Files
unordered/test/unordered/transparent_tests.cpp

867 lines
22 KiB
C++

// Copyright 2021 Christian Mazakas.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// clang-format off
#include "../helpers/prefix.hpp"
#include <boost/unordered_set.hpp>
#include <boost/unordered_map.hpp>
#include "../helpers/postfix.hpp"
// clang-format on
#include "../helpers/test.hpp"
#include <boost/container_hash/hash.hpp>
struct key
{
int x_;
static int count_;
key(int x) : x_(x) { ++count_; }
key(key const& k) : x_(k.x_) { ++count_; }
};
int key::count_;
struct transparent_hasher
{
typedef void is_transparent;
std::size_t operator()(key const& k) const
{
return boost::hash<int>()(k.x_);
}
std::size_t operator()(int const k) const { return boost::hash<int>()(k); }
};
struct transparent_key_equal
{
typedef void is_transparent;
bool operator()(key const& k1, key const& k2) const { return k1.x_ == k2.x_; }
bool operator()(int const x, key const& k1) const { return k1.x_ == x; }
bool operator()(key const& k1, int const x) const { return k1.x_ == x; }
};
struct hasher
{
std::size_t operator()(key const& k) const
{
return boost::hash<int>()(k.x_);
}
};
struct key_equal
{
bool operator()(key const& k1, key const& k2) const { return k1.x_ == k2.x_; }
};
void count_reset() { key::count_ = 0; }
template <class UnorderedMap> void test_transparent_count()
{
count_reset();
UnorderedMap map;
// initial `key(0)` expression increases the count
// then copying into the `unordered_map` increments the count again thus we
// have 2
//
map[key(0)] = 1337;
BOOST_TEST(key::count_ == 2);
// now the number of `key` objects created should be a constant and never
// touched again
//
std::size_t count = 0;
count = map.count(0);
BOOST_TEST(count == 1);
BOOST_TEST(key::count_ == 2);
count = map.count(1);
BOOST_TEST(count == 0);
BOOST_TEST(key::count_ == 2);
count = map.count(key(0));
BOOST_TEST(count == 1);
BOOST_TEST(key::count_ == 3);
}
template <class UnorderedMap> void test_non_transparent_count()
{
count_reset();
UnorderedMap map;
// initial `key(0)` expression increases the count
// then copying into the `unordered_map` increments the count again thus we
// have 2
//
map[key(0)] = 1337;
BOOST_TEST(key::count_ == 2);
// rely on the implicit constructor here to spawn a new object which
// increases the count
//
std::size_t count = 0;
count = map.count(0);
BOOST_TEST(count == 1);
BOOST_TEST(key::count_ == 3);
count = map.count(1);
BOOST_TEST(count == 0);
BOOST_TEST(key::count_ == 4);
count = map.count(key(0));
BOOST_TEST(count == 1);
BOOST_TEST(key::count_ == 5);
}
template <class UnorderedMap> void test_transparent_find()
{
count_reset();
typedef typename UnorderedMap::const_iterator map_iterator;
typedef typename UnorderedMap::value_type pair;
UnorderedMap map;
int n = 5;
for (int i = 0; i < n; ++i) {
map.insert(std::make_pair(i, i));
}
int const expected_key_count = key::count_;
// explicitly test `find()` and `find() const` separately
//
{
UnorderedMap& m = map;
for (int i = 0; i < n; ++i) {
map_iterator pos = m.find(i);
BOOST_TEST(pos != m.end());
pair const& p = *pos;
int const v = p.second;
BOOST_TEST_EQ(v, i);
}
BOOST_TEST_EQ(key::count_, expected_key_count);
map_iterator pos = m.find(1337);
BOOST_TEST(pos == m.end());
BOOST_TEST_EQ(key::count_, expected_key_count);
}
{
UnorderedMap const& m = map;
for (int i = 0; i < n; ++i) {
