Compare commits

..

1 Commits

Author SHA1 Message Date
nobody
11fa077264 This commit was manufactured by cvs2svn to create branch 'regex-sub'.
[SVN r7754]
2000-09-21 03:34:33 +00:00
22 changed files with 137 additions and 905 deletions

View File

@@ -1,116 +0,0 @@
<HTML>
<!--
-- Copyright (c) Jeremy Siek 2000
--
-- Permission to use, copy, modify, distribute and sell this software
-- and its documentation for any purpose is hereby granted without fee,
-- provided that the above copyright notice appears in all copies and
-- that both that copyright notice and this permission notice appear
-- in supporting documentation. Silicon Graphics makes no
-- representations about the suitability of this software for any
-- purpose. It is provided "as is" without express or implied warranty.
-->
<Head>
<Title>Assignable</Title>
</HEAD>
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
ALINK="#ff0000">
<IMG SRC="../../c++boost.gif"
ALT="C++ Boost" width="277" height="86">
<!--end header-->
<BR Clear>
<H1>Assignable</H1>
<h3>Description</h3>
A type is Assignable if it is possible to assign one object of the type
to another object of that type.
<h3>Notation</h3>
<Table>
<TR>
<TD VAlign=top>
<tt>T</tt>
</TD>
<TD VAlign=top>
is type that is a model of Assignable
</TD>
</TR>
<TR>
<TD VAlign=top>
<tt>t</tt>
</TD>
<TD VAlign=top>
is an object of type <tt>T</tt>
</TD>
</tr>
<TR>
<TD VAlign=top>
<tt>u</tt>
</TD>
<TD VAlign=top>
is an object of type <tt>T</tt> or possibly <tt>const T</tt>
</TD>
</tr>
</table>
<h3>Definitions</h3>
<h3>Valid expressions</h3>
<Table border>
<TR>
<TH>
Name
</TH>
<TH>
Expression
</TH>
<TH>
Return type
</TH>
<TH>
Semantics
</TH>
</TR>
<TR>
<TD VAlign=top>
Assignment
</TD>
<TD VAlign=top>
<tt>t = u</tt>
</TD>
<TD VAlign=top>
<tt>T&amp;</tt>
</TD>
<TD VAlign=top>
<tt>t</tt> is equivalent to <tt>u</tt>
</TD>
</TR>
</table>
</table>
<h3>Models</h3>
<UL>
<LI><tt>int</tt>
<LI><tt>std::pair</tt>
</UL>
<h3>See also</h3>
<a href="http://www.sgi.com/Technology/STL/DefaultConstructible.html">DefaultConstructible</A>
and
<A href="./CopyConstructible.html">CopyConstructible</A>
<br>
<HR>
<TABLE>
<TR valign=top>
<TD nowrap>Copyright &copy 2000</TD><TD>
<A HREF=http://www.lsc.nd.edu/~jsiek>Jeremy Siek</A>, Univ.of Notre Dame (<A HREF="mailto:jsiek@lsc.nd.edu">jsiek@lsc.nd.edu</A>)
</TD></TR></TABLE>
</BODY>
</HTML>

View File

@@ -16,7 +16,7 @@
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
ALINK="#ff0000">
<IMG SRC="../../c++boost.gif"
ALT="C++ Boost" width="277" height="86">
ALT="C++ Boost">
<!--end header-->
<BR Clear>
<H1>CopyConstructible</H1>

View File

@@ -15,7 +15,7 @@
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
ALINK="#ff0000">
<IMG SRC="../../c++boost.gif"
ALT="C++ Boost" width="277" height="86">
ALT="C++ Boost">
<BR Clear>

View File

@@ -196,7 +196,7 @@ struct filler<true>
template <typename I, typename T>
static void do_fill(I first, I last, T val)
{
std::memset(first, val, last-first);
memset(first, val, last-first);
}
};
@@ -421,4 +421,3 @@ int main()

View File

@@ -27,16 +27,10 @@ never occur, and that parameters are passed in the most efficient
manner possible (see <a href="#examples">examples</a>). In each
case if your existing practice is to use the type defined on the
left, then replace it with the call_traits defined type on the
right. </p>
<p>Note that for compilers that do not support either partial
specialization or member templates, no benefit will occur from
using call_traits: the call_traits defined types will always be
the same as the existing practice in this case. In addition if
only member templates and not partial template specialisation is
support by the compiler (for example Visual C++ 6) then call_traits
can not be used with array types (although it can be used to
solve the reference to reference problem).</p>
right. Note that for compilers that do not support partial
specialization, no benefit will occur from using call_traits: the
call_traits defined types will always be the same as the existing
practice in this case.</p>
<table border="0" cellpadding="7" cellspacing="1" width="797">
<tr>
@@ -575,9 +569,7 @@ std::pair&lt;
degraded to pointers if the deduced types are arrays, similar
situations occur in the standard binders and adapters: in
principle in any function that &quot;wraps&quot; a temporary
whose type is deduced. Note that the function arguments to make_pair
are not expressed in terms of call_traits: doing so would prevent
template argument deduction from functioning.</p>
whose type is deduced.</p>
<h4><a name="ex4"></a>Example 4 (optimising fill):</h4>
@@ -640,14 +632,6 @@ Exactly how much mileage you will get from this depends upon your
compiler - we could really use some accurate benchmarking
software as part of boost for cases like this.</p>
<p>Note that the function arguments to fill are not expressed in
terms of call_traits: doing so would prevent template argument
deduction from functioning. Instead fill acts as a &quot;thin
wrapper&quot; that is there to perform template argument
deduction, the compiler will optimise away the call to fill all
together, replacing it with the call to filler&lt;&gt;::do_fill,
which does use call_traits.</p>
<h3>Rationale</h3>
<p>The following notes are intended to briefly describe the
@@ -729,7 +713,7 @@ specialisation).</p>
<hr>
<p>Revised 01 September 2000</p>
<p>Revised 18 June 2000</p>
<p><EFBFBD> Copyright boost.org 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this

