key `k` this function does nothing.
`hint` is a suggestion to where the element should be inserted. This implementation ignores it.
[horizontal]
Returns:;; If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element with equivalent key.
Throws:;; If an exception is thrown by an operation other than a call to `hasher` the function has no effect.
Notes:;; This function is similiar to xref:#unordered_node_map_emplace_hint[emplace_hint], with the difference that no `value_type` is constructed
if there is an element with an equivalent key; otherwise, the construction is of the form: +
+
--
```c++
// first two overloads
value_type(std::piecewise_construct,
std::forward_as_tuple(boost::forward<Key>(k)),
std::forward_as_tuple(boost::forward<Args>(args)...))
// third overload
value_type(std::piecewise_construct,
std::forward_as_tuple(boost::forward<K>(k)),
std::forward_as_tuple(boost::forward<Args>(args)...))
```
unlike xref:#unordered_node_map_emplace_hint[emplace_hint], which simply forwards all arguments to ``value_type``'s constructor.
Can invalidate iterators, but only if the insert causes the load to be greater than the maximum load.
The `template <class K, class... Args>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
--
---
==== insert_or_assign
```c++
template<class M>
std::pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj);
template<class M>
std::pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj);
template<class K, class M>
std::pair<iterator, bool> insert_or_assign(K&& k, M&& obj);
```
Inserts a new element into the container or updates an existing one by assigning to the contained value.
If there is an element with key `k`, then it is updated by assigning `boost::forward<M>(obj)`.
If there is no such element, it is added to the container as:
```c++
// first two overloads
value_type(std::piecewise_construct,
std::forward_as_tuple(boost::forward<Key>(k)),
std::forward_as_tuple(boost::forward<M>(obj)))
// third overload
value_type(std::piecewise_construct,
std::forward_as_tuple(boost::forward<K>(k)),
std::forward_as_tuple(boost::forward<M>(obj)))
```
[horizontal]
Returns:;; The `bool` component of the return type is `true` if an insert took place. +
+
If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element with equivalent key.
Throws:;; If an exception is thrown by an operation other than a call to `hasher` the function has no effect.
Notes:;; Can invalidate iterators, but only if the insert causes the load to be greater than the maximum load. +
+
The `template<class K, class M>` only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
==== insert_or_assign with Hint
```c++
template<class M>
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj);
template<class M>
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj);
template<class K, class M>
iterator insert_or_assign(const_iterator hint, K&& k, M&& obj);
```
Inserts a new element into the container or updates an existing one by assigning to the contained value.
If there is an element with key `k`, then it is updated by assigning `boost::forward<M>(obj)`.
If there is no such element, it is added to the container as:
```c++
// first two overloads
value_type(std::piecewise_construct,
std::forward_as_tuple(boost::forward<Key>(k)),
std::forward_as_tuple(boost::forward<M>(obj)))
// third overload
value_type(std::piecewise_construct,
std::forward_as_tuple(boost::forward<K>(k)),
std::forward_as_tuple(boost::forward<M>(obj)))
```
`hint` is a suggestion to where the element should be inserted. This implementation ignores it.
[horizontal]
Returns:;; If an insert took place, then the iterator points to the newly inserted element. Otherwise, it points to the element with equivalent key.
Throws:;; If an exception is thrown by an operation other than a call to `hasher` the function has no effect.
Notes:;; Can invalidate iterators, but only if the insert causes the load to be greater than the maximum load. +
+
The `template<class K, class M>` only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
==== Erase by Position
```c++
void erase(iterator position);
void erase(const_iterator position);
```
Erase the element pointed to by `position`.
[horizontal]
Throws:;; Nothing.
---
==== Erase by Key
```c++
size_type erase(const key_type& k);
template<class K> size_type erase(K&& k);
```
Erase all elements with key equivalent to `k`.
[horizontal]
Returns:;; The number of elements erased.
Throws:;; Only throws an exception if it is thrown by `hasher` or `key_equal`.
