Compare commits

..

1 Commits

Author SHA1 Message Date
nobody
11fa077264 This commit was manufactured by cvs2svn to create branch 'regex-sub'.
[SVN r7754]
2000-09-21 03:34:33 +00:00
32 changed files with 525 additions and 2927 deletions

View File

@@ -1,116 +0,0 @@
<HTML>
<!--
-- Copyright (c) Jeremy Siek 2000
--
-- Permission to use, copy, modify, distribute and sell this software
-- and its documentation for any purpose is hereby granted without fee,
-- provided that the above copyright notice appears in all copies and
-- that both that copyright notice and this permission notice appear
-- in supporting documentation. Silicon Graphics makes no
-- representations about the suitability of this software for any
-- purpose. It is provided "as is" without express or implied warranty.
-->
<Head>
<Title>Assignable</Title>
</HEAD>
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
ALINK="#ff0000">
<IMG SRC="../../c++boost.gif"
ALT="C++ Boost" width="277" height="86">
<!--end header-->
<BR Clear>
<H1>Assignable</H1>
<h3>Description</h3>
A type is Assignable if it is possible to assign one object of the type
to another object of that type.
<h3>Notation</h3>
<Table>
<TR>
<TD VAlign=top>
<tt>T</tt>
</TD>
<TD VAlign=top>
is type that is a model of Assignable
</TD>
</TR>
<TR>
<TD VAlign=top>
<tt>t</tt>
</TD>
<TD VAlign=top>
is an object of type <tt>T</tt>
</TD>
</tr>
<TR>
<TD VAlign=top>
<tt>u</tt>
</TD>
<TD VAlign=top>
is an object of type <tt>T</tt> or possibly <tt>const T</tt>
</TD>
</tr>
</table>
<h3>Definitions</h3>
<h3>Valid expressions</h3>
<Table border>
<TR>
<TH>
Name
</TH>
<TH>
Expression
</TH>
<TH>
Return type
</TH>
<TH>
Semantics
</TH>
</TR>
<TR>
<TD VAlign=top>
Assignment
</TD>
<TD VAlign=top>
<tt>t = u</tt>
</TD>
<TD VAlign=top>
<tt>T&amp;</tt>
</TD>
<TD VAlign=top>
<tt>t</tt> is equivalent to <tt>u</tt>
</TD>
</TR>
</table>
</table>
<h3>Models</h3>
<UL>
<LI><tt>int</tt>
<LI><tt>std::pair</tt>
</UL>
<h3>See also</h3>
<a href="http://www.sgi.com/Technology/STL/DefaultConstructible.html">DefaultConstructible</A>
and
<A href="./CopyConstructible.html">CopyConstructible</A>
<br>
<HR>
<TABLE>
<TR valign=top>
<TD nowrap>Copyright &copy 2000</TD><TD>
<A HREF=http://www.lsc.nd.edu/~jsiek>Jeremy Siek</A>, Univ.of Notre Dame (<A HREF="mailto:jsiek@lsc.nd.edu">jsiek@lsc.nd.edu</A>)
</TD></TR></TABLE>
</BODY>
</HTML>

View File

@@ -16,7 +16,7 @@
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
ALINK="#ff0000">
<IMG SRC="../../c++boost.gif"
ALT="C++ Boost" width="277" height="86">
ALT="C++ Boost">
<!--end header-->
<BR Clear>
<H1>CopyConstructible</H1>
@@ -170,28 +170,6 @@ denotes the address of <tt>u</tt>
<LI><tt>std::pair</tt>
</UL>
<h3>Concept Checking Class</h3>
<pre>
template &lt;class T&gt;
struct CopyConstructibleConcept
{
void constraints() {
T a(b); // require copy constructor
T* ptr = &amp;a; // require address of operator
const_constraints(a);
ignore_unused_variable_warning(ptr);
}
void const_constraints(const T&amp; a) {
T c(a); // require const copy constructor
const T* ptr = &amp;a; // require const address of operator
ignore_unused_variable_warning(c);
ignore_unused_variable_warning(ptr);
}
T b;
};
</pre>
<h3>See also</h3>
<A
href="http://www.sgi.com/Technology/STL/DefaultConstructible.html">DefaultConstructible</A>

View File

@@ -1,212 +0,0 @@
<HTML>
<!--
-- Copyright (c) Jeremy Siek 2000
--
-- Permission to use, copy, modify, distribute and sell this software
-- and its documentation for any purpose is hereby granted without fee,
-- provided that the above copyright notice appears in all copies and
-- that both that copyright notice and this permission notice appear
-- in supporting documentation. Silicon Graphics makes no
-- representations about the suitability of this software for any
-- purpose. It is provided "as is" without express or implied warranty.
-->
<!--
-- Copyright (c) 1996-1999
-- Silicon Graphics Computer Systems, Inc.
--
-- Permission to use, copy, modify, distribute and sell this software
-- and its documentation for any purpose is hereby granted without fee,
-- provided that the above copyright notice appears in all copies and
-- that both that copyright notice and this permission notice appear
-- in supporting documentation. Silicon Graphics makes no
-- representations about the suitability of this software for any
-- purpose. It is provided "as is" without express or implied warranty.
--
-- Copyright (c) 1994
-- Hewlett-Packard Company
--
-- Permission to use, copy, modify, distribute and sell this software
-- and its documentation for any purpose is hereby granted without fee,
-- provided that the above copyright notice appears in all copies and
-- that both that copyright notice and this permission notice appear
-- in supporting documentation. Hewlett-Packard Company makes no
-- representations about the suitability of this software for any
-- purpose. It is provided "as is" without express or implied warranty.
--
-->
<Head>
<Title>LessThanComparable</Title>
</Head>
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
ALINK="#ff0000">
<IMG SRC="../../c++boost.gif"
ALT="C++ Boost" width="277" height="86">
<!--end header-->
<BR Clear>
<H1>LessThanComparable</H1>
<h3>Description</h3>
A type is LessThanComparable if it is ordered: it must
be possible to compare two objects of that type using <tt>operator&lt;</tt>, and
<tt>operator&lt;</tt> must be a strict weak ordering relation.
<h3>Refinement of</h3>
<h3>Associated types</h3>
<h3>Notation</h3>
<Table>
<TR>
<TD VAlign=top>
<tt>X</tt>
</TD>
<TD VAlign=top>
A type that is a model of LessThanComparable
</TD>
</TR>
<TR>
<TD VAlign=top>
<tt>x</tt>, <tt>y</tt>, <tt>z</tt>
</TD>
<TD VAlign=top>
Object of type <tt>X</tt>
</TD>
</tr>
</table>
<h3>Definitions</h3>
Consider the relation <tt>!(x &lt; y) &amp;&amp; !(y &lt; x)</tt>. If this relation is
transitive (that is, if <tt>!(x &lt; y) &amp;&amp; !(y &lt; x) &amp;&amp; !(y &lt; z) &amp;&amp; !(z &lt; y)</tt>
implies <tt>!(x &lt; z) &amp;&amp; !(z &lt; x)</tt>), then it satisfies the mathematical
definition of an equivalence relation. In this case, <tt>operator&lt;</tt>
is a <i>strict weak ordering</i>.
<P>
If <tt>operator&lt;</tt> is a strict weak ordering, and if each equivalence class
has only a single element, then <tt>operator&lt;</tt> is a <i>total ordering</i>.
<h3>Valid expressions</h3>
<Table border>
<TR>
<TH>
Name
</TH>
<TH>
Expression
</TH>
<TH>
Type requirements
</TH>
<TH>
Return type
</TH>
</TR>
<TR>
<TD VAlign=top>
Less
</TD>
<TD VAlign=top>
<tt>x &lt; y</tt>
</TD>
<TD VAlign=top>
&nbsp;
</TD>
<TD VAlign=top>
Convertible to <tt>bool</tt>
</TD>
</TR>
</table>
<h3>Expression semantics</h3>
<Table border>
<TR>
<TH>
Name
</TH>
<TH>
Expression
</TH>
<TH>
Precondition
</TH>
<TH>
Semantics
</TH>
<TH>
Postcondition
</TH>
</TR>
<TR>
<TD VAlign=top>
Less
</TD>
<TD VAlign=top>
<tt>x &lt; y</tt>
</TD>
<TD VAlign=top>
<tt>x</tt> and <tt>y</tt> are in the domain of <tt>&lt;</tt>
</TD>
<TD VAlign=top>
&nbsp;
</TD>
</table>
<h3>Complexity guarantees</h3>
<h3>Invariants</h3>
<Table border>
<TR>
<TD VAlign=top>
Irreflexivity
</TD>
<TD VAlign=top>
<tt>x &lt; x</tt> must be false.
</TD>
</TR>
<TR>
<TD VAlign=top>
Antisymmetry
</TD>
<TD VAlign=top>
<tt>x &lt; y</tt> implies !(y &lt; x) <A href="#2">[2]</A>
</TD>
</TR>
<TR>
<TD VAlign=top>
Transitivity
</TD>
<TD VAlign=top>
<tt>x &lt; y</tt> and <tt>y &lt; z</tt> implies <tt>x &lt; z</tt> <A href="#3">[3]</A>
</TD>
</tr>
</table>
<h3>Models</h3>
<UL>
<LI>
int
</UL>
<h3>Notes</h3>
<P><A name="1">[1]</A>
Only <tt>operator&lt;</tt> is fundamental; the other inequality operators
are essentially syntactic sugar.
<P><A name="2">[2]</A>
Antisymmetry is a theorem, not an axiom: it follows from
irreflexivity and transitivity.
<P><A name="3">[3]</A>
Because of irreflexivity and transitivity, <tt>operator&lt;</tt> always
satisfies the definition of a <i>partial ordering</i>. The definition of
a <i>strict weak ordering</i> is stricter, and the definition of a
<i>total ordering</i> is stricter still.
<h3>See also</h3>
<A href="http://www.sgi.com/Technology/STL/EqualityComparable.html">EqualityComparable</A>, <A href="http://www.sgi.com/Technology/STL/StrictWeakOrdering.html">StrictWeakOrdering</A>
<br>
<HR>
<TABLE>
<TR valign=top>
<TD nowrap>Copyright &copy 2000</TD><TD>
<A HREF=http://www.lsc.nd.edu/~jsiek>Jeremy Siek</A>, Univ.of Notre Dame (<A HREF="mailto:jsiek@lsc.nd.edu">jsiek@lsc.nd.edu</A>)
</TD></TR></TABLE>
</BODY>
</HTML>

View File

@@ -15,7 +15,7 @@
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
ALINK="#ff0000">
<IMG SRC="../../c++boost.gif"
ALT="C++ Boost" width="277" height="86">
ALT="C++ Boost">
<BR Clear>

View File

@@ -196,7 +196,7 @@ struct filler<true>
template <typename I, typename T>
static void do_fill(I first, I last, T val)
{
std::memset(first, val, last-first);
memset(first, val, last-first);
}
};
@@ -421,4 +421,3 @@ int main()

View File

@@ -27,16 +27,10 @@ never occur, and that parameters are passed in the most efficient
manner possible (see <a href="#examples">examples</a>). In each
case if your existing practice is to use the type defined on the
left, then replace it with the call_traits defined type on the
right. </p>
<p>Note that for compilers that do not support either partial
specialization or member templates, no benefit will occur from
using call_traits: the call_traits defined types will always be
the same as the existing practice in this case. In addition if
only member templates and not partial template specialisation is
support by the compiler (for example Visual C++ 6) then call_traits
can not be used with array types (although it can be used to
solve the reference to reference problem).</p>
right. Note that for compilers that do not support partial
specialization, no benefit will occur from using call_traits: the
call_traits defined types will always be the same as the existing
practice in this case.</p>
<table border="0" cellpadding="7" cellspacing="1" width="797">
<tr>
@@ -575,9 +569,7 @@ std::pair&lt;
degraded to pointers if the deduced types are arrays, similar
situations occur in the standard binders and adapters: in
principle in any function that &quot;wraps&quot; a temporary
whose type is deduced. Note that the function arguments to make_pair
are not expressed in terms of call_traits: doing so would prevent
template argument deduction from functioning.</p>
whose type is deduced.</p>
<h4><a name="ex4"></a>Example 4 (optimising fill):</h4>
@@ -640,14 +632,6 @@ Exactly how much mileage you will get from this depends upon your
compiler - we could really use some accurate benchmarking
software as part of boost for cases like this.</p>
<p>Note that the function arguments to fill are not expressed in
terms of call_traits: doing so would prevent template argument
deduction from functioning. Instead fill acts as a &quot;thin
wrapper&quot; that is there to perform template argument
deduction, the compiler will optimise away the call to fill all
together, replacing it with the call to filler&lt;&gt;::do_fill,
which does use call_traits.</p>
<h3>Rationale</h3>
<p>The following notes are intended to briefly describe the
@@ -729,7 +713,7 @@ specialisation).</p>
<hr>
<p>Revised 01 September 2000</p>
<p>Revised 18 June 2000</p>
<p><EFBFBD> Copyright boost.org 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this

View File

@@ -6,8 +6,6 @@
// warranty, and with no claim as to its suitability for any purpose.
// standalone test program for <boost/call_traits.hpp>
// 03 Oct 2000:
// Enabled extra tests for VC6.
#include <cassert>
#include <iostream>
@@ -118,7 +116,7 @@ void checker<T>::operator()(param_type p)
assert(t == c.get());
assert(t == c.const_get());
//cout << "typeof contained<" << typeid(T).name() << ">::v_ is: " << typeid(&contained<T>::v_).name() << endl;
cout << "typeof contained<" << typeid(T).name() << ">::v_ is: " << typeid(&contained<T>::v_).name() << endl;
cout << "typeof contained<" << typeid(T).name() << ">::value() is: " << typeid(&contained<T>::value).name() << endl;
cout << "typeof contained<" << typeid(T).name() << ">::get() is: " << typeid(&contained<T>::get).name() << endl;
cout << "typeof contained<" << typeid(T).name() << ">::const_get() is: " << typeid(&contained<T>::const_get).name() << endl;
@@ -192,18 +190,17 @@ int main()
int i = 2;
c2(i);
int* pi = &i;
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) || !defined(BOOST_NO_MEMBER_TEMPLATES)
checker<int*> c3;
c3(pi);
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
checker<int&> c4;
c4(i);
checker<const int&> c5;
c5(i);
#if !defined (BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
int a[2] = {1,2};
checker<int[2]> c6;
c6(a);
#endif
#endif
check_wrap(wrap(2), 2);
@@ -232,7 +229,7 @@ int main()
type_test(int*&, boost::call_traits<int*>::reference)
type_test(int*const&, boost::call_traits<int*>::const_reference)
type_test(int*const, boost::call_traits<int*>::param_type)
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) || !defined(BOOST_NO_MEMBER_TEMPLATES)
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
type_test(int&, boost::call_traits<int&>::value_type)
type_test(int&, boost::call_traits<int&>::reference)
type_test(const int&, boost::call_traits<int&>::const_reference)
@@ -251,7 +248,6 @@ int main()
type_test(const int&, boost::call_traits<const int&>::reference)
type_test(const int&, boost::call_traits<const int&>::const_reference)
type_test(const int&, boost::call_traits<const int&>::param_type)
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
type_test(const int*, boost::call_traits<int[3]>::value_type)
type_test(int(&)[3], boost::call_traits<int[3]>::reference)
type_test(const int(&)[3], boost::call_traits<int[3]>::const_reference)
@@ -260,11 +256,6 @@ int main()
type_test(const int(&)[3], boost::call_traits<const int[3]>::reference)
type_test(const int(&)[3], boost::call_traits<const int[3]>::const_reference)
type_test(const int*const, boost::call_traits<const int[3]>::param_type)
#else
std::cout << "You're compiler does not support partial template instantiation, skipping 8 tests (8 errors)" << std::endl;
failures += 8;
test_count += 8;
#endif
#else
std::cout << "You're compiler does not support partial template instantiation, skipping 20 tests (20 errors)" << std::endl;
failures += 20;
@@ -327,7 +318,7 @@ struct call_traits_test<T, true>
};
template <typename T>
void call_traits_test<T, true>::assert_construct(typename boost::call_traits<T>::param_type val)
void call_traits_test<T, true>::assert_construct(boost::call_traits<T>::param_type val)
{
//
// this is to check that the call_traits assertions are valid:
@@ -356,11 +347,9 @@ void call_traits_test<T, true>::assert_construct(typename boost::call_traits<T>:
template struct call_traits_test<int>;
template struct call_traits_test<const int>;
template struct call_traits_test<int*>;
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) || !defined(BOOST_NO_MEMBER_TEMPLATES)
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template struct call_traits_test<int&>;
template struct call_traits_test<const int&>;
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template struct call_traits_test<int[2], true>;
#endif
#endif