View File

@@ -6,8 +6,6 @@
// warranty, and with no claim as to its suitability for any purpose.
// standalone test program for <boost/call_traits.hpp>
// 03 Oct 2000:
// Enabled extra tests for VC6.
#include <cassert>
#include <iostream>
@@ -118,7 +116,7 @@ void checker<T>::operator()(param_type p)
assert(t == c.get());
assert(t == c.const_get());
//cout << "typeof contained<" << typeid(T).name() << ">::v_ is: " << typeid(&contained<T>::v_).name() << endl;
cout << "typeof contained<" << typeid(T).name() << ">::v_ is: " << typeid(&contained<T>::v_).name() << endl;
cout << "typeof contained<" << typeid(T).name() << ">::value() is: " << typeid(&contained<T>::value).name() << endl;
cout << "typeof contained<" << typeid(T).name() << ">::get() is: " << typeid(&contained<T>::get).name() << endl;
cout << "typeof contained<" << typeid(T).name() << ">::const_get() is: " << typeid(&contained<T>::const_get).name() << endl;
@@ -192,18 +190,17 @@ int main()
int i = 2;
c2(i);
int* pi = &i;
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) || !defined(BOOST_NO_MEMBER_TEMPLATES)
checker<int*> c3;
c3(pi);
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
checker<int&> c4;
c4(i);
checker<const int&> c5;
c5(i);
#if !defined (BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
int a[2] = {1,2};
checker<int[2]> c6;
c6(a);
#endif
#endif
check_wrap(wrap(2), 2);
@@ -232,7 +229,7 @@ int main()
type_test(int*&, boost::call_traits<int*>::reference)
type_test(int*const&, boost::call_traits<int*>::const_reference)
type_test(int*const, boost::call_traits<int*>::param_type)
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) || !defined(BOOST_NO_MEMBER_TEMPLATES)
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
type_test(int&, boost::call_traits<int&>::value_type)
type_test(int&, boost::call_traits<int&>::reference)
type_test(const int&, boost::call_traits<int&>::const_reference)
@@ -251,7 +248,6 @@ int main()
type_test(const int&, boost::call_traits<const int&>::reference)
type_test(const int&, boost::call_traits<const int&>::const_reference)
type_test(const int&, boost::call_traits<const int&>::param_type)
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
type_test(const int*, boost::call_traits<int[3]>::value_type)
type_test(int(&)[3], boost::call_traits<int[3]>::reference)
type_test(const int(&)[3], boost::call_traits<int[3]>::const_reference)
@@ -260,11 +256,6 @@ int main()
type_test(const int(&)[3], boost::call_traits<const int[3]>::reference)
type_test(const int(&)[3], boost::call_traits<const int[3]>::const_reference)
type_test(const int*const, boost::call_traits<const int[3]>::param_type)
#else
std::cout << "You're compiler does not support partial template instantiation, skipping 8 tests (8 errors)" << std::endl;
failures += 8;
test_count += 8;
#endif
#else
std::cout << "You're compiler does not support partial template instantiation, skipping 20 tests (20 errors)" << std::endl;
failures += 20;
@@ -327,7 +318,7 @@ struct call_traits_test<T, true>
};
template <typename T>
void call_traits_test<T, true>::assert_construct(typename boost::call_traits<T>::param_type val)
void call_traits_test<T, true>::assert_construct(boost::call_traits<T>::param_type val)
{
//
// this is to check that the call_traits assertions are valid:
@@ -356,11 +347,9 @@ void call_traits_test<T, true>::assert_construct(typename boost::call_traits<T>:
template struct call_traits_test<int>;
template struct call_traits_test<const int>;
template struct call_traits_test<int*>;
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) || !defined(BOOST_NO_MEMBER_TEMPLATES)
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template struct call_traits_test<int&>;
template struct call_traits_test<const int&>;
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template struct call_traits_test<int[2], true>;
#endif
#endif

View File

@@ -110,10 +110,6 @@ int main( int argc, char * argv[] )
c = numeric_cast<signed char>( small_negative_value );
assert( c == -1 );
// These tests courtesy of Joe R NWP Swatosh<joe.r.swatosh@usace.army.mil>
assert( 0.0f == numeric_cast<float>( 0.0 ) );
assert( 0.0 == numeric_cast<double>( 0.0 ) );
// tests which should result in errors being detected
caught_exception = false;

