Compare commits

..

2 Commits

Author SHA1 Message Date
Ralf W. Grosse-Kunstleve
a417606322 Join ralf_grosse_kunstleve with HEAD
[SVN r9444]
2001-03-05 20:01:01 +00:00
nobody
8e2a24ec91 This commit was manufactured by cvs2svn to create branch
'unlabeled-1.9.2'.

[SVN r9171]
2001-02-12 19:13:42 +00:00
14 changed files with 663 additions and 1525 deletions

154
compressed_pair_test.cpp Normal file
View File

@@ -0,0 +1,154 @@
// boost::compressed_pair test program
// (C) Copyright John Maddock 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// standalone test program for <boost/compressed_pair.hpp>
// Revised 03 Oct 2000:
// Enabled tests for VC6.
#include <iostream>
#include <typeinfo>
#include <cassert>
#include <boost/compressed_pair.hpp>
#include <boost/type_traits/type_traits_test.hpp>
using namespace boost;
namespace boost {
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
template <> struct is_empty<empty_UDT>
{ static const bool value = true; };
template <> struct is_empty<empty_POD_UDT>
{ static const bool value = true; };
template <> struct is_POD<empty_POD_UDT>
{ static const bool value = true; };
#else
template <> struct is_empty<empty_UDT>
{ enum{ value = true }; };
template <> struct is_empty<empty_POD_UDT>
{ enum{ value = true }; };
template <> struct is_POD<empty_POD_UDT>
{ enum{ value = true }; };
#endif
}
struct non_empty1
{
int i;
non_empty1() : i(1){}
non_empty1(int v) : i(v){}
friend bool operator==(const non_empty1& a, const non_empty1& b)
{ return a.i == b.i; }
};
struct non_empty2
{
int i;
non_empty2() : i(3){}
non_empty2(int v) : i(v){}
friend bool operator==(const non_empty2& a, const non_empty2& b)
{ return a.i == b.i; }
};
int main(int argc, char *argv[ ])
{
compressed_pair<int, double> cp1(1, 1.3);
assert(cp1.first() == 1);
assert(cp1.second() == 1.3);
compressed_pair<int, double> cp1b(2, 2.3);
assert(cp1b.first() == 2);
assert(cp1b.second() == 2.3);
swap(cp1, cp1b);
assert(cp1b.first() == 1);
assert(cp1b.second() == 1.3);
assert(cp1.first() == 2);
assert(cp1.second() == 2.3);
compressed_pair<non_empty1, non_empty2> cp1c(non_empty1(9));
assert(cp1c.second() == non_empty2());
assert(cp1c.first() == non_empty1(9));
compressed_pair<non_empty1, non_empty2> cp1d(non_empty2(9));
assert(cp1d.second() == non_empty2(9));
assert(cp1d.first() == non_empty1());
compressed_pair<int, double> cp1e(cp1);
compressed_pair<empty_UDT, int> cp2(2);
assert(cp2.second() == 2);
compressed_pair<int, empty_UDT> cp3(1);
assert(cp3.first() ==1);
compressed_pair<empty_UDT, empty_UDT> cp4;
compressed_pair<empty_UDT, empty_POD_UDT> cp5;
compressed_pair<int, empty_UDT> cp9(empty_UDT());
compressed_pair<int, empty_UDT> cp10(1);
assert(cp10.first() == 1);
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) || !defined(BOOST_NO_MEMBER_TEMPLATES) || !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
int i = 0;
compressed_pair<int&, int&> cp6(i,i);
assert(cp6.first() == i);
assert(cp6.second() == i);
assert(&cp6.first() == &i);
assert(&cp6.second() == &i);
compressed_pair<int, double[2]> cp7;
cp7.first();
double* pd = cp7.second();
#endif
soft_value_test(true, (sizeof(compressed_pair<empty_UDT, int>) < sizeof(std::pair<empty_UDT, int>)))
soft_value_test(true, (sizeof(compressed_pair<int, empty_UDT>) < sizeof(std::pair<int, empty_UDT>)))
soft_value_test(true, (sizeof(compressed_pair<empty_UDT, empty_UDT>) < sizeof(std::pair<empty_UDT, empty_UDT>)))
soft_value_test(true, (sizeof(compressed_pair<empty_UDT, empty_POD_UDT>) < sizeof(std::pair<empty_UDT, empty_POD_UDT>)))
soft_value_test(true, (sizeof(compressed_pair<empty_UDT, compressed_pair<empty_POD_UDT, int> >) < sizeof(std::pair<empty_UDT, std::pair<empty_POD_UDT, int> >)))
return check_result(argc, argv);
}
//
// instanciate some compressed pairs:
#ifdef __MWERKS__
template class compressed_pair<int, double>;
template class compressed_pair<int, int>;
template class compressed_pair<empty_UDT, int>;
template class compressed_pair<int, empty_UDT>;
template class compressed_pair<empty_UDT, empty_UDT>;
template class compressed_pair<empty_UDT, empty_POD_UDT>;
#else
template class boost::compressed_pair<int, double>;
template class boost::compressed_pair<int, int>;
template class boost::compressed_pair<empty_UDT, int>;
template class boost::compressed_pair<int, empty_UDT>;
template class boost::compressed_pair<empty_UDT, empty_UDT>;
template class boost::compressed_pair<empty_UDT, empty_POD_UDT>;
#endif
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
#ifndef __MWERKS__
//
// now some for which only a few specific members can be instantiated,
// first references:
template double& compressed_pair<double, int&>::first();
template int& compressed_pair<double, int&>::second();
#if !(defined(__GNUC__) && (__GNUC__ == 2) && (__GNUC_MINOR__ < 95))
template compressed_pair<double, int&>::compressed_pair(int&);
#endif
template compressed_pair<double, int&>::compressed_pair(call_traits<double>::param_type,int&);
//
// and then arrays:
#ifndef __BORLANDC__
template call_traits<int[2]>::reference compressed_pair<double, int[2]>::second();
#endif
template call_traits<double>::reference compressed_pair<double, int[2]>::first();
#if !(defined(__GNUC__) && (__GNUC__ == 2) && (__GNUC_MINOR__ < 95))
template compressed_pair<double, int[2]>::compressed_pair(call_traits<double>::param_type);
#endif
template compressed_pair<double, int[2]>::compressed_pair();
#endif // __MWERKS__
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
unsigned int expected_failures = 0;

View File

@@ -1,38 +0,0 @@
//
// boost/assert.hpp - BOOST_ASSERT(expr)
//
// Copyright (c) 2001, 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// Note: There are no include guards. This is intentional.
//
// See http://www.boost.org/libs/utility/assert.html for documentation.
//
#undef BOOST_ASSERT
#if defined(BOOST_DISABLE_ASSERTS)
# define BOOST_ASSERT(expr) ((void)0)
#elif defined(BOOST_ENABLE_ASSERT_HANDLER)
#include <boost/current_function.hpp>
namespace boost
{
void assertion_failed(char const * expr, char const * function, char const * file, long line); // user defined
} // namespace boost
#define BOOST_ASSERT(expr) ((expr)? ((void)0): ::boost::assertion_failed(#expr, BOOST_CURRENT_FUNCTION, __FILE__, __LINE__))
#else
# include <assert.h>
# define BOOST_ASSERT(expr) assert(expr)
#endif

View File

@@ -1,23 +0,0 @@
// (C) Copyright Boost.org 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// See http://www.boost.org/libs/utility/call_traits.htm for Documentation.
// See boost/detail/call_traits.hpp and boost/detail/ob_call_traits.hpp
// for full copyright notices.
#ifndef BOOST_CALL_TRAITS_HPP
#define BOOST_CALL_TRAITS_HPP
#ifndef BOOST_CONFIG_HPP
#include <boost/config.hpp>
#endif
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
#include <boost/detail/ob_call_traits.hpp>
#else
#include <boost/detail/call_traits.hpp>
#endif
#endif // BOOST_CALL_TRAITS_HPP

