Compare commits

..

3 Commits

Author SHA1 Message Date
Ralf W. Grosse-Kunstleve
a417606322 Join ralf_grosse_kunstleve with HEAD
[SVN r9444]
2001-03-05 20:01:01 +00:00
nobody
8e2a24ec91 This commit was manufactured by cvs2svn to create branch
'unlabeled-1.9.2'.

[SVN r9171]
2001-02-12 19:13:42 +00:00
Jeremy Siek
e5c81d0702 fixed very strange VC++ bug that was showing up in graph/test/graph.cpp
Something about the code gen for compressed_pair_1::operator=
was going wrong. Writing it explicitly, and playing with some ordering
fixed the problem, don't ask my why.


[SVN r8765]
2001-01-25 04:45:52 +00:00
10 changed files with 663 additions and 710 deletions

154
compressed_pair_test.cpp Normal file
View File

@@ -0,0 +1,154 @@
// boost::compressed_pair test program
// (C) Copyright John Maddock 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// standalone test program for <boost/compressed_pair.hpp>
// Revised 03 Oct 2000:
// Enabled tests for VC6.
#include <iostream>
#include <typeinfo>
#include <cassert>
#include <boost/compressed_pair.hpp>
#include <boost/type_traits/type_traits_test.hpp>
using namespace boost;
namespace boost {
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
template <> struct is_empty<empty_UDT>
{ static const bool value = true; };
template <> struct is_empty<empty_POD_UDT>
{ static const bool value = true; };
template <> struct is_POD<empty_POD_UDT>
{ static const bool value = true; };
#else
template <> struct is_empty<empty_UDT>
{ enum{ value = true }; };
template <> struct is_empty<empty_POD_UDT>
{ enum{ value = true }; };
template <> struct is_POD<empty_POD_UDT>
{ enum{ value = true }; };
#endif
}
struct non_empty1
{
int i;
non_empty1() : i(1){}
non_empty1(int v) : i(v){}
friend bool operator==(const non_empty1& a, const non_empty1& b)
{ return a.i == b.i; }
};
struct non_empty2
{
int i;
non_empty2() : i(3){}
non_empty2(int v) : i(v){}
friend bool operator==(const non_empty2& a, const non_empty2& b)
{ return a.i == b.i; }
};
int main(int argc, char *argv[ ])
{
compressed_pair<int, double> cp1(1, 1.3);
assert(cp1.first() == 1);
assert(cp1.second() == 1.3);
compressed_pair<int, double> cp1b(2, 2.3);
assert(cp1b.first() == 2);
assert(cp1b.second() == 2.3);
swap(cp1, cp1b);
assert(cp1b.first() == 1);
assert(cp1b.second() == 1.3);
assert(cp1.first() == 2);
assert(cp1.second() == 2.3);
compressed_pair<non_empty1, non_empty2> cp1c(non_empty1(9));
assert(cp1c.second() == non_empty2());
assert(cp1c.first() == non_empty1(9));
compressed_pair<non_empty1, non_empty2> cp1d(non_empty2(9));
assert(cp1d.second() == non_empty2(9));
assert(cp1d.first() == non_empty1());
compressed_pair<int, double> cp1e(cp1);
compressed_pair<empty_UDT, int> cp2(2);
assert(cp2.second() == 2);
compressed_pair<int, empty_UDT> cp3(1);
assert(cp3.first() ==1);
compressed_pair<empty_UDT, empty_UDT> cp4;
compressed_pair<empty_UDT, empty_POD_UDT> cp5;