View File

@@ -6,8 +6,6 @@
// warranty, and with no claim as to its suitability for any purpose.
// standalone test program for <boost/compressed_pair.hpp>
// Revised 03 Oct 2000:
// Enabled tests for VC6.
#include <iostream>
#include <typeinfo>
@@ -41,23 +39,6 @@ template <> struct is_POD<empty_POD_UDT>
#endif
}
struct non_empty1
{
int i;
non_empty1() : i(1){}
non_empty1(int v) : i(v){}
friend bool operator==(const non_empty1& a, const non_empty1& b)
{ return a.i == b.i; }
};
struct non_empty2
{
int i;
non_empty2() : i(3){}
non_empty2(int v) : i(v){}
friend bool operator==(const non_empty2& a, const non_empty2& b)
{ return a.i == b.i; }
};
int main()
{
@@ -72,22 +53,15 @@ int main()
assert(cp1b.second() == 1.3);
assert(cp1.first() == 2);
assert(cp1.second() == 2.3);
compressed_pair<non_empty1, non_empty2> cp1c(non_empty1(9));
assert(cp1c.second() == non_empty2());
assert(cp1c.first() == non_empty1(9));
compressed_pair<non_empty1, non_empty2> cp1d(non_empty2(9));
assert(cp1d.second() == non_empty2(9));
assert(cp1d.first() == non_empty1());
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
compressed_pair<empty_UDT, int> cp2(2);
assert(cp2.second() == 2);
#endif
compressed_pair<int, empty_UDT> cp3(1);
assert(cp3.first() ==1);
compressed_pair<empty_UDT, empty_UDT> cp4;
compressed_pair<empty_UDT, empty_POD_UDT> cp5;
compressed_pair<int, empty_UDT> cp9(empty_UDT());
compressed_pair<int, empty_UDT> cp10(1);
assert(cp10.first() == 1);
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) || !defined(BOOST_NO_MEMBER_TEMPLATES) || !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
int i = 0;
compressed_pair<int&, int&> cp6(i,i);
assert(cp6.first() == i);
@@ -128,25 +102,21 @@ template class boost::compressed_pair<empty_UDT, empty_POD_UDT>;
#endif
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
#ifndef __MWERKS__
//
// now some for which only a few specific members can be instantiated,
// first references:
template double& compressed_pair<double, int&>::first();
template int& compressed_pair<double, int&>::second();
#if !(defined(__GNUC__) && (__GNUC__ == 2) && (__GNUC_MINOR__ < 95))
template compressed_pair<double, int&>::compressed_pair(int&);
#endif
template compressed_pair<double, int&>::compressed_pair(call_traits<double>::param_type,int&);
//
// and then arrays:
#ifndef __MWERKS__
#ifndef __BORLANDC__
template call_traits<int[2]>::reference compressed_pair<double, int[2]>::second();
#endif
template call_traits<double>::reference compressed_pair<double, int[2]>::first();
#if !(defined(__GNUC__) && (__GNUC__ == 2) && (__GNUC_MINOR__ < 95))
template compressed_pair<double, int[2]>::compressed_pair(call_traits<double>::param_type);
#endif
template compressed_pair<double, int[2]>::compressed_pair(const double&);
template compressed_pair<double, int[2]>::compressed_pair();
#endif // __MWERKS__
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
@@ -154,3 +124,4 @@ template compressed_pair<double, int[2]>::compressed_pair();

View File

@@ -75,9 +75,7 @@ namespace details
template <typename T>
inline void cp_swap(T& t1, T& t2)
{
#ifndef __GNUC__
using std::swap;
#endif
swap(t1, t2);
}

View File

@@ -9,14 +9,6 @@
// Crippled version for crippled compilers:
// see libs/utility/call_traits.htm
//
/* Release notes:
01st October 2000:
Fixed call_traits on VC6, using "poor man's partial specialisation",
using ideas taken from "Generative programming" by Krzysztof Czarnecki
& Ulrich Eisenecker.
*/
#ifndef BOOST_OB_CALL_TRAITS_HPP
#define BOOST_OB_CALL_TRAITS_HPP
@@ -30,85 +22,6 @@
namespace boost{
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) || !defined(BOOST_NO_MEMBER_TEMPLATES)
//
// use member templates to emulate
// partial specialisation:
//
namespace detail{
template <class T>
struct standard_call_traits
{
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef const T& param_type;
};
template <class T>
struct simple_call_traits
{
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef const T param_type;
};
template <class T>
struct reference_call_traits
{
typedef T value_type;
typedef T reference;
typedef T const_reference;
typedef T param_type;
};
template <bool simple, bool reference>
struct call_traits_chooser
{
template <class T>
struct rebind
{
typedef standard_call_traits<T> type;
};
};
template <>
struct call_traits_chooser<true, false>
{
template <class T>
struct rebind
{
typedef simple_call_traits<T> type;
};
};
template <>
struct call_traits_chooser<false, true>
{
template <class T>
struct rebind
{
typedef reference_call_traits<T> type;
};
};
} // namespace detail
template <typename T>
struct call_traits
{
private:
typedef detail::call_traits_chooser<(is_pointer<T>::value || is_arithmetic<T>::value) && sizeof(T) <= sizeof(void*), is_reference<T>::value> chooser;
typedef typename chooser::template rebind<T> bound_type;
typedef typename bound_type::type call_traits_type;
public:
typedef typename call_traits_type::value_type value_type;
typedef typename call_traits_type::reference reference;
typedef typename call_traits_type::const_reference const_reference;
typedef typename call_traits_type::param_type param_type;
};
#else
//
// sorry call_traits is completely non-functional
// blame your broken compiler:
//
template <typename T>
struct call_traits
{
@@ -118,8 +31,6 @@ struct call_traits
typedef const T& param_type;
};
#endif // member templates
}
#endif // BOOST_OB_CALL_TRAITS_HPP