View File

@@ -1,63 +0,0 @@
#ifndef BOOST_CHECKED_DELETE_HPP_INCLUDED
#define BOOST_CHECKED_DELETE_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/checked_delete.hpp
//
// Copyright (c) 1999, 2000, 2001, 2002 boost.org
// Copyright (c) 2002, 2003 Peter Dimov
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// See http://www.boost.org/libs/utility/checked_delete.html for documentation.
//
namespace boost
{
// verify that types are complete for increased safety
template<class T> inline void checked_delete(T * x)
{
typedef char type_must_be_complete[sizeof(T)];
delete x;
}
template<class T> inline void checked_array_delete(T * x)
{
typedef char type_must_be_complete[sizeof(T)];
delete [] x;
}
template<class T> struct checked_deleter
{
typedef void result_type;
typedef T * argument_type;
void operator()(T * x) const
{
boost::checked_delete(x);
}
};
template<class T> struct checked_array_deleter
{
typedef void result_type;
typedef T * argument_type;
void operator()(T * x) const
{
boost::checked_array_delete(x);
}
};
} // namespace boost
#endif // #ifndef BOOST_CHECKED_DELETE_HPP_INCLUDED

View File

@@ -1,23 +0,0 @@
// (C) Copyright Boost.org 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// See boost/detail/compressed_pair.hpp and boost/detail/ob_compressed_pair.hpp
// for full copyright notices.
#ifndef BOOST_COMPRESSED_PAIR_HPP
#define BOOST_COMPRESSED_PAIR_HPP
#ifndef BOOST_CONFIG_HPP
#include <boost/config.hpp>
#endif
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
#include <boost/detail/ob_compressed_pair.hpp>
#else
#include <boost/detail/compressed_pair.hpp>
#endif
#endif // BOOST_COMPRESSED_PAIR_HPP

View File

@@ -1,62 +0,0 @@
#ifndef BOOST_CURRENT_FUNCTION_HPP_INCLUDED
#define BOOST_CURRENT_FUNCTION_HPP_INCLUDED
#if _MSC_VER >= 1020
#pragma once
#endif
//
// boost/current_function.hpp - BOOST_CURRENT_FUNCTION
//
// Copyright (c) 2002 Peter Dimov and Multi Media Ltd.
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// http://www.boost.org/libs/utility/current_function.html
//
namespace boost
{
namespace detail
{
inline void current_function_helper()
{
#if defined(__GNUC__) || (defined(__MWERKS__) && (__MWERKS__ >= 0x3000)) || (defined(__ICC) && (__ICC >= 600))
# define BOOST_CURRENT_FUNCTION __PRETTY_FUNCTION__
#elif defined(__FUNCSIG__)
# define BOOST_CURRENT_FUNCTION __FUNCSIG__
#elif (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 600)) || (defined(__IBMCPP__) && (__IBMCPP__ >= 500))
# define BOOST_CURRENT_FUNCTION __FUNCTION__
#elif defined(__BORLANDC__) && (__BORLANDC__ >= 0x550)
# define BOOST_CURRENT_FUNCTION __FUNC__
#elif defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901)
# define BOOST_CURRENT_FUNCTION __func__
#else
# define BOOST_CURRENT_FUNCTION "(unknown)"
#endif
}
} // namespace detail
} // namespace boost
#endif // #ifndef BOOST_CURRENT_FUNCTION_HPP_INCLUDED

View File

@@ -0,0 +1,509 @@
// (C) Copyright Steve Cleary, Beman Dawes, Howard Hinnant & John Maddock 2000.
// Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// see libs/utility/compressed_pair.hpp
//
/* Release notes:
20 Jan 2001:
Fixed obvious bugs (David Abrahams)
07 Oct 2000:
Added better single argument constructor support.
03 Oct 2000:
Added VC6 support (JM).
23rd July 2000:
Additional comments added. (JM)
Jan 2000:
Original version: this version crippled for use with crippled compilers
- John Maddock Jan 2000.
*/
#ifndef BOOST_OB_COMPRESSED_PAIR_HPP
#define BOOST_OB_COMPRESSED_PAIR_HPP
#include <algorithm>
#ifndef BOOST_OBJECT_TYPE_TRAITS_HPP
#include <boost/type_traits/object_traits.hpp>
#endif
#ifndef BOOST_SAME_TRAITS_HPP
#include <boost/type_traits/same_traits.hpp>
#endif
#ifndef BOOST_CALL_TRAITS_HPP
#include <boost/call_traits.hpp>
#endif
namespace boost
{
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) || !defined(BOOST_NO_MEMBER_TEMPLATES)
//
// use member templates to emulate
// partial specialisation. Note that due to
// problems with overload resolution with VC6
// each of the compressed_pair versions that follow
// have one template single-argument constructor
// in place of two specific constructors:
//
template <class T1, class T2>
class compressed_pair;
namespace detail{
template <class A, class T1, class T2>
struct best_conversion_traits
{
typedef char one;
typedef char (&two)[2];
static A a;
static one test(T1);
static two test(T2);
enum { value = sizeof(test(a)) };
};
template <int>
struct init_one;
template <>
struct init_one<1>
{
template <class A, class T1, class T2>
static void init(const A& a, T1* p1, T2*)
{
*p1 = a;
}
};
template <>
struct init_one<2>
{
template <class A, class T1, class T2>
static void init(const A& a, T1*, T2* p2)
{
*p2 = a;
}
};
// T1 != T2, both non-empty
template <class T1, class T2>
class compressed_pair_0
{
private:
T1 _first;
T2 _second;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_0() : _first(), _second() {}
compressed_pair_0(first_param_type x, second_param_type y) : _first(x), _second(y) {}
template <class A>
explicit compressed_pair_0(const A& val)
{
init_one<best_conversion_traits<A, T1, T2>::value>::init(val, &_first, &_second);
}
compressed_pair_0(const ::boost::compressed_pair<T1,T2>& x)
: _first(x.first()), _second(x.second()) {}
#if 0
compressed_pair_0& operator=(const compressed_pair_0& x) {
cout << "assigning compressed pair 0" << endl;
_first = x._first;
_second = x._second;
cout << "finished assigning compressed pair 0" << endl;
return *this;
}
#endif
first_reference first() { return _first; }
first_const_reference first() const { return _first; }
second_reference second() { return _second; }
second_const_reference second() const { return _second; }
void swap(compressed_pair_0& y)
{
using std::swap;
swap(_first, y._first);
swap(_second, y._second);
}
};
// T1 != T2, T2 empty
template <class T1, class T2>
class compressed_pair_1 : T2
{
private:
T1 _first;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_1() : T2(), _first() {}
compressed_pair_1(first_param_type x, second_param_type y) : T2(y), _first(x) {}
template <class A>
explicit compressed_pair_1(const A& val)
{
init_one<best_conversion_traits<A, T1, T2>::value>::init(val, &_first, static_cast<T2*>(this));
}
compressed_pair_1(const ::boost::compressed_pair<T1,T2>& x)
: T2(x.second()), _first(x.first()) {}
#ifdef BOOST_MSVC
// Total weirdness. If the assignment to _first is moved after
// the call to the inherited operator=, then this breaks graph/test/graph.cpp
// by way of iterator_adaptor.
compressed_pair_1& operator=(const compressed_pair_1& x) {
_first = x._first;
T2::operator=(x);
return *this;
}
#endif
first_reference first() { return _first; }
first_const_reference first() const { return _first; }
second_reference second() { return *this; }
second_const_reference second() const { return *this; }
void swap(compressed_pair_1& y)
{
// no need to swap empty base class:
using std::swap;
swap(_first, y._first);
}
};
// T1 != T2, T1 empty
template <class T1, class T2>
class compressed_pair_2 : T1
{
private:
T2 _second;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_2() : T1(), _second() {}
compressed_pair_2(first_param_type x, second_param_type y) : T1(x), _second(y) {}
template <class A>
explicit compressed_pair_2(const A& val)
{
init_one<best_conversion_traits<A, T1, T2>::value>::init(val, static_cast<T1*>(this), &_second);
}
compressed_pair_2(const ::boost::compressed_pair<T1,T2>& x)
: T1(x.first()), _second(x.second()) {}
#if 0
compressed_pair_2& operator=(const compressed_pair_2& x) {
cout << "assigning compressed pair 2" << endl;
T1::operator=(x);
_second = x._second;
cout << "finished assigning compressed pair 2" << endl;
return *this;
}
#endif
first_reference first() { return *this; }
first_const_reference first() const { return *this; }
second_reference second() { return _second; }
second_const_reference second() const { return _second; }
void swap(compressed_pair_2& y)
{
// no need to swap empty base class:
using std::swap;
swap(_second, y._second);
}
};
// T1 != T2, both empty
template <class T1, class T2>
class compressed_pair_3 : T1, T2
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_3() : T1(), T2() {}
compressed_pair_3(first_param_type x, second_param_type y) : T1(x), T2(y) {}
template <class A>
explicit compressed_pair_3(const A& val)
{
init_one<best_conversion_traits<A, T1, T2>::value>::init(val, static_cast<T1*>(this), static_cast<T2*>(this));
}
compressed_pair_3(const ::boost::compressed_pair<T1,T2>& x)
: T1(x.first()), T2(x.second()) {}
first_reference first() { return *this; }
first_const_reference first() const { return *this; }
second_reference second() { return *this; }
second_const_reference second() const { return *this; }
void swap(compressed_pair_3& y)
{
// no need to swap empty base classes:
}
};
// T1 == T2, and empty
template <class T1, class T2>
class compressed_pair_4 : T1
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_4() : T1() {}
compressed_pair_4(first_param_type x, second_param_type) : T1(x) {}
// only one single argument constructor since T1 == T2
explicit compressed_pair_4(first_param_type x) : T1(x) {}
compressed_pair_4(const ::boost::compressed_pair<T1,T2>& x)
: T1(x.first()){}
first_reference first() { return *this; }
first_const_reference first() const { return *this; }
second_reference second() { return *this; }
second_const_reference second() const { return *this; }
void swap(compressed_pair_4& y)
{
// no need to swap empty base classes:
}
};
// T1 == T2, not empty
template <class T1, class T2>
class compressed_pair_5
{
private:
T1 _first;
T2 _second;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_5() : _first(), _second() {}
compressed_pair_5(first_param_type x, second_param_type y) : _first(x), _second(y) {}
// only one single argument constructor since T1 == T2
explicit compressed_pair_5(first_param_type x) : _first(x), _second(x) {}
compressed_pair_5(const ::boost::compressed_pair<T1,T2>& c)
: _first(c.first()), _second(c.second()) {}
first_reference first() { return _first; }
first_const_reference first() const { return _first; }
second_reference second() { return _second; }
second_const_reference second() const { return _second; }
void swap(compressed_pair_5& y)
{
using std::swap;
swap(_first, y._first);
swap(_second, y._second);
}
};
template <bool e1, bool e2, bool same>
struct compressed_pair_chooser
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_0<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<false, true, false>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_1<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<true, false, false>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_2<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<true, true, false>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_3<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<true, true, true>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_4<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<false, false, true>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_5<T1, T2> type;
};
};
template <class T1, class T2>
struct compressed_pair_traits
{
private:
typedef compressed_pair_chooser<is_empty<T1>::value, is_empty<T2>::value, is_same<T1,T2>::value> chooser;
typedef typename chooser::template rebind<T1, T2> bound_type;
public:
typedef typename bound_type::type type;
};
} // namespace detail
template <class T1, class T2>
class compressed_pair : public detail::compressed_pair_traits<T1, T2>::type
{
private:
typedef typename detail::compressed_pair_traits<T1, T2>::type base_type;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair() : base_type() {}
compressed_pair(first_param_type x, second_param_type y) : base_type(x, y) {}
template <class A>
explicit compressed_pair(const A& x) : base_type(x){}
first_reference first() { return base_type::first(); }
first_const_reference first() const { return base_type::first(); }
second_reference second() { return base_type::second(); }
second_const_reference second() const { return base_type::second(); }
};
template <class T1, class T2>
inline void swap(compressed_pair<T1, T2>& x, compressed_pair<T1, T2>& y)
{
x.swap(y);
}
#else
// no partial specialisation, no member templates:
template <class T1, class T2>
class compressed_pair
{
private:
T1 _first;
T2 _second;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair() : _first(), _second() {}
compressed_pair(first_param_type x, second_param_type y) : _first(x), _second(y) {}
explicit compressed_pair(first_param_type x) : _first(x), _second() {}
// can't define this in case T1 == T2:
// explicit compressed_pair(second_param_type y) : _first(), _second(y) {}
first_reference first() { return _first; }
first_const_reference first() const { return _first; }
second_reference second() { return _second; }
second_const_reference second() const { return _second; }
void swap(compressed_pair& y)
{
using std::swap;
swap(_first, y._first);
swap(_second, y._second);
}
};
template <class T1, class T2>
inline void swap(compressed_pair<T1, T2>& x, compressed_pair<T1, T2>& y)
{
x.swap(y);
}
#endif
} // boost
#endif // BOOST_OB_COMPRESSED_PAIR_HPP