compressed_pair<int, empty_UDT> cp9(empty_UDT());
compressed_pair<int, empty_UDT> cp10(1);
assert(cp10.first() == 1);
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) || !defined(BOOST_NO_MEMBER_TEMPLATES) || !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
int i = 0;
compressed_pair<int&, int&> cp6(i,i);
assert(cp6.first() == i);
assert(cp6.second() == i);
assert(&cp6.first() == &i);
assert(&cp6.second() == &i);
compressed_pair<int, double[2]> cp7;
cp7.first();
double* pd = cp7.second();
#endif
soft_value_test(true, (sizeof(compressed_pair<empty_UDT, int>) < sizeof(std::pair<empty_UDT, int>)))
soft_value_test(true, (sizeof(compressed_pair<int, empty_UDT>) < sizeof(std::pair<int, empty_UDT>)))
soft_value_test(true, (sizeof(compressed_pair<empty_UDT, empty_UDT>) < sizeof(std::pair<empty_UDT, empty_UDT>)))
soft_value_test(true, (sizeof(compressed_pair<empty_UDT, empty_POD_UDT>) < sizeof(std::pair<empty_UDT, empty_POD_UDT>)))
soft_value_test(true, (sizeof(compressed_pair<empty_UDT, compressed_pair<empty_POD_UDT, int> >) < sizeof(std::pair<empty_UDT, std::pair<empty_POD_UDT, int> >)))
return check_result(argc, argv);
}
//
// instanciate some compressed pairs:
#ifdef __MWERKS__
template class compressed_pair<int, double>;
template class compressed_pair<int, int>;
template class compressed_pair<empty_UDT, int>;
template class compressed_pair<int, empty_UDT>;
template class compressed_pair<empty_UDT, empty_UDT>;
template class compressed_pair<empty_UDT, empty_POD_UDT>;
#else
template class boost::compressed_pair<int, double>;
template class boost::compressed_pair<int, int>;
template class boost::compressed_pair<empty_UDT, int>;
template class boost::compressed_pair<int, empty_UDT>;
template class boost::compressed_pair<empty_UDT, empty_UDT>;
template class boost::compressed_pair<empty_UDT, empty_POD_UDT>;
#endif
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
#ifndef __MWERKS__
//
// now some for which only a few specific members can be instantiated,
// first references:
template double& compressed_pair<double, int&>::first();
template int& compressed_pair<double, int&>::second();
#if !(defined(__GNUC__) && (__GNUC__ == 2) && (__GNUC_MINOR__ < 95))
template compressed_pair<double, int&>::compressed_pair(int&);
#endif
template compressed_pair<double, int&>::compressed_pair(call_traits<double>::param_type,int&);
//
// and then arrays:
#ifndef __BORLANDC__
template call_traits<int[2]>::reference compressed_pair<double, int[2]>::second();
#endif
template call_traits<double>::reference compressed_pair<double, int[2]>::first();
#if !(defined(__GNUC__) && (__GNUC__ == 2) && (__GNUC_MINOR__ < 95))
template compressed_pair<double, int[2]>::compressed_pair(call_traits<double>::param_type);
#endif
template compressed_pair<double, int[2]>::compressed_pair();
#endif // __MWERKS__
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
unsigned int expected_failures = 0;