View File

@@ -8,10 +8,6 @@
// see libs/utility/compressed_pair.hpp
//
/* Release notes:
07 Oct 2000:
Added better single argument constructor support.
03 Oct 2000:
Added VC6 support (JM).
23rd July 2000:
Additional comments added. (JM)
Jan 2000:
@@ -33,376 +29,6 @@
namespace boost
{
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) || !defined(BOOST_NO_MEMBER_TEMPLATES)
//
// use member templates to emulate
// partial specialisation. Note that due to
// problems with overload resolution with VC6
// each of the compressed_pair versions that follow
// have one template single-argument constructor
// in place of two specific constructors:
//
namespace detail{
template <class A, class T1, class T2>
struct best_convertion_traits
{
typedef char one;
typedef char (&two)[2];
static A a;
static one test(T1);
static two test(T2);
enum { value = sizeof(test(a)) };
};
template <int>
struct init_one;
template <>
struct init_one<1>
{
template <class A, class T1, class T2>
static void init(const A& a, T1* p1, T2*)
{
*p1 = a;
}
};
template <>
struct init_one<2>
{
template <class A, class T1, class T2>
static void init(const A& a, T1*, T2* p2)
{
*p2 = a;
}
};
// T1 != T2, both non-empty
template <class T1, class T2>
class compressed_pair_0
{
private:
T1 _first;
T2 _second;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_0() : _first(), _second() {}
compressed_pair_0(first_param_type x, second_param_type y) : _first(x), _second(y) {}
template <class A>
explicit compressed_pair_0(const A& val)
{
init_one<best_convertion_traits<A, T1, T2>::value>::init(val, &_first, &_second);
}
first_reference first() { return _first; }
first_const_reference first() const { return _first; }
second_reference second() { return _second; }
second_const_reference second() const { return _second; }
void swap(compressed_pair_0& y)
{
using std::swap;
swap(_first, y._first);
swap(_second, y._second);
}
};
// T1 != T2, T2 empty
template <class T1, class T2>
class compressed_pair_1 : T2
{
private:
T1 _first;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_1() : T2(), _first() {}
compressed_pair_1(first_param_type x, second_param_type y) : T2(y), _first(x) {}
template <class A>
explicit compressed_pair_1(const A& val)
{
init_one<best_convertion_traits<A, T1, T2>::value>::init(val, &_first, static_cast<T2*>(this));
}
first_reference first() { return _first; }
first_const_reference first() const { return _first; }
second_reference second() { return *this; }
second_const_reference second() const { return *this; }
void swap(compressed_pair_1& y)
{
// no need to swap empty base class:
using std::swap;
swap(_first, y._first);
}
};
// T1 != T2, T1 empty
template <class T1, class T2>
class compressed_pair_2 : T1
{
private:
T2 _second;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_2() : T1(), _second() {}
compressed_pair_2(first_param_type x, second_param_type y) : T1(x), _second(y) {}
template <class A>
explicit compressed_pair_2(const A& val)
{
init_one<best_convertion_traits<A, T1, T2>::value>::init(val, static_cast<T1*>(this), &_second);
}
first_reference first() { return *this; }
first_const_reference first() const { return *this; }
second_reference second() { return _second; }
second_const_reference second() const { return _second; }
void swap(compressed_pair_2& y)
{
// no need to swap empty base class:
using std::swap;
swap(_second, y._second);
}
};
// T1 != T2, both empty
template <class T1, class T2>
class compressed_pair_3 : T1, T2
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_3() : T1(), T2() {}
compressed_pair_3(first_param_type x, second_param_type y) : T1(x), T2(y) {}
template <class A>
explicit compressed_pair_3(const A& val)
{
init_one<best_convertion_traits<A, T1, T2>::value>::init(val, static_cast<T1*>(this), static_cast<T2*>(this));
}
first_reference first() { return *this; }
first_const_reference first() const { return *this; }
second_reference second() { return *this; }
second_const_reference second() const { return *this; }
void swap(compressed_pair_3& y)
{
// no need to swap empty base classes:
}
};
// T1 == T2, and empty
template <class T1, class T2>
class compressed_pair_4 : T1
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_4() : T1() {}
compressed_pair_4(first_param_type x, second_param_type) : T1(x) {}
// only one single argument constructor since T1 == T2
explicit compressed_pair_4(first_param_type x) : T1(x) {}
first_reference first() { return *this; }
first_const_reference first() const { return *this; }
second_reference second() { return *this; }
second_const_reference second() const { return *this; }
void swap(compressed_pair_4& y)
{
// no need to swap empty base classes:
}
};
// T1 == T2, not empty
template <class T1, class T2>
class compressed_pair_5
{
private:
T1 _first;
T2 _second;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_5() : _first(), _second() {}
compressed_pair_5(first_param_type x, second_param_type y) : _first(x), _second(y) {}
// only one single argument constructor since T1 == T2
explicit compressed_pair_5(first_param_type x) : _first(x), _second() {}
first_reference first() { return _first; }
first_const_reference first() const { return _first; }
second_reference second() { return _second; }
second_const_reference second() const { return _second; }
void swap(compressed_pair_5& y)
{
using std::swap;
swap(_first, y._first);
swap(_second, y._second);
}
};
template <bool e1, bool e2, bool same>
struct compressed_pair_chooser
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_0<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<false, true, false>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_1<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<true, false, false>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_2<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<true, true, false>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_3<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<true, true, true>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_4<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<false, false, true>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_5<T1, T2> type;
};
};
template <class T1, class T2>
struct compressed_pair_traits
{
private:
typedef compressed_pair_chooser<is_empty<T1>::value, is_empty<T2>::value, is_same<T1,T2>::value> chooser;
typedef typename chooser::template rebind<T1, T2> bound_type;
public:
typedef typename bound_type::type type;
};
} // namespace detail
template <class T1, class T2>
class compressed_pair : public detail::compressed_pair_traits<T1, T2>::type
{
private:
typedef typename detail::compressed_pair_traits<T1, T2>::type base_type;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair() : base_type() {}
compressed_pair(first_param_type x, second_param_type y) : base_type(x, y) {}
template <class A>
explicit compressed_pair(const A& x) : base_type(x){}
first_reference first() { return base_type::first(); }
first_const_reference first() const { return base_type::first(); }
second_reference second() { return base_type::second(); }
second_const_reference second() const { return base_type::second(); }
};
template <class T1, class T2>
inline void swap(compressed_pair<T1, T2>& x, compressed_pair<T1, T2>& y)
{
x.swap(y);
}
#else
// no partial specialisation, no member templates:
template <class T1, class T2>
class compressed_pair
@@ -446,10 +72,7 @@ inline void swap(compressed_pair<T1, T2>& x, compressed_pair<T1, T2>& y)
x.swap(y);
}
#endif
} // boost
#endif // BOOST_OB_COMPRESSED_PAIR_HPP

View File

@@ -69,10 +69,6 @@
#pragma set woff 1234
#endif
#if defined(BOOST_MSVC)
# pragma warning( disable : 4284 ) // complaint about return type of
#endif // operator-> not begin a UDT
namespace boost {
namespace detail {