148
cast.htm Normal file
View File

@@ -0,0 +1,148 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Header boost/cast.hpp Documentation</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="center" width="277" height="86">Header
<a href="../../boost/cast.hpp">boost/cast.hpp</a></h1>
<h2><a name="Cast Functions">Cast Functions</a></h2>
<p>The <code>header <a href="../../boost/cast.hpp">boost/cast.hpp</a></code>
provides <a href="#Polymorphic_cast"><b>polymorphic_cast</b></a>, <a href="#Polymorphic_cast"><b>polymorphic_downcast</b></a>,
and <a href="#numeric_cast"><b>numeric_cast</b></a> template functions designed
to complement the C++ Standard's built-in casts.</p>
<p>The program&nbsp;<a href="cast_test.cpp">cast_test.cpp</a> can be used to
verify these function templates work as expected.</p>
<p><b>polymorphic_cast</b> was suggested by Bjarne Stroustrup in &quot;The C++
Programming Language&quot;.<br>
<b>polymorphic_downcast</b> was contributed by <a href="../../people/dave_abrahams.htm">Dave
Abrahams</a>.<b><br>
numeric_cast</b> was contributed by <a href="../../people/kevlin_henney.htm">Kevlin
Henney</a>.</p>
<h3>Namespace synopsis</h3>
<blockquote>
<pre>namespace boost {
namespace cast {
// all synopsis below included here
}
using ::boost::cast::polymorphic_cast;
using ::boost::cast::polymorphic_downcast;
using ::boost::cast::bad_numeric_cast;
using ::boost::cast::numeric_cast;
}</pre>
</blockquote>
<h3><a name="Polymorphic_cast">Polymorphic casts</a></h3>
<p>Pointers to polymorphic objects (objects of classes which define at least one
virtual function) are sometimes downcast or crosscast.&nbsp; Downcasting means
casting from a base class to a derived class.&nbsp; Crosscasting means casting
across an inheritance hierarchy diagram, such as from one base to the other in a
<b>Y</b> diagram hierarchy.</p>
<p>Such casts can be done with old-style casts, but this approach is never to be
recommended.&nbsp; Old-style casts are sorely lacking in type safety, suffer
poor readability, and are difficult to locate with search tools.</p>
<p>The C++ built-in <b>static_cast</b> can be used for efficiently downcasting
pointers to polymorphic objects, but provides no error detection for the case
where the pointer being cast actually points to the wrong derived class. The <b>polymorphic_downcast</b>
template retains the efficiency of <b>static_cast</b> for non-debug
compilations, but for debug compilations adds safety via an assert() that a <b>dynamic_cast</b>
succeeds.&nbsp;<b>&nbsp;</b></p>
<p>The C++ built-in <b>dynamic_cast</b> can be used for downcasts and crosscasts
of pointers to polymorphic objects, but error notification in the form of a
returned value of 0 is inconvenient to test, or worse yet, easy to forget to
test.&nbsp; The <b>polymorphic_cast</b> template performs a <b>dynamic_cast</b>,
and throws an exception if the <b>dynamic_cast</b> returns 0.</p>
<p>A <b>polymorphic_downcast</b> is preferred when debug-mode tests will cover
100% of the object types possibly cast and when non-debug-mode efficiency is an
issue. If these two conditions are not present, <b>polymorphic_cast</b> is
preferred.&nbsp; It must also be used for crosscasts.&nbsp; It does an assert(
dynamic_cast&lt;Derived&gt;(x) == x ) where x is the base pointer, ensuring that
not only is a non-zero pointer returned, but also that it correct in the
presence of multiple inheritance. .<b> Warning:</b>: Because <b>polymorphic_downcast</b>
uses assert(), it violates the One Definition Rule if NDEBUG is inconsistently
defined across translation units.</p>
<p>The C++ built-in <b>dynamic_cast</b> must be used to cast references rather
than pointers.&nbsp; It is also the only cast that can be used to check whether
a given interface is supported; in that case a return of 0 isn't an error
condition.</p>
<h3>polymorphic_cast and polymorphic_downcast synopsis</h3>
<blockquote>
<pre>template &lt;class Derived, class Base&gt;
inline Derived polymorphic_cast(Base* x);
// Throws: std::bad_cast if ( dynamic_cast&lt;Derived&gt;(x) == 0 )
// Returns: dynamic_cast&lt;Derived&gt;(x)
template &lt;class Derived, class Base&gt;
inline Derived polymorphic_downcast(Base* x);
// Effects: assert( dynamic_cast&lt;Derived&gt;(x) == x );
// Returns: static_cast&lt;Derived&gt;(x)</pre>
</blockquote>
<h3>polymorphic_downcast example</h3>
<blockquote>
<pre>#include &lt;boost/cast.hpp&gt;
...
class Fruit { public: virtual ~Fruit(){}; ... };
class Banana : public Fruit { ... };
...
void f( Fruit * fruit ) {
// ... logic which leads us to believe it is a Banana
Banana * banana = boost::polymorphic_downcast&lt;Banana*&gt;(fruit);
...</pre>
</blockquote>
<h3><a name="numeric_cast">numeric_cast</a></h3>
<p>A <b>static_cast</b>, <b>implicit_cast</b> or implicit conversion will not
detect failure to preserve range for numeric casts. The <b>numeric_cast</b>
template function are similar to <b>static_cast</b> and certain (dubious)
implicit conversions in this respect, except that they detect loss of numeric
range. An exception is thrown when a runtime value preservation check fails.</p>
<p>The requirements on the argument and result types are:</p>
<blockquote>
<ul>
<li>Both argument and result types are CopyConstructible [20.1.3].</li>
<li>Both argument and result types are Numeric, defined by <code>std::numeric_limits&lt;&gt;::is_specialized</code>
being true.</li>
<li>The argument can be converted to the result type using <b>static_cast</b>.</li>
</ul>
</blockquote>
<h3>numeric_cast synopsis</h3>
<blockquote>
<pre>class bad_numeric_cast : public std::bad_cast {...};
template&lt;typename Target, typename Source&gt;
inline Target numeric_cast(Source arg);
// Throws: bad_numeric_cast unless, in converting arg from Source to Target,
// there is no loss of negative range, and no underflow, and no
// overflow, as determined by std::numeric_limits
// Returns: static_cast&lt;Target&gt;(arg)</pre>
</blockquote>
<h3>numeric_cast example</h3>
<blockquote>
<pre>#include &lt;boost/cast.hpp&gt;
using namespace boost::cast;
void ariane(double vx)
{
...
unsigned short dx = numeric_cast&lt;unsigned short&gt;(vx);
...
}</pre>
</blockquote>
<h3>numeric_cast rationale</h3>
<p>The form of the throws condition is specified so that != is not a required
operation.</p>
<hr>
<p>Revised&nbsp; <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B, %Y" startspan
-->28 June, 2000<!--webbot bot="Timestamp" endspan i-checksum="19846"
--></p>
<p><EFBFBD> Copyright boost.org 1999. Permission to copy, use, modify, sell and
distribute this document is granted provided this copyright notice appears in
all copies. This document is provided &quot;as is&quot; without express or
implied warranty, and with no claim as to its suitability for any purpose.</p>
</body>
</html>

149
cast_test.cpp Normal file
View File

@@ -0,0 +1,149 @@
// boost utility cast test program -----------------------------------------//
// (C) Copyright boost.org 1999. Permission to copy, use, modify, sell
// and distribute this software is granted provided this copyright
// notice appears in all copies. This software is provided "as is" without
// express or implied warranty, and with no claim as to its suitability for
// any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 28 Jun 00 implicit_cast removed (Beman Dawes)
// 30 Aug 99 value_cast replaced by numeric_cast
// 3 Aug 99 Initial Version
#include <iostream>
#include <climits>
#include <limits>
#include <boost/cast.hpp>
# if SCHAR_MAX == LONG_MAX
# error "This test program doesn't work if SCHAR_MAX == LONG_MAX"
# endif
using namespace boost;
using std::cout;
namespace
{
struct Base
{
virtual char kind() { return 'B'; }
};
struct Base2
{
virtual char kind2() { return '2'; }
};
struct Derived : public Base, Base2
{
virtual char kind() { return 'D'; }
};
}
int main( int argc, char * argv[] )
{
cout << "Usage: test_casts [n], where n omitted or is:\n"
" 1 = execute #1 assert failure (#ifndef NDEBUG)\n"
" 2 = execute #2 assert failure (#ifndef NDEBUG)\n"
"Example: test_casts 2\n\n";
# ifdef NDEBUG
cout << "NDEBUG is defined\n";
# else
cout << "NDEBUG is not defined\n";
# endif
cout << "\nBeginning tests...\n";
// test polymorphic_cast ---------------------------------------------------//
// tests which should succeed
Base * base = new Derived;
Base2 * base2 = 0;
Derived * derived = 0;
derived = polymorphic_downcast<Derived*>( base ); // downcast
assert( derived->kind() == 'D' );
derived = 0;
derived = polymorphic_cast<Derived*>( base ); // downcast, throw on error
assert( derived->kind() == 'D' );
base2 = polymorphic_cast<Base2*>( base ); // crosscast
assert( base2->kind2() == '2' );
// tests which should result in errors being detected
int err_count = 0;
base = new Base;
if ( argc > 1 && *argv[1] == '1' )
{ derived = polymorphic_downcast<Derived*>( base ); } // #1 assert failure
bool caught_exception = false;
try { derived = polymorphic_cast<Derived*>( base ); }
catch (std::bad_cast)
{ cout<<"caught bad_cast\n"; caught_exception = true; }
if ( !caught_exception ) ++err_count;
// the following is just so generated code can be inspected
if ( derived->kind() == 'B' ) ++err_count;
// test implicit_cast and numeric_cast -------------------------------------//
// tests which should succeed
long small_value = 1;
long small_negative_value = -1;
long large_value = std::numeric_limits<long>::max();
long large_negative_value = std::numeric_limits<long>::min();
signed char c = 0;
c = large_value; // see if compiler generates warning
c = numeric_cast<signed char>( small_value );
assert( c == 1 );
c = 0;
c = numeric_cast<signed char>( small_value );
assert( c == 1 );
c = 0;
c = numeric_cast<signed char>( small_negative_value );
assert( c == -1 );
// tests which should result in errors being detected
caught_exception = false;
try { c = numeric_cast<signed char>( large_value ); }
catch (bad_numeric_cast)
{ cout<<"caught bad_numeric_cast #1\n"; caught_exception = true; }
if ( !caught_exception ) ++err_count;
caught_exception = false;
try { c = numeric_cast<signed char>( large_negative_value ); }
catch (bad_numeric_cast)
{ cout<<"caught bad_numeric_cast #2\n"; caught_exception = true; }
if ( !caught_exception ) ++err_count;
unsigned long ul;
caught_exception = false;
try { ul = numeric_cast<unsigned long>( large_negative_value ); }
catch (bad_numeric_cast)
{ cout<<"caught bad_numeric_cast #3\n"; caught_exception = true; }
if ( !caught_exception ) ++err_count;
caught_exception = false;
try { ul = numeric_cast<unsigned long>( small_negative_value ); }
catch (bad_numeric_cast)
{ cout<<"caught bad_numeric_cast #4\n"; caught_exception = true; }
if ( !caught_exception ) ++err_count;
caught_exception = false;
try { numeric_cast<int>( std::numeric_limits<double>::max() ); }
catch (bad_numeric_cast)
{ cout<<"caught bad_numeric_cast #5\n"; caught_exception = true; }
if ( !caught_exception ) ++err_count;
cout << err_count << " errors detected\nTest "
<< (err_count==0 ? "passed\n" : "failed\n");
return err_count;
} // main

View File

@@ -6,8 +6,6 @@
// warranty, and with no claim as to its suitability for any purpose.
// standalone test program for <boost/compressed_pair.hpp>
// Revised 03 Oct 2000:
// Enabled tests for VC6.
#include <iostream>
#include <typeinfo>
@@ -41,23 +39,6 @@ template <> struct is_POD<empty_POD_UDT>
#endif
}
struct non_empty1
{
int i;
non_empty1() : i(1){}
non_empty1(int v) : i(v){}
friend bool operator==(const non_empty1& a, const non_empty1& b)
{ return a.i == b.i; }
};
struct non_empty2
{
int i;
non_empty2() : i(3){}
non_empty2(int v) : i(v){}
friend bool operator==(const non_empty2& a, const non_empty2& b)
{ return a.i == b.i; }
};
int main()
{
@@ -72,25 +53,15 @@ int main()
assert(cp1b.second() == 1.3);
assert(cp1.first() == 2);
assert(cp1.second() == 2.3);
compressed_pair<non_empty1, non_empty2> cp1c(non_empty1(9));
assert(cp1c.second() == non_empty2());
assert(cp1c.first() == non_empty1(9));
compressed_pair<non_empty1, non_empty2> cp1d(non_empty2(9));
assert(cp1d.second() == non_empty2(9));
assert(cp1d.first() == non_empty1());
compressed_pair<int, double> cp1e(cp1);
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
compressed_pair<empty_UDT, int> cp2(2);
assert(cp2.second() == 2);
#endif
compressed_pair<int, empty_UDT> cp3(1);
assert(cp3.first() ==1);
compressed_pair<empty_UDT, empty_UDT> cp4;
compressed_pair<empty_UDT, empty_POD_UDT> cp5;
compressed_pair<int, empty_UDT> cp9(empty_UDT());
compressed_pair<int, empty_UDT> cp10(1);
assert(cp10.first() == 1);
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) || !defined(BOOST_NO_MEMBER_TEMPLATES) || !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
int i = 0;
compressed_pair<int&, int&> cp6(i,i);
assert(cp6.first() == i);
@@ -131,25 +102,21 @@ template class boost::compressed_pair<empty_UDT, empty_POD_UDT>;
#endif
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
#ifndef __MWERKS__
//
// now some for which only a few specific members can be instantiated,
// first references:
template double& compressed_pair<double, int&>::first();
template int& compressed_pair<double, int&>::second();
#if !(defined(__GNUC__) && (__GNUC__ == 2) && (__GNUC_MINOR__ < 95))
template compressed_pair<double, int&>::compressed_pair(int&);
#endif
template compressed_pair<double, int&>::compressed_pair(call_traits<double>::param_type,int&);
//
// and then arrays:
#ifndef __MWERKS__
#ifndef __BORLANDC__
template call_traits<int[2]>::reference compressed_pair<double, int[2]>::second();
#endif
template call_traits<double>::reference compressed_pair<double, int[2]>::first();
#if !(defined(__GNUC__) && (__GNUC__ == 2) && (__GNUC_MINOR__ < 95))
template compressed_pair<double, int[2]>::compressed_pair(call_traits<double>::param_type);
#endif
template compressed_pair<double, int[2]>::compressed_pair(const double&);
template compressed_pair<double, int[2]>::compressed_pair();
#endif // __MWERKS__
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
@@ -157,3 +124,4 @@ template compressed_pair<double, int[2]>::compressed_pair();