View File

@@ -1,263 +0,0 @@
// (C) Copyright David Abrahams 2001. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears in
// all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// See http://www.boost.org for most recent version including documentation.
//
// Revision History
// 16 Feb 2001 Added a missing const. Made the tests run (somewhat) with
// plain MSVC again. (David Abrahams)
// 11 Feb 2001 #if 0'd out use of counting_iterator on non-numeric types in
// MSVC without STLport, so that the other tests may proceed
// (David Abrahams)
// 04 Feb 2001 Added use of iterator_tests.hpp (David Abrahams)
// 28 Jan 2001 Removed not_an_iterator detritus (David Abrahams)
// 24 Jan 2001 Initial revision (David Abrahams)
#include <boost/config.hpp>
#ifdef BOOST_MSVC
# pragma warning(disable:4786) // identifier truncated in debug info
#endif
#include <boost/pending/iterator_tests.hpp>
#include <boost/counting_iterator.hpp>
#include <boost/detail/iterator.hpp>
#include <iostream>
#include <climits>
#include <iterator>
#include <stdlib.h>
#include <boost/utility.hpp>
#include <vector>
#include <list>
#include <cassert>
#ifndef BOOST_NO_LIMITS
# include <limits>
#endif
#ifndef BOOST_NO_SLIST
# include <slist>
#endif
template <class T> struct is_numeric
{
enum { value =
#ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
std::numeric_limits<T>::is_specialized
#else
// Causes warnings with GCC, but how else can I detect numeric types at
// compile-time?
(boost::is_convertible<int,T>::value &&
boost::is_convertible<T,int>::value)
#endif
};
};
// Special tests for RandomAccess CountingIterators.
template <class CountingIterator>
void category_test(
CountingIterator start,
CountingIterator finish,
std::random_access_iterator_tag)
{
typedef typename
boost::detail::iterator_traits<CountingIterator>::difference_type
difference_type;
difference_type distance = boost::detail::distance(start, finish);
// Pick a random position internal to the range
difference_type offset = (unsigned)rand() % distance;
assert(offset >= 0);
CountingIterator internal = start;
std::advance(internal, offset);
// Try some binary searches on the range to show that it's ordered
assert(std::binary_search(start, finish, *internal));
CountingIterator x,y;
boost::tie(x,y) = std::equal_range(start, finish, *internal);
assert(boost::detail::distance(x, y) == 1);
// Show that values outside the range can't be found
assert(!std::binary_search(start, boost::prior(finish), *finish));
// Do the generic random_access_iterator_test
typedef typename CountingIterator::value_type value_type;
std::vector<value_type> v;
for (value_type z = *start; z != *finish; ++z)
v.push_back(z);
if (v.size() >= 2)
{
// Note that this test requires a that the first argument is
// dereferenceable /and/ a valid iterator prior to the first argument
boost::random_access_iterator_test(start + 1, v.size() - 1, v.begin() + 1);
}
}
// Special tests for bidirectional CountingIterators
template <class CountingIterator>
void category_test(CountingIterator start, CountingIterator finish, std::bidirectional_iterator_tag)
{
if (finish != start
&& finish != boost::next(start)
&& finish != boost::next(boost::next(start)))
{
// Note that this test requires a that the first argument is
// dereferenceable /and/ a valid iterator prior to the first argument
boost::bidirectional_iterator_test(boost::next(start), boost::next(*start), boost::next(boost::next(*start)));
}
}
template <class CountingIterator>
void category_test(CountingIterator start, CountingIterator finish, std::forward_iterator_tag)
{
if (finish != start && finish != boost::next(start))
boost::forward_iterator_test(start, *start, boost::next(*start));
}
template <class CountingIterator>
void test_aux(CountingIterator start, CountingIterator finish)
{
typedef typename CountingIterator::iterator_category category;
typedef typename CountingIterator::value_type value_type;