72
index.htm Normal file
View File

@@ -0,0 +1,72 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Boost Utility Library</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<table border="1" cellpadding="2" bgcolor="#007F7F">
<tr>
<td bgcolor="#FFFFFF"><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" width="277" height="86"></td>
<td><a href="../../index.htm"><font color="#FFFFFF" size="4" face="Arial">Home</font></a></td>
<td><a href="../../libraries.htm"><font color="#FFFFFF" size="4" face="Arial">Libraries</font></a></td>
<td><a href="../../people.htm"><font color="#FFFFFF" size="4" face="Arial">People</font></a></td>
<td><a href="../../more/faq.htm"><font color="#FFFFFF" size="4" face="Arial">FAQ</font></a></td>
<td><a href="../../more/index.htm"><font color="#FFFFFF" size="4" face="Arial">More</font></a></td>
</tr>
</table>
<h1>Boost Utility Library</h1>
<table border="1" cellpadding="5">
<tr>
<td><b><i>Header</i></b></td>
<td><b><i>Contents</i></b></td>
</tr>
<tr>
<td><a href="../../boost/utility.hpp"><code>boost/utility.hpp<br>
</code></a><a href="utility.htm">[Documentation]</a></td>
<td>Class <b>noncopyable</b> plus <b>next()</b> and <b>prior()</b> template
functions.</td>
</tr>
<tr>
<td><a href="../../boost/cast.hpp"><code>boost/cast.hpp</code></a><br>
<a href="cast.htm">[Documentation]</a></td>
<td><b>polymorphic_cast</b>, <b>implicit_cast</b>, and <b>numeric_cast</b>
function templates.
<p><i>[Beta.]</i></p>
</td>
</tr>
<tr>
<td><a href="../../boost/operators.hpp">boost/operators.hpp</a><br>
<a href="operators.htm">[Documentation]</a></td>
<td>Templates <b>equality_comparable</b>, <b>less_than_comparable</b>, <b>addable</b>,
and the like ease the task of defining comparison and arithmetic
operators, and iterators.</td>
</tr>
<tr>
<td><a href="../../boost/detail/type_traits.hpp">boost/type_traits.hpp</a><br>
[<a href="type_traits.htm">Documentation</a>]</td>
<td>Template classes that describe the fundamental properties of a type. [<a href="c++_type_traits.htm">DDJ
Article &quot;C++ type traits&quot;</a>]</td>
</tr>
<tr>
<td><a href="../../boost/detail/call_traits.hpp">boost/call_traits.hpp</a><br>
[<a href="call_traits.htm">Documentation</a>]</td>
<td>Template class call_traits&lt;T&gt;, that defines types used for passing
parameters to and from a proceedure.</td>
</tr>
<tr>
<td><a href="../../boost/detail/compressed_pair.hpp">boost/compressed_pair.hpp</a><br>
[<a href="compressed_pair.htm">Documentation</a>]</td>
<td>Template class compressed_pait&lt;T1, T2&gt; which pairs two values
using the empty member optimisation where appropriate.</td>
</tr>
</table>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B %Y" startspan -->27 July 2000<!--webbot bot="Timestamp" endspan i-checksum="18770" --></p>
</body>
</html>

View File

@@ -1,144 +0,0 @@
// Demonstrate and test boost/operators.hpp on std::iterators -------------//
// (C) Copyright Jeremy Siek 1999. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 13 Jun 00 Added const version of the iterator tests (Jeremy Siek)
// 12 Dec 99 Initial version with iterator operators (Jeremy Siek)
#include <iostream>
#include <algorithm>
#include <functional>
#include <boost/pending/iterator_adaptors.hpp>
#include <boost/pending/iterator_tests.hpp>
#include <boost/pending/integer_range.hpp>
struct my_iterator_tag : public std::random_access_iterator_tag { };
using boost::dummyT;
struct my_iter_traits {
typedef dummyT value_type;
typedef dummyT* pointer;
typedef dummyT& reference;
typedef my_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
};
struct my_const_iter_traits {
typedef dummyT value_type;
typedef const dummyT* pointer;
typedef const dummyT& reference;
typedef my_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
};
typedef boost::iterator_adaptors
<dummyT*, const dummyT*,
my_iter_traits, my_const_iter_traits> My;
struct mult_functor {
typedef int result_type;
typedef int argument_type;
// Functors used with transform_iterator must be
// DefaultConstructible, as the transform_iterator must be
// DefaultConstructible to satisfy the requirements for
// TrivialIterator.
mult_functor() { }
mult_functor(int aa) : a(aa) { }
int operator()(int b) const { return a * b; }
int a;
};
int
main()
{
dummyT array[] = { dummyT(0), dummyT(1), dummyT(2),
dummyT(3), dummyT(4), dummyT(5) };
const int N = sizeof(array)/sizeof(dummyT);
// sanity check, if this doesn't pass the test is buggy
boost::random_access_iterator_test(array,N,array);
// Test the iterator_adaptors
{
My::iterator i = array;
boost::random_access_iterator_test(i, N, array);
My::const_iterator j = array;
boost::random_access_iterator_test(j, N, array);
boost::const_nonconst_iterator_test(i, ++j);
}
// Test transform_iterator
{
int x[N], y[N];
for (int k = 0; k < N; ++k)
x[k] = k;
std::copy(x, x + N, y);
for (int k2 = 0; k2 < N; ++k2)
x[k2] = x[k2] * 2;
boost::transform_iterator<mult_functor, int*,
boost::iterator<std::random_access_iterator_tag,int> >::type
i(y, mult_functor(2));
boost::random_access_iterator_test(i, N, x);
}
// Test indirect_iterator
{
dummyT* ptr[N];
for (int k = 0; k < N; ++k)
ptr[k] = array + k;
typedef dummyT* DummyPtr;
typedef boost::indirect_iterators<DummyPtr*, const DummyPtr*,
boost::iterator<std::random_access_iterator_tag, DummyPtr>,
boost::iterator<std::random_access_iterator_tag, const DummyPtr>,
boost::iterator<std::random_access_iterator_tag, dummyT>
> Indirect;
Indirect::iterator i = ptr;
boost::random_access_iterator_test(i, N, array);
Indirect::const_iterator j = ptr;
boost::random_access_iterator_test(j, N, array);
boost::const_nonconst_iterator_test(i, ++j);
}
// Test reverse_iterators
{
dummyT reversed[N];
std::copy(array, array + N, reversed);
std::reverse(reversed, reversed + N);
typedef boost::reverse_iterators<dummyT*, const dummyT*,
boost::iterator<std::random_access_iterator_tag,dummyT>,
boost::iterator<std::random_access_iterator_tag,const dummyT>
> Reverse;
Reverse::iterator i = reversed + N;
boost::random_access_iterator_test(i, N, array);
Reverse::const_iterator j = reversed + N;
boost::random_access_iterator_test(j, N, array);
boost::const_nonconst_iterator_test(i, ++j);
}
// Test integer_range's iterators
{
int int_array[] = { 0, 1, 2, 3, 4, 5 };
boost::integer_range<int> r(0, 5);
boost::random_access_iterator_test(r.begin(), r.size(), int_array);
}
std::cout << "test successful " << std::endl;
return 0;
}