View File

@@ -1,75 +0,0 @@
// (C) Copyright Jens Maurer 2001. Permission to copy, use,
// modify, sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
//
// Revision History:
// 15 Nov 2001 Jens Maurer
// created.
// See http://www.boost.org/libs/utility/iterator_adaptors.htm for documentation.
#ifndef BOOST_ITERATOR_ADAPTOR_GENERATOR_ITERATOR_HPP
#define BOOST_ITERATOR_ADAPTOR_GENERATOR_ITERATOR_HPP
#include <boost/iterator_adaptors.hpp>
#include <boost/ref.hpp>
namespace boost {
template<class Generator>
class generator_iterator_policies
{
public:
generator_iterator_policies() { }
template<class Base>
void initialize(Base& base) {
m_value = (*base)();
}
// The Iter template argument is necessary for compatibility with a MWCW
// bug workaround
template <class IteratorAdaptor>
void increment(IteratorAdaptor& iter) {
m_value = (*iter.base())();
}
template <class IteratorAdaptor>
const typename Generator::result_type&
dereference(const IteratorAdaptor&) const
{ return m_value; }
template <class IteratorAdaptor1, class IteratorAdaptor2>
bool equal(const IteratorAdaptor1& x, const IteratorAdaptor2& y) const
{ return x.base() == y.base() &&
x.policies().m_value == y.policies().m_value; }
private:
typename Generator::result_type m_value;
};
template<class Generator>
struct generator_iterator_generator
{
typedef iterator_adaptor<Generator*, generator_iterator_policies<Generator>,
typename Generator::result_type, const typename Generator::result_type&,
const typename Generator::result_type*, std::input_iterator_tag,
long> type;
};
template <class Generator>
inline typename generator_iterator_generator<Generator>::type
make_generator_iterator(Generator & gen)
{
typedef typename generator_iterator_generator<Generator>::type result_t;
return result_t(&gen);
}
} // namespace boost
#endif // BOOST_ITERATOR_ADAPTOR_GENERATOR_ITERATOR_HPP

View File

@@ -1,33 +0,0 @@
// Boost next_prior.hpp header file ---------------------------------------//
// (C) Copyright Boost.org 1999-2003. Permission to copy, use, modify, sell
// and distribute this software is granted provided this copyright
// notice appears in all copies. This software is provided "as is" without
// express or implied warranty, and with no claim as to its suitability for
// any purpose.
// See http://www.boost.org/libs/utility for documentation.
#ifndef BOOST_NEXT_PRIOR_HPP_INCLUDED
#define BOOST_NEXT_PRIOR_HPP_INCLUDED
namespace boost {
// Helper functions for classes like bidirectional iterators not supporting
// operator+ and operator-
//
// Usage:
// const std::list<T>::iterator p = get_some_iterator();
// const std::list<T>::iterator prev = boost::prior(p);
// Contributed by Dave Abrahams
template <class T>
inline T next(T x) { return ++x; }
template <class T>
inline T prior(T x) { return --x; }
} // namespace boost
#endif // BOOST_NEXT_PRIOR_HPP_INCLUDED