// If it's a RandomAccessIterator we can do a few delicate tests
category_test(start, finish, category());
// Okay, brute force...
for (CountingIterator p = start; p != finish && boost::next(p) != finish; ++p)
{
assert(boost::next(*p) == *boost::next(p));
}
// prove that a reference can be formed to these values
typedef typename CountingIterator::value_type value;
const value* q = &*start;
(void)q; // suppress unused variable warning
}
template <class Incrementable>
void test(Incrementable start, Incrementable finish)
{
test_aux(boost::make_counting_iterator(start), boost::make_counting_iterator(finish));
}
template <class Integer>
void test_integer(Integer* = 0) // default arg works around MSVC bug
{
Integer start = 0;
Integer finish = 120;
test(start, finish);
}
template <class Container>
void test_container(Container* = 0) // default arg works around MSVC bug
{
Container c(1 + (unsigned)rand() % 1673);
const typename Container::iterator start = c.begin();
// back off by 1 to leave room for dereferenceable value at the end
typename Container::iterator finish = start;
std::advance(finish, c.size() - 1);
test(start, finish);
typedef typename Container::const_iterator const_iterator;
test(const_iterator(start), const_iterator(finish));
}
class my_int1 {
public:
my_int1() { }
my_int1(int x) : m_int(x) { }
my_int1& operator++() { ++m_int; return *this; }
bool operator==(const my_int1& x) const { return m_int == x.m_int; }
private:
int m_int;
};
namespace boost {
template <>
struct counting_iterator_traits<my_int1> {
typedef std::ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
};
}
class my_int2 {
public:
typedef void value_type;
typedef void pointer;
typedef void reference;
typedef std::ptrdiff_t difference_type;
typedef std::bidirectional_iterator_tag iterator_category;
my_int2() { }
my_int2(int x) : m_int(x) { }
my_int2& operator++() { ++m_int; return *this; }
my_int2& operator--() { --m_int; return *this; }
bool operator==(const my_int2& x) const { return m_int == x.m_int; }
private:
int m_int;
};
class my_int3 {
public:
typedef void value_type;
typedef void pointer;
typedef void reference;
typedef std::ptrdiff_t difference_type;
typedef std::random_access_iterator_tag iterator_category;
my_int3() { }
my_int3(int x) : m_int(x) { }
my_int3& operator++() { ++m_int; return *this; }
my_int3& operator+=(std::ptrdiff_t n) { m_int += n; return *this; }
std::ptrdiff_t operator-(const my_int3& x) const { return m_int - x.m_int; }
my_int3& operator--() { --m_int; return *this; }
bool operator==(const my_int3& x) const { return m_int == x.m_int; }
bool operator!=(const my_int3& x) const { return m_int != x.m_int; }
bool operator<(const my_int3& x) const { return m_int < x.m_int; }
private:
int m_int;
};
int main()
{
// Test the built-in integer types.
test_integer<char>();
test_integer<unsigned char>();
test_integer<signed char>();
test_integer<wchar_t>();
test_integer<short>();
test_integer<unsigned short>();
test_integer<int>();
test_integer<unsigned int>();
test_integer<long>();
test_integer<unsigned long>();
#if defined(ULLONG_MAX) || defined(ULONG_LONG_MAX)
test_integer<long long>();
test_integer<unsigned long long>();
#endif
// wrapping an iterator or non-built-in integer type causes an INTERNAL
// COMPILER ERROR in MSVC without STLport. I'm clueless as to why.
#if !defined(BOOST_MSVC) || defined(__SGI_STL_PORT)
// Test user-defined type.
test_integer<my_int1>();
test_integer<my_int2>();
test_integer<my_int3>();
// Some tests on container iterators, to prove we handle a few different categories
test_container<std::vector<int> >();
test_container<std::list<int> >();
# ifndef BOOST_NO_SLIST
test_container<BOOST_STD_EXTENSION_NAMESPACE::slist<int> >();
# endif
// Also prove that we can handle raw pointers.
int array[2000];
test(boost::make_counting_iterator(array), boost::make_counting_iterator(array+2000-1));
#endif
std::cout << "test successful " << std::endl;
return 0;
}