View File

@@ -617,7 +617,7 @@ uses the three adaptors.
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->27 Sep 2000<!--webbot bot="Timestamp" endspan i-checksum="14936" --></p>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->17 Jun 2000<!--webbot bot="Timestamp" endspan i-checksum="15055" --></p>
<p><EFBFBD> Copyright Jeremy Siek 2000. Permission to copy, use,
modify, sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided &quot;as is&quot;

View File

@@ -11,8 +11,8 @@
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="center" width="277" height="86">Header
<a href="../../boost/operators.hpp">boost/operators.hpp</a></h1>
<p>Header <a href="../../boost/operators.hpp">boost/operators.hpp</a> supplies
(in namespace boost) several sets of templates:</p>
<p>Header <a href="file:///c:/boost/site/boost/operators.hpp">boost/operators.hpp</a>
supplies (in namespace boost) several sets of templates:</p>
<ul>
<li><a href="#Arithmetic">Arithmetic operators</a>.
<li><a href="#deref and helpers">Dereference operators and iterator helpers.</a></li>
@@ -43,10 +43,10 @@ additional operators, such as operator&gt;, &lt;=, &gt;=, and +.&nbsp; <a href="
forms</a> of the templates are also provided to allow interaction with other
types.</p>
<p><a href="http://www.boost.org/people/dave_abrahams.htm">Dave Abrahams</a>
started the library and contributed the arithmetic operators in <a href="../../boost/operators.hpp">boost/operators.hpp</a>.<br>
started the library and contributed the arithmetic operators in <a href="file:///c:/boost/site/boost/operators.hpp">boost/operators.hpp</a>.<br>
<a href="http://www.boost.org/people/jeremy_siek.htm">Jeremy Siek</a>
contributed the <a href="#deref and helpers">dereference operators and iterator
helpers</a> in <a href="../../boost/operators.hpp">boost/operators.hpp</a>.<br>
helpers</a> in <a href="file:///c:/boost/site/boost/operators.hpp">boost/operators.hpp</a>.<br>
<a href="http://www.boost.org/people/aleksey_gurtovoy.htm">Aleksey Gurtovoy</a>
contributed the code to support <a href="#chaining">base class chaining</a>
while remaining backward-compatible with old versions of the library.<br>
@@ -60,7 +60,7 @@ x &gt;= y,</code> and <code>x &lt;= y</code>. Moreover, unless your class has
really surprising behavior, some of these related operators can be defined in
terms of others (e.g. <code>x &gt;= y <b>&lt;=&gt;</b> !(x &lt; y)</code>).
Replicating this boilerplate for multiple classes is both tedious and
error-prone. The <a href="../../boost/operators.hpp">boost/operators.hpp</a>
error-prone. The <a href="file:///c:/boost/site/boost/operators.hpp">boost/operators.hpp</a>
templates help by generating operators for you at namespace scope based on other
operators you've defined in your class.</p>
<a name="two_arg">
@@ -585,7 +585,8 @@ complicated than the old one, we think it's worth it to make the library more
useful in real world. Alexy Gurtovoy contributed the code which supports the new
usage idiom while allowing the library remain backward-compatible.</p>
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->27 Sep 2000<!--webbot bot="Timestamp" endspan i-checksum="14936" --></p>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->03 Aug 2000<!--webbot bot="Timestamp" endspan i-checksum="14750" -->
</p>
<p><EFBFBD> Copyright David Abrahams and Beman Dawes 1999-2000. Permission to copy,
use, modify, sell and distribute this document is granted provided this
copyright notice appears in all copies. This document is provided &quot;as