View File

@@ -1,189 +0,0 @@
// (C) Copyright David Abrahams 2001. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears in
// all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// See http://www.boost.org for most recent version including documentation.
//
// Revision History
// 04 Feb 2001 Added use of iterator_tests.hpp (David Abrahams)
// 28 Jan 2001 Removed not_an_iterator detritus (David Abrahams)
// 24 Jan 2001 Initial revision (David Abrahams)
#include <boost/config.hpp>
#ifdef BOOST_MSVC
# pragma warning(disable:4786) // identifier truncated in debug info
#endif
#include <boost/pending/iterator_tests.hpp>
#include <boost/counting_iterator.hpp>
#include <boost/detail/iterator.hpp>
#include <climits>
#include <iterator>
#include <stdlib.h>
#include <boost/utility.hpp>
#include <vector>
#include <list>
#include <cassert>
#ifndef BOOST_NO_LIMITS
# include <limits>
#endif
#ifndef BOOST_NO_SLIST
# include <slist>
#endif
template <class T> struct is_numeric
{
enum { value =
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
std::numeric_limits<T>::is_specialized
#else
// Causes warnings with GCC, but how else can I detect numeric types at
// compile-time?
(boost::is_convertible<int,T>::value &&
boost::is_convertible<T,int>::value)
#endif
};
};
// Special tests for RandomAccess CountingIterators.
template <class CountingIterator>
void category_test(
CountingIterator start,
CountingIterator finish,
std::random_access_iterator_tag)
{
typedef typename
boost::detail::iterator_traits<CountingIterator>::difference_type
difference_type;
difference_type distance = boost::detail::distance(start, finish);
// Pick a random position internal to the range
difference_type offset = (unsigned)rand() % distance;
assert(offset >= 0);
CountingIterator internal = start;
std::advance(internal, offset);
// Try some binary searches on the range to show that it's ordered
assert(std::binary_search(start, finish, *internal));
CountingIterator x,y;
boost::tie(x,y) = std::equal_range(start, finish, *internal);
assert(boost::detail::distance(x, y) == 1);
// Show that values outside the range can't be found
assert(!std::binary_search(start, boost::prior(finish), *finish));
// Do the generic random_access_iterator_test
typedef typename CountingIterator::value_type value_type;
std::vector<value_type> v;
for (value_type z = *start; z != *finish; ++z)
v.push_back(z);
if (v.size() >= 2)
{
// Note that this test requires a that the first argument is
// dereferenceable /and/ a valid iterator prior to the first argument
boost::random_access_iterator_test(start + 1, v.size() - 1, v.begin() + 1);
}
}
// Special tests for bidirectional CountingIterators
template <class CountingIterator>
void category_test(CountingIterator start, CountingIterator finish, std::bidirectional_iterator_tag)
{
if (finish != start
&& finish != boost::next(start)
&& finish != boost::next(boost::next(start)))
{
// Note that this test requires a that the first argument is
// dereferenceable /and/ a valid iterator prior to the first argument
boost::bidirectional_iterator_test(boost::next(start), boost::next(*start), boost::next(boost::next(*start)));
}
}
template <class CountingIterator>
void category_test(CountingIterator start, CountingIterator finish, std::forward_iterator_tag)
{
if (finish != start && finish != boost::next(start))
boost::forward_iterator_test(start, *start, boost::next(*start));
}
template <class CountingIterator>
void test_aux(CountingIterator start, CountingIterator finish)
{
typedef typename CountingIterator::iterator_category category;
typedef typename CountingIterator::value_type value_type;
// If it's a RandomAccessIterator we can do a few delicate tests
category_test(start, finish, category());
// Okay, brute force...
for (CountingIterator p = start; p != finish && boost::next(p) != finish; ++p)
{
assert(boost::next(*p) == *boost::next(p));
}
// prove that a reference can be formed to these values
typedef typename CountingIterator::value_type value;
const value* q = &*start;
(void)q; // suppress unused variable warning
}
template <class Incrementable>
void test(Incrementable start, Incrementable finish)
{
test_aux(boost::make_counting_iterator(start), boost::make_counting_iterator(finish));
}
template <class Integer>
void test_integer(Integer* = 0) // default arg works around MSVC bug
{
Integer start = 0;
Integer finish = 120;
test(start, finish);
}
template <class Container>
void test_container(Container* = 0) // default arg works around MSVC bug
{
Container c(1 + (unsigned)rand() % 1673);
const typename Container::iterator start = c.begin();
// back off by 1 to leave room for dereferenceable value at the end
typename Container::iterator finish = start;
std::advance(finish, c.size() - 1);
test(start, finish);
test(static_cast<typename Container::const_iterator>(start),
static_cast<typename Container::const_iterator>(finish));
}
int main()
{
// Test the built-in integer types.
test_integer<char>();
test_integer<unsigned char>();
test_integer<signed char>();
test_integer<wchar_t>();
test_integer<short>();
test_integer<unsigned short>();
test_integer<int>();
test_integer<unsigned int>();
test_integer<long>();
test_integer<unsigned long>();
#if defined(ULLONG_MAX) || defined(ULONG_LONG_MAX)
test_integer<long long>();
test_integer<unsigned long long>();
#endif
// Some tests on container iterators, to prove we handle a few different categories
test_container<std::vector<int> >();
test_container<std::list<int> >();
#ifndef BOOST_NO_SLIST
test_container<BOOST_STD_EXTENSION_NAMESPACE::slist<int> >();
#endif
// Also prove that we can handle raw pointers.
int array[2000];
test(boost::make_counting_iterator(array), boost::make_counting_iterator(array+2000-1));
return 0;
}

View File

@@ -1,367 +0,0 @@
// (C) Copyright David Abrahams 2001. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears in
// all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// See http://www.boost.org for most recent version including documentation.
//
// Revision History
// 29 Jan 2001 Initial revision (David Abrahams)
#include <boost/half_open_range.hpp>
#include <boost/utility.hpp>
#include <iterator>
#include <stdlib.h>
#include <vector>
#include <list>
#include <cassert>
#include <stdexcept>
#ifndef BOOST_NO_LIMITS
# include <limits>
#endif
#ifndef BOOST_NO_SLIST
# include <slist>
#endif
inline unsigned unsigned_random(unsigned max)
{
return (max > 0) ? (unsigned)rand() % max : 0;
}
// Special tests for ranges supporting random access
template <class T>
void category_test_1(
const boost::half_open_range<T>& r, std::random_access_iterator_tag)
{
typedef boost::half_open_range<T> range;
typedef typename range::size_type size_type;
size_type size = r.size();
// pick a random offset
size_type offset = unsigned_random(size);
typename range::value_type x = *(r.begin() + offset);
// test contains(value_type)
assert(r.contains(r.start()) == !r.empty());
assert(!r.contains(r.finish()));
assert(r.contains(x) == (offset != size));
range::const_iterator p = r.find(x);
assert((p == r.end()) == (x == r.finish()));
assert(r.find(r.finish()) == r.end());
if (offset != size)
{
assert(x == r[offset]);
assert(x == r.at(offset));
}
bool caught_out_of_range = false;
try {
bool never_initialized = x == r.at(size);
(void)never_initialized;
}
catch(std::out_of_range&)
{
caught_out_of_range = true;
}
catch(...)
{
}
assert(caught_out_of_range);
}
// Those tests must be skipped for other ranges
template <class T>
void category_test_1(
const boost::half_open_range<T>&, std::forward_iterator_tag)
{
}
unsigned indices[][2] = { {0,0},{0,1},{0,2},{0,3},
{1,1},{1,2},{1,3},
{2,2},{2,3},
{3,3}};
template <class Range>
void category_test_2(
const std::vector<Range>& ranges, unsigned i, unsigned j, std::random_access_iterator_tag)
{
typedef Range range;
const range& ri = ranges[i];
const range& rj = ranges[j];
if (indices[i][0] <= indices[j][0] && indices[i][1] >= indices[j][1])
assert(ri.contains(rj));
if (ri.contains(rj))
assert((ri & rj) == rj);
assert(boost::intersects(ri, rj) == !(ri & rj).empty());
range t1(ri);
t1 &= rj;
assert(t1 == range(indices[i][0] > indices[j][0] ? ri.start() : rj.start(),
indices[i][1] < indices[j][1] ? ri.finish() : rj.finish()));
assert(t1 == (ri & rj));
range t2(ri);
t2 |= rj;
if (ri.empty())
assert(t2 == rj);
else if (rj.empty())
assert(t2 == ri);
else
assert(t2 == range(indices[i][0] < indices[j][0] ? ri.start() : rj.start(),
indices[i][1] > indices[j][1] ? ri.finish() : rj.finish()));
assert(t2 == (ri | rj));
if (i == j)
assert(ri == rj);
if (ri.empty() || rj.empty())
assert((ri == rj) == (ri.empty() && rj.empty()));
else
assert((ri == rj) == (ri.start() == rj.start() && ri.finish() == rj.finish()));
assert((ri == rj) == !(ri != rj));
bool same = ri == rj;
bool one_empty = ri.empty() != rj.empty();
std::less<range> less;
std::less_equal<range> less_equal;
std::greater<range> greater;
std::greater_equal<range> greater_equal;
if (same)
{
assert(greater_equal(ri,rj));
assert(less_equal(ri,rj));
assert(!greater(ri,rj));
assert(!less(ri,rj));
}
#if 0
else if (one_empty)
{
const range& empty = ri.empty() ? ri : rj;
const range& non_empty = rj.empty() ? ri : rj;
assert(less(empty,non_empty));
assert(less_equal(empty,non_empty));
assert(!greater(empty,non_empty));
assert(!greater_equal(empty,non_empty));
assert(!less(non_empty,empty));
assert(!less_equal(non_empty,empty));
assert(greater(non_empty,empty));
assert(greater_equal(non_empty,empty));
}
else {
if (indices[i][0] < indices[j][0] ||
indices[i][0] == indices[j][0] && indices[i][1] < indices[j][1])
{
assert(!greater_equal(ri,rj));
assert(less(ri,rj));
}
if (indices[i][0] < indices[j][0] ||
indices[i][0] == indices[j][0] && indices[i][1] <= indices[j][1])
{
assert(!greater(ri,rj));
assert(less_equal(ri,rj));
}
if (indices[i][0] > indices[j][0] ||
indices[i][0] == indices[j][0] && indices[i][1] > indices[j][1])
{
assert(!less_equal(ri,rj));
assert(greater(ri,rj));
}
if (indices[i][0] > indices[j][0] ||
indices[i][0] == indices[j][0] && indices[i][1] >= indices[j][1])
{
assert(!less(ri,rj));
assert(greater_equal(ri,rj));
}
}
#endif
}
template <class Range>
void category_test_2(
const std::vector<Range>&, unsigned, unsigned, std::forward_iterator_tag)
{
}
template <class T>
void category_test_2(
const std::vector<boost::half_open_range<T> >&, unsigned, unsigned, std::bidirectional_iterator_tag)
{
}
template <class Range>
void test_back(Range& x, std::bidirectional_iterator_tag)
{
assert(x.back() == boost::prior(x.finish()));
}
template <class Range>
void test_back(Range& x, std::forward_iterator_tag)
{
}
template <class T>
boost::half_open_range<T> range_identity(const boost::half_open_range<T>& x)
{
return x;
}
template <class T>
void test(T x0, T x1, T x2, T x3)
{
std::vector<boost::half_open_range<T> > ranges;
typedef boost::half_open_range<T> range;
T bounds[4] = { x0, x1, x2, x3 };
const std::size_t num_ranges = sizeof(indices)/sizeof(*indices);
// test construction
for (std::size_t n = 0; n < num_ranges;++n)
{
T start = bounds[indices[n][0]];
T finish = bounds[indices[n][1]];
boost::half_open_range<T> r(start, finish);
ranges.push_back(r);
}
// test implicit conversion from std::pair<T,T>
range converted = std::pair<T,T>(x0,x0);
(void)converted;
// test assignment, equality and inequality
range r00 = range(x0, x0);
assert(r00 == range(x0,x0));
assert(r00 == range(x1,x1)); // empty ranges are all equal
if (x3 != x0)
assert(r00 != range(x0, x3));
r00 = range(x0, x3);
assert(r00 == range(x0, x3));
if (x3 != x0)
assert(r00 != range(x0, x0));
typedef typename range::iterator iterator;
typedef typename iterator::iterator_category category;
for (unsigned i = 0; i < num_ranges; ++i)
{
const range& r = ranges[i];
// test begin(), end(), basic iteration.
unsigned count = 0;
for (range::const_iterator p = r.begin(), finish = r.end();
p != finish;
++p, ++count)
{
assert(count < 2100);
}
// test size(), empty(), front(), back()
assert((unsigned)r.size() == count);
if (indices[i][0] == indices[i][1])
assert(r.empty());
if (r.empty())
assert(r.size() == 0);
if (!r.empty())
{
assert(r.front() == r.start());
test_back(r, category());
}
// test swap
range r1(r);
range r2(x0,x3);
const bool same = r1 == r2;
r1.swap(r2);
assert(r1 == range(x0,x3));
assert(r2 == r);
if (!same) {
assert(r1 != r);
assert(r2 != range(x0,x3));
}
// do individual tests for random-access iterators
category_test_1(r, category());
}
for (unsigned j = 0; j < num_ranges; ++j) {
for (unsigned k = 0; k < num_ranges; ++k) {
category_test_2(ranges, j, k, category());
}
}
}
template <class Integer>
void test_integer(Integer* = 0) // default arg works around MSVC bug
{
const Integer a = 0;
const Integer b = a + unsigned_random(128 - a);
const Integer c = b + unsigned_random(128 - b);
const Integer d = c + unsigned_random(128 - c);
test(a, b, c, d);
}
template <class Container>
void test_container(Container* = 0) // default arg works around MSVC bug
{
Container c(unsigned_random(1673));
const typename Container::size_type offset1 = unsigned_random(c.size());
const typename Container::size_type offset2 = unsigned_random(c.size() - offset1);
typename Container::iterator internal1 = c.begin();
std::advance(internal1, offset1);
typename Container::iterator internal2 = internal1;
std::advance(internal2, offset2);
test(c.begin(), internal1, internal2, c.end());
typedef typename Container::const_iterator const_iterator;
test(const_iterator(c.begin()),
const_iterator(internal1),
const_iterator(internal2),
const_iterator(c.end()));
}
int main()
{
// Test the built-in integer types.
test_integer<char>();
test_integer<unsigned char>();
test_integer<signed char>();
test_integer<wchar_t>();
test_integer<short>();
test_integer<unsigned short>();
test_integer<int>();
test_integer<unsigned int>();
test_integer<long>();
test_integer<unsigned long>();
#if defined(ULLONG_MAX) || defined(ULONG_LONG_MAX)
test_integer<long long>();
test_integer<unsigned long long>();
#endif
// Some tests on container iterators, to prove we handle a few different categories
test_container<std::vector<int> >();
test_container<std::list<int> >();
#ifndef BOOST_NO_SLIST
test_container<BOOST_STD_EXTENSION_NAMESPACE::slist<int> >();
#endif
// Also prove that we can handle raw pointers.
int array[2000];
const std::size_t a = 0;
const std::size_t b = a + unsigned_random(2000 - a);
const std::size_t c = b + unsigned_random(2000 - b);
test(array, array+b, array+c, array+2000);
return 0;
}

View File

@@ -75,9 +75,7 @@ namespace details
template <typename T>
inline void cp_swap(T& t1, T& t2)
{
#ifndef __GNUC__
using std::swap;
#endif
swap(t1, t2);
}

View File

@@ -9,14 +9,6 @@
// Crippled version for crippled compilers:
// see libs/utility/call_traits.htm
//
/* Release notes:
01st October 2000:
Fixed call_traits on VC6, using "poor man's partial specialisation",
using ideas taken from "Generative programming" by Krzysztof Czarnecki
& Ulrich Eisenecker.
*/
#ifndef BOOST_OB_CALL_TRAITS_HPP
#define BOOST_OB_CALL_TRAITS_HPP
@@ -30,85 +22,6 @@
namespace boost{
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) || !defined(BOOST_NO_MEMBER_TEMPLATES)
//
// use member templates to emulate
// partial specialisation:
//
namespace detail{
template <class T>
struct standard_call_traits
{
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef const T& param_type;
};
template <class T>
struct simple_call_traits
{
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef const T param_type;
};
template <class T>
struct reference_call_traits
{
typedef T value_type;
typedef T reference;
typedef T const_reference;
typedef T param_type;
};
template <bool simple, bool reference>
struct call_traits_chooser
{
template <class T>
struct rebind
{
typedef standard_call_traits<T> type;
};
};
template <>
struct call_traits_chooser<true, false>
{
template <class T>
struct rebind
{
typedef simple_call_traits<T> type;
};
};
template <>
struct call_traits_chooser<false, true>
{
template <class T>
struct rebind
{
typedef reference_call_traits<T> type;
};
};
} // namespace detail
template <typename T>
struct call_traits
{
private:
typedef detail::call_traits_chooser<(is_pointer<T>::value || is_arithmetic<T>::value) && sizeof(T) <= sizeof(void*), is_reference<T>::value> chooser;
typedef typename chooser::template rebind<T> bound_type;
typedef typename bound_type::type call_traits_type;
public:
typedef typename call_traits_type::value_type value_type;
typedef typename call_traits_type::reference reference;
typedef typename call_traits_type::const_reference const_reference;
typedef typename call_traits_type::param_type param_type;
};
#else
//
// sorry call_traits is completely non-functional
// blame your broken compiler:
//
template <typename T>
struct call_traits
{
@@ -118,8 +31,6 @@ struct call_traits
typedef const T& param_type;
};
#endif // member templates
}
#endif // BOOST_OB_CALL_TRAITS_HPP