View File

@@ -1,41 +0,0 @@
// (C) Copyright Jeremy Siek 2001. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// Revision History:
// 27 Feb 2001 Jeremy Siek
// Initial checkin.
#include <iostream>
#include <string>
#include <vector>
#include <boost/function_output_iterator.hpp>
struct string_appender {
string_appender(std::string& s) : m_str(s) { }
void operator()(const std::string& x) const {
m_str += x;
}
std::string& m_str;
};
int main(int, char*[])
{
std::vector<std::string> x;
x.push_back("hello");
x.push_back(" ");
x.push_back("world");
x.push_back("!");
std::string s = "";
std::copy(x.begin(), x.end(),
boost::make_function_output_iterator(string_appender(s)));
std::cout << s << std::endl;
return 0;
}

View File

@@ -1,169 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>
<head>
<meta name="generator" content="HTML Tidy, see www.w3.org">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Function Output Iterator Adaptor Documentation</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align=
"center" width="277" height="86">
<h1>Function Output Iterator Adaptor</h1>
Defined in header <a href=
"../../boost/function_output_iterator.hpp">boost/function_output_iterator.hpp</a>
<p>The function output iterator adaptor makes it easier to create
custom output iterators. The adaptor takes a <a
href="http://www.sgi.com/tech/stl/UnaryFunction.html">Unary
Function</a> and creates a model of <a
href="http://www.sgi.com/tech/stl/OutputIterator.html">Output
Iterator</a>. Each item assigned to the output iterator is passed
as an argument to the unary function. The motivation for this
iterator is that creating a C++ Standard conforming output
iterator is non-trivial, particularly because the proper
implementation usually requires a proxy object. On the other hand,
creating a function (or function object) is much simpler.
<h2>Synopsis</h2>
<blockquote>
<pre>
namespace boost {
template &lt;class UnaryFunction&gt;
class function_output_iterator;
template &lt;class UnaryFunction&gt;
function_output_iterator&lt;UnaryFunction&gt;
make_function_output_iterator(const UnaryFunction&amp; f = UnaryFunction())
}
</pre>
</blockquote>
<h3>Example</h3>
In this example we create an output iterator that appends
each item onto the end of a string, using the <tt>string_appender</tt>
function.
<blockquote>
<pre>
#include &lt;iostream&gt;
#include &lt;string&gt;
#include &lt;vector&gt;
#include &lt;boost/function_output_iterator.hpp&gt;
struct string_appender {
string_appender(std::string&amp; s) : m_str(s) { }
void operator()(const std::string&amp; x) const {
m_str += x;
}
std::string&amp; m_str;
};
int main(int, char*[])
{
std::vector&lt;std::string&gt; x;
x.push_back("hello");
x.push_back(" ");
x.push_back("world");
x.push_back("!");
std::string s = "";
std::copy(x.begin(), x.end(),
boost::make_function_output_iterator(string_appender(s)));
std::cout &lt;&lt; s &lt;&lt; std::endl;
return 0;
}
</pre>
</blockquote>
<hr>
<h2><a name="function_output_iterator">The Function Output Iterator Class</a></h2>
<blockquote>
<pre>
template &lt;class UnaryFunction&gt;
class function_output_iterator;
</pre>
</blockquote>
The <tt>function_output_iterator</tt> class creates an <a
href="http://www.sgi.com/tech/stl/OutputIterator.html">Output
Iterator</a> out of a
<a href="http://www.sgi.com/tech/stl/UnaryFunction.html">Unary
Function</a>. Each item assigned to the output iterator is passed
as an argument to the unary function.
<h3>Template Parameters</h3>
<table border>
<tr>
<th>Parameter
<th>Description
<tr>
<td><tt>UnaryFunction</tt>
<td>The function type being wrapped. The return type of the
function is not used, so it can be <tt>void</tt>. The
function must be a model of <a
href="http://www.sgi.com/tech/stl/UnaryFunction.html">Unary
Function</a>.</td>
</table>
<h3>Concept Model</h3>
The function output iterator class is a model of <a
href="http://www.sgi.com/tech/stl/OutputIterator.html">Output
Iterator</a>.
<h2>Members</h3>
The function output iterator implements the member functions
and operators required of the <a
href="http://www.sgi.com/tech/stl/OutputIterator.html">Output
Iterator</a> concept. In addition it has the following constructor:
<pre>
explicit function_output_iterator(const UnaryFunction& f = UnaryFunction())
</pre>
<br>
<br>
<hr>
<h2><a name="make_function_output_iterator">The Function Output Iterator Object
Generator</a></h2>
The <tt>make_function_output_iterator()</tt> function provides a
more convenient way to create function output iterator objects. The
function saves the user the trouble of explicitly writing out the
iterator types. If the default argument is used, the function
type must be provided as an explicit template argument.
<blockquote>
<pre>
template &lt;class UnaryFunction&gt;
function_output_iterator&lt;UnaryFunction&gt;
make_function_output_iterator(const UnaryFunction&amp; f = UnaryFunction())
</pre>
</blockquote>
<hr>
<p>&copy; Copyright Jeremy Siek 2001. Permission to copy, use,
modify, sell and distribute this document is granted provided this
copyright notice appears in all copies. This document is provided
"as is" without express or implied warranty, and with no claim as
to its suitability for any purpose.
</body>
</html>