Notes:;; The `template<class K>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
==== Erase Range
```c++
iterator erase(const_iterator first, const_iterator last);
```
Erases the elements in the range from `first` to `last`.
[horizontal]
Returns:;; The iterator following the erased elements - i.e. `last`.
Throws:;; Nothing in this implementation (neither the `hasher` nor the `key_equal` objects are called).
---
==== swap
```c++
void swap(unordered_node_map& other)
noexcept(boost::allocator_traits<Allocator>::is_always_equal::value ||
boost::allocator_traits<Allocator>::propagate_on_container_swap::value);
```
Swaps the contents of the container with the parameter.
If `Allocator::propagate_on_container_swap` is declared and `Allocator::propagate_on_container_swap::value` is `true` then the containers' allocators are swapped. Otherwise, swapping with unequal allocators results in undefined behavior.
[horizontal]
Throws:;; Nothing unless `key_equal` or `hasher` throw on swapping.
---
==== Extract by Position
```c++
node_type extract(const_iterator position);
```
Extracts the element pointed to by `position`.
[horizontal]
Returns:;; A `node_type` object holding the extracted element.
Throws:;; Nothing.
---
==== Extract by Key
```c++
node_type erase(const key_type& k);
template<class K> node_type erase(K&& k);
```
Extracts the element with key equivalent to `k`, if it exists.
[horizontal]
Returns:;; A `node_type` object holding the extracted element, or empty if no element was extracted.
Throws:;; Only throws an exception if it is thrown by `hasher` or `key_equal`.
Notes:;; The `template<class K>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs and neither `iterator` nor `const_iterator` are implicitly convertible from `K`. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
==== clear
```c++
void clear() noexcept;
```
Erases all elements in the container.
[horizontal]
Postconditions:;; `size() == 0`, `max_load() >= max_load_factor() * bucket_count()`
---
==== merge
```c++
template<class H2, class P2>
void merge(unordered_node_map<Key, T, H2, P2, Allocator>& source);
template<class H2, class P2>
void merge(unordered_node_map<Key, T, H2, P2, Allocator>&& source);
```
Transfers all the element nodes from `source` whose key is not already present in `*this`.
---
=== Observers
==== get_allocator
```
allocator_type get_allocator() const noexcept;
```
[horizontal]
Returns:;; The container's allocator.
---
==== hash_function
```
hasher hash_function() const;
```
[horizontal]
Returns:;; The container's hash function.
---
==== key_eq
```
key_equal key_eq() const;
```
[horizontal]
Returns:;; The container's key equality predicate
---
=== Lookup
==== find
```c++
iterator find(const key_type& k);
const_iterator find(const key_type& k) const;
template<class K>
iterator find(const K& k);
```
[horizontal]
Returns:;; An iterator pointing to an element with key equivalent to `k`, or `end()` if no such element exists.
Notes:;; The `template <typename K>` overloads only participate in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
==== count
```c++
size_type count(const key_type& k) const;
template<class K>
size_type count(const K& k) const;
```
[horizontal]
Returns:;; The number of elements with key equivalent to `k`.
Notes:;; The `template <typename K>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
==== contains
```c++
bool contains(const key_type& k) const;
template<class K>
bool contains(const K& k) const;
```
[horizontal]
Returns:;; A boolean indicating whether or not there is an element with key equal to `key` in the container
Notes:;; The `template <typename K>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
==== equal_range
```c++
std::pair<iterator, iterator> equal_range(const key_type& k);
std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const;
template<class K>
std::pair<iterator, iterator> equal_range(const K& k);
template<class K>
std::pair<const_iterator, const_iterator> equal_range(const K& k) const;
```
[horizontal]
Returns:;; A range containing all elements with key equivalent to `k`. If the container doesn't contain any such elements, returns `std::make_pair(b.end(), b.end())`.