View File

@@ -1,33 +0,0 @@
// Boost noncopyable.hpp header file --------------------------------------//
// (C) Copyright Boost.org 1999-2003. Permission to copy, use, modify, sell
// and distribute this software is granted provided this copyright
// notice appears in all copies. This software is provided "as is" without
// express or implied warranty, and with no claim as to its suitability for
// any purpose.
// See http://www.boost.org/libs/utility for documentation.
#ifndef BOOST_NONCOPYABLE_HPP_INCLUDED
#define BOOST_NONCOPYABLE_HPP_INCLUDED
namespace boost {
// Private copy constructor and copy assignment ensure classes derived from
// class noncopyable cannot be copied.
// Contributed by Dave Abrahams
class noncopyable
{
protected:
noncopyable() {}
~noncopyable() {}
private: // emphasize the following members are private
noncopyable( const noncopyable& );
const noncopyable& operator=( const noncopyable& );
};
} // namespace boost
#endif // BOOST_NONCOPYABLE_HPP_INCLUDED

View File

@@ -1,957 +0,0 @@
// Boost operators.hpp header file ----------------------------------------//
// (C) Copyright David Abrahams, Jeremy Siek, and Daryle Walker 1999-2001.
// Permission to copy, use, modify, sell and distribute this software is
// granted provided this copyright notice appears in all copies. This
// software is provided "as is" without express or implied warranty, and
// with no claim as to its suitability for any purpose.
// See http://www.boost.org/libs/utility/operators.htm for documentation.
// Revision History
// 04 May 05 Added operator class bool_testable. (Sam Partington)
// 21 Oct 02 Modified implementation of operators to allow compilers with a
// correct named return value optimization (NRVO) to produce optimal
// code. (Daniel Frey)
// 02 Dec 01 Bug fixed in random_access_iteratable. (Helmut Zeisel)
// 28 Sep 01 Factored out iterator operator groups. (Daryle Walker)
// 27 Aug 01 'left' form for non commutative operators added;
// additional classes for groups of related operators added;
// workaround for empty base class optimization
// bug of GCC 3.0 (Helmut Zeisel)
// 25 Jun 01 output_iterator_helper changes: removed default template
// parameters, added support for self-proxying, additional
// documentation and tests (Aleksey Gurtovoy)
// 29 May 01 Added operator classes for << and >>. Added input and output
// iterator helper classes. Added classes to connect equality and
// relational operators. Added classes for groups of related
// operators. Reimplemented example operator and iterator helper
// classes in terms of the new groups. (Daryle Walker, with help
// from Alexy Gurtovoy)
// 11 Feb 01 Fixed bugs in the iterator helpers which prevented explicitly
// supplied arguments from actually being used (Dave Abrahams)
// 04 Jul 00 Fixed NO_OPERATORS_IN_NAMESPACE bugs, major cleanup and
// refactoring of compiler workarounds, additional documentation
// (Alexy Gurtovoy and Mark Rodgers with some help and prompting from
// Dave Abrahams)
// 28 Jun 00 General cleanup and integration of bugfixes from Mark Rodgers and
// Jeremy Siek (Dave Abrahams)
// 20 Jun 00 Changes to accommodate Borland C++Builder 4 and Borland C++ 5.5
// (Mark Rodgers)
// 20 Jun 00 Minor fixes to the prior revision (Aleksey Gurtovoy)
// 10 Jun 00 Support for the base class chaining technique was added
// (Aleksey Gurtovoy). See documentation and the comments below
// for the details.
// 12 Dec 99 Initial version with iterator operators (Jeremy Siek)
// 18 Nov 99 Change name "divideable" to "dividable", remove unnecessary
// specializations of dividable, subtractable, modable (Ed Brey)
// 17 Nov 99 Add comments (Beman Dawes)
// Remove unnecessary specialization of operators<> (Ed Brey)
// 15 Nov 99 Fix less_than_comparable<T,U> second operand type for first two
// operators.(Beman Dawes)
// 12 Nov 99 Add operators templates (Ed Brey)
// 11 Nov 99 Add single template parameter version for compilers without
// partial specialization (Beman Dawes)
// 10 Nov 99 Initial version
// 10 Jun 00:
// An additional optional template parameter was added to most of
// operator templates to support the base class chaining technique (see
// documentation for the details). Unfortunately, a straightforward
// implementation of this change would have broken compatibility with the
// previous version of the library by making it impossible to use the same
// template name (e.g. 'addable') for both the 1- and 2-argument versions of
// an operator template. This implementation solves the backward-compatibility
// issue at the cost of some simplicity.
//
// One of the complications is an existence of special auxiliary class template
// 'is_chained_base<>' (see 'detail' namespace below), which is used
// to determine whether its template parameter is a library's operator template
// or not. You have to specialize 'is_chained_base<>' for each new
// operator template you add to the library.
//
// However, most of the non-trivial implementation details are hidden behind
// several local macros defined below, and as soon as you understand them,
// you understand the whole library implementation.
#ifndef BOOST_OPERATORS_HPP
#define BOOST_OPERATORS_HPP
#include <boost/config.hpp>
#include <boost/iterator.hpp>
#include <boost/preprocessor/seq/cat.hpp>
#if defined(__sgi) && !defined(__GNUC__)
# pragma set woff 1234
#endif
#if defined(BOOST_MSVC)
# pragma warning( disable : 4284 ) // complaint about return type of
#endif // operator-> not begin a UDT
namespace boost {
namespace detail {
// Helmut Zeisel, empty base class optimization bug with GCC 3.0.0
#if defined(__GNUC__) && __GNUC__==3 && __GNUC_MINOR__==0 && __GNU_PATCHLEVEL__==0
class empty_base {
bool dummy;
};
#else
class empty_base {};
#endif
} // namespace detail
} // namespace boost
// In this section we supply the xxxx1 and xxxx2 forms of the operator
// templates, which are explicitly targeted at the 1-type-argument and
// 2-type-argument operator forms, respectively. Some compilers get confused
// when inline friend functions are overloaded in namespaces other than the
// global namespace. When BOOST_NO_OPERATORS_IN_NAMESPACE is defined, all of
// these templates must go in the global namespace.
#ifndef BOOST_NO_OPERATORS_IN_NAMESPACE
namespace boost
{
#endif
// Basic operator classes (contributed by Dave Abrahams) ------------------//
// Note that friend functions defined in a class are implicitly inline.
// See the C++ std, 11.4 [class.friend] paragraph 5
template <class T, class U, class B = ::boost::detail::empty_base>
struct less_than_comparable2 : B
{
friend bool operator<=(const T& x, const U& y) { return !(x > y); }
friend bool operator>=(const T& x, const U& y) { return !(x < y); }
friend bool operator>(const U& x, const T& y) { return y < x; }
friend bool operator<(const U& x, const T& y) { return y > x; }
friend bool operator<=(const U& x, const T& y) { return !(y < x); }
friend bool operator>=(const U& x, const T& y) { return !(y > x); }
};
template <class T, class B = ::boost::detail::empty_base>
struct less_than_comparable1 : B
{
friend bool operator>(const T& x, const T& y) { return y < x; }
friend bool operator<=(const T& x, const T& y) { return !(y < x); }
friend bool operator>=(const T& x, const T& y) { return !(x < y); }
};
template <class T, class U, class B = ::boost::detail::empty_base>
struct equality_comparable2 : B
{
friend bool operator==(const U& y, const T& x) { return x == y; }
friend bool operator!=(const U& y, const T& x) { return !(x == y); }
friend bool operator!=(const T& y, const U& x) { return !(y == x); }
};
template <class T, class B = ::boost::detail::empty_base>
struct equality_comparable1 : B
{
friend bool operator!=(const T& x, const T& y) { return !(x == y); }
};
// A macro which produces "name_2left" from "name".
#define BOOST_OPERATOR2_LEFT(name) BOOST_PP_SEQ_CAT_S(1,(name)(2)(_)(left))
// NRVO-friendly implementation (contributed by Daniel Frey) ---------------//