View File

@@ -0,0 +1,509 @@
// (C) Copyright Steve Cleary, Beman Dawes, Howard Hinnant & John Maddock 2000.
// Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// see libs/utility/compressed_pair.hpp
//
/* Release notes:
20 Jan 2001:
Fixed obvious bugs (David Abrahams)
07 Oct 2000:
Added better single argument constructor support.
03 Oct 2000:
Added VC6 support (JM).
23rd July 2000:
Additional comments added. (JM)
Jan 2000:
Original version: this version crippled for use with crippled compilers
- John Maddock Jan 2000.
*/
#ifndef BOOST_OB_COMPRESSED_PAIR_HPP
#define BOOST_OB_COMPRESSED_PAIR_HPP
#include <algorithm>
#ifndef BOOST_OBJECT_TYPE_TRAITS_HPP
#include <boost/type_traits/object_traits.hpp>
#endif
#ifndef BOOST_SAME_TRAITS_HPP
#include <boost/type_traits/same_traits.hpp>
#endif
#ifndef BOOST_CALL_TRAITS_HPP
#include <boost/call_traits.hpp>
#endif
namespace boost
{
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) || !defined(BOOST_NO_MEMBER_TEMPLATES)
//
// use member templates to emulate
// partial specialisation. Note that due to
// problems with overload resolution with VC6
// each of the compressed_pair versions that follow
// have one template single-argument constructor
// in place of two specific constructors:
//
template <class T1, class T2>
class compressed_pair;
namespace detail{
template <class A, class T1, class T2>
struct best_conversion_traits
{
typedef char one;
typedef char (&two)[2];
static A a;
static one test(T1);
static two test(T2);
enum { value = sizeof(test(a)) };
};
template <int>
struct init_one;
template <>
struct init_one<1>
{
template <class A, class T1, class T2>
static void init(const A& a, T1* p1, T2*)
{
*p1 = a;
}
};
template <>
struct init_one<2>
{
template <class A, class T1, class T2>
static void init(const A& a, T1*, T2* p2)
{
*p2 = a;
}
};
// T1 != T2, both non-empty
template <class T1, class T2>
class compressed_pair_0
{
private:
T1 _first;
T2 _second;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_0() : _first(), _second() {}
compressed_pair_0(first_param_type x, second_param_type y) : _first(x), _second(y) {}
template <class A>
explicit compressed_pair_0(const A& val)
{
init_one<best_conversion_traits<A, T1, T2>::value>::init(val, &_first, &_second);
}
compressed_pair_0(const ::boost::compressed_pair<T1,T2>& x)
: _first(x.first()), _second(x.second()) {}
#if 0
compressed_pair_0& operator=(const compressed_pair_0& x) {
cout << "assigning compressed pair 0" << endl;
_first = x._first;
_second = x._second;
cout << "finished assigning compressed pair 0" << endl;
return *this;
}
#endif
first_reference first() { return _first; }
first_const_reference first() const { return _first; }
second_reference second() { return _second; }
second_const_reference second() const { return _second; }
void swap(compressed_pair_0& y)
{
using std::swap;
swap(_first, y._first);
swap(_second, y._second);
}
};
// T1 != T2, T2 empty
template <class T1, class T2>
class compressed_pair_1 : T2
{
private:
T1 _first;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_1() : T2(), _first() {}
compressed_pair_1(first_param_type x, second_param_type y) : T2(y), _first(x) {}
template <class A>
explicit compressed_pair_1(const A& val)
{
init_one<best_conversion_traits<A, T1, T2>::value>::init(val, &_first, static_cast<T2*>(this));
}
compressed_pair_1(const ::boost::compressed_pair<T1,T2>& x)
: T2(x.second()), _first(x.first()) {}
#ifdef BOOST_MSVC
// Total weirdness. If the assignment to _first is moved after
// the call to the inherited operator=, then this breaks graph/test/graph.cpp
// by way of iterator_adaptor.
compressed_pair_1& operator=(const compressed_pair_1& x) {
_first = x._first;
T2::operator=(x);
return *this;
}
#endif
first_reference first() { return _first; }
first_const_reference first() const { return _first; }
second_reference second() { return *this; }
second_const_reference second() const { return *this; }
void swap(compressed_pair_1& y)
{
// no need to swap empty base class:
using std::swap;
swap(_first, y._first);
}
};
// T1 != T2, T1 empty
template <class T1, class T2>
class compressed_pair_2 : T1
{
private:
T2 _second;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_2() : T1(), _second() {}
compressed_pair_2(first_param_type x, second_param_type y) : T1(x), _second(y) {}
template <class A>
explicit compressed_pair_2(const A& val)
{
init_one<best_conversion_traits<A, T1, T2>::value>::init(val, static_cast<T1*>(this), &_second);
}
compressed_pair_2(const ::boost::compressed_pair<T1,T2>& x)
: T1(x.first()), _second(x.second()) {}
#if 0
compressed_pair_2& operator=(const compressed_pair_2& x) {
cout << "assigning compressed pair 2" << endl;
T1::operator=(x);
_second = x._second;
cout << "finished assigning compressed pair 2" << endl;
return *this;
}
#endif
first_reference first() { return *this; }
first_const_reference first() const { return *this; }
second_reference second() { return _second; }
second_const_reference second() const { return _second; }
void swap(compressed_pair_2& y)
{
// no need to swap empty base class:
using std::swap;
swap(_second, y._second);
}
};
// T1 != T2, both empty