Notes:;; The `template <typename K>` overloads only participate in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
==== operator++[++++]++
```c++
mapped_type& operator[](const key_type& k);
mapped_type& operator[](key_type&& k);
template<class K> mapped_type& operator[](K&& k);
```
[horizontal]
Effects:;; If the container does not already contain an element with a key equivalent to `k`, inserts the value `std::pair<key_type const, mapped_type>(k, mapped_type())`.
Returns:;; A reference to `x.second` where `x` is the element already in the container, or the newly inserted element with a key equivalent to `k`.
Throws:;; If an exception is thrown by an operation other than a call to `hasher` the function has no effect.
Notes:;; Can invalidate iterators, but only if the insert causes the load to be greater than the maximum load. +
+
The `template<class K>` overload only participates in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
==== at
```c++
mapped_type& at(const key_type& k);
const mapped_type& at(const key_type& k) const;
template<class K> mapped_type& at(const K& k);
template<class K> const mapped_type& at(const K& k) const;
```
[horizontal]
Returns:;; A reference to `x.second` where `x` is the (unique) element whose key is equivalent to `k`.
Throws:;; An exception object of type `std::out_of_range` if no such element is present.
Notes:;; The `template<class K>` overloads only participate in overload resolution if `Hash::is_transparent` and `Pred::is_transparent` are valid member typedefs. The library assumes that `Hash` is callable with both `K` and `Key` and that `Pred` is transparent. This enables heterogeneous lookup which avoids the cost of instantiating an instance of the `Key` type.
---
=== Bucket Interface
==== bucket_count
```c++
size_type bucket_count() const noexcept;
```
[horizontal]
Returns:;; The size of the bucket array.
---
=== Hash Policy
==== load_factor
```c++
float load_factor() const noexcept;
```
[horizontal]
Returns:;; `static_cast<float>(size())/static_cast<float>(bucket_count())`, or `0` if `bucket_count() == 0`.
---
==== max_load_factor
```c++
float max_load_factor() const noexcept;
```
[horizontal]
Returns:;; Returns the container's maximum load factor.
---
==== Set max_load_factor
```c++
void max_load_factor(float z);
```
[horizontal]
Effects:;; Does nothing, as the user is not allowed to change this parameter. Kept for compatibility with `boost::unordered_map`.
---
==== max_load
```c++
size_type max_load() const noexcept;
```
[horizontal]
Returns:;; The maximum number of elements the container can hold without rehashing, assuming that no further elements will be erased.
Note:;; After construction, rehash or clearance, the container's maximum load is at least `max_load_factor() * bucket_count()`.
This number may decrease on erasure under high-load conditions.
---
==== rehash
```c++
void rehash(size_type n);
```
Changes if necessary the size of the bucket array so that there are at least `n` buckets, and so that the load factor is less than or equal to the maximum load factor. When applicable, this will either grow or shrink the `bucket_count()` associated with the container.
When `size() == 0`, `rehash(0)` will deallocate the underlying buckets array.
Invalidates iterators and changes the order of elements.
[horizontal]
Throws:;; The function has no effect if an exception is thrown, unless it is thrown by the container's hash function or comparison function.
---
==== reserve
```c++
void reserve(size_type n);
```
Equivalent to `a.rehash(ceil(n / a.max_load_factor()))`.
Similar to `rehash`, this function can be used to grow or shrink the number of buckets in the container.
Invalidates iterators and changes the order of elements.
[horizontal]
Throws:;; The function has no effect if an exception is thrown, unless it is thrown by the container's hash function or comparison function.
=== Deduction Guides
A deduction guide will not participate in overload resolution if any of the following are true:
- It has an `InputIterator` template parameter and a type that does not qualify as an input iterator is deduced for that parameter.
- It has an `Allocator` template parameter and a type that does not qualify as an allocator is deduced for that parameter.
- It has a `Hash` template parameter and an integral type or a type that qualifies as an allocator is deduced for that parameter.