#if defined(BOOST_HAS_NRVO) || defined(BOOST_FORCE_SYMMETRIC_OPERATORS)
// This is the optimal implementation for ISO/ANSI C++,
// but it requires the compiler to implement the NRVO.
// If the compiler has no NRVO, this is the best symmetric
// implementation available.
#define BOOST_BINARY_OPERATOR_COMMUTATIVE( NAME, OP ) \
template <class T, class U, class B = ::boost::detail::empty_base> \
struct NAME##2 : B \
{ \
friend T operator OP( const T& lhs, const U& rhs ) \
{ T nrv( lhs ); nrv OP##= rhs; return nrv; } \
friend T operator OP( const U& lhs, const T& rhs ) \
{ T nrv( rhs ); nrv OP##= lhs; return nrv; } \
}; \
\
template <class T, class B = ::boost::detail::empty_base> \
struct NAME##1 : B \
{ \
friend T operator OP( const T& lhs, const T& rhs ) \
{ T nrv( lhs ); nrv OP##= rhs; return nrv; } \
};
#define BOOST_BINARY_OPERATOR_NON_COMMUTATIVE( NAME, OP ) \
template <class T, class U, class B = ::boost::detail::empty_base> \
struct NAME##2 : B \
{ \
friend T operator OP( const T& lhs, const U& rhs ) \
{ T nrv( lhs ); nrv OP##= rhs; return nrv; } \
}; \
\
template <class T, class U, class B = ::boost::detail::empty_base> \
struct BOOST_OPERATOR2_LEFT(NAME) : B \
{ \
friend T operator OP( const U& lhs, const T& rhs ) \
{ T nrv( lhs ); nrv OP##= rhs; return nrv; } \
}; \
\
template <class T, class B = ::boost::detail::empty_base> \
struct NAME##1 : B \
{ \
friend T operator OP( const T& lhs, const T& rhs ) \
{ T nrv( lhs ); nrv OP##= rhs; return nrv; } \
};
#else // defined(BOOST_HAS_NRVO) || defined(BOOST_FORCE_SYMMETRIC_OPERATORS)
// For compilers without NRVO the following code is optimal, but not
// symmetric! Note that the implementation of
// BOOST_OPERATOR2_LEFT(NAME) only looks cool, but doesn't provide
// optimization opportunities to the compiler :)
#define BOOST_BINARY_OPERATOR_COMMUTATIVE( NAME, OP ) \
template <class T, class U, class B = ::boost::detail::empty_base> \
struct NAME##2 : B \
{ \
friend T operator OP( T lhs, const U& rhs ) { return lhs OP##= rhs; } \
friend T operator OP( const U& lhs, T rhs ) { return rhs OP##= lhs; } \
}; \
\
template <class T, class B = ::boost::detail::empty_base> \
struct NAME##1 : B \
{ \
friend T operator OP( T lhs, const T& rhs ) { return lhs OP##= rhs; } \
};
#define BOOST_BINARY_OPERATOR_NON_COMMUTATIVE( NAME, OP ) \
template <class T, class U, class B = ::boost::detail::empty_base> \
struct NAME##2 : B \
{ \
friend T operator OP( T lhs, const U& rhs ) { return lhs OP##= rhs; } \
}; \
\
template <class T, class U, class B = ::boost::detail::empty_base> \
struct BOOST_OPERATOR2_LEFT(NAME) : B \
{ \
friend T operator OP( const U& lhs, const T& rhs ) \
{ return T( lhs ) OP##= rhs; } \
}; \
\
template <class T, class B = ::boost::detail::empty_base> \
struct NAME##1 : B \
{ \
friend T operator OP( T lhs, const T& rhs ) { return lhs OP##= rhs; } \
};
#endif // defined(BOOST_HAS_NRVO) || defined(BOOST_FORCE_SYMMETRIC_OPERATORS)
BOOST_BINARY_OPERATOR_COMMUTATIVE( multipliable, * )
BOOST_BINARY_OPERATOR_COMMUTATIVE( addable, + )
BOOST_BINARY_OPERATOR_NON_COMMUTATIVE( subtractable, - )
BOOST_BINARY_OPERATOR_NON_COMMUTATIVE( dividable, / )
BOOST_BINARY_OPERATOR_NON_COMMUTATIVE( modable, % )
BOOST_BINARY_OPERATOR_COMMUTATIVE( xorable, ^ )
BOOST_BINARY_OPERATOR_COMMUTATIVE( andable, & )
BOOST_BINARY_OPERATOR_COMMUTATIVE( orable, | )
#undef BOOST_BINARY_OPERATOR_COMMUTATIVE
#undef BOOST_BINARY_OPERATOR_NON_COMMUTATIVE
#undef BOOST_OPERATOR2_LEFT
// incrementable and decrementable contributed by Jeremy Siek
template <class T, class B = ::boost::detail::empty_base>
struct incrementable : B
{
friend T operator++(T& x, int)
{
incrementable_type nrv(x);
++x;
return nrv;
}
private: // The use of this typedef works around a Borland bug
typedef T incrementable_type;
};
template <class T, class B = ::boost::detail::empty_base>
struct decrementable : B
{
friend T operator--(T& x, int)
{
decrementable_type nrv(x);
--x;
return nrv;
}
private: // The use of this typedef works around a Borland bug
typedef T decrementable_type;
};
// Iterator operator classes (contributed by Jeremy Siek) ------------------//
template <class T, class P, class B = ::boost::detail::empty_base>
struct dereferenceable : B
{
P operator->() const
{
return &*static_cast<const T&>(*this);
}
};
template <class T, class I, class R, class B = ::boost::detail::empty_base>
struct indexable : B
{
R operator[](I n) const
{
return *(static_cast<const T&>(*this) + n);
}
};
// bool_testable -----------------------------------------------------------//
// (contributed by Sam Partington, David Abrahams and Daniel Frey) ---------//
template <class T, class B = ::boost::detail::empty_base>
struct bool_testable : B
{
friend bool operator!(const T& t) { return !static_cast<bool>(t); }
private:
typedef signed char private_number_type;
operator private_number_type() const;
};
// More operator classes (contributed by Daryle Walker) --------------------//
// (NRVO-friendly implementation contributed by Daniel Frey) ---------------//
#if defined(BOOST_HAS_NRVO) || defined(BOOST_FORCE_SYMMETRIC_OPERATORS)
#define BOOST_BINARY_OPERATOR( NAME, OP ) \
template <class T, class U, class B = ::boost::detail::empty_base> \
struct NAME##2 : B \
{ \
friend T operator OP( const T& lhs, const U& rhs ) \
{ T nrv( lhs ); nrv OP##= rhs; return nrv; } \
}; \
\
template <class T, class B = ::boost::detail::empty_base> \
struct NAME##1 : B \
{ \
friend T operator OP( const T& lhs, const T& rhs ) \
{ T nrv( lhs ); nrv OP##= rhs; return nrv; } \
};
#else // defined(BOOST_HAS_NRVO) || defined(BOOST_FORCE_SYMMETRIC_OPERATORS)
#define BOOST_BINARY_OPERATOR( NAME, OP ) \
template <class T, class U, class B = ::boost::detail::empty_base> \
struct NAME##2 : B \
{ \
friend T operator OP( T lhs, const U& rhs ) { return lhs OP##= rhs; } \
}; \
\
template <class T, class B = ::boost::detail::empty_base> \
struct NAME##1 : B \
{ \
friend T operator OP( T lhs, const T& rhs ) { return lhs OP##= rhs; } \
};
#endif // defined(BOOST_HAS_NRVO) || defined(BOOST_FORCE_SYMMETRIC_OPERATORS)
BOOST_BINARY_OPERATOR( left_shiftable, << )
BOOST_BINARY_OPERATOR( right_shiftable, >> )
#undef BOOST_BINARY_OPERATOR
template <class T, class U, class B = ::boost::detail::empty_base>
struct equivalent2 : B
{
friend bool operator==(const T& x, const U& y)
{
return !(x < y) && !(x > y);
}
};
template <class T, class B = ::boost::detail::empty_base>
struct equivalent1 : B
{
friend bool operator==(const T&x, const T&y)
{
return !(x < y) && !(y < x);
}
};
template <class T, class U, class B = ::boost::detail::empty_base>
struct partially_ordered2 : B
{
friend bool operator<=(const T& x, const U& y)
{ return (x < y) || (x == y); }
friend bool operator>=(const T& x, const U& y)
{ return (x > y) || (x == y); }
friend bool operator>(const U& x, const T& y)
{ return y < x; }
friend bool operator<(const U& x, const T& y)
{ return y > x; }
friend bool operator<=(const U& x, const T& y)
{ return (y > x) || (y == x); }
friend bool operator>=(const U& x, const T& y)
{ return (y < x) || (y == x); }
};
template <class T, class B = ::boost::detail::empty_base>
struct partially_ordered1 : B
{
friend bool operator>(const T& x, const T& y)
{ return y < x; }
friend bool operator<=(const T& x, const T& y)
{ return (x < y) || (x == y); }
friend bool operator>=(const T& x, const T& y)
{ return (y < x) || (x == y); }
};
// Combined operator classes (contributed by Daryle Walker) ----------------//
template <class T, class U, class B = ::boost::detail::empty_base>
struct totally_ordered2
: less_than_comparable2<T, U
, equality_comparable2<T, U, B
> > {};
template <class T, class B = ::boost::detail::empty_base>
struct totally_ordered1
: less_than_comparable1<T
, equality_comparable1<T, B
> > {};
template <class T, class U, class B = ::boost::detail::empty_base>
struct additive2
: addable2<T, U
, subtractable2<T, U, B
> > {};
template <class T, class B = ::boost::detail::empty_base>