View File

@@ -15,7 +15,7 @@
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
ALINK="#ff0000">
<IMG SRC="../../c++boost.gif"
ALT="C++ Boost" width="277" height="86">
ALT="C++ Boost">
<BR Clear>
@@ -31,11 +31,11 @@ tied&lt;A,B&gt; tie(A&amp; a, B&amp; b);
<P>
This is a utility function that makes it more convenient to work with
a function which returns a std::pair&lt;&gt;. The effect of the <TT>tie()</TT>
a function which returns a pair. The effect of the <TT>tie()</TT>
function is to allow the assignment of the two values of the pair to
two separate variables. The idea for this comes from Jaakko
J&#228;rvi's Binders&nbsp;[<A
HREF="../graph/docs/bibliography.html#jaakko_tuple_assign">1</A>].
HREF="bibliography.html#jaakko_tuple_assign">1</A>].
<P>
@@ -63,7 +63,8 @@ pair of iterators is assigned to the iterator variables <TT>i</TT> and
</PRE>
<P>
Here is another example that uses <TT>tie()</TT> for handling operations with <a
Here is another example that uses <TT>tie()</TT> for handling
operaitons with <a
href="http://www.sgi.com/Technology/STL/set.html"><TT>std::set</TT></a>.
<P>
@@ -91,9 +92,9 @@ main(int, char*[])
for (int k = 0; k &lt; 2; ++k) {
boost::tie(i,inserted) = s.insert(new_vals[k]);
if (!inserted)
std::cout &lt;&lt; *i &lt;&lt; &quot; was already in the set.&quot; &lt;&lt; std::endl;
std::cout &lt;&lt; *i &lt;&lt; " was already in the set." &lt;&lt; std::endl;
else
std::cout &lt;&lt; *i &lt;&lt; &quot; successfully inserted.&quot; &lt;&lt; std::endl;
std::cout &lt;&lt; *i &lt;&lt; " successfully inserted." &lt;&lt; std::endl;
}
}
{
@@ -104,8 +105,8 @@ main(int, char*[])
// Using tie() with a return value of pair&lt;iterator,iterator&gt;
boost::tie(i,end) = std::equal_range(vals, vals + 6, 4);
std::cout &lt;&lt; &quot;There were &quot; &lt;&lt; std::distance(i,end)
&lt;&lt; &quot; occurrences of &quot; &lt;&lt; *i &lt;&lt; &quot;.&quot; &lt;&lt; std::endl;
std::cout &lt;&lt; "There were " &lt;&lt; std::distance(i,end)
&lt;&lt; " occurances of " &lt;&lt; *i &lt;&lt; "." &lt;&lt; std::endl;
// Footnote: of course one would normally just use std::count()
// to get this information, but that would spoil the example :)
}
@@ -116,7 +117,7 @@ The output is:
<PRE>
3 successfully inserted.
9 was already in the set.
There were 2 occurrences of 4.
There were 2 occurances of 4.
</PRE>
<br>

View File

@@ -126,7 +126,8 @@ is always defined as a compile time constant).</p>
<td width="36%"><p align="center">True if T and U are the
same type.</p>
</td>
<td width="27%">&nbsp; </td>
<td width="27%"><p align="center">P</p>
</td>
</tr>
<tr>
<td width="37%"><div align="center"><center><pre>is_convertible&lt;T,U&gt;::value</pre>
@@ -169,13 +170,15 @@ on a type (see 3.93).</p>
<td valign="top" width="37%"><code>is_const&lt;T&gt;::value</code></td>
<td valign="top" width="37%">True if type T is top-level
const qualified.</td>
<td valign="top" width="27%">&nbsp; </td>
<td valign="top" width="27%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="37%"><code>is_volatile&lt;T&gt;::value</code></td>
<td valign="top" width="37%">True if type T is top-level
volatile qualified.</td>
<td valign="top" width="27%">&nbsp; </td>
<td valign="top" width="27%"><p align="center">P</p>
</td>
</tr>
</table>
@@ -345,19 +348,22 @@ as defined by the Standard.&nbsp;</p>
<td valign="top" width="45%">True if T is a regular
pointer type - including function pointers - but
excluding pointers to member functions (3.9.2 p1 and 8.3.1).</td>
<td valign="top" width="33%">&nbsp; </td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_member_pointer&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a pointer to a
non-static class member (3.9.2 p1 and 8.3.1).</td>
<td valign="top" width="33%">&nbsp; </td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_reference&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a reference
type (3.9.2 p1 and 8.3.2).</td>
<td valign="top" width="33%">&nbsp; </td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_class&lt;T&gt;::value</code></td>
@@ -601,7 +607,7 @@ familiar standard library algorithms.</p>
<hr>
<p>Revised 01 September 2000</p>
<p>Revised 08<sup>th</sup> March 2000</p>
<p><EFBFBD> Copyright boost.org 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this