View File

@@ -8,12 +8,6 @@
// see libs/utility/compressed_pair.hpp
//
/* Release notes:
20 Jan 2001:
Fixed obvious bugs (David Abrahams)
07 Oct 2000:
Added better single argument constructor support.
03 Oct 2000:
Added VC6 support (JM).
23rd July 2000:
Additional comments added. (JM)
Jan 2000:
@@ -35,424 +29,6 @@
namespace boost
{
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) || !defined(BOOST_NO_MEMBER_TEMPLATES)
//
// use member templates to emulate
// partial specialisation. Note that due to
// problems with overload resolution with VC6
// each of the compressed_pair versions that follow
// have one template single-argument constructor
// in place of two specific constructors:
//
template <class T1, class T2>
class compressed_pair;
namespace detail{
template <class A, class T1, class T2>
struct best_conversion_traits
{
typedef char one;
typedef char (&two)[2];
static A a;
static one test(T1);
static two test(T2);
enum { value = sizeof(test(a)) };
};
template <int>
struct init_one;
template <>
struct init_one<1>
{
template <class A, class T1, class T2>
static void init(const A& a, T1* p1, T2*)
{
*p1 = a;
}
};
template <>
struct init_one<2>
{
template <class A, class T1, class T2>
static void init(const A& a, T1*, T2* p2)
{
*p2 = a;
}
};
// T1 != T2, both non-empty
template <class T1, class T2>
class compressed_pair_0
{
private:
T1 _first;
T2 _second;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_0() : _first(), _second() {}
compressed_pair_0(first_param_type x, second_param_type y) : _first(x), _second(y) {}
template <class A>
explicit compressed_pair_0(const A& val)
{
init_one<best_conversion_traits<A, T1, T2>::value>::init(val, &_first, &_second);
}
compressed_pair_0(const ::boost::compressed_pair<T1,T2>& x)
: _first(x.first()), _second(x.second()) {}
#if 0
compressed_pair_0& operator=(const compressed_pair_0& x) {
cout << "assigning compressed pair 0" << endl;
_first = x._first;
_second = x._second;
cout << "finished assigning compressed pair 0" << endl;
return *this;
}
#endif
first_reference first() { return _first; }
first_const_reference first() const { return _first; }
second_reference second() { return _second; }
second_const_reference second() const { return _second; }
void swap(compressed_pair_0& y)
{
using std::swap;
swap(_first, y._first);
swap(_second, y._second);
}
};
// T1 != T2, T2 empty
template <class T1, class T2>
class compressed_pair_1 : T2
{
private:
T1 _first;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_1() : T2(), _first() {}
compressed_pair_1(first_param_type x, second_param_type y) : T2(y), _first(x) {}
template <class A>
explicit compressed_pair_1(const A& val)
{
init_one<best_conversion_traits<A, T1, T2>::value>::init(val, &_first, static_cast<T2*>(this));
}
compressed_pair_1(const ::boost::compressed_pair<T1,T2>& x)
: T2(x.second()), _first(x.first()) {}
#ifdef BOOST_MSVC
// Total weirdness. If the assignment to _first is moved after
// the call to the inherited operator=, then this breaks graph/test/graph.cpp
// by way of iterator_adaptor.
compressed_pair_1& operator=(const compressed_pair_1& x) {
_first = x._first;
T2::operator=(x);
return *this;
}
#endif
first_reference first() { return _first; }
first_const_reference first() const { return _first; }
second_reference second() { return *this; }
second_const_reference second() const { return *this; }
void swap(compressed_pair_1& y)
{
// no need to swap empty base class:
using std::swap;
swap(_first, y._first);
}
};
// T1 != T2, T1 empty
template <class T1, class T2>
class compressed_pair_2 : T1
{
private:
T2 _second;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_2() : T1(), _second() {}
compressed_pair_2(first_param_type x, second_param_type y) : T1(x), _second(y) {}
template <class A>
explicit compressed_pair_2(const A& val)
{
init_one<best_conversion_traits<A, T1, T2>::value>::init(val, static_cast<T1*>(this), &_second);
}
compressed_pair_2(const ::boost::compressed_pair<T1,T2>& x)
: T1(x.first()), _second(x.second()) {}
#if 0
compressed_pair_2& operator=(const compressed_pair_2& x) {
cout << "assigning compressed pair 2" << endl;
T1::operator=(x);
_second = x._second;
cout << "finished assigning compressed pair 2" << endl;
return *this;
}
#endif
first_reference first() { return *this; }
first_const_reference first() const { return *this; }
second_reference second() { return _second; }
second_const_reference second() const { return _second; }
void swap(compressed_pair_2& y)
{
// no need to swap empty base class:
using std::swap;
swap(_second, y._second);
}
};
// T1 != T2, both empty
template <class T1, class T2>
class compressed_pair_3 : T1, T2
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_3() : T1(), T2() {}
compressed_pair_3(first_param_type x, second_param_type y) : T1(x), T2(y) {}
template <class A>
explicit compressed_pair_3(const A& val)
{
init_one<best_conversion_traits<A, T1, T2>::value>::init(val, static_cast<T1*>(this), static_cast<T2*>(this));
}
compressed_pair_3(const ::boost::compressed_pair<T1,T2>& x)
: T1(x.first()), T2(x.second()) {}
first_reference first() { return *this; }
first_const_reference first() const { return *this; }
second_reference second() { return *this; }
second_const_reference second() const { return *this; }
void swap(compressed_pair_3& y)
{
// no need to swap empty base classes:
}
};
// T1 == T2, and empty
template <class T1, class T2>
class compressed_pair_4 : T1
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_4() : T1() {}
compressed_pair_4(first_param_type x, second_param_type) : T1(x) {}
// only one single argument constructor since T1 == T2
explicit compressed_pair_4(first_param_type x) : T1(x) {}
compressed_pair_4(const ::boost::compressed_pair<T1,T2>& x)
: T1(x.first()){}
first_reference first() { return *this; }
first_const_reference first() const { return *this; }
second_reference second() { return *this; }
second_const_reference second() const { return *this; }
void swap(compressed_pair_4& y)
{
// no need to swap empty base classes:
}
};
// T1 == T2, not empty
template <class T1, class T2>
class compressed_pair_5
{
private:
T1 _first;
T2 _second;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_5() : _first(), _second() {}
compressed_pair_5(first_param_type x, second_param_type y) : _first(x), _second(y) {}
// only one single argument constructor since T1 == T2
explicit compressed_pair_5(first_param_type x) : _first(x), _second(x) {}
compressed_pair_5(const ::boost::compressed_pair<T1,T2>& c)
: _first(c.first()), _second(c.second()) {}
first_reference first() { return _first; }
first_const_reference first() const { return _first; }
second_reference second() { return _second; }
second_const_reference second() const { return _second; }
void swap(compressed_pair_5& y)
{
using std::swap;
swap(_first, y._first);
swap(_second, y._second);
}
};
template <bool e1, bool e2, bool same>
struct compressed_pair_chooser
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_0<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<false, true, false>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_1<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<true, false, false>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_2<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<true, true, false>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_3<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<true, true, true>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_4<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<false, false, true>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_5<T1, T2> type;
};
};
template <class T1, class T2>
struct compressed_pair_traits
{
private:
typedef compressed_pair_chooser<is_empty<T1>::value, is_empty<T2>::value, is_same<T1,T2>::value> chooser;
typedef typename chooser::template rebind<T1, T2> bound_type;
public:
typedef typename bound_type::type type;
};
} // namespace detail
template <class T1, class T2>
class compressed_pair : public detail::compressed_pair_traits<T1, T2>::type
{
private:
typedef typename detail::compressed_pair_traits<T1, T2>::type base_type;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair() : base_type() {}
compressed_pair(first_param_type x, second_param_type y) : base_type(x, y) {}
template <class A>
explicit compressed_pair(const A& x) : base_type(x){}
first_reference first() { return base_type::first(); }
first_const_reference first() const { return base_type::first(); }
second_reference second() { return base_type::second(); }
second_const_reference second() const { return base_type::second(); }
};
template <class T1, class T2>
inline void swap(compressed_pair<T1, T2>& x, compressed_pair<T1, T2>& y)
{
x.swap(y);
}
#else
// no partial specialisation, no member templates:
template <class T1, class T2>
class compressed_pair
@@ -496,11 +72,7 @@ inline void swap(compressed_pair<T1, T2>& x, compressed_pair<T1, T2>& y)
x.swap(y);
}
#endif
} // boost
#endif // BOOST_OB_COMPRESSED_PAIR_HPP

View File

@@ -69,10 +69,6 @@
#pragma set woff 1234
#endif
#if defined(BOOST_MSVC)
# pragma warning( disable : 4284 ) // complaint about return type of
#endif // operator-> not begin a UDT
namespace boost {
namespace detail {

View File

@@ -78,9 +78,9 @@ namespace boost
inline tied(A& a, B& b) : _a(a), _b(b) { }
template <class U, class V>
inline tied& operator=(const std::pair<U,V>& p) {
_a = p.first;
_b = p.second;
return *this;
_a = p.first;
_b = p.second;
return *this;
}
protected:
A& _a;

72
index.htm Normal file
View File

@@ -0,0 +1,72 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Boost Utility Library</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<table border="1" cellpadding="2" bgcolor="#007F7F">
<tr>
<td bgcolor="#FFFFFF"><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" width="277" height="86"></td>
<td><a href="../../index.htm"><font color="#FFFFFF" size="4" face="Arial">Home</font></a></td>
<td><a href="../../libraries.htm"><font color="#FFFFFF" size="4" face="Arial">Libraries</font></a></td>
<td><a href="../../people.htm"><font color="#FFFFFF" size="4" face="Arial">People</font></a></td>
<td><a href="../../more/faq.htm"><font color="#FFFFFF" size="4" face="Arial">FAQ</font></a></td>
<td><a href="../../more/index.htm"><font color="#FFFFFF" size="4" face="Arial">More</font></a></td>
</tr>
</table>
<h1>Boost Utility Library</h1>
<table border="1" cellpadding="5">
<tr>
<td><b><i>Header</i></b></td>
<td><b><i>Contents</i></b></td>
</tr>
<tr>
<td><a href="../../boost/utility.hpp"><code>boost/utility.hpp<br>
</code></a><a href="utility.htm">[Documentation]</a></td>
<td>Class <b>noncopyable</b> plus <b>next()</b> and <b>prior()</b> template
functions.</td>
</tr>
<tr>
<td><a href="../../boost/cast.hpp"><code>boost/cast.hpp</code></a><br>
<a href="cast.htm">[Documentation]</a></td>
<td><b>polymorphic_cast</b>, <b>implicit_cast</b>, and <b>numeric_cast</b>
function templates.
<p><i>[Beta.]</i></p>
</td>
</tr>
<tr>
<td><a href="../../boost/operators.hpp">boost/operators.hpp</a><br>
<a href="operators.htm">[Documentation]</a></td>
<td>Templates <b>equality_comparable</b>, <b>less_than_comparable</b>, <b>addable</b>,
and the like ease the task of defining comparison and arithmetic
operators, and iterators.</td>
</tr>
<tr>
<td><a href="../../boost/detail/type_traits.hpp">boost/type_traits.hpp</a><br>
[<a href="type_traits.htm">Documentation</a>]</td>
<td>Template classes that describe the fundamental properties of a type. [<a href="c++_type_traits.htm">DDJ
Article &quot;C++ type traits&quot;</a>]</td>
</tr>
<tr>
<td><a href="../../boost/detail/call_traits.hpp">boost/call_traits.hpp</a><br>
[<a href="call_traits.htm">Documentation</a>]</td>
<td>Template class call_traits&lt;T&gt;, that defines types used for passing
parameters to and from a proceedure.</td>
</tr>
<tr>
<td><a href="../../boost/detail/compressed_pair.hpp">boost/compressed_pair.hpp</a><br>
[<a href="compressed_pair.htm">Documentation</a>]</td>
<td>Template class compressed_pait&lt;T1, T2&gt; which pairs two values
using the empty member optimisation where appropriate.</td>
</tr>
</table>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %B %Y" startspan -->27 July 2000<!--webbot bot="Timestamp" endspan i-checksum="18770" --></p>
</body>
</html>

View File

@@ -1,27 +0,0 @@
// Test boost/pending/iterator_adaptors.hpp
// (C) Copyright Jeremy Siek 1999. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 21 Jan 01 Initial version (Jeremy Siek)
#include <list>
#include <boost/config.hpp>
#include <boost/pending/iterator_adaptors.hpp>
#include <boost/detail/iterator.hpp>
int main()
{
typedef boost::iterator_adaptor<int*, boost::default_iterator_policies,
boost::iterator<std::bidirectional_iterator_tag, int> > adaptor_type;
adaptor_type i;
i += 4;
return 0;
}

View File

@@ -1,28 +0,0 @@
// Test boost/pending/iterator_adaptors.hpp
// (C) Copyright Jeremy Siek 1999. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 21 Jan 01 Initial version (Jeremy Siek)
#include <iostream>
#include <iterator>
#include <boost/config.hpp>
#include <boost/pending/iterator_adaptors.hpp>
#include <boost/detail/iterator.hpp>
int main()
{
typedef boost::iterator_adaptor<int*, boost::default_iterator_policies,
boost::iterator<std::input_iterator_tag, int> > adaptor_type;
adaptor_type iter;
--iter;
return 0;
}

View File

@@ -1,32 +0,0 @@
// Test boost/pending/iterator_adaptors.hpp
// (C) Copyright Jeremy Siek 1999. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 21 Jan 01 Initial version (Jeremy Siek)
#include <list>
#include <boost/config.hpp>
#include <boost/pending/iterator_adaptors.hpp>
#include <boost/detail/iterator.hpp>
class foo {
public:
void bar() { }
};
int main()
{
typedef boost::iterator_adaptor<foo*, boost::default_iterator_policies,
boost::iterator<std::input_iterator_tag, foo> > adaptor_type;
adaptor_type i;
i->bar();
return 0;
}

View File

@@ -7,8 +7,7 @@
#include <functional>
#include <algorithm>
#include <iostream>
#include <boost/pending/iterator_adaptors.hpp>
#include <boost/pending/integer_range.hpp>
#include <boost/iterator_adaptors.hpp>
int
main(int, char*[])
@@ -16,7 +15,6 @@ main(int, char*[])
// This is a simple example of using the transform_iterators class to
// generate iterators that multiply the value returned by dereferencing
// the iterator. In this case we are multiplying by 2.
// Would be cooler to use lambda library in this example.
int x[] = { 1, 2, 3, 4, 5, 6, 7, 8 };