struct additive1
: addable1<T
, subtractable1<T, B
> > {};
template <class T, class U, class B = ::boost::detail::empty_base>
struct multiplicative2
: multipliable2<T, U
, dividable2<T, U, B
> > {};
template <class T, class B = ::boost::detail::empty_base>
struct multiplicative1
: multipliable1<T
, dividable1<T, B
> > {};
template <class T, class U, class B = ::boost::detail::empty_base>
struct integer_multiplicative2
: multiplicative2<T, U
, modable2<T, U, B
> > {};
template <class T, class B = ::boost::detail::empty_base>
struct integer_multiplicative1
: multiplicative1<T
, modable1<T, B
> > {};
template <class T, class U, class B = ::boost::detail::empty_base>
struct arithmetic2
: additive2<T, U
, multiplicative2<T, U, B
> > {};
template <class T, class B = ::boost::detail::empty_base>
struct arithmetic1
: additive1<T
, multiplicative1<T, B
> > {};
template <class T, class U, class B = ::boost::detail::empty_base>
struct integer_arithmetic2
: additive2<T, U
, integer_multiplicative2<T, U, B
> > {};
template <class T, class B = ::boost::detail::empty_base>
struct integer_arithmetic1
: additive1<T
, integer_multiplicative1<T, B
> > {};
template <class T, class U, class B = ::boost::detail::empty_base>
struct bitwise2
: xorable2<T, U
, andable2<T, U
, orable2<T, U, B
> > > {};
template <class T, class B = ::boost::detail::empty_base>
struct bitwise1
: xorable1<T
, andable1<T
, orable1<T, B
> > > {};
template <class T, class B = ::boost::detail::empty_base>
struct unit_steppable
: incrementable<T
, decrementable<T, B
> > {};
template <class T, class U, class B = ::boost::detail::empty_base>
struct shiftable2
: left_shiftable2<T, U
, right_shiftable2<T, U, B
> > {};
template <class T, class B = ::boost::detail::empty_base>
struct shiftable1
: left_shiftable1<T
, right_shiftable1<T, B
> > {};
template <class T, class U, class B = ::boost::detail::empty_base>
struct ring_operators2
: additive2<T, U
, subtractable2_left<T, U
, multipliable2<T, U, B
> > > {};
template <class T, class B = ::boost::detail::empty_base>
struct ring_operators1
: additive1<T
, multipliable1<T, B
> > {};
template <class T, class U, class B = ::boost::detail::empty_base>
struct ordered_ring_operators2
: ring_operators2<T, U
, totally_ordered2<T, U, B
> > {};
template <class T, class B = ::boost::detail::empty_base>
struct ordered_ring_operators1
: ring_operators1<T
, totally_ordered1<T, B
> > {};
template <class T, class U, class B = ::boost::detail::empty_base>
struct field_operators2
: ring_operators2<T, U
, dividable2<T, U
, dividable2_left<T, U, B
> > > {};
template <class T, class B = ::boost::detail::empty_base>
struct field_operators1
: ring_operators1<T
, dividable1<T, B
> > {};
template <class T, class U, class B = ::boost::detail::empty_base>
struct ordered_field_operators2
: field_operators2<T, U
, totally_ordered2<T, U, B
> > {};
template <class T, class B = ::boost::detail::empty_base>
struct ordered_field_operators1
: field_operators1<T
, totally_ordered1<T, B
> > {};
template <class T, class U, class B = ::boost::detail::empty_base>
struct euclidian_ring_operators2
: ring_operators2<T, U
, dividable2<T, U
, dividable2_left<T, U
, modable2<T, U
, modable2_left<T, U, B
> > > > > {};
template <class T, class B = ::boost::detail::empty_base>
struct euclidian_ring_operators1
: ring_operators1<T
, dividable1<T
, modable1<T, B
> > > {};
template <class T, class U, class B = ::boost::detail::empty_base>
struct ordered_euclidian_ring_operators2
: totally_ordered2<T, U
, euclidian_ring_operators2<T, U, B
> > {};
template <class T, class B = ::boost::detail::empty_base>
struct ordered_euclidian_ring_operators1
: totally_ordered1<T
, euclidian_ring_operators1<T, B
> > {};
template <class T, class P, class B = ::boost::detail::empty_base>
struct input_iteratable
: equality_comparable1<T
, incrementable<T
, dereferenceable<T, P, B
> > > {};
template <class T, class B = ::boost::detail::empty_base>
struct output_iteratable
: incrementable<T, B
> {};
template <class T, class P, class B = ::boost::detail::empty_base>
struct forward_iteratable
: input_iteratable<T, P, B
> {};
template <class T, class P, class B = ::boost::detail::empty_base>
struct bidirectional_iteratable
: forward_iteratable<T, P
, decrementable<T, B
> > {};
// To avoid repeated derivation from equality_comparable,
// which is an indirect base class of bidirectional_iterable,
// random_access_iteratable must not be derived from totally_ordered1
// but from less_than_comparable1 only. (Helmut Zeisel, 02-Dec-2001)
template <class T, class P, class D, class R, class B = ::boost::detail::empty_base>
struct random_access_iteratable
: bidirectional_iteratable<T, P
, less_than_comparable1<T
, additive2<T, D
, indexable<T, D, R, B
> > > > {};
#ifndef BOOST_NO_OPERATORS_IN_NAMESPACE
} // namespace boost
#endif // BOOST_NO_OPERATORS_IN_NAMESPACE
// BOOST_IMPORT_TEMPLATE1 .. BOOST_IMPORT_TEMPLATE4 -
//
// When BOOST_NO_OPERATORS_IN_NAMESPACE is defined we need a way to import an
// operator template into the boost namespace. BOOST_IMPORT_TEMPLATE1 is used
// for one-argument forms of operator templates; BOOST_IMPORT_TEMPLATE2 for
// two-argument forms. Note that these macros expect to be invoked from within
// boost.
#ifndef BOOST_NO_OPERATORS_IN_NAMESPACE
// The template is already in boost so we have nothing to do.
# define BOOST_IMPORT_TEMPLATE4(template_name)
# define BOOST_IMPORT_TEMPLATE3(template_name)
# define BOOST_IMPORT_TEMPLATE2(template_name)
# define BOOST_IMPORT_TEMPLATE1(template_name)
#else // BOOST_NO_OPERATORS_IN_NAMESPACE
# ifndef BOOST_NO_USING_TEMPLATE
// Bring the names in with a using-declaration
// to avoid stressing the compiler.
# define BOOST_IMPORT_TEMPLATE4(template_name) using ::template_name;
# define BOOST_IMPORT_TEMPLATE3(template_name) using ::template_name;
# define BOOST_IMPORT_TEMPLATE2(template_name) using ::template_name;
# define BOOST_IMPORT_TEMPLATE1(template_name) using ::template_name;
# else
// Otherwise, because a Borland C++ 5.5 bug prevents a using declaration
// from working, we are forced to use inheritance for that compiler.
# define BOOST_IMPORT_TEMPLATE4(template_name) \
template <class T, class U, class V, class W, class B = ::boost::detail::empty_base> \
struct template_name : ::template_name<T, U, V, W, B> {};
# define BOOST_IMPORT_TEMPLATE3(template_name) \
template <class T, class U, class V, class B = ::boost::detail::empty_base> \
struct template_name : ::template_name<T, U, V, B> {};
# define BOOST_IMPORT_TEMPLATE2(template_name) \
template <class T, class U, class B = ::boost::detail::empty_base> \
struct template_name : ::template_name<T, U, B> {};
# define BOOST_IMPORT_TEMPLATE1(template_name) \
template <class T, class B = ::boost::detail::empty_base> \
struct template_name : ::template_name<T, B> {};
# endif // BOOST_NO_USING_TEMPLATE
#endif // BOOST_NO_OPERATORS_IN_NAMESPACE
//
// Here's where we put it all together, defining the xxxx forms of the templates
// in namespace boost. We also define specializations of is_chained_base<> for
// the xxxx, xxxx1, and xxxx2 templates, importing them into boost:: as
// neccessary.
//
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
// is_chained_base<> - a traits class used to distinguish whether an operator
// template argument is being used for base class chaining, or is specifying a
// 2nd argument type.
namespace boost {
// A type parameter is used instead of a plain bool because Borland's compiler
// didn't cope well with the more obvious non-type template parameter.
namespace detail {
struct true_t {};
struct false_t {};
} // namespace detail
// Unspecialized version assumes that most types are not being used for base
// class chaining. We specialize for the operator templates defined in this
// library.
template<class T> struct is_chained_base {
typedef ::boost::detail::false_t value;
};
} // namespace boost