template <class T1, class T2>
class compressed_pair_3 : T1, T2
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_3() : T1(), T2() {}
compressed_pair_3(first_param_type x, second_param_type y) : T1(x), T2(y) {}
template <class A>
explicit compressed_pair_3(const A& val)
{
init_one<best_conversion_traits<A, T1, T2>::value>::init(val, static_cast<T1*>(this), static_cast<T2*>(this));
}
compressed_pair_3(const ::boost::compressed_pair<T1,T2>& x)
: T1(x.first()), T2(x.second()) {}
first_reference first() { return *this; }
first_const_reference first() const { return *this; }
second_reference second() { return *this; }
second_const_reference second() const { return *this; }
void swap(compressed_pair_3& y)
{
// no need to swap empty base classes:
}
};
// T1 == T2, and empty
template <class T1, class T2>
class compressed_pair_4 : T1
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_4() : T1() {}
compressed_pair_4(first_param_type x, second_param_type) : T1(x) {}
// only one single argument constructor since T1 == T2
explicit compressed_pair_4(first_param_type x) : T1(x) {}
compressed_pair_4(const ::boost::compressed_pair<T1,T2>& x)
: T1(x.first()){}
first_reference first() { return *this; }
first_const_reference first() const { return *this; }
second_reference second() { return *this; }
second_const_reference second() const { return *this; }
void swap(compressed_pair_4& y)
{
// no need to swap empty base classes:
}
};
// T1 == T2, not empty
template <class T1, class T2>
class compressed_pair_5
{
private:
T1 _first;
T2 _second;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_5() : _first(), _second() {}
compressed_pair_5(first_param_type x, second_param_type y) : _first(x), _second(y) {}
// only one single argument constructor since T1 == T2
explicit compressed_pair_5(first_param_type x) : _first(x), _second(x) {}
compressed_pair_5(const ::boost::compressed_pair<T1,T2>& c)
: _first(c.first()), _second(c.second()) {}
first_reference first() { return _first; }
first_const_reference first() const { return _first; }
second_reference second() { return _second; }
second_const_reference second() const { return _second; }
void swap(compressed_pair_5& y)
{
using std::swap;
swap(_first, y._first);
swap(_second, y._second);
}
};
template <bool e1, bool e2, bool same>
struct compressed_pair_chooser
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_0<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<false, true, false>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_1<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<true, false, false>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_2<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<true, true, false>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_3<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<true, true, true>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_4<T1, T2> type;
};
};
template <>
struct compressed_pair_chooser<false, false, true>
{
template <class T1, class T2>
struct rebind
{
typedef compressed_pair_5<T1, T2> type;
};
};
template <class T1, class T2>
struct compressed_pair_traits
{
private:
typedef compressed_pair_chooser<is_empty<T1>::value, is_empty<T2>::value, is_same<T1,T2>::value> chooser;
typedef typename chooser::template rebind<T1, T2> bound_type;
public:
typedef typename bound_type::type type;
};
} // namespace detail
template <class T1, class T2>
class compressed_pair : public detail::compressed_pair_traits<T1, T2>::type
{
private:
typedef typename detail::compressed_pair_traits<T1, T2>::type base_type;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair() : base_type() {}
compressed_pair(first_param_type x, second_param_type y) : base_type(x, y) {}
template <class A>
explicit compressed_pair(const A& x) : base_type(x){}
first_reference first() { return base_type::first(); }
first_const_reference first() const { return base_type::first(); }
second_reference second() { return base_type::second(); }
second_const_reference second() const { return base_type::second(); }
};
template <class T1, class T2>
inline void swap(compressed_pair<T1, T2>& x, compressed_pair<T1, T2>& y)
{
x.swap(y);
}
#else
// no partial specialisation, no member templates:
template <class T1, class T2>
class compressed_pair
{
private:
T1 _first;
T2 _second;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair() : _first(), _second() {}
compressed_pair(first_param_type x, second_param_type y) : _first(x), _second(y) {}
explicit compressed_pair(first_param_type x) : _first(x), _second() {}
// can't define this in case T1 == T2:
// explicit compressed_pair(second_param_type y) : _first(), _second(y) {}
first_reference first() { return _first; }
first_const_reference first() const { return _first; }
second_reference second() { return _second; }
second_const_reference second() const { return _second; }
void swap(compressed_pair& y)
{
using std::swap;
swap(_first, y._first);
swap(_second, y._second);
}
};
template <class T1, class T2>
inline void swap(compressed_pair<T1, T2>& x, compressed_pair<T1, T2>& y)
{
x.swap(y);
}
#endif
} // boost
#endif // BOOST_OB_COMPRESSED_PAIR_HPP