map_iterator pos = m.find(i);
BOOST_TEST(pos != m.end());
pair const& p = *pos;
int const v = p.second;
BOOST_TEST(v == i);
}
BOOST_TEST_EQ(key::count_, expected_key_count);
map_iterator pos = m.find(1337);
BOOST_TEST(pos == m.end());
BOOST_TEST_EQ(key::count_, expected_key_count);
}
}
template <class UnorderedMap> void test_non_transparent_find()
{
count_reset();
typedef typename UnorderedMap::const_iterator map_iterator;
typedef typename UnorderedMap::value_type pair;
UnorderedMap map;
int n = 5;
for (int i = 0; i < n; ++i) {
map.insert(std::make_pair(i, i));
}
int key_count = key::count_;
// explicitly test `find()` and `find() const` separately
//
{
UnorderedMap& m = map;
for (int i = 0; i < n; ++i) {
map_iterator pos = m.find(i);
BOOST_TEST(pos != m.end());
pair const& p = *pos;
int const v = p.second;
BOOST_TEST_EQ(v, i);
}
BOOST_TEST_EQ(key::count_, n + key_count);
map_iterator pos = m.find(1337);
BOOST_TEST(pos == m.end());
BOOST_TEST_EQ(key::count_, 1 + n + key_count);
key_count = key::count_;
}
{
UnorderedMap const& m = map;
for (int i = 0; i < n; ++i) {
map_iterator pos = m.find(i);
BOOST_TEST(pos != m.end());
pair const& p = *pos;
int const v = p.second;
BOOST_TEST_EQ(v, i);
}
BOOST_TEST_EQ(key::count_, n + key_count);
map_iterator pos = m.find(1337);
BOOST_TEST(pos == m.end());
BOOST_TEST_EQ(key::count_, 1 + n + key_count);
}
}
template <class UnorderedMap> void test_transparent_equal_range()
{
count_reset();
UnorderedMap unordered_map;
// empty tests
//
// explicitly test `equal_range()` vs `equal_range() const`
//
{
typedef typename UnorderedMap::iterator iterator;
typedef std::pair<iterator, iterator> iterator_pair;
UnorderedMap& map = unordered_map;
BOOST_TEST(map.empty());
iterator_pair iters = map.equal_range(0);
iterator begin = iters.first;
iterator end = iters.second;
BOOST_TEST(begin == end);
BOOST_TEST(begin == map.end());
BOOST_TEST_EQ(std::distance(begin, end), 0);
}
{
typedef typename UnorderedMap::const_iterator iterator;
typedef std::pair<iterator, iterator> iterator_pair;
UnorderedMap const& map = unordered_map;
BOOST_TEST(map.empty());
iterator_pair iters = map.equal_range(0);
iterator begin = iters.first;
iterator end = iters.second;
BOOST_TEST(begin == end);
BOOST_TEST(begin == map.end());
BOOST_TEST_EQ(std::distance(begin, end), 0);
}
BOOST_TEST_EQ(key::count_, 0);
unordered_map.insert(std::make_pair(0, 1337));
unordered_map.insert(std::make_pair(1, 1338));
unordered_map.insert(std::make_pair(2, 1339));
unordered_map.insert(std::make_pair(0, 1340));
unordered_map.insert(std::make_pair(0, 1341));
unordered_map.insert(std::make_pair(0, 1342));
int const expected_key_count = key::count_;
// do this so that multimap tests actually test a range with len > 1
//
int const expected_range_len = static_cast<int>(unordered_map.size() - 2);
typedef typename UnorderedMap::value_type value_type;
// explicitly test `equal_range()` vs `equal_range() const`
//
{
typedef typename UnorderedMap::iterator iterator;
typedef std::pair<iterator, iterator> iterator_pair;
UnorderedMap& map = unordered_map;
iterator_pair iters = map.equal_range(0);
iterator begin = iters.first;
iterator end = iters.second;
BOOST_TEST(begin != end);
BOOST_TEST(begin != map.end());
BOOST_TEST_EQ(std::distance(begin, end), expected_range_len);
for (iterator pos = begin; pos != end; ++pos) {