View File

@@ -1,385 +0,0 @@
// Demonstrate and test boost/operators.hpp on std::iterators -------------//
// (C) Copyright Jeremy Siek 1999. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 09 Feb 01 Use new reverse_ and indirect_ interfaces. Replace
// BOOST_NO_STD_ITERATOR_TRAITS with
// BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION to prove we've
// normalized to core compiler capabilities (David Abrahams)
// 08 Feb 01 Use Jeremy's new make_reverse_iterator form; add more
// comprehensive testing. Force-decay array function arguments to
// pointers.
// 07 Feb 01 Added tests for the make_xxx_iterator() helper functions.
// (Jeremy Siek)
// 07 Feb 01 Replaced use of xxx_pair_generator with xxx_generator where
// possible (which was all but the projection iterator).
// (Jeremy Siek)
// 06 Feb 01 Removed now-defaulted template arguments where possible
// Updated names to correspond to new generator naming convention.
// Added a trivial test for make_transform_iterator().
// Gave traits for const iterators a mutable value_type, per std.
// Resurrected my original tests for indirect iterators.
// (David Abrahams)
// 04 Feb 01 Fix for compilers without standard iterator_traits
// (David Abrahams)
// 13 Jun 00 Added const version of the iterator tests (Jeremy Siek)
// 12 Dec 99 Initial version with iterator operators (Jeremy Siek)
#include <boost/config.hpp>
#include <iostream>
#include <algorithm>
#include <functional>
#include <boost/iterator_adaptors.hpp>
#include <boost/pending/iterator_tests.hpp>
#include <boost/pending/integer_range.hpp>
#include <stdlib.h>
#include <vector>
#include <deque>
#include <set>
struct my_iterator_tag : public std::random_access_iterator_tag { };
using boost::dummyT;
struct my_iter_traits {
typedef dummyT value_type;
typedef dummyT* pointer;
typedef dummyT& reference;
typedef my_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
};
struct my_const_iter_traits {
typedef dummyT value_type;
typedef const dummyT* pointer;
typedef const dummyT& reference;
typedef my_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
};
typedef boost::iterator_adaptor<dummyT*,
boost::default_iterator_policies, my_iter_traits> my_iterator;
typedef boost::iterator_adaptor<const dummyT*,
boost::default_iterator_policies, my_const_iter_traits> const_my_iterator;
struct mult_functor {
typedef int result_type;
typedef int argument_type;
// Functors used with transform_iterator must be
// DefaultConstructible, as the transform_iterator must be
// DefaultConstructible to satisfy the requirements for
// TrivialIterator.
mult_functor() { }
mult_functor(int aa) : a(aa) { }
int operator()(int b) const { return a * b; }
int a;
};
template <class Pair>
struct select1st_
: public std::unary_function<Pair, typename Pair::first_type>
{
const typename Pair::first_type& operator()(const Pair& x) const {
return x.first;
}
typename Pair::first_type& operator()(Pair& x) const {
return x.first;
}
};
struct one_or_four {
bool operator()(dummyT x) const {
return x.foo() == 1 || x.foo() == 4;
}
};
typedef std::deque<int> storage;
typedef std::deque<int*> pointer_deque;
typedef std::set<storage::iterator> iterator_set;
void more_indirect_iterator_tests()
{
// For some reason all heck breaks loose in the compiler under these conditions.
#if !defined(BOOST_MSVC) || !defined(__STL_DEBUG)
storage store(1000);
std::generate(store.begin(), store.end(), rand);
pointer_deque ptr_deque;
iterator_set iter_set;
for (storage::iterator p = store.begin(); p != store.end(); ++p)
{
ptr_deque.push_back(&*p);
iter_set.insert(p);
}
typedef boost::indirect_iterator_pair_generator<
pointer_deque::iterator
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
, int
#endif
> IndirectDeque;
IndirectDeque::iterator db(ptr_deque.begin());
IndirectDeque::iterator de(ptr_deque.end());
assert(static_cast<std::size_t>(de - db) == store.size());
assert(db + store.size() == de);
IndirectDeque::const_iterator dci(db);
assert(db == dci);
assert(dci == db);
assert(dci != de);
assert(dci < de);
assert(dci <= de);
assert(de >= dci);
assert(de > dci);
dci = de;
assert(dci == de);
boost::random_access_iterator_test(db + 1, store.size() - 1, boost::next(store.begin()));
*db = 999;
assert(store.front() == 999);
typedef boost::indirect_iterator_generator<
iterator_set::iterator
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
, int
#endif
>::type indirect_set_iterator;
typedef boost::indirect_iterator_generator<
iterator_set::iterator,
const int
>::type const_indirect_set_iterator;
indirect_set_iterator sb(iter_set.begin());
indirect_set_iterator se(iter_set.end());
const_indirect_set_iterator sci(iter_set.begin());
assert(sci == sb);
assert(sci != se);
sci = se;
assert(sci == se);
*boost::prior(se) = 888;
assert(store.back() == 888);
assert(std::equal(sb, se, store.begin()));
boost::bidirectional_iterator_test(boost::next(sb), store[1], store[2]);
assert(std::equal(db, de, store.begin()));
#endif
}
int
main()
{
dummyT array[] = { dummyT(0), dummyT(1), dummyT(2),
dummyT(3), dummyT(4), dummyT(5) };
const int N = sizeof(array)/sizeof(dummyT);
// sanity check, if this doesn't pass the test is buggy
boost::random_access_iterator_test(array,N,array);
// Check that the policy concept checks and the default policy
// implementation match up.
boost::function_requires<
boost::RandomAccessIteratorPoliciesConcept<
boost::default_iterator_policies, int*,
boost::iterator<std::random_access_iterator_tag, int, std::ptrdiff_t,
int*, int&>
> >();
// Test the iterator_adaptor
{
my_iterator i = array;
boost::random_access_iterator_test(i, N, array);
const_my_iterator j = array;
boost::random_access_iterator_test(j, N, array);
boost::const_nonconst_iterator_test(i, ++j);
}
// Test transform_iterator
{
int x[N], y[N];
for (int k = 0; k < N; ++k)
x[k] = k;
std::copy(x, x + N, y);
for (int k2 = 0; k2 < N; ++k2)
x[k2] = x[k2] * 2;
boost::transform_iterator_generator<mult_functor, int*>::type
i(y, mult_functor(2));
boost::input_iterator_test(i, x[0], x[1]);
boost::input_iterator_test(boost::make_transform_iterator(&y[0], mult_functor(2)), x[0], x[1]);
}
// Test indirect_iterator_generator
{
dummyT* ptr[N];
for (int k = 0; k < N; ++k)
ptr[k] = array + k;
typedef boost::indirect_iterator_generator<dummyT**
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
, dummyT
#endif
>::type indirect_iterator;
typedef boost::indirect_iterator_generator<dummyT**, const dummyT>::type const_indirect_iterator;
indirect_iterator i = ptr;
boost::random_access_iterator_test(i, N, array);
boost::random_access_iterator_test(boost::make_indirect_iterator<dummyT>(ptr), N, array);
const_indirect_iterator j = ptr;
boost::random_access_iterator_test(j, N, array);
dummyT*const* const_ptr = ptr;
boost::random_access_iterator_test(boost::make_indirect_iterator<const dummyT>(const_ptr), N, array);
boost::const_nonconst_iterator_test(i, ++j);
more_indirect_iterator_tests();
}
// Test projection_iterator_pair_generator
{
typedef std::pair<dummyT,dummyT> Pair;
Pair pair_array[N];
for (int k = 0; k < N; ++k)
pair_array[k].first = array[k];
typedef boost::projection_iterator_pair_generator<select1st_<Pair>,
Pair*, const Pair*
> Projection;
Projection::iterator i = pair_array;
boost::random_access_iterator_test(i, N, array);
boost::random_access_iterator_test(boost::make_projection_iterator(pair_array, select1st_<Pair>()), N, array);
boost::random_access_iterator_test(boost::make_projection_iterator< select1st_<Pair> >(pair_array), N, array);
Projection::const_iterator j = pair_array;
boost::random_access_iterator_test(j, N, array);
boost::random_access_iterator_test(boost::make_const_projection_iterator(pair_array, select1st_<Pair>()), N, array);
boost::random_access_iterator_test(boost::make_const_projection_iterator< select1st_<Pair> >(pair_array), N, array);
boost::const_nonconst_iterator_test(i, ++j);
}
// Test reverse_iterator_generator
{
dummyT reversed[N];
std::copy(array, array + N, reversed);
std::reverse(reversed, reversed + N);
typedef boost::reverse_iterator_generator<dummyT*
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
, dummyT
#endif
>::type reverse_iterator;
typedef boost::reverse_iterator_generator<const dummyT*
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
, const dummyT
#endif
>::type const_reverse_iterator;
reverse_iterator i = reversed + N;
boost::random_access_iterator_test(i, N, array);
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
boost::random_access_iterator_test(boost::make_reverse_iterator(reversed + N), N, array);
#endif
const_reverse_iterator j = reversed + N;
boost::random_access_iterator_test(j, N, array);
const dummyT* const_reversed = reversed;
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
boost::random_access_iterator_test(boost::make_reverse_iterator(const_reversed + N), N, array);
#endif
boost::const_nonconst_iterator_test(i, ++j);
}
// Test reverse_iterator_generator again, with traits fully deducible on most platforms
#if !defined(BOOST_MSVC) || defined(__SGI_STL_PORT)
{
std::deque<dummyT> reversed_container;
std::copy(array, array + N, std::back_inserter(reversed_container));
const std::deque<dummyT>::iterator reversed = reversed_container.begin();
std::reverse(reversed, reversed + N);
typedef boost::reverse_iterator_generator<
std::deque<dummyT>::iterator>::type reverse_iterator;
typedef boost::reverse_iterator_generator<
std::deque<dummyT>::const_iterator, const dummyT>::type const_reverse_iterator;
reverse_iterator i = reversed + N;
boost::random_access_iterator_test(i, N, array);
boost::random_access_iterator_test(boost::make_reverse_iterator(reversed + N), N, array);
const_reverse_iterator j = reverse_iterator(reversed + N);
boost::random_access_iterator_test(j, N, array);
const std::deque<dummyT>::const_iterator const_reversed = reversed;
boost::random_access_iterator_test(boost::make_reverse_iterator(const_reversed + N), N, array);
#if !defined(__GNUC__) || defined(__SGI_STL_PORT) // GCC deque iterators don't allow all const/non-const comparisons
boost::const_nonconst_iterator_test(i, ++j);
#endif
}
#endif
// Test integer_range's iterators
{
int int_array[] = { 0, 1, 2, 3, 4, 5 };
boost::integer_range<int> r(0, 5);
boost::random_access_iterator_test(r.begin(), r.size(), int_array);
}
// Test filter iterator
{
typedef boost::filter_iterator_generator<one_or_four, dummyT*,
boost::iterator<std::forward_iterator_tag, dummyT, std::ptrdiff_t,
dummyT*, dummyT&> > FilterGen;
typedef FilterGen::type FilterIter;
typedef FilterGen::policies_type FilterPolicies;
FilterIter i(array, FilterPolicies(one_or_four(), array + N));
boost::forward_iterator_test(i, dummyT(1), dummyT(4));
typedef boost::iterator<std::forward_iterator_tag, dummyT, std::ptrdiff_t, dummyT*, dummyT&> FilterTraits;
boost::forward_iterator_test(boost::make_filter_iterator<FilterTraits>
(array, array + N, one_or_four() ), dummyT(1), dummyT(4));
boost::forward_iterator_test(boost::make_filter_iterator<FilterTraits, one_or_four>
(array, array + N), dummyT(1), dummyT(4));
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
boost::forward_iterator_test(boost::make_filter_iterator(
array, array + N, one_or_four()), dummyT(1), dummyT(4));
boost::forward_iterator_test(boost::make_filter_iterator<one_or_four>(
array, array + N), dummyT(1), dummyT(4));
#endif
}
std::cout << "test successful " << std::endl;
return 0;
}