View File

@@ -20,7 +20,6 @@
#include <typeinfo>
#include <boost/type_traits.hpp>
#include <boost/utility.hpp>
#include "type_traits_test.hpp"
using namespace boost;
@@ -163,24 +162,7 @@ struct VD : VB
{
~VD(){};
};
//
// struct non_pointer:
// used to verify that is_pointer does not return
// true for class types that implement operator void*()
//
struct non_pointer
{
operator void*(){return this;}
};
//
// struct non_empty:
// used to verify that is_empty does not emit
// spurious warnings or errors.
//
struct non_empty : boost::noncopyable
{
int i;
};
// Steve: All comments that I (Steve Cleary) have added below are prefixed with
// "Steve:" The failures that BCB4 has on the tests are due to Borland's
@@ -238,8 +220,6 @@ int main()
value_test(false, (is_same<int*, const int*>::value))
value_test(false, (is_same<int*, int*const>::value))
value_test(false, (is_same<int, int[2]>::value))
value_test(false, (is_same<int*, int[2]>::value))
value_test(false, (is_same<int[4], int[2]>::value))
value_test(false, is_const<int>::value)
value_test(true, is_const<const int>::value)
@@ -383,14 +363,9 @@ int main()
value_test(false, is_array<int>::value)
value_test(false, is_array<int*>::value)
value_test(false, is_array<const int*>::value)
value_test(false, is_array<const volatile int*>::value)
value_test(true, is_array<int[2]>::value)
value_test(true, is_array<const int[2]>::value)
value_test(true, is_array<const volatile int[2]>::value)
value_test(true, is_array<int[2][3]>::value)
value_test(true, is_array<UDT[2]>::value)
value_test(false, is_array<int(&)[2]>::value)
typedef void(*f1)();
typedef int(*f2)(int);
@@ -400,28 +375,15 @@ int main()
typedef int (UDT::*mf3)(int);
typedef int (UDT::*mf4)(int, float);
value_test(false, is_const<f1>::value)
value_test(false, is_reference<f1>::value)
value_test(false, is_array<f1>::value)
value_test(false, is_pointer<int>::value)
value_test(false, is_pointer<int&>::value)
value_test(true, is_pointer<int*>::value)
value_test(true, is_pointer<const int*>::value)
value_test(true, is_pointer<volatile int*>::value)
value_test(true, is_pointer<non_pointer*>::value)
// Steve: was 'true', should be 'false', via 3.9.2p3, 3.9.3p1
value_test(false, is_pointer<int*const>::value)
// Steve: was 'true', should be 'false', via 3.9.2p3, 3.9.3p1
value_test(false, is_pointer<int*volatile>::value)
// Steve: was 'true', should be 'false', via 3.9.2p3, 3.9.3p1
value_test(false, is_pointer<int*const volatile>::value)
// JM 02 Oct 2000:
value_test(false, is_pointer<non_pointer>::value)
value_test(false, is_pointer<int*&>::value)
value_test(false, is_pointer<int(&)[2]>::value)
value_test(false, is_pointer<int[2]>::value)
value_test(false, is_pointer<char[sizeof(void*)]>::value)
value_test(true, is_pointer<f1>::value)
value_test(true, is_pointer<f2>::value)
value_test(true, is_pointer<f3>::value)
@@ -440,7 +402,6 @@ int main()
value_test(true, is_reference<volatile int &>::value)
value_test(true, is_reference<r_type>::value)
value_test(true, is_reference<cr_type>::value)
value_test(true, is_reference<const UDT&>::value)
value_test(false, is_class<int>::value)
value_test(false, is_class<const int>::value)
@@ -482,29 +443,19 @@ int main()
value_test(false, is_empty<int>::value)
value_test(false, is_empty<int*>::value)
value_test(false, is_empty<int&>::value)
#if defined(__MWERKS__) || defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
#ifdef __MWERKS__
// apparent compiler bug causes this to fail to compile:
value_fail(false, is_empty<int[2]>::value)
#else
value_test(false, is_empty<int[2]>::value)
#endif
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
value_fail(false, is_empty<f1>::value)
#else
value_test(false, is_empty<f1>::value)
#endif
value_test(false, is_empty<mf1>::value)
value_test(false, is_empty<UDT>::value)
value_test(true, is_empty<empty_UDT>::value)
value_test(true, is_empty<empty_POD_UDT>::value)
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
value_fail(true, is_empty<empty_union_UDT>::value)
#else
value_test(true, is_empty<empty_union_UDT>::value)
#endif
value_test(false, is_empty<enum_UDT>::value)
value_test(true, is_empty<boost::noncopyable>::value)
value_test(false, is_empty<non_empty>::value)
value_test(true, has_trivial_constructor<int>::value)
value_test(true, has_trivial_constructor<int*>::value)
@@ -589,7 +540,7 @@ int main()
value_test(false, (boost::is_convertible<Base,Deriverd>::value));
value_test(true, (boost::is_convertible<Deriverd,Deriverd>::value));
value_test(false, (boost::is_convertible<NonDerived,Base>::value));
value_test(false, (boost::is_convertible<boost::noncopyable, int>::value));
//value_test(false, (boost::is_convertible<boost::noncopyable, boost::noncopyable>::value));
value_test(true, (boost::is_convertible<float,int>::value));
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) || !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
value_test(false, (boost::is_convertible<float,void>::value));
@@ -641,3 +592,4 @@ int main()

View File

@@ -33,15 +33,10 @@ struct ct_checker
#define BOOST_DO_JOIN2(X, Y) X ## Y
#define BOOST_JOIN( X, Y ) BOOST_DO_JOIN( X, Y )
#ifdef BOOST_MSVC
#define value_test(v, x) ++test_count;\
{typedef ct_checker<(x)> this_is_a_compile_time_check_;}\
if(!do_compare((int)v,(int)x)){++failures; std::cout << "checking value of " << #x << "...failed" << std::endl;}
#else
#define value_test(v, x) ++test_count;\
typedef ct_checker<(x)> BOOST_JOIN(this_is_a_compile_time_check_, __LINE__);\
if(!do_compare((int)v,(int)x)){++failures; std::cout << "checking value of " << #x << "...failed" << std::endl;}
#endif
#define value_fail(v, x) ++test_count; ++failures; std::cout << "checking value of " << #x << "...failed" << std::endl;
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
@@ -109,4 +104,3 @@ unsigned test_count = 0;
#endif // BOOST_TYPE_TRAITS_TEST_HPP

View File

@@ -16,11 +16,10 @@
<h2>Contents</h2>
<ul>
<li>Function templates <a href="#functions next">next() and prior()</a></li>
<li>Template functions <a href="#functions next">next() and prior()</a></li>
<li>Class <a href="#Class noncopyable">noncopyable</a></li>
<li>Function template <a href="tie.html">tie()</a> and supporting class tied.</li>
</ul>
<h2> <a name="functions next">Function</a> templates next() and prior()</h2>
<h2>Template <a name="functions next">functions next</a>() and prior()</h2>
<p>Certain data types, such as the C++ Standard Library's forward and
bidirectional iterators, do not provide addition and subtraction via operator+()
@@ -93,7 +92,7 @@ destructor declarations. He says &quot;Probably this concern is misplaced, becau
noncopyable will be used mostly for classes which own resources and thus have non-trivial destruction semantics.&quot;</p>
<hr>
<p>Revised&nbsp; <!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan
-->28 September, 2000<!--webbot bot="Timestamp" endspan i-checksum="39343"
-->26 January, 2000<!--webbot bot="Timestamp" endspan i-checksum="38194"
-->
</p>
<p><EFBFBD> Copyright boost.org 1999. Permission to copy, use, modify, sell and