- It has a `Pred` template parameter and a type that qualifies as an allocator is deduced for that parameter.
A `size_­type` parameter type in a deduction guide refers to the `size_­type` member type of the
container type deduced by the deduction guide. Its default value coincides with the default value
of the constructor selected.
==== __iter-value-type__
[listings,subs="+macros,+quotes"]
-----
template<class InputIterator>
using __iter-value-type__ =
typename std::iterator_traits<InputIterator>::value_type; // exposition only
-----
==== __iter-key-type__
[listings,subs="+macros,+quotes"]
-----
template<class InputIterator>
using __iter-key-type__ = std::remove_const_t<
std::tuple_element_t<0, xref:#unordered_map_iter_value_type[__iter-value-type__]<InputIterator>>>; // exposition only
-----
==== __iter-mapped-type__
[listings,subs="+macros,+quotes"]
-----
template<class InputIterator>
using __iter-mapped-type__ =
std::tuple_element_t<1, xref:#unordered_map_iter_value_type[__iter-value-type__]<InputIterator>>; // exposition only
-----
==== __iter-to-alloc-type__
[listings,subs="+macros,+quotes"]
-----
template<class InputIterator>
using __iter-to-alloc-type__ = std::pair<
std::add_const_t<std::tuple_element_t<0, xref:#unordered_map_iter_value_type[__iter-value-type__]<InputIterator>>>,
std::tuple_element_t<1, xref:#unordered_map_iter_value_type[__iter-value-type__]<InputIterator>>>; // exposition only
-----
=== Equality Comparisons
==== operator==
```c++
template<class Key, class T, class Hash, class Pred, class Alloc>
bool operator==(const unordered_node_map<Key, T, Hash, Pred, Alloc>& x,
const unordered_node_map<Key, T, Hash, Pred, Alloc>& y);
```
Return `true` if `x.size() == y.size()` and for every element in `x`, there is an element in `y` with the same key, with an equal value (using `operator==` to compare the value types).
[horizontal]
Notes:;; Behavior is undefined if the two containers don't have equivalent equality predicates.
---
==== operator!=
```c++
template<class Key, class T, class Hash, class Pred, class Alloc>
bool operator!=(const unordered_node_map<Key, T, Hash, Pred, Alloc>& x,
const unordered_node_map<Key, T, Hash, Pred, Alloc>& y);
```
Return `false` if `x.size() == y.size()` and for every element in `x`, there is an element in `y` with the same key, with an equal value (using `operator==` to compare the value types).
[horizontal]
Notes:;; Behavior is undefined if the two containers don't have equivalent equality predicates.
=== Swap
```c++
template<class Key, class T, class Hash, class Pred, class Alloc>
void swap(unordered_node_map<Key, T, Hash, Pred, Alloc>& x,
unordered_node_map<Key, T, Hash, Pred, Alloc>& y)
noexcept(noexcept(x.swap(y)));
```
Swaps the contents of `x` and `y`.
If `Allocator::propagate_on_container_swap` is declared and `Allocator::propagate_on_container_swap::value` is `true` then the containers' allocators are swapped. Otherwise, swapping with unequal allocators results in undefined behavior.
[horizontal]
Effects:;; `x.swap(y)`
Throws:;; Nothing unless `key_equal` or `hasher` throw on swapping.
---
=== erase_if
```c++
template<class K, class T, class H, class P, class A, class Predicate>
typename unordered_node_map<K, T, H, P, A>::size_type
erase_if(unordered_node_map<K, T, H, P, A>& c, Predicate pred);
```
Traverses the container `c` and removes all elements for which the supplied predicate returns `true`.
[horizontal]
Returns:;; The number of erased elements.
Notes:;; Equivalent to: +
+
```c++
auto original_size = c.size();
for (auto i = c.begin(), last = c.end(); i != last; ) {
if (pred(*i)) {
i = c.erase(i);
} else {
++i;
}
}
return original_size - c.size();
```
---