View File

@@ -13,9 +13,7 @@
align="center" width="277" height="86">
<h1>Header
<a href="../../boost/pending/iterator_adaptors.hpp">boost/iterator_adaptors.hpp</a>
and
<a href="../../boost/pending/integer_range.hpp">boost/integer_range.hpp</a></h1>
<a href="../../boost/pending/iterator_adaptors.hpp">boost/iterator_adaptors.hpp</a></h1>
<p>The file <tt>boost/iterator_adaptors.hpp</tt>
includes the main <tt>iterator_adaptors</tt> class and several other classes
@@ -25,16 +23,8 @@ for constructing commonly used iterator adaptors.</p>
<li><a href="#iterator_adaptors"><tt>iterator_adaptors</tt></a>.
<li><a href="#iterator_adaptor"><tt>iterator_adaptor</tt></a>.
<li><a href="#transform_iterator"><tt>transform_iterator</tt></a>
<li><a href="#indirect_iterators"><tt>Indirect Iterator Adaptors</tt></a>
<li><a href="#projection_iterators"><tt>Projection Iterator Adaptors</tt></a>
<li><a href="#indirect_iterators"><tt>indirect_iterators</tt></a>
<li><a href="#reverse_iterators"><tt>reverse_iterators</tt></a>
</ul>
<p>The file <tt>boost/integer_range.hpp</tt> includes a class that
uses iterator adaptors to create an iterator that increments over a
range of integers. The file also includes a &quot;container&quot; type
that creates a container-interface for the range of integers.
<ul>
<li><a href="#integer_range"><tt>integer_range</tt></a>
</ul>
@@ -49,11 +39,7 @@ interactions. He also contributed the <tt>indirect_iterators</tt> and
<a href="http://www.boost.org/people/jeremy_siek.htm">Jeremy Siek</a>
contributed <tt>transform_iterator</tt>, <tt>integer_range</tt>,
and this documentation.<br>
<a href="http://www.boost.org/people/john_potter.htm">John Potter</a>
contributed <tt>indirect_iterator</tt> and <tt>projection_iterator</tt>
and made some simplifications to <tt>iterator_adaptor</tt>.
and this documentation.
<h3><a name="iterator_adaptors">The Iterator Adaptors Class</a></h3>
@@ -74,10 +60,10 @@ follows:
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 COLS=2>
<TR><TD WIDTH=30 VALIGN=TOP></TD><TD>
<PRE>
template &lt;class Iterator,
class ConstIterator,
template &lt;class Iterator,
class ConstIterator,
class Traits = std::iterator_traits&lt;Iterator&gt;,
class ConstTraits = std::iterator_traits&lt;ConstIterator&gt;,
class ConstTraits = std::iterator_traits&lt;ConstIterator&gt;,
class Policies = default_iterator_policies&gt;
struct iterator_adaptors
{
@@ -98,28 +84,18 @@ classes and pass them in <a href="#1">[1]</a>.
<p>The <tt>Policies</tt> class that you pass in will become the heart of
the iterator adaptor, supplying the core iterator operations that will determine how your new adaptor
class will behave. The core iterator operations are:
<ul>
<li><code>dereference</code> - returns an element of the iterator's <code>reference</code> type
<li><code>equal</code> - tests the iterator for equality
<li><code>increment</code> - increments the iterator
<li><code>decrement</code> - decrements bidirectional and random-access iterators
<li><code>less</code> - imposes a strict weak ordering relation on random-access iterators
<li><code>distance</code> - measures the distance between random-access iterators
<li><code>advance</code> - adds an integer offset to random-access iterators
</ul>
The <tt>Policies</tt> class must implement three, four, or
seven of the core iterator operations depending on whether you wish the
the iterator adaptor. The policy class determines how your new adaptor
class will behave. The <tt>Policies</tt> class must implement 3, 4, or
7 of the core iterator operations depending on whether you wish the
new iterator adaptor class to be a
<a href="http://www.sgi.com/Technology/STL/ForwardIterator.html">
ForwardIterator</a>,
<a href="http://www.sgi.com/Technology/STL/BidirectionalIterator.html">
BidirectionalIterator</a>, or <a
href="http://www.sgi.com/Technology/STL/RandomAccessIterator.html">
RandomAccessIterator</a>. The
RandomAccessIterator</a>. Make sure that the
<tt>iterator_category</tt> type of the traits class you pass in
must match the category of iterator that you want to create. The default
matches the category of iterator that you want to create. The default
policy class, <tt>default_iterator_policies</tt>, implements all 7 of
the core operations in the usual way. If you wish to create an
iterator adaptor that only changes a few of the iterator's behaviors,
@@ -143,7 +119,7 @@ struct default_iterator_policies
{ return *x; }
template &lt;class Iterator&gt;
static void increment(Iterator& x)
void increment(Iterator& x) const
{ ++x; }
template &lt;class Iterator1, class Iterator2&gt;
@@ -152,12 +128,12 @@ struct default_iterator_policies
// required for a BidirectionalIterator
template &lt;class Iterator&gt;
static void decrement(Iterator& x)
void decrement(Iterator& x) const
{ --x; }
// required for a RandomAccessIterator
template &lt;class Iterator, class DifferenceType&gt;
static void advance(Iterator& x, DifferenceType n)
void advance(Iterator& x, DifferenceType n) const
{ x += n; }
template &lt;class Difference, class Iterator1, class Iterator2&gt;
@@ -187,18 +163,20 @@ constructors.
This is the class used inside of the <tt>iterator_adaptors</tt> type
generator. Use this class directly (instead of using
<tt>iterator_adaptors</tt>) when you are interested in creating only
one of the iterator types (either const or non-const) or when there is
no difference between the const and non-const versions of the iterator
type (often this is because there is only a const (read-only) version
of the iterator, as is the case for <tt>std::set</tt>'s iterators).
<tt>iterator_adaptors</tt>) when there is no difference between the
const and non-const versions of the iterator type. Often this is
because there is only a const (read-only) version of the iterator, as
is the case for <tt>std::set</tt>'s iterators. Use the same type for
the <tt>Iterator</tt> and <tt>NonconstIterator</tt> template
arguments.
<p>
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 COLS=2>
<TR><TD WIDTH=30 VALIGN=TOP></TD><TD>
<PRE>
template &lt;class Iterator,
template &lt;class Iterator,
class Policies = default_iterator_policies,
class NonconstIterator = Iterator,
class Traits = std::iterator_traits&lt;Iterator&gt; &gt;
struct iterator_adaptor;
</PRE></TD></TABLE>
@@ -241,7 +219,6 @@ href="#2">[2]</a>.
template &lt;class AdaptableUnaryFunction&gt;
struct transform_iterator_policies : public default_iterator_policies
{
transform_iterator_policies() { }
transform_iterator_policies(const AdaptableUnaryFunction& f) : m_f(f) { }
template &lt;class Reference, class Iterator&gt;
@@ -342,234 +319,67 @@ main(int, char*[])
</PRE></TD></TABLE>
<h3><a name="indirect_iterators">The Indirect Iterator Adaptors</a></h3>
<h3><a name="indirect_iterators">The Indirect Iterators Class</a></h3>
It is not all that uncommon to create data structures that consist of
pointers to pointers. For such a structure it might be nice to have an
iterator that applies a double-dereference inside the
<tt>operator*()</tt>. The implementation of this is similar to the
<tt>transform_iterators</tt><a href="#3">[3]</a>. When talking about a
data structure of pointers to pointers (or more generally, iterators
to iterators), we call the first level iterators the <i>outer</i>
iterators and the second level iterators the <i>inner</i>
iterators. For example, if the outer iterator type is <tt>T**</tt>
then the inner iterator type is <tt>T*</tt>.
To implement the indirect adaptors, we first create a policies class
which does a double-dereference in the <tt>dereference()</tt> method.
<tt>transform_iterators</tt><a href="#3">[3]</a>. We first create a
policies class which does a double-dereference in the
<tt>dereference()</tt> method. We then create a traits class, this
time also including a template parameter for the traits of the second
level iterators as well as the first. Lastly we wrap this up in the
type generator <tt>indirect_iterators</tt>, using
<tt>iterator_adaptors</tt> to do most of the work.
<p>
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 COLS=2>
<TR><TD WIDTH=30 VALIGN=TOP></TD><TD>
<PRE>
struct indirect_iterator_policies : public default_iterator_policies
{
struct indirect_iterator_policies : public default_iterator_policies
{
template &lt;class Reference, class Iterator&gt;
Reference dereference(type&lt;Reference&gt;, const Iterator& x) const
{ return **x; }
};
</PRE></TD></TABLE>
{ return **x; }
};
We then create a traits class, including a template parameter for both
the inner and outer iterators and traits classes. The
<tt>difference_type</tt> and <tt>iterator_category</tt> come from the
outer iterator, while the <tt>value_type</tt>, <tt>pointer</tt>, and
<tt>reference</tt> types come from the inner iterator.
template &lt;class IndirectIterator,
class IndirectTraits = std::iterator_traits&lt;IndirectIterator&gt;,
class Traits =
std::iterator_traits&lt;typename IndirectTraits::value_type&gt;
&gt;
struct indirect_traits
{
typedef typename IndirectTraits::difference_type difference_type;
typedef typename Traits::value_type value_type;
typedef typename Traits::pointer pointer;
typedef typename Traits::reference reference;
typedef typename IndirectTraits::iterator_category iterator_category;
};
<p>
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 COLS=2>
<TR><TD WIDTH=30 VALIGN=TOP></TD><TD>
<PRE>
template &lt;class OuterIterator, class InnerIterator,
class OuterTraits = std::iterator_traits&lt;OuterIterator&gt;,
class InnerTraits = std::iterator_traits&lt;InnerIterator&gt;
&gt;
struct indirect_traits
{
typedef typename OuterTraits::difference_type difference_type;
typedef typename InnerTraits::value_type value_type;
typedef typename InnerTraits::pointer pointer;
typedef typename InnerTraits::reference reference;
typedef typename OuterTraits::iterator_category iterator_category;
};
</PRE></TD></TABLE>
Lastly we wrap this up in two type generators:
<tt>indirect_iterator</tt> for creating a single indirect iterator
type, and <tt>indirect_iterators</tt> for creating an const/non-const
pair of indirect iterator types. We use the <tt>iterator_adaptor</tt>
and <tt>iterator_adaptors</tt> classes here to do most of the work.
<p>
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 COLS=2>
<TR><TD WIDTH=30 VALIGN=TOP></TD><TD>
<PRE>
template &lt;class OuterIterator, class InnerIterator,
class OuterTraits = std::iterator_traits&lt;OuterIterator&gt;,
class InnerTraits = std::iterator_traits&lt;InnerIterator&gt;
&gt;
struct indirect_iterator
{
typedef iterator_adaptor&lt;OuterIterator,
indirect_iterator_policies,
indirect_traits&lt;OuterIterator, InnerIterator,
OuterTraits, InnerTraits&gt;
&gt; type;
};
template &lt;class OuterIterator, // Mutable or Immutable, does not matter
class InnerIterator, // Mutable
class ConstInnerIterator, // Immutable
class OuterTraits = std::iterator_traits&lt;OuterIterator&gt;,
class InnerTraits = std::iterator_traits&lt;InnerIterator&gt;,
class ConstInnerTraits = std::iterator_traits&lt;ConstInnerIterator&gt;
&gt;
struct indirect_iterators
{
typedef iterator_adaptors&lt;OuterIterator, OuterIterator,
indirect_traits&lt;OuterIterator, InnerIterator,
OuterTraits, InnerTraits&gt;,
indirect_traits&lt;OuterIterator, ConstInnerIterator,
OuterTraits, ConstInnerTraits&gt;,
indirect_iterator_policies
&gt; Adaptors;
template &lt;class IndirectIterator, class ConstIndirectIterator,
class IndirectTraits =
std::iterator_traits&lt;IndirectIterator&gt;,
class ConstIndirectTraits =
std::iterator_traits&lt;ConstIndirectIterator&gt;,
class Traits =
std::iterator_traits&lt;typename IndirectTraits::value_type&gt;
&gt;
struct indirect_iterators
{
typedef typename IndirectTraits::value_type Iterator;
typedef typename Traits::value_type ValueType;
typedef iterator_adaptors&lt;IndirectIterator, ConstIndirectIterator,
indirect_traits&lt;IndirectIterator, IndirectTraits, Traits&gt;,
indirect_traits&lt;ConstIndirectIterator, ConstIndirectTraits, Traits&gt;,
indirect_iterator_policies
&gt; Adaptors;
typedef typename Adaptors::iterator iterator;
typedef typename Adaptors::const_iterator const_iterator;
};
};
</PRE></TD></TABLE>
<h3><a name="projection_iterators">The Projection Iterator Adaptors</a></h3>
The projection iterator adaptor is very similar to the transform
iterator, except for a subtle difference in the return type: the
tranform iterator returns the result of the unary function by value,
whereas the projection iterator returns the result by reference.
Therefore, these two adaptors cater to different kinds of unary
functions. Transform iterator caters to functions that create new
objects, whereas projection iterator caters to a function that somehow
obtains a reference to an object that already exists. An example of a
unary function that is suitable for use with the projection adaptor is
<tt>select1st_</tt>:
<p>
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 COLS=2>
<TR><TD WIDTH=30 VALIGN=TOP></TD><TD>
<PRE>
template &lt;class Pair&gt;
struct select1st_
: public std::unary_function&lt;Pair, typename Pair::first_type&gt;
{
const typename Pair::first_type& operator()(const Pair& x) const {
return x.first;
}
typename Pair::first_type& operator()(Pair& x) const {
return x.first;
}
};
</PRE></TD></TABLE>
The implementation of projection iterator is as follows. First, the
policies class is the same as the transform iterator's policies class.
<p>
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 COLS=2>
<TR><TD WIDTH=30 VALIGN=TOP></TD><TD>
<PRE>
template &lt;class AdaptableUnaryFunction&gt;
struct projection_iterator_policies : public default_iterator_policies
{
projection_iterator_policies() { }
projection_iterator_policies(const AdaptableUnaryFunction& f) : m_f(f) { }
template &lt;class Reference, class Iterator&gt;
Reference dereference (type&lt;Reference&gt;, Iterator const& iter) const {
return m_f(*iter);
}
AdaptableUnaryFunction m_f;
};
</PRE></TD></TABLE>
Next we have two traits classes. We use <tt>value_type&</tt> for the
reference type of the mutable projection iterator, and <tt>const
value_type&</tt> for the immutable projection iterator.
<p>
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 COLS=2>
<TR><TD WIDTH=30 VALIGN=TOP></TD><TD>
<PRE>
template &lt;class AdaptableUnaryFunction, class Traits&gt;
struct projection_iterator_traits {
typedef typename AdaptableUnaryFunction::result_type value_type;
typedef value_type& reference;
typedef value_type* pointer;
typedef typename Traits::difference_type difference_type;
typedef typename Traits::iterator_category iterator_category;
};
template &lt;class AdaptableUnaryFunction, class Traits&gt;
struct const_projection_iterator_traits {
typedef typename AdaptableUnaryFunction::result_type value_type;
typedef value_type const& reference;
typedef value_type const* pointer;
typedef typename Traits::difference_type difference_type;
typedef typename Traits::iterator_category iterator_category;
};
</PRE></TD></TABLE>
And to finish up, we create three generator classes that
use <tt>iterator_adaptor</tt> to create the projection iterator
types. The class <tt>projection_iterator</tt> creates a mutable
projection iterator type. The class <tt>const_projection_iterator</tt>
creates an immutable projection iterator type, and
<tt>projection_iterators</tt> creates both mutable and immutable
projection iterator types.
<p>
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 COLS=2>
<TR><TD WIDTH=30 VALIGN=TOP></TD><TD>
<PRE>
template &lt;class AdaptableUnaryFunction, class Iterator,
class Traits = std::iterator_traits&lt;Iterator&gt;
&gt;
struct projection_iterator {
typedef projection_iterator_traits&lt;AdaptableUnaryFunction, Traits&gt;
Projection_Traits;
typedef iterator_adaptor&lt;Iterator,
projection_iterator_policies&lt;AdaptableUnaryFunction&gt;,
Projection_Traits&gt; type;
};
template &lt;class AdaptableUnaryFunction, class Iterator,
class Traits = std::iterator_traits&lt;Iterator&gt;
&gt;
struct const_projection_iterator {
typedef const_projection_iterator_traits&lt;AdaptableUnaryFunction,
Traits&gt; Projection_Traits;
typedef iterator_adaptor&lt;Iterator,
projection_iterator_policies&lt;AdaptableUnaryFunction&gt;,
Projection_Traits&gt; type;
};
template &lt;class AdaptableUnaryFunction, class Iterator, class ConstIterator,
class Traits = std::iterator_traits&lt;Iterator&gt;,
class ConstTraits = std::iterator_traits&lt;ConstIterator&gt;
&gt;
struct projection_iterators {
typedef projection_iterator_traits&lt;AdaptableUnaryFunction, Traits&gt;
Projection_Traits;
typedef const_projection_iterator_traits&lt;AdaptableUnaryFunction,
ConstTraits&gt; Const_Projection_Traits;
typedef iterator_adaptors&lt;Iterator, ConstIterator,
Projection_Traits, Const_Projection_Traits,
projection_iterator_policies&lt;AdaptableUnaryFunction&gt; &gt; Adaptors;
typedef typename Adaptors::iterator iterator;
typedef typename Adaptors::const_iterator const_iterator;
};
</PRE></TD></TABLE>
<h3><a name="reverse_iterators">The Reverse Iterators Class</a></h3>
<p>
@@ -684,9 +494,9 @@ iterator.
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 COLS=2>
<TR><TD WIDTH=30 VALIGN=TOP></TD><TD>
<PRE>
template &lt;class IntegerType&gt;
struct counting_iterator_policies : public default_iterator_policies
{
template &lt;class IntegerType&gt;
IntegerType dereference(type&lt;IntegerType&gt;, const IntegerType& i) const
{ return i; }
};
@@ -807,7 +617,7 @@ uses the three adaptors.
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->10 Feb 2001<!--webbot bot="Timestamp" endspan i-checksum="14373" --></p>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->17 Jun 2000<!--webbot bot="Timestamp" endspan i-checksum="15055" --></p>
<p><EFBFBD> Copyright Jeremy Siek 2000. Permission to copy, use,
modify, sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided &quot;as is&quot;

View File

@@ -1,155 +0,0 @@
// (C) Copyright David Abrahams 2001. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 07 Feb 2001 More comprehensive testing; factored out static tests for
// better reuse (David Abrahams)
// 21 Jan 2001 Quick fix to my_iterator, which wasn't returning a
// reference type from operator* (David Abrahams)
// 19 Jan 2001 Initial version with iterator operators (David Abrahams)
#include <boost/detail/iterator.hpp>
#include <boost/type_traits.hpp>
#include <boost/operators.hpp>
#include <boost/static_assert.hpp>
#include <iterator>
#include <vector>
#include <list>
#include <cassert>
#include <iostream>
struct my_iterator
: public boost::forward_iterator_helper<my_iterator, const char, long>
{
my_iterator(const char* p) : m_p(p) {}
bool operator==(const my_iterator& rhs) const
{ return this->m_p == rhs.m_p; }
my_iterator& operator++() { ++this->m_p; return *this; }
const char& operator*() { return *m_p; }
private:
const char* m_p;
};
template <class Iterator,
class value_type, class difference_type, class pointer, class reference, class category>
struct non_portable_tests
{
// Unfortunately, the VC6 standard library doesn't supply these :(
BOOST_STATIC_ASSERT((
boost::is_same<
typename boost::detail::iterator_traits<Iterator>::pointer,
pointer
>::value));
BOOST_STATIC_ASSERT((
boost::is_same<
typename boost::detail::iterator_traits<Iterator>::reference,
reference
>::value));
};
template <class Iterator,
class value_type, class difference_type, class pointer, class reference, class category>
struct portable_tests
{
BOOST_STATIC_ASSERT((
boost::is_same<
typename boost::detail::iterator_traits<Iterator>::difference_type,
difference_type
>::value));
BOOST_STATIC_ASSERT((
boost::is_same<
typename boost::detail::iterator_traits<Iterator>::iterator_category,
category
>::value));
};
// Test iterator_traits
template <class Iterator,
class value_type, class difference_type, class pointer, class reference, class category>
struct input_iterator_test
: portable_tests<Iterator,value_type,difference_type,pointer,reference,category>
{
BOOST_STATIC_ASSERT((
boost::is_same<
typename boost::detail::iterator_traits<Iterator>::value_type,
value_type
>::value));
};
template <class Iterator,
class value_type, class difference_type, class pointer, class reference, class category>
struct non_pointer_test
: input_iterator_test<Iterator,value_type,difference_type,pointer,reference,category>
#if !defined(BOOST_MSVC) || defined(__SGI_STL_PORT)
, non_portable_tests<Iterator,value_type,difference_type,pointer,reference,category>
#endif
{
};
template <class Iterator,
class value_type, class difference_type, class pointer, class reference, class category>
struct maybe_pointer_test
: portable_tests<Iterator,value_type,difference_type,pointer,reference,category>
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
, non_portable_tests<Iterator,value_type,difference_type,pointer,reference,category>
#endif
{
};
input_iterator_test<std::istream_iterator<int>, int, std::ptrdiff_t, int*, int&, std::input_iterator_tag>
istream_iterator_test;
non_pointer_test<std::ostream_iterator<int>,
#if !defined(BOOST_MSVC) || defined(__SGI_STL_PORT)
void,
#else // the VC6 standard lib gives ostream_iterator an incorrect value_type
int,
#endif
void, void, void, std::output_iterator_tag>
ostream_iterator_test;
#ifdef __KCC
typedef long std_list_diff_type;
#else
typedef std::ptrdiff_t std_list_diff_type;
#endif
non_pointer_test<std::list<int>::iterator, int, std_list_diff_type, int*, int&, std::bidirectional_iterator_tag>
list_iterator_test;
maybe_pointer_test<std::vector<int>::iterator, int, std::ptrdiff_t, int*, int&, std::random_access_iterator_tag>
vector_iterator_test;
maybe_pointer_test<int*, int, std::ptrdiff_t, int*, int&, std::random_access_iterator_tag>
int_pointer_test;
non_pointer_test<my_iterator, const char, long, const char*, const char&, std::forward_iterator_tag>
my_iterator_test;
int main()
{
char chars[100];
int ints[100];
for (std::ptrdiff_t length = 3; length < 100; length += length / 3)
{
std::list<int> l(length);
assert(boost::detail::distance(l.begin(), l.end()) == length);
std::vector<int> v(length);
assert(boost::detail::distance(v.begin(), v.end()) == length);
assert(boost::detail::distance(&ints[0], ints + length) == length);
assert(boost::detail::distance(my_iterator(chars), my_iterator(chars + length)) == length);
}
return 0;
}