// Import a 4-type-argument operator template into boost (if neccessary) and
// provide a specialization of 'is_chained_base<>' for it.
# define BOOST_OPERATOR_TEMPLATE4(template_name4) \
BOOST_IMPORT_TEMPLATE4(template_name4) \
template<class T, class U, class V, class W, class B> \
struct is_chained_base< ::boost::template_name4<T, U, V, W, B> > { \
typedef ::boost::detail::true_t value; \
};
// Import a 3-type-argument operator template into boost (if neccessary) and
// provide a specialization of 'is_chained_base<>' for it.
# define BOOST_OPERATOR_TEMPLATE3(template_name3) \
BOOST_IMPORT_TEMPLATE3(template_name3) \
template<class T, class U, class V, class B> \
struct is_chained_base< ::boost::template_name3<T, U, V, B> > { \
typedef ::boost::detail::true_t value; \
};
// Import a 2-type-argument operator template into boost (if neccessary) and
// provide a specialization of 'is_chained_base<>' for it.
# define BOOST_OPERATOR_TEMPLATE2(template_name2) \
BOOST_IMPORT_TEMPLATE2(template_name2) \
template<class T, class U, class B> \
struct is_chained_base< ::boost::template_name2<T, U, B> > { \
typedef ::boost::detail::true_t value; \
};
// Import a 1-type-argument operator template into boost (if neccessary) and
// provide a specialization of 'is_chained_base<>' for it.
# define BOOST_OPERATOR_TEMPLATE1(template_name1) \
BOOST_IMPORT_TEMPLATE1(template_name1) \
template<class T, class B> \
struct is_chained_base< ::boost::template_name1<T, B> > { \
typedef ::boost::detail::true_t value; \
};
// BOOST_OPERATOR_TEMPLATE(template_name) defines template_name<> such that it
// can be used for specifying both 1-argument and 2-argument forms. Requires the
// existence of two previously defined class templates named '<template_name>1'
// and '<template_name>2' which must implement the corresponding 1- and 2-
// argument forms.
//
// The template type parameter O == is_chained_base<U>::value is used to
// distinguish whether the 2nd argument to <template_name> is being used for
// base class chaining from another boost operator template or is describing a
// 2nd operand type. O == true_t only when U is actually an another operator
// template from the library. Partial specialization is used to select an
// implementation in terms of either '<template_name>1' or '<template_name>2'.
//
# define BOOST_OPERATOR_TEMPLATE(template_name) \
template <class T \
,class U = T \
,class B = ::boost::detail::empty_base \
,class O = typename is_chained_base<U>::value \
> \
struct template_name : template_name##2<T, U, B> {}; \
\
template<class T, class U, class B> \
struct template_name<T, U, B, ::boost::detail::true_t> \
: template_name##1<T, U> {}; \
\
template <class T, class B> \
struct template_name<T, T, B, ::boost::detail::false_t> \
: template_name##1<T, B> {}; \
\
template<class T, class U, class B, class O> \
struct is_chained_base< ::boost::template_name<T, U, B, O> > { \
typedef ::boost::detail::true_t value; \
}; \
\
BOOST_OPERATOR_TEMPLATE2(template_name##2) \
BOOST_OPERATOR_TEMPLATE1(template_name##1)
#else // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
# define BOOST_OPERATOR_TEMPLATE4(template_name4) \
BOOST_IMPORT_TEMPLATE4(template_name4)
# define BOOST_OPERATOR_TEMPLATE3(template_name3) \
BOOST_IMPORT_TEMPLATE3(template_name3)
# define BOOST_OPERATOR_TEMPLATE2(template_name2) \
BOOST_IMPORT_TEMPLATE2(template_name2)
# define BOOST_OPERATOR_TEMPLATE1(template_name1) \
BOOST_IMPORT_TEMPLATE1(template_name1)
// In this case we can only assume that template_name<> is equivalent to the
// more commonly needed template_name1<> form.
# define BOOST_OPERATOR_TEMPLATE(template_name) \
template <class T, class B = ::boost::detail::empty_base> \
struct template_name : template_name##1<T, B> {};
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
namespace boost {
BOOST_OPERATOR_TEMPLATE(less_than_comparable)
BOOST_OPERATOR_TEMPLATE(equality_comparable)
BOOST_OPERATOR_TEMPLATE(multipliable)
BOOST_OPERATOR_TEMPLATE(addable)
BOOST_OPERATOR_TEMPLATE(subtractable)
BOOST_OPERATOR_TEMPLATE2(subtractable2_left)
BOOST_OPERATOR_TEMPLATE(dividable)
BOOST_OPERATOR_TEMPLATE2(dividable2_left)
BOOST_OPERATOR_TEMPLATE(modable)
BOOST_OPERATOR_TEMPLATE2(modable2_left)
BOOST_OPERATOR_TEMPLATE(xorable)
BOOST_OPERATOR_TEMPLATE(andable)
BOOST_OPERATOR_TEMPLATE(orable)
BOOST_OPERATOR_TEMPLATE1(incrementable)
BOOST_OPERATOR_TEMPLATE1(decrementable)
BOOST_OPERATOR_TEMPLATE2(dereferenceable)
BOOST_OPERATOR_TEMPLATE3(indexable)
BOOST_OPERATOR_TEMPLATE1(bool_testable)
BOOST_OPERATOR_TEMPLATE(left_shiftable)
BOOST_OPERATOR_TEMPLATE(right_shiftable)
BOOST_OPERATOR_TEMPLATE(equivalent)
BOOST_OPERATOR_TEMPLATE(partially_ordered)
BOOST_OPERATOR_TEMPLATE(totally_ordered)
BOOST_OPERATOR_TEMPLATE(additive)
BOOST_OPERATOR_TEMPLATE(multiplicative)
BOOST_OPERATOR_TEMPLATE(integer_multiplicative)
BOOST_OPERATOR_TEMPLATE(arithmetic)
BOOST_OPERATOR_TEMPLATE(integer_arithmetic)
BOOST_OPERATOR_TEMPLATE(bitwise)
BOOST_OPERATOR_TEMPLATE1(unit_steppable)
BOOST_OPERATOR_TEMPLATE(shiftable)
BOOST_OPERATOR_TEMPLATE(ring_operators)
BOOST_OPERATOR_TEMPLATE(ordered_ring_operators)
BOOST_OPERATOR_TEMPLATE(field_operators)
BOOST_OPERATOR_TEMPLATE(ordered_field_operators)
BOOST_OPERATOR_TEMPLATE(euclidian_ring_operators)
BOOST_OPERATOR_TEMPLATE(ordered_euclidian_ring_operators)
BOOST_OPERATOR_TEMPLATE2(input_iteratable)
BOOST_OPERATOR_TEMPLATE1(output_iteratable)
BOOST_OPERATOR_TEMPLATE2(forward_iteratable)
BOOST_OPERATOR_TEMPLATE2(bidirectional_iteratable)
BOOST_OPERATOR_TEMPLATE4(random_access_iteratable)
#undef BOOST_OPERATOR_TEMPLATE
#undef BOOST_OPERATOR_TEMPLATE4
#undef BOOST_OPERATOR_TEMPLATE3
#undef BOOST_OPERATOR_TEMPLATE2
#undef BOOST_OPERATOR_TEMPLATE1
#undef BOOST_IMPORT_TEMPLATE1
#undef BOOST_IMPORT_TEMPLATE2
#undef BOOST_IMPORT_TEMPLATE3
#undef BOOST_IMPORT_TEMPLATE4
// The following 'operators' classes can only be used portably if the derived class
// declares ALL of the required member operators.
template <class T, class U>
struct operators2
: totally_ordered2<T,U
, integer_arithmetic2<T,U
, bitwise2<T,U
> > > {};
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <class T, class U = T>
struct operators : operators2<T, U> {};
template <class T> struct operators<T, T>
#else
template <class T> struct operators
#endif
: totally_ordered<T
, integer_arithmetic<T
, bitwise<T
, unit_steppable<T
> > > > {};
// Iterator helper classes (contributed by Jeremy Siek) -------------------//
// (Input and output iterator helpers contributed by Daryle Walker) -------//
// (Changed to use combined operator classes by Daryle Walker) ------------//
template <class T,
class V,
class D = std::ptrdiff_t,
class P = V const *,
class R = V const &>
struct input_iterator_helper
: input_iteratable<T, P
, boost::iterator<std::input_iterator_tag, V, D, P, R
> > {};
template<class T>
struct output_iterator_helper
: output_iteratable<T
, boost::iterator<std::output_iterator_tag, void, void, void, void
> >
{
T& operator*() { return static_cast<T&>(*this); }
T& operator++() { return static_cast<T&>(*this); }
};
template <class T,
class V,
class D = std::ptrdiff_t,
class P = V*,
class R = V&>
struct forward_iterator_helper
: forward_iteratable<T, P
, boost::iterator<std::forward_iterator_tag, V, D, P, R
> > {};
template <class T,
class V,
class D = std::ptrdiff_t,
class P = V*,
class R = V&>
struct bidirectional_iterator_helper
: bidirectional_iteratable<T, P
, boost::iterator<std::bidirectional_iterator_tag, V, D, P, R
> > {};
template <class T,
class V,
class D = std::ptrdiff_t,
class P = V*,
class R = V&>
struct random_access_iterator_helper
: random_access_iteratable<T, P, D, R
, boost::iterator<std::random_access_iterator_tag, V, D, P, R
> >
{
friend D requires_difference_operator(const T& x, const T& y) {
return x - y;
}
}; // random_access_iterator_helper
} // namespace boost
#if defined(__sgi) && !defined(__GNUC__)
#pragma reset woff 1234
#endif
#endif // BOOST_OPERATORS_HPP