View File

@@ -1,27 +0,0 @@
// Test boost/pending/iterator_adaptors.hpp
// (C) Copyright Jeremy Siek 1999. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 21 Jan 01 Initial version (Jeremy Siek)
#include <boost/config.hpp>
#include <list>
#include <boost/pending/iterator_adaptors.hpp>
int main()
{
typedef boost::iterator_adaptor<std::list<int>::iterator,
boost::default_iterator_policies,
int,int&,int*,std::bidirectional_iterator_tag> adaptor_type;
adaptor_type i;
i += 4;
return 0;
}

View File

@@ -1,28 +0,0 @@
// Test boost/pending/iterator_adaptors.hpp
// (C) Copyright Jeremy Siek 1999. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 21 Jan 01 Initial version (Jeremy Siek)
#include <boost/config.hpp>
#include <iostream>
#include <iterator>
#include <boost/pending/iterator_adaptors.hpp>
int main()
{
typedef boost::iterator_adaptor<std::istream_iterator<int>,
boost::default_iterator_policies,
int,int&,int*,std::input_iterator_tag> adaptor_type;
adaptor_type iter;
--iter;
return 0;
}

View File

@@ -1,96 +0,0 @@
// (C) Copyright Jeremy Siek 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
#include <boost/config.hpp>
#include <list>
#include <iostream>
#include <iterator>
#include <algorithm>
#include <string>
#include <boost/iterator_adaptors.hpp>
struct personnel_record {
personnel_record(std::string n, int id) : m_name(n), m_ID(id) { }
std::string m_name;
int m_ID;
};
struct select_name {
typedef personnel_record argument_type;
typedef std::string result_type;
const std::string& operator()(const personnel_record& r) const {
return r.m_name;
}
std::string& operator()(personnel_record& r) const {
return r.m_name;
}
};
struct select_ID {
typedef personnel_record argument_type;
typedef int result_type;
const int& operator()(const personnel_record& r) const {
return r.m_ID;
}
int& operator()(personnel_record& r) const {
return r.m_ID;
}
};
int main(int, char*[])
{
std::list<personnel_record> personnel_list;
personnel_list.push_back(personnel_record("Barney", 13423));
personnel_list.push_back(personnel_record("Fred", 12343));
personnel_list.push_back(personnel_record("Wilma", 62454));
personnel_list.push_back(personnel_record("Betty", 20490));
// Example of using projection_iterator_generator
// to print out the names in the personnel list.
boost::projection_iterator_generator<select_name,
std::list<personnel_record>::iterator>::type
personnel_first(personnel_list.begin()),
personnel_last(personnel_list.end());
std::copy(personnel_first, personnel_last,
std::ostream_iterator<std::string>(std::cout, "\n"));
std::cout << std::endl;
// Example of using projection_iterator_pair_generator
// to assign new ID numbers to the personnel.
typedef boost::projection_iterator_pair_generator<select_ID,
std::list<personnel_record>::iterator,
std::list<personnel_record>::const_iterator> PairGen;
PairGen::iterator ID_first(personnel_list.begin()),
ID_last(personnel_list.end());
int new_id = 0;
while (ID_first != ID_last) {
*ID_first = new_id++;
++ID_first;
}
PairGen::const_iterator const_ID_first(personnel_list.begin()),
const_ID_last(personnel_list.end());
std::copy(const_ID_first, const_ID_last,
std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
std::cout << std::endl;
// Example of using make_const_projection_iterator()
// to print out the names in the personnel list again.
std::copy
(boost::make_const_projection_iterator<select_name>(personnel_list.begin()),
boost::make_const_projection_iterator<select_name>(personnel_list.end()),
std::ostream_iterator<std::string>(std::cout, "\n"));
return 0;
}

View File

@@ -1,42 +0,0 @@
// (C) Copyright Jeremy Siek 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
#include <boost/config.hpp>
#include <iostream>
#include <algorithm>
#include <boost/iterator_adaptors.hpp>
int main(int, char*[])
{
char letters[] = "hello world!";
const int N = sizeof(letters)/sizeof(char) - 1;
std::cout << "original sequence of letters:\t"
<< letters << std::endl;
std::sort(letters, letters + N);
// Use reverse_iterator_generator to print a sequence
// of letters in reverse order.
boost::reverse_iterator_generator<char*>::type
reverse_letters_first(letters + N),
reverse_letters_last(letters);
std::cout << "letters in descending order:\t";
std::copy(reverse_letters_first, reverse_letters_last,
std::ostream_iterator<char>(std::cout));
std::cout << std::endl;
// Use make_reverse_iterator() to print the sequence
// of letters in reverse-reverse order.
std::cout << "letters in ascending order:\t";
std::copy(boost::make_reverse_iterator(reverse_letters_last),
boost::make_reverse_iterator(reverse_letters_first),
std::ostream_iterator<char>(std::cout));
std::cout << std::endl;
return 0;
}

View File

@@ -1,44 +0,0 @@
// (C) Copyright Jeremy Siek 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
#include <functional>
#include <algorithm>
#include <iostream>
#include <boost/iterator_adaptors.hpp>
int
main(int, char*[])
{
// This is a simple example of using the transform_iterators class to
// generate iterators that multiply the value returned by dereferencing
// the iterator. In this case we are multiplying by 2.
// Would be cooler to use lambda library in this example.
int x[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
const int N = sizeof(x)/sizeof(int);
typedef std::binder1st< std::multiplies<int> > Function;
typedef boost::transform_iterator_generator<Function, int*>::type doubling_iterator;
doubling_iterator i(x, std::bind1st(std::multiplies<int>(), 2)),
i_end(x + N, std::bind1st(std::multiplies<int>(), 2));
std::cout << "multiplying the array by 2:" << std::endl;
while (i != i_end)
std::cout << *i++ << " ";
std::cout << std::endl;
std::cout << "adding 4 to each element in the array:" << std::endl;
std::copy(boost::make_transform_iterator(x, std::bind1st(std::plus<int>(), 4)),
boost::make_transform_iterator(x + N, std::bind1st(std::plus<int>(), 4)),
std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
return 0;
}