View File

@@ -1,385 +0,0 @@
// (C) Copyright David Abrahams 2001. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 23 Jan 2001 Added test for wchar_t (David Abrahams)
// 23 Jan 2001 Now statically selecting a test for signed numbers to avoid
// warnings with fancy compilers. Added commentary and
// additional dumping of traits data for tested types (David
// Abrahams).
// 21 Jan 2001 Initial version (David Abrahams)
#include <boost/detail/numeric_traits.hpp>
#include <cassert>
#include <boost/type_traits.hpp>
#include <boost/static_assert.hpp>
#include <boost/cstdint.hpp>
#include <boost/utility.hpp>
#include <boost/lexical_cast.hpp>
#include <climits>
#include <typeinfo>
#include <iostream>
#include <string>
#ifndef BOOST_NO_LIMITS
# include <limits>
#endif
// A macro for declaring class compile-time constants.
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
# define DECLARE_CLASS_CONST(type, init) static const type init
#else
# define DECLARE_CLASS_CONST(type, init) enum { init }
#endif
// =================================================================================
// template class complement_traits<Number> --
//
// statically computes the max and min for 1s and 2s-complement binary
// numbers. This helps on platforms without <limits> support. It also shows
// an example of a recursive template that works with MSVC!
//
template <unsigned size> struct complement; // forward
// The template complement, below, does all the real work, using "poor man's
// partial specialization". We need complement_traits_aux<> so that MSVC doesn't
// complain about undefined min/max as we're trying to recursively define them.
template <class Number, unsigned size>
struct complement_traits_aux
{
DECLARE_CLASS_CONST(Number, max = complement<size>::template traits<Number>::max);
DECLARE_CLASS_CONST(Number, min = complement<size>::template traits<Number>::min);
};
template <unsigned size>
struct complement
{
template <class Number>
struct traits
{
private:
// indirection through complement_traits_aux neccessary to keep MSVC happy
typedef complement_traits_aux<Number, size - 1> prev;
public:
DECLARE_CLASS_CONST(Number, max =
Number(Number(prev::max) << CHAR_BIT)
+ Number(UCHAR_MAX));
DECLARE_CLASS_CONST(Number, min = Number(Number(prev::min) << CHAR_BIT));
};
};
// Template class complement_base<> -- defines values for min and max for
// complement<1>, at the deepest level of recursion. Uses "poor man's partial
// specialization" again.
template <bool is_signed> struct complement_base;
template <> struct complement_base<false>
{
template <class Number>
struct values
{
DECLARE_CLASS_CONST(Number, min = 0);
DECLARE_CLASS_CONST(Number, max = UCHAR_MAX);
};
};
template <> struct complement_base<true>
{
template <class Number>
struct values
{
DECLARE_CLASS_CONST(Number, min = SCHAR_MIN);
DECLARE_CLASS_CONST(Number, max = SCHAR_MAX);
};
};
// Base specialization of complement, puts an end to the recursion.
template <>
struct complement<1>
{
template <class Number>
struct traits
{
DECLARE_CLASS_CONST(bool, is_signed = boost::detail::is_signed<Number>::value);
DECLARE_CLASS_CONST(Number, min =
complement_base<is_signed>::template values<Number>::min);
DECLARE_CLASS_CONST(Number, max =
complement_base<is_signed>::template values<Number>::max);
};
};
// Now here's the "pretty" template you're intended to actually use.
// complement_traits<Number>::min, complement_traits<Number>::max are the
// minimum and maximum values of Number if Number is a built-in integer type.
template <class Number>
struct complement_traits
{
DECLARE_CLASS_CONST(Number, max = (complement_traits_aux<Number, sizeof(Number)>::max));
DECLARE_CLASS_CONST(Number, min = (complement_traits_aux<Number, sizeof(Number)>::min));
};
// =================================================================================
// Support for streaming various numeric types in exactly the format I want. I
// needed this in addition to all the assertions so that I could see exactly
// what was going on.
//
// Numbers go through a 2-stage conversion process (by default, though, no real
// conversion).
//
template <class T> struct stream_as {
typedef T t1;
typedef T t2;
};
// char types first get converted to unsigned char, then to unsigned.
template <> struct stream_as<char> {
typedef unsigned char t1;
typedef unsigned t2;
};
template <> struct stream_as<unsigned char> {
typedef unsigned char t1; typedef unsigned t2;
};
template <> struct stream_as<signed char> {
typedef unsigned char t1; typedef unsigned t2;
};
#if defined(BOOST_MSVC) // No intmax streaming built-in
// On this platform, __int64 and __uint64 get streamed as strings
template <> struct stream_as<boost::uintmax_t> {
typedef std::string t1;
typedef std::string t2;
};
template <> struct stream_as<boost::intmax_t> {
typedef std::string t1;
typedef std::string t2;
};
#endif
// Standard promotion process for streaming
template <class T> struct promote
{
static typename stream_as<T>::t1 from(T x) {
typedef typename stream_as<T>::t1 t1;
return t1(x);
}
};
#if defined(BOOST_MSVC) // No intmax streaming built-in
// On this platform, stream them as long/unsigned long if they fit.
// Otherwise, write a string.
template <> struct promote<boost::uintmax_t> {
std::string static from(const boost::uintmax_t x) {
if (x > ULONG_MAX)
return std::string("large unsigned value");
else
return boost::lexical_cast<std::string>((unsigned long)x);
}
};
template <> struct promote<boost::intmax_t> {
std::string static from(const boost::intmax_t x) {
if (x > boost::intmax_t(ULONG_MAX))
return std::string("large positive signed value");
else if (x >= 0)
return boost::lexical_cast<std::string>((unsigned long)x);
if (x < boost::intmax_t(LONG_MIN))
return std::string("large negative signed value");
else
return boost::lexical_cast<std::string>((long)x);
}
};
#endif
// This is the function which converts types to the form I want to stream them in.
template <class T>
typename stream_as<T>::t2 stream_number(T x)
{
return promote<T>::from(x);
}
// =================================================================================
//
// Tests for built-in signed and unsigned types
//
// Tag types for selecting tests
struct unsigned_tag {};
struct signed_tag {};
// Tests for unsigned numbers. The extra default Number parameter works around
// an MSVC bug.
template <class Number>
void test_aux(unsigned_tag, Number* = 0)
{
typedef typename boost::detail::numeric_traits<Number>::difference_type difference_type;
BOOST_STATIC_ASSERT(!boost::detail::is_signed<Number>::value);
BOOST_STATIC_ASSERT(
(sizeof(Number) < sizeof(boost::intmax_t))
| (boost::is_same<difference_type, boost::intmax_t>::value));
// Force casting to Number here to work around the fact that it's an enum on MSVC
BOOST_STATIC_ASSERT(Number(complement_traits<Number>::max) > Number(0));
BOOST_STATIC_ASSERT(Number(complement_traits<Number>::min) == Number(0));
const Number max = complement_traits<Number>::max;
const Number min = complement_traits<Number>::min;
const Number test_max = (sizeof(Number) < sizeof(boost::intmax_t))
? max
: max / 2 - 1;
std::cout << std::hex << "(unsigned) min = " << stream_number(min) << ", max = "
<< stream_number(max) << "..." << std::flush;
std::cout << "difference_type = " << typeid(difference_type).name() << "..."
<< std::flush;
difference_type d1 = boost::detail::numeric_distance(Number(0), test_max);
difference_type d2 = boost::detail::numeric_distance(test_max, Number(0));
std::cout << "0->" << stream_number(test_max) << "==" << std::dec << stream_number(d1) << "; "
<< std::hex << stream_number(test_max) << "->0==" << std::dec << stream_number(d2) << "..." << std::flush;
assert(d1 == difference_type(test_max));
assert(d2 == -difference_type(test_max));
}
// Tests for signed numbers. The extra default Number parameter works around an
// MSVC bug.
struct out_of_range_tag {};
struct in_range_tag {};
// This test morsel gets executed for numbers whose difference will always be
// representable in intmax_t
template <class Number>
void signed_test(in_range_tag, Number* = 0)
{
BOOST_STATIC_ASSERT(boost::detail::is_signed<Number>::value);
typedef typename boost::detail::numeric_traits<Number>::difference_type difference_type;
const Number max = complement_traits<Number>::max;
const Number min = complement_traits<Number>::min;
difference_type d1 = boost::detail::numeric_distance(min, max);
difference_type d2 = boost::detail::numeric_distance(max, min);
std::cout << stream_number(min) << "->" << stream_number(max) << "==";
std::cout << std::dec << stream_number(d1) << "; ";
std::cout << std::hex << stream_number(max) << "->" << stream_number(min)
<< "==" << std::dec << stream_number(d2) << "..." << std::flush;
assert(d1 == difference_type(max) - difference_type(min));
assert(d2 == difference_type(min) - difference_type(max));
}
// This test morsel gets executed for numbers whose difference may exceed the
// capacity of intmax_t.
template <class Number>
void signed_test(out_of_range_tag, Number* = 0)
{
BOOST_STATIC_ASSERT(boost::detail::is_signed<Number>::value);
typedef typename boost::detail::numeric_traits<Number>::difference_type difference_type;
const Number max = complement_traits<Number>::max;
const Number min = complement_traits<Number>::min;
difference_type min_distance = complement_traits<difference_type>::min;
difference_type max_distance = complement_traits<difference_type>::max;
const Number n1 = Number(min + max_distance);
const Number n2 = Number(max + min_distance);
difference_type d1 = boost::detail::numeric_distance(min, n1);
difference_type d2 = boost::detail::numeric_distance(max, n2);
std::cout << stream_number(min) << "->" << stream_number(n1) << "==";
std::cout << std::dec << stream_number(d1) << "; ";
std::cout << std::hex << stream_number(max) << "->" << stream_number(n2)
<< "==" << std::dec << stream_number(d2) << "..." << std::flush;
assert(d1 == max_distance);
assert(d2 == min_distance);
}
template <class Number>
void test_aux(signed_tag, Number* = 0)
{
typedef typename boost::detail::numeric_traits<Number>::difference_type difference_type;
BOOST_STATIC_ASSERT(boost::detail::is_signed<Number>::value);
BOOST_STATIC_ASSERT(
(sizeof(Number) < sizeof(boost::intmax_t))
| (boost::is_same<difference_type, Number>::value));
// Force casting to Number here to work around the fact that it's an enum on MSVC
BOOST_STATIC_ASSERT(Number(complement_traits<Number>::max) > Number(0));
BOOST_STATIC_ASSERT(Number(complement_traits<Number>::min) < Number(0));
const Number max = complement_traits<Number>::max;
const Number min = complement_traits<Number>::min;
std::cout << std::hex << "min = " << stream_number(min) << ", max = "
<< stream_number(max) << "..." << std::flush;
std::cout << "difference_type = " << typeid(difference_type).name() << "..."
<< std::flush;
typedef typename boost::detail::if_true<
(sizeof(Number) < sizeof(boost::intmax_t))>
::template then<
in_range_tag,
out_of_range_tag
>::type
range_tag;
signed_test<Number>(range_tag());
}
// Test for all numbers. The extra default Number parameter works around an MSVC
// bug.
template <class Number>
void test(Number* = 0)
{
std::cout << "testing " << typeid(Number).name() << ":\n"
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
<< "is_signed: " << (std::numeric_limits<Number>::is_signed ? "true\n" : "false\n")
<< "is_bounded: " << (std::numeric_limits<Number>::is_bounded ? "true\n" : "false\n")
<< "digits: " << std::numeric_limits<Number>::digits << "\n"
#endif
<< "..." << std::flush;
typedef typename boost::detail::numeric_traits<Number>::difference_type difference_type;
BOOST_STATIC_ASSERT(boost::detail::is_signed<difference_type>::value);
typedef typename boost::detail::if_true<
boost::detail::is_signed<Number>::value
>::template then<signed_tag, unsigned_tag>::type signedness;
test_aux<Number>(signedness());
std::cout << "passed" << std::endl;
}
int main()
{
test<char>();
test<unsigned char>();
test<signed char>();
test<wchar_t>();
test<short>();
test<unsigned short>();
test<int>();
test<unsigned int>();
test<long>();
test<unsigned long>();
#if defined(ULLONG_MAX) || defined(ULONG_LONG_MAX)
test<long long>();
test<unsigned long long>();
#elif defined(BOOST_MSVC)
// The problem of not having compile-time static class constants other than
// enums prevents this from working, since values get truncated.
// test<boost::uintmax_t>();
// test<boost::intmax_t>();
#endif
return 0;
}

View File

@@ -11,8 +11,8 @@
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="center" width="277" height="86">Header
<a href="../../boost/operators.hpp">boost/operators.hpp</a></h1>
<p>Header <a href="../../boost/operators.hpp">boost/operators.hpp</a> supplies
(in namespace boost) several sets of templates:</p>
<p>Header <a href="file:///c:/boost/site/boost/operators.hpp">boost/operators.hpp</a>
supplies (in namespace boost) several sets of templates:</p>
<ul>
<li><a href="#Arithmetic">Arithmetic operators</a>.
<li><a href="#deref and helpers">Dereference operators and iterator helpers.</a></li>
@@ -43,10 +43,10 @@ additional operators, such as operator&gt;, &lt;=, &gt;=, and +.&nbsp; <a href="
forms</a> of the templates are also provided to allow interaction with other
types.</p>
<p><a href="http://www.boost.org/people/dave_abrahams.htm">Dave Abrahams</a>
started the library and contributed the arithmetic operators in <a href="../../boost/operators.hpp">boost/operators.hpp</a>.<br>
started the library and contributed the arithmetic operators in <a href="file:///c:/boost/site/boost/operators.hpp">boost/operators.hpp</a>.<br>
<a href="http://www.boost.org/people/jeremy_siek.htm">Jeremy Siek</a>
contributed the <a href="#deref and helpers">dereference operators and iterator
helpers</a> in <a href="../../boost/operators.hpp">boost/operators.hpp</a>.<br>
helpers</a> in <a href="file:///c:/boost/site/boost/operators.hpp">boost/operators.hpp</a>.<br>
<a href="http://www.boost.org/people/aleksey_gurtovoy.htm">Aleksey Gurtovoy</a>
contributed the code to support <a href="#chaining">base class chaining</a>
while remaining backward-compatible with old versions of the library.<br>
@@ -60,7 +60,7 @@ x &gt;= y,</code> and <code>x &lt;= y</code>. Moreover, unless your class has
really surprising behavior, some of these related operators can be defined in
terms of others (e.g. <code>x &gt;= y <b>&lt;=&gt;</b> !(x &lt; y)</code>).
Replicating this boilerplate for multiple classes is both tedious and
error-prone. The <a href="../../boost/operators.hpp">boost/operators.hpp</a>
error-prone. The <a href="file:///c:/boost/site/boost/operators.hpp">boost/operators.hpp</a>
templates help by generating operators for you at namespace scope based on other
operators you've defined in your class.</p>
<a name="two_arg">
@@ -585,7 +585,8 @@ complicated than the old one, we think it's worth it to make the library more
useful in real world. Alexy Gurtovoy contributed the code which supports the new
usage idiom while allowing the library remain backward-compatible.</p>
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->28 Sep 2000<!--webbot bot="Timestamp" endspan i-checksum="14938" --></p>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->03 Aug 2000<!--webbot bot="Timestamp" endspan i-checksum="14750" -->
</p>
<p><EFBFBD> Copyright David Abrahams and Beman Dawes 1999-2000. Permission to copy,
use, modify, sell and distribute this document is granted provided this
copyright notice appears in all copies. This document is provided &quot;as

View File

@@ -15,7 +15,7 @@
<BODY BGCOLOR="#ffffff" LINK="#0000ee" TEXT="#000000" VLINK="#551a8b"
ALINK="#ff0000">
<IMG SRC="../../c++boost.gif"
ALT="C++ Boost" width="277" height="86">
ALT="C++ Boost">
<BR Clear>
@@ -31,11 +31,11 @@ tied&lt;A,B&gt; tie(A&amp; a, B&amp; b);
<P>
This is a utility function that makes it more convenient to work with
a function which returns a std::pair&lt;&gt;. The effect of the <TT>tie()</TT>
a function which returns a pair. The effect of the <TT>tie()</TT>
function is to allow the assignment of the two values of the pair to
two separate variables. The idea for this comes from Jaakko
J&#228;rvi's Binders&nbsp;[<A
HREF="../graph/doc/bibliography.html#jaakko_tuple_assign">1</A>].
HREF="bibliography.html#jaakko_tuple_assign">1</A>].
<P>
@@ -63,7 +63,8 @@ pair of iterators is assigned to the iterator variables <TT>i</TT> and
</PRE>
<P>
Here is another example that uses <TT>tie()</TT> for handling operations with <a
Here is another example that uses <TT>tie()</TT> for handling
operaitons with <a
href="http://www.sgi.com/Technology/STL/set.html"><TT>std::set</TT></a>.
<P>
@@ -91,9 +92,9 @@ main(int, char*[])
for (int k = 0; k &lt; 2; ++k) {
boost::tie(i,inserted) = s.insert(new_vals[k]);
if (!inserted)
std::cout &lt;&lt; *i &lt;&lt; &quot; was already in the set.&quot; &lt;&lt; std::endl;
std::cout &lt;&lt; *i &lt;&lt; " was already in the set." &lt;&lt; std::endl;
else
std::cout &lt;&lt; *i &lt;&lt; &quot; successfully inserted.&quot; &lt;&lt; std::endl;
std::cout &lt;&lt; *i &lt;&lt; " successfully inserted." &lt;&lt; std::endl;
}
}
{
@@ -104,8 +105,8 @@ main(int, char*[])
// Using tie() with a return value of pair&lt;iterator,iterator&gt;
boost::tie(i,end) = std::equal_range(vals, vals + 6, 4);
std::cout &lt;&lt; &quot;There were &quot; &lt;&lt; std::distance(i,end)
&lt;&lt; &quot; occurrences of &quot; &lt;&lt; *i &lt;&lt; &quot;.&quot; &lt;&lt; std::endl;
std::cout &lt;&lt; "There were " &lt;&lt; std::distance(i,end)
&lt;&lt; " occurances of " &lt;&lt; *i &lt;&lt; "." &lt;&lt; std::endl;
// Footnote: of course one would normally just use std::count()
// to get this information, but that would spoil the example :)
}
@@ -116,7 +117,7 @@ The output is:
<PRE>
3 successfully inserted.
9 was already in the set.
There were 2 occurrences of 4.
There were 2 occurances of 4.
</PRE>
<br>