View File

@@ -1,163 +0,0 @@
#ifndef BOOST_REF_HPP_INCLUDED
# define BOOST_REF_HPP_INCLUDED
# if _MSC_VER+0 >= 1020
# pragma once
# endif
# include <boost/config.hpp>
# include <boost/utility/addressof.hpp>
# include <boost/mpl/bool.hpp>
//
// ref.hpp - ref/cref, useful helper functions
//
// Copyright (C) 1999, 2000 Jaakko J<>rvi (jaakko.jarvi@cs.utu.fi)
// Copyright (C) 2001, 2002 Peter Dimov
// Copyright (C) 2002 David Abrahams
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// See http://www.boost.org/libs/bind/ref.html for documentation.
//
namespace boost
{
template<class T> class reference_wrapper
{
public:
typedef T type;
#if defined(BOOST_MSVC) && (BOOST_MSVC < 1300)
explicit reference_wrapper(T& t): t_(&t) {}
#else
explicit reference_wrapper(T& t): t_(addressof(t)) {}
#endif
operator T& () const { return *t_; }
T& get() const { return *t_; }
T* get_pointer() const { return t_; }
private:
T* t_;
};
# if defined(__BORLANDC__) && (__BORLANDC__ <= 0x570)
# define BOOST_REF_CONST
# else
# define BOOST_REF_CONST const
# endif
template<class T> inline reference_wrapper<T> BOOST_REF_CONST ref(T & t)
{
return reference_wrapper<T>(t);
}
template<class T> inline reference_wrapper<T const> BOOST_REF_CONST cref(T const & t)
{
return reference_wrapper<T const>(t);
}
# undef BOOST_REF_CONST
# ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template<typename T>
class is_reference_wrapper
: public mpl::false_
{
};
template<typename T>
class is_reference_wrapper<reference_wrapper<T> >
: public mpl::true_
{
};
template<typename T>
class unwrap_reference
{
public:
typedef T type;
};
template<typename T>
class unwrap_reference<reference_wrapper<T> >
{
public:
typedef T type;
};
# else // no partial specialization
} // namespace boost
#include <boost/type.hpp>
namespace boost
{
namespace detail
{
typedef char (&yes_reference_wrapper_t)[1];
typedef char (&no_reference_wrapper_t)[2];
no_reference_wrapper_t is_reference_wrapper_test(...);
template<typename T>
yes_reference_wrapper_t is_reference_wrapper_test(type< reference_wrapper<T> >);
template<bool wrapped>
struct reference_unwrapper
{
template <class T>
struct apply
{
typedef T type;
};
};
template<>
struct reference_unwrapper<true>
{
template <class T>
struct apply
{
typedef typename T::type type;
};
};
}
template<typename T>
class is_reference_wrapper
{
public:
BOOST_STATIC_CONSTANT(
bool, value = (
sizeof(detail::is_reference_wrapper_test(type<T>()))
== sizeof(detail::yes_reference_wrapper_t)));
typedef ::boost::mpl::bool_<value> type;
};
template <typename T>
class unwrap_reference
: public detail::reference_unwrapper<
is_reference_wrapper<T>::value
>::template apply<T>
{};
# endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
} // namespace boost
#endif // #ifndef BOOST_REF_HPP_INCLUDED

View File

@@ -1,21 +0,0 @@
// Boost utility.hpp header file -------------------------------------------//
// (C) Copyright Boost.org 1999-2003. Permission to copy, use, modify, sell
// and distribute this software is granted provided this copyright
// notice appears in all copies. This software is provided "as is" without
// express or implied warranty, and with no claim as to its suitability for
// any purpose.
// See http://www.boost.org/libs/utility for documentation.
#ifndef BOOST_UTILITY_HPP
#define BOOST_UTILITY_HPP
#include <boost/utility/addressof.hpp>
#include <boost/utility/base_from_member.hpp>
#include <boost/checked_delete.hpp>
#include <boost/next_prior.hpp>
#include <boost/noncopyable.hpp>
#endif // BOOST_UTILITY_HPP

View File

@@ -1,34 +0,0 @@
// Boost utility_fwd.hpp header file ---------------------------------------//
// (C) Copyright boost.org 2001. Permission to copy, use, modify, sell
// and distribute this software is granted provided this copyright
// notice appears in all copies. This software is provided "as is" without
// express or implied warranty, and with no claim as to its suitability for
// any purpose.
// See http://www.boost.org/libs/utility for documentation.
#ifndef BOOST_UTILITY_FWD_HPP
#define BOOST_UTILITY_FWD_HPP
namespace boost
{
// From <boost/utility/base_from_member.hpp> -------------------------------//
template < typename MemberType, int UniqueID = 0 >
class base_from_member;
// From <boost/utility.hpp> ------------------------------------------------//
class noncopyable;
// Also has a few function templates
} // namespace boost
#endif // BOOST_UTILITY_FWD_HPP