value_type const& val = *pos;
BOOST_TEST_EQ(val.first.x_, 0);
}
iters = map.equal_range(1337);
begin = iters.first;
end = iters.second;
BOOST_TEST(begin == end);
BOOST_TEST(begin == map.end());
BOOST_TEST_EQ(std::distance(begin, end), 0);
BOOST_TEST_EQ(key::count_, expected_key_count);
}
{
typedef typename UnorderedMap::const_iterator iterator;
typedef std::pair<iterator, iterator> iterator_pair;
UnorderedMap const& map = unordered_map;
iterator_pair iters = map.equal_range(0);
iterator begin = iters.first;
iterator end = iters.second;
BOOST_TEST(begin != end);
BOOST_TEST(begin != map.end());
BOOST_TEST_EQ(std::distance(begin, end), expected_range_len);
for (iterator pos = begin; pos != end; ++pos) {
value_type const& val = *begin;
BOOST_TEST_EQ(val.first.x_, 0);
}
iters = map.equal_range(1337);
begin = iters.first;
end = iters.second;
BOOST_TEST(begin == end);
BOOST_TEST(begin == map.end());
BOOST_TEST_EQ(std::distance(begin, end), 0);
BOOST_TEST_EQ(key::count_, expected_key_count);
}
}
template <class UnorderedMap> void test_non_transparent_equal_range()
{
count_reset();
UnorderedMap unordered_map;
// empty tests
//
// explicitly test `equal_range()` vs `equal_range() const`
//
{
typedef typename UnorderedMap::iterator iterator;
typedef std::pair<iterator, iterator> iterator_pair;
UnorderedMap& map = unordered_map;
BOOST_TEST(map.empty());
iterator_pair iters = map.equal_range(0);
iterator begin = iters.first;
iterator end = iters.second;
BOOST_TEST(begin == end);
BOOST_TEST(begin == map.end());
BOOST_TEST_EQ(std::distance(begin, end), 0);
}
{
typedef typename UnorderedMap::const_iterator iterator;
typedef std::pair<iterator, iterator> iterator_pair;
UnorderedMap const& map = unordered_map;
BOOST_TEST(map.empty());
iterator_pair iters = map.equal_range(0);
iterator begin = iters.first;
iterator end = iters.second;
BOOST_TEST(begin == end);
BOOST_TEST(begin == map.end());
BOOST_TEST_EQ(std::distance(begin, end), 0);
}
BOOST_TEST_EQ(key::count_, 2);
unordered_map.insert(std::make_pair(0, 1337));
unordered_map.insert(std::make_pair(1, 1338));
unordered_map.insert(std::make_pair(2, 1339));
unordered_map.insert(std::make_pair(0, 1340));
unordered_map.insert(std::make_pair(0, 1341));
unordered_map.insert(std::make_pair(0, 1342));
int key_count = key::count_;
// do this so that multimap tests actually test a range with len > 1
//
int const expected_range_len = static_cast<int>(unordered_map.size() - 2);
typedef typename UnorderedMap::value_type value_type;
// explicitly test `equal_range()` vs `equal_range() const`
//
{
typedef typename UnorderedMap::iterator iterator;
typedef std::pair<iterator, iterator> iterator_pair;
UnorderedMap& map = unordered_map;
iterator_pair iters = map.equal_range(0);
iterator begin = iters.first;
iterator end = iters.second;
BOOST_TEST(begin != end);
BOOST_TEST(begin != map.end());
BOOST_TEST_EQ(std::distance(begin, end), expected_range_len);
for (iterator pos = begin; pos != end; ++pos) {
value_type const& val = *begin;
BOOST_TEST_EQ(val.first.x_, 0);
}
iters = map.equal_range(1337);
begin = iters.first;
end = iters.second;
BOOST_TEST(begin == end);
BOOST_TEST(begin == map.end());
BOOST_TEST_EQ(std::distance(begin, end), 0);
BOOST_TEST_EQ(key::count_, 2 + key_count);
key_count += 2;
}
{
typedef typename UnorderedMap::const_iterator iterator;
typedef std::pair<iterator, iterator> iterator_pair;