View File

@@ -126,7 +126,8 @@ is always defined as a compile time constant).</p>
<td width="36%"><p align="center">True if T and U are the
same type.</p>
</td>
<td width="27%">&nbsp; </td>
<td width="27%"><p align="center">P</p>
</td>
</tr>
<tr>
<td width="37%"><div align="center"><center><pre>is_convertible&lt;T,U&gt;::value</pre>
@@ -169,13 +170,15 @@ on a type (see 3.93).</p>
<td valign="top" width="37%"><code>is_const&lt;T&gt;::value</code></td>
<td valign="top" width="37%">True if type T is top-level
const qualified.</td>
<td valign="top" width="27%">&nbsp; </td>
<td valign="top" width="27%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="37%"><code>is_volatile&lt;T&gt;::value</code></td>
<td valign="top" width="37%">True if type T is top-level
volatile qualified.</td>
<td valign="top" width="27%">&nbsp; </td>
<td valign="top" width="27%"><p align="center">P</p>
</td>
</tr>
</table>
@@ -345,19 +348,22 @@ as defined by the Standard.&nbsp;</p>
<td valign="top" width="45%">True if T is a regular
pointer type - including function pointers - but
excluding pointers to member functions (3.9.2 p1 and 8.3.1).</td>
<td valign="top" width="33%">&nbsp; </td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_member_pointer&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a pointer to a
non-static class member (3.9.2 p1 and 8.3.1).</td>
<td valign="top" width="33%">&nbsp; </td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_reference&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a reference
type (3.9.2 p1 and 8.3.2).</td>
<td valign="top" width="33%">&nbsp; </td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_class&lt;T&gt;::value</code></td>
@@ -601,7 +607,7 @@ familiar standard library algorithms.</p>
<hr>
<p>Revised 01 September 2000</p>
<p>Revised 08<sup>th</sup> March 2000</p>
<p><EFBFBD> Copyright boost.org 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this

View File

@@ -7,30 +7,19 @@
// standalone test program for <boost/type_traits.hpp>
/* Release notes:
31 Jan 2001:
Added a test for is_array using a const array and a test for
is_convertible with a user-defined implicit conversion. Changed
signature of main() so that this program will link under
MSVC. (Jeremy Siek)
20 Jan 2001:
Suppress an expected warning for MSVC
Added a test to prove that we can use void with is_same<>
Removed "press any key to exit" as it interferes with testing in large
batches.
(David Abahams)
31st July 2000:
Added extra tests for is_empty, is_convertible, alignment_of.
23rd July 2000:
Removed all call_traits tests to call_traits_test.cpp
Removed all compressed_pair tests to compressed_pair_tests.cpp
Improved tests macros
Tidied up specialistions of type_types classes for test cases. */
Tidied up specialistions of type_types classes for test cases.
*/
#include <iostream>
#include <typeinfo>
#include <boost/type_traits.hpp>
#include <boost/utility.hpp>
#include "type_traits_test.hpp"
using namespace boost;
@@ -150,7 +139,7 @@ template <> struct is_POD<empty_POD_union_UDT>
class Base { };
class Derived : public Base { };
class Deriverd : public Base { };
class NonDerived { };
@@ -173,29 +162,6 @@ struct VD : VB
{
~VD(){};
};
//
// struct non_pointer:
// used to verify that is_pointer does not return
// true for class types that implement operator void*()
//
struct non_pointer
{
operator void*(){return this;}
};
//
// struct non_empty:
// used to verify that is_empty does not emit
// spurious warnings or errors.
//
struct non_empty : boost::noncopyable
{
int i;
};
struct implicitly_convertible_to_int {
operator int() { return 0; }
};
// Steve: All comments that I (Steve Cleary) have added below are prefixed with
@@ -203,21 +169,14 @@ struct implicitly_convertible_to_int {
// not considering cv-qual's as a part of the type -- they are considered
// compiler hints only. These failures should be fixed before long.
int main(int, char*[])
int main()
{
std::cout << "Checking type operations..." << std::endl << std::endl;
// cv-qualifiers applied to reference types should have no effect
// declare these here for later use with is_reference and remove_reference:
typedef int& r_type;
#ifdef BOOST_MSVC
# pragma warning(push)
# pragma warning(disable:4181) // qualifier applied to reference type ignored
#endif
typedef const r_type cr_type;
#ifdef BOOST_MSVC
# pragma warning(pop)
#endif
type_test(int, remove_reference<int>::type)
type_test(const int, remove_reference<const int>::type)
@@ -255,17 +214,12 @@ int main(int, char*[])
std::cout << std::endl << "Checking type properties..." << std::endl << std::endl;
value_test(true, (is_same<void, void>::value))
value_test(false, (is_same<int, void>::value))
value_test(false, (is_same<void, int>::value))
value_test(true, (is_same<int, int>::value))
value_test(false, (is_same<int, const int>::value))
value_test(false, (is_same<int, int&>::value))
value_test(false, (is_same<int*, const int*>::value))
value_test(false, (is_same<int*, int*const>::value))
value_test(false, (is_same<int, int[2]>::value))
value_test(false, (is_same<int*, int[2]>::value))
value_test(false, (is_same<int[4], int[2]>::value))
value_test(false, is_const<int>::value)
value_test(true, is_const<const int>::value)
@@ -409,15 +363,9 @@ int main(int, char*[])
value_test(false, is_array<int>::value)
value_test(false, is_array<int*>::value)
value_test(false, is_array<const int*>::value)
value_test(false, is_array<const volatile int*>::value)
value_test(true, is_array<int[2]>::value)
value_test(true, is_array<const int[2]>::value)
value_test(true, is_array<const volatile int[2]>::value)
value_test(true, is_array<int[2][3]>::value)
value_test(true, is_array<UDT[2]>::value)
value_test(false, is_array<int(&)[2]>::value)
value_test(true, is_array<const int[2]>::value)
typedef void(*f1)();
typedef int(*f2)(int);
@@ -426,29 +374,16 @@ int main(int, char*[])
typedef int (UDT::*mf2)();
typedef int (UDT::*mf3)(int);
typedef int (UDT::*mf4)(int, float);
value_test(false, is_const<f1>::value)
value_test(false, is_reference<f1>::value)
value_test(false, is_array<f1>::value)
value_test(false, is_pointer<int>::value)
value_test(false, is_pointer<int&>::value)
value_test(true, is_pointer<int*>::value)
value_test(true, is_pointer<const int*>::value)
value_test(true, is_pointer<volatile int*>::value)
value_test(true, is_pointer<non_pointer*>::value)
// Steve: was 'true', should be 'false', via 3.9.2p3, 3.9.3p1
value_test(false, is_pointer<int*const>::value)
// Steve: was 'true', should be 'false', via 3.9.2p3, 3.9.3p1
value_test(false, is_pointer<int*volatile>::value)
// Steve: was 'true', should be 'false', via 3.9.2p3, 3.9.3p1
value_test(false, is_pointer<int*const volatile>::value)
// JM 02 Oct 2000:
value_test(false, is_pointer<non_pointer>::value)
value_test(false, is_pointer<int*&>::value)
value_test(false, is_pointer<int(&)[2]>::value)
value_test(false, is_pointer<int[2]>::value)
value_test(false, is_pointer<char[sizeof(void*)]>::value)
value_test(true, is_pointer<f1>::value)
value_test(true, is_pointer<f2>::value)
value_test(true, is_pointer<f3>::value)
@@ -467,7 +402,6 @@ int main(int, char*[])
value_test(true, is_reference<volatile int &>::value)
value_test(true, is_reference<r_type>::value)
value_test(true, is_reference<cr_type>::value)
value_test(true, is_reference<const UDT&>::value)
value_test(false, is_class<int>::value)
value_test(false, is_class<const int>::value)
@@ -509,29 +443,19 @@ int main(int, char*[])
value_test(false, is_empty<int>::value)
value_test(false, is_empty<int*>::value)
value_test(false, is_empty<int&>::value)
#if defined(__MWERKS__) || defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
#ifdef __MWERKS__
// apparent compiler bug causes this to fail to compile:
value_fail(false, is_empty<int[2]>::value)
#else
value_test(false, is_empty<int[2]>::value)
#endif
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
value_fail(false, is_empty<f1>::value)
#else
value_test(false, is_empty<f1>::value)
#endif
value_test(false, is_empty<mf1>::value)
value_test(false, is_empty<UDT>::value)
value_test(true, is_empty<empty_UDT>::value)
value_test(true, is_empty<empty_POD_UDT>::value)
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
value_fail(true, is_empty<empty_union_UDT>::value)
#else
value_test(true, is_empty<empty_union_UDT>::value)
#endif
value_test(false, is_empty<enum_UDT>::value)
value_test(true, is_empty<boost::noncopyable>::value)
value_test(false, is_empty<non_empty>::value)
value_test(true, has_trivial_constructor<int>::value)
value_test(true, has_trivial_constructor<int*>::value)
@@ -610,15 +534,13 @@ int main(int, char*[])
value_test(false, is_POD<empty_UDT>::value)
value_test(true, is_POD<enum_UDT>::value)
value_test(true, (boost::is_convertible<implicitly_convertible_to_int,
int>::value));
value_test(true, (boost::is_convertible<Derived,Base>::value));
value_test(true, (boost::is_convertible<Derived,Derived>::value));
value_test(true, (boost::is_convertible<Deriverd,Base>::value));
value_test(true, (boost::is_convertible<Deriverd,Deriverd>::value));
value_test(true, (boost::is_convertible<Base,Base>::value));
value_test(false, (boost::is_convertible<Base,Derived>::value));
value_test(true, (boost::is_convertible<Derived,Derived>::value));
value_test(false, (boost::is_convertible<Base,Deriverd>::value));
value_test(true, (boost::is_convertible<Deriverd,Deriverd>::value));
value_test(false, (boost::is_convertible<NonDerived,Base>::value));
value_test(false, (boost::is_convertible<boost::noncopyable, int>::value));
//value_test(false, (boost::is_convertible<boost::noncopyable, boost::noncopyable>::value));
value_test(true, (boost::is_convertible<float,int>::value));
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) || !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
value_test(false, (boost::is_convertible<float,void>::value));
@@ -626,18 +548,18 @@ int main(int, char*[])
value_test(true, (boost::is_convertible<void,void>::value));
#endif
value_test(true, (boost::is_convertible<enum1, int>::value));
value_test(true, (boost::is_convertible<Derived*, Base*>::value));
value_test(false, (boost::is_convertible<Base*, Derived*>::value));
value_test(true, (boost::is_convertible<Derived&, Base&>::value));
value_test(false, (boost::is_convertible<Base&, Derived&>::value));
value_test(true, (boost::is_convertible<const Derived*, const Base*>::value));
value_test(false, (boost::is_convertible<const Base*, const Derived*>::value));
value_test(true, (boost::is_convertible<const Derived&, const Base&>::value));
value_test(false, (boost::is_convertible<const Base&, const Derived&>::value));
value_test(true, (boost::is_convertible<Deriverd*, Base*>::value));
value_test(false, (boost::is_convertible<Base*, Deriverd*>::value));
value_test(true, (boost::is_convertible<Deriverd&, Base&>::value));
value_test(false, (boost::is_convertible<Base&, Deriverd&>::value));
value_test(true, (boost::is_convertible<const Deriverd*, const Base*>::value));
value_test(false, (boost::is_convertible<const Base*, const Deriverd*>::value));
value_test(true, (boost::is_convertible<const Deriverd&, const Base&>::value));
value_test(false, (boost::is_convertible<const Base&, const Deriverd&>::value));
value_test(false, (boost::is_convertible<const int *, int*>::value));
value_test(false, (boost::is_convertible<const int&, int&>::value));
value_test(true, (boost::is_convertible<int*, int[2]>::value));
value_test(false, (boost::is_convertible<int*, int[2]>::value));
value_test(false, (boost::is_convertible<const int*, int[3]>::value));
value_test(true, (boost::is_convertible<const int&, int>::value));
value_test(true, (boost::is_convertible<int(&)[4], const int*>::value));
@@ -663,7 +585,8 @@ int main(int, char*[])
align_test(VB);
align_test(VD);
std::cout << std::endl << test_count << " tests completed (" << failures << " failures)";
std::cout << std::endl << test_count << " tests completed (" << failures << " failures)... press any key to exit";
std::cin.get();
return failures;
}

View File

@@ -1,9 +1,9 @@
// boost::compressed_pair test program
// boost::compressed_pair test program
// (C) Copyright John Maddock 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// (C) Copyright John Maddock 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// common test code for type_traits_test.cpp/call_traits_test.cpp/compressed_pair_test.cpp
@@ -11,10 +11,6 @@
#ifndef BOOST_TYPE_TRAITS_TEST_HPP
#define BOOST_TYPE_TRAITS_TEST_HPP
// Variable declarations must come before test_align due to two-phase lookup
unsigned failures = 0;
unsigned test_count = 0;
//
// this one is here just to suppress warnings:
//
@@ -34,18 +30,13 @@ struct ct_checker
};
#define BOOST_DO_JOIN( X, Y ) BOOST_DO_JOIN2(X,Y)
#define BOOST_DO_JOIN2(X, Y) X##Y
#define BOOST_DO_JOIN2(X, Y) X ## Y
#define BOOST_JOIN( X, Y ) BOOST_DO_JOIN( X, Y )
#ifdef BOOST_MSVC
#define value_test(v, x) ++test_count;\
{typedef ct_checker<(x)> this_is_a_compile_time_check_;}\
if(!do_compare((int)v,(int)x)){++failures; std::cout << "checking value of " << #x << "...failed" << std::endl;}
#else
#define value_test(v, x) ++test_count;\
typedef ct_checker<(x)> BOOST_JOIN(this_is_a_compile_time_check_, __LINE__);\
if(!do_compare((int)v,(int)x)){++failures; std::cout << "checking value of " << #x << "...failed" << std::endl;}
#endif
#define value_fail(v, x) ++test_count; ++failures; std::cout << "checking value of " << #x << "...failed" << std::endl;
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
@@ -98,6 +89,8 @@ struct test_align<T&>
//
// define tests here
unsigned failures = 0;
unsigned test_count = 0;
//
// turn off some warnings:
@@ -111,4 +104,3 @@ struct test_align<T&>
#endif // BOOST_TYPE_TRAITS_TEST_HPP

View File

@@ -16,11 +16,10 @@
<h2>Contents</h2>
<ul>
<li>Function templates <a href="#functions next">next() and prior()</a></li>
<li>Template functions <a href="#functions next">next() and prior()</a></li>
<li>Class <a href="#Class noncopyable">noncopyable</a></li>
<li>Function template <a href="tie.html">tie()</a> and supporting class tied.</li>
</ul>
<h2> <a name="functions next">Function</a> templates next() and prior()</h2>
<h2>Template <a name="functions next">functions next</a>() and prior()</h2>
<p>Certain data types, such as the C++ Standard Library's forward and
bidirectional iterators, do not provide addition and subtraction via operator+()
@@ -93,7 +92,7 @@ destructor declarations. He says &quot;Probably this concern is misplaced, becau
noncopyable will be used mostly for classes which own resources and thus have non-trivial destruction semantics.&quot;</p>
<hr>
<p>Revised&nbsp; <!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan
-->28 September, 2000<!--webbot bot="Timestamp" endspan i-checksum="39343"
-->26 January, 2000<!--webbot bot="Timestamp" endspan i-checksum="38194"
-->
</p>
<p><EFBFBD> Copyright boost.org 1999. Permission to copy, use, modify, sell and