UnorderedMap const& map = unordered_map;
iterator_pair iters = map.equal_range(0);
iterator begin = iters.first;
iterator end = iters.second;
BOOST_TEST(begin != end);
BOOST_TEST(begin != map.end());
BOOST_TEST_EQ(std::distance(begin, end), expected_range_len);
for (iterator pos = begin; pos != end; ++pos) {
value_type const& val = *pos;
BOOST_TEST_EQ(val.first.x_, 0);
}
iters = map.equal_range(1337);
begin = iters.first;
end = iters.second;
BOOST_TEST(begin == end);
BOOST_TEST(begin == map.end());
BOOST_TEST_EQ(std::distance(begin, end), 0);
BOOST_TEST_EQ(key::count_, 2 + key_count);
}
}
template <class UnorderedMap> struct convertible_to_iterator
{
operator typename UnorderedMap::iterator()
{
return typename UnorderedMap::iterator();
}
};
template <class UnorderedMap> struct convertible_to_const_iterator
{
operator typename UnorderedMap::const_iterator()
{
return typename UnorderedMap::const_iterator();
}
};
typedef boost::unordered_map<int, int, transparent_hasher,
transparent_key_equal>
transparent_unordered_map;
// test that in the presence of the member function template `erase()`, we still
// invoke the correct iterator overloads when the type is implicitly convertible
//
transparent_unordered_map::iterator map_erase_overload_compile_test()
{
convertible_to_iterator<transparent_unordered_map> c;
transparent_unordered_map map;
transparent_unordered_map::iterator pos = map.begin();
pos = c;
return map.erase(c);
}
transparent_unordered_map::const_iterator
map_erase_const_overload_compile_test()
{
convertible_to_const_iterator<transparent_unordered_map> c;
transparent_unordered_map map;
transparent_unordered_map::const_iterator pos = map.begin();
pos = c;
return map.erase(c);
}
typedef boost::unordered_multimap<int, int, transparent_hasher,
transparent_key_equal>
transparent_unordered_multimap;
transparent_unordered_multimap::iterator multimap_erase_overload_compile_test()
{
convertible_to_iterator<transparent_unordered_multimap> c;
transparent_unordered_multimap map;
transparent_unordered_multimap::iterator pos = map.begin();
pos = c;
return map.erase(c);
}
transparent_unordered_multimap::const_iterator
multimap_erase_const_overload_compile_test()
{
convertible_to_const_iterator<transparent_unordered_multimap> c;
transparent_unordered_multimap map;
transparent_unordered_multimap::const_iterator pos = map.begin();
pos = c;
return map.erase(c);
}
template <class UnorderedMap> void test_transparent_erase()
{
count_reset();
UnorderedMap map;
unsigned long num_erased = 0;
num_erased = map.erase(0);
BOOST_TEST(map.empty());
BOOST_TEST_EQ(num_erased, 0);
BOOST_TEST_EQ(key::count_, 0);
map.insert(std::make_pair(0, 1337));
map.insert(std::make_pair(1, 1338));
map.insert(std::make_pair(2, 1339));
map.insert(std::make_pair(0, 1340));
map.insert(std::make_pair(0, 1341));
map.insert(std::make_pair(0, 1342));
BOOST_TEST(map.find(0) != map.end());
int const expected_key_count = key::count_;
int const expected_num_erased = static_cast<int>(map.size() - 2);
num_erased = map.erase(0);
BOOST_TEST_EQ(num_erased, expected_num_erased);
BOOST_TEST_EQ(map.size(), 2);
BOOST_TEST(map.find(0) == map.end());
num_erased = map.erase(1337);
BOOST_TEST_EQ(num_erased, 0);
BOOST_TEST_EQ(map.size(), 2);
BOOST_TEST_EQ(key::count_, expected_key_count);
}
template <class UnorderedMap> void test_non_transparent_erase()
{
count_reset();
UnorderedMap map;
unsigned long num_erased = 0;
num_erased = map.erase(0);
BOOST_TEST(map.empty());
BOOST_TEST_EQ(num_erased, 0);
BOOST_TEST_EQ(key::count_, 1);
map.insert(std::make_pair(0, 1337));
map.insert(std::make_pair(1, 1338));
map.insert(std::make_pair(2, 1339));
map.insert(std::make_pair(0, 1340));
map.insert(std::make_pair(0, 1341));
map.insert(std::make_pair(0, 1342));
int const expected_num_erased = static_cast<int>(map.size() - 2);
BOOST_TEST(map.find(0) != map.end());
int key_count = key::count_;
num_erased = map.erase(0);
++key_count;
BOOST_TEST_EQ(key::count_, key_count);
BOOST_TEST_EQ(num_erased, expected_num_erased);
BOOST_TEST_EQ(map.size(), 2);
BOOST_TEST(map.find(0) == map.end());
++key_count;
BOOST_TEST_EQ(key::count_, key_count);
num_erased = map.erase(1337);
++key_count;
BOOST_TEST_EQ(num_erased, 0);
BOOST_TEST_EQ(map.size(), 2);
BOOST_TEST_EQ(key::count_, key_count);
}
// test that in the presence of the member function template `extract()`, we
// still invoke the correct iterator overloads when the type is implicitly
// convertible
//
transparent_unordered_map::node_type map_extract_const_overload_compile_test()
{
convertible_to_const_iterator<transparent_unordered_map> c;
transparent_unordered_map map;
transparent_unordered_map::const_iterator pos = map.begin();
pos = c;
return map.extract(c);
}
transparent_unordered_multimap::node_type
multimap_extract_const_overload_compile_test()
{
convertible_to_const_iterator<transparent_unordered_multimap> c;
transparent_unordered_multimap map;
transparent_unordered_multimap::const_iterator pos = map.begin();
pos = c;
return map.extract(c);
}
template <class UnorderedMap> void test_transparent_extract()
{
typedef typename UnorderedMap::node_type node_type;
typedef typename UnorderedMap::const_iterator const_iterator;
typedef std::pair<const_iterator, const_iterator> const_iterator_pair;
count_reset();
UnorderedMap map;
node_type nh = map.extract(0);
BOOST_TEST(nh.empty());
BOOST_TEST_EQ(key::count_, 0);
map.insert(std::make_pair(0, 1337));
map.insert(std::make_pair(1, 1338));
map.insert(std::make_pair(2, 1339));
map.insert(std::make_pair(0, 1340));
map.insert(std::make_pair(0, 1341));
map.insert(std::make_pair(0, 1342));
std::size_t const map_size = map.size();
int const expected_key_count = key::count_;
nh = map.extract(0);
BOOST_TEST_EQ(map.size(), map_size - 1);
BOOST_TEST_EQ(nh.key().x_, 0);
const_iterator_pair rng = map.equal_range(0);
for (const_iterator pos = rng.first; pos != rng.second; ++pos) {
BOOST_TEST_NE(pos->second, nh.mapped());
}
nh = map.extract(1337);
BOOST_TEST(nh.empty());
BOOST_TEST_EQ(key::count_, expected_key_count);
}
template <class UnorderedMap> void test_non_transparent_extract()
{
typedef typename UnorderedMap::node_type node_type;
typedef typename UnorderedMap::const_iterator const_iterator;
typedef std::pair<const_iterator, const_iterator> const_iterator_pair;
count_reset();
UnorderedMap map;
node_type nh = map.extract(0);
BOOST_TEST(nh.empty());
BOOST_TEST_EQ(key::count_, 1);
map.insert(std::make_pair(0, 1337));
map.insert(std::make_pair(1, 1338));
map.insert(std::make_pair(2, 1339));
map.insert(std::make_pair(0, 1340));
map.insert(std::make_pair(0, 1341));
map.insert(std::make_pair(0, 1342));
std::size_t const map_size = map.size();
int key_count = key::count_;
nh = map.extract(0);
++key_count;
BOOST_TEST_EQ(map.size(), map_size - 1);
BOOST_TEST_EQ(nh.key().x_, 0);
BOOST_TEST_EQ(key::count_, key_count);
const_iterator_pair rng = map.equal_range(0);
++key_count;
for (const_iterator pos = rng.first; pos != rng.second; ++pos) {
BOOST_TEST_NE(pos->second, nh.mapped());
}
nh = map.extract(1337);
++key_count;
BOOST_TEST(nh.empty());
BOOST_TEST_EQ(key::count_, key_count);
}
void test_unordered_map()
{
{
typedef boost::unordered_map<key, int, transparent_hasher,
transparent_key_equal>
unordered_map;
test_transparent_count<unordered_map>();
test_transparent_find<unordered_map>();
test_transparent_equal_range<unordered_map>();
test_transparent_erase<unordered_map>();
test_transparent_extract<unordered_map>();
}
{
// non-transparent Hash, non-transparent KeyEqual
//
typedef boost::unordered_map<key, int, hasher, key_equal> unordered_map;
test_non_transparent_count<unordered_map>();
test_non_transparent_find<unordered_map>();
test_non_transparent_equal_range<unordered_map>();
test_non_transparent_erase<unordered_map>();
test_non_transparent_extract<unordered_map>();
}
{
// transparent Hash, non-transparent KeyEqual
//
typedef boost::unordered_map<key, int, transparent_hasher, key_equal>
unordered_map;
test_non_transparent_count<unordered_map>();
test_non_transparent_find<unordered_map>();
test_non_transparent_equal_range<unordered_map>();
test_non_transparent_erase<unordered_map>();
test_non_transparent_extract<unordered_map>();
}
{
// non-transparent Hash, transparent KeyEqual
//
typedef boost::unordered_map<key, int, hasher, transparent_key_equal>
unordered_map;
test_non_transparent_count<unordered_map>();
test_non_transparent_find<unordered_map>();
test_non_transparent_equal_range<unordered_map>();
test_non_transparent_erase<unordered_map>();
test_non_transparent_extract<unordered_map>();
}
}
void test_unordered_multimap()
{
{
typedef boost::unordered_multimap<key, int, transparent_hasher,
transparent_key_equal>
unordered_multimap;
test_transparent_find<unordered_multimap>();
test_transparent_equal_range<unordered_multimap>();
test_transparent_erase<unordered_multimap>();
test_transparent_extract<unordered_multimap>();
}
{
// non-transparent Hash, non-transparent KeyEqual
//
typedef boost::unordered_multimap<key, int, hasher, key_equal>
unordered_multimap;
test_non_transparent_find<unordered_multimap>();
test_non_transparent_equal_range<unordered_multimap>();
test_non_transparent_erase<unordered_multimap>();
test_non_transparent_extract<unordered_multimap>();
}
{
// transparent Hash, non-transparent KeyEqual
//
typedef boost::unordered_multimap<key, int, transparent_hasher, key_equal>
unordered_multimap;
test_non_transparent_find<unordered_multimap>();
test_non_transparent_equal_range<unordered_multimap>();
test_non_transparent_erase<unordered_multimap>();
test_non_transparent_extract<unordered_multimap>();
}
{
// non-transparent Hash, transparent KeyEqual
//
typedef boost::unordered_multimap<key, int, hasher, transparent_key_equal>
unordered_multimap;
test_non_transparent_find<unordered_multimap>();
test_non_transparent_equal_range<unordered_multimap>();
test_non_transparent_erase<unordered_multimap>();
test_non_transparent_extract<unordered_multimap>();
}
}
UNORDERED_AUTO_TEST (transparent_ops) {
test_unordered_map();
test_unordered_multimap();
}
RUN_TESTS()