mirror of
https://github.com/boostorg/utility.git
synced 2025-10-17 18:55:20 +02:00
Compare commits
25 Commits
svn-branch
...
svn-branch
Author | SHA1 | Date | |
---|---|---|---|
|
7ea60a96f8 | ||
|
a9adec170a | ||
|
8808f55435 | ||
|
e5c81d0702 | ||
|
6caf7d4d5a | ||
|
98e87c8afb | ||
|
d9e0f80d50 | ||
|
6396fdb5ff | ||
|
2470b53373 | ||
|
16334e92ca | ||
|
c22d98a8ec | ||
|
28617afbb9 | ||
|
0c3bc42bec | ||
|
e3d9745df1 | ||
|
b8471c1015 | ||
|
045b09c9ef | ||
|
4ac07b97d3 | ||
|
34c847c17f | ||
|
f694e557e1 | ||
|
6a0c3e92a0 | ||
|
cba48df8e3 | ||
|
a0e8d1bf36 | ||
|
912dedaca7 | ||
|
7dd90c3919 | ||
|
7c3a25a377 |
@@ -1,489 +0,0 @@
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
|
||||
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
|
||||
<meta name="ProgId" content="FrontPage.Editor.Document">
|
||||
<title>C++ Type traits</title>
|
||||
</head>
|
||||
|
||||
<body bgcolor="#FFFFFF" link="#0000FF" vlink="#800080">
|
||||
|
||||
<h2 align="center">C++ Type traits</h2>
|
||||
<p align="center"><em>by John Maddock and Steve Cleary</em></p>
|
||||
<p align="center"><em>This is a draft of an article that will appear in a future
|
||||
issue of </em><a href="http://www.ddj.com"><em>Dr Dobb's Journal</em></a></p>
|
||||
<p>Generic programming (writing code which works with any data type meeting a
|
||||
set of requirements) has become the method of choice for providing reusable
|
||||
code. However, there are times in generic programming when "generic"
|
||||
just isn't good enough - sometimes the differences between types are too large
|
||||
for an efficient generic implementation. This is when the traits technique
|
||||
becomes important - by encapsulating those properties that need to be considered
|
||||
on a type by type basis inside a traits class, we can minimise the amount of
|
||||
code that has to differ from one type to another, and maximise the amount of
|
||||
generic code.</p>
|
||||
<p>Consider an example: when working with character strings, one common
|
||||
operation is to determine the length of a null terminated string. Clearly it's
|
||||
possible to write generic code that can do this, but it turns out that there are
|
||||
much more efficient methods available: for example, the C library functions <font size="2" face="Courier New">strlen</font>
|
||||
and <font size="2" face="Courier New">wcslen</font> are usually written in
|
||||
assembler, and with suitable hardware support can be considerably faster than a
|
||||
generic version written in C++. The authors of the C++ standard library realised
|
||||
this, and abstracted the properties of <font size="2" face="Courier New">char</font>
|
||||
and <font size="2" face="Courier New">wchar_t</font> into the class <font size="2" face="Courier New">char_traits</font>.
|
||||
Generic code that works with character strings can simply use <font size="2" face="Courier New">char_traits<>::length</font>
|
||||
to determine the length of a null terminated string, safe in the knowledge that
|
||||
specialisations of <font size="2" face="Courier New">char_traits</font> will use
|
||||
the most appropriate method available to them.</p>
|
||||
<h4>Type traits</h4>
|
||||
<p>Class <font size="2" face="Courier New">char_traits</font> is a classic
|
||||
example of a collection of type specific properties wrapped up in a single class
|
||||
- what Nathan Myers termed a <i>baggage class</i>[1]. In the Boost type-traits
|
||||
library, we[2] have written a set of very specific traits classes, each of which
|
||||
encapsulate a single trait from the C++ type system; for example, is a type a
|
||||
pointer or a reference type? Or does a type have a trivial constructor, or a
|
||||
const-qualifier? The type-traits classes share a unified design: each class has
|
||||
a single member <i>value</i>, a compile-time constant that is true if the type
|
||||
has the specified property, and false otherwise. As we will show, these classes
|
||||
can be used in generic programming to determine the properties of a given type
|
||||
and introduce optimisations that are appropriate for that case.</p>
|
||||
<p>The type-traits library also contains a set of classes that perform a
|
||||
specific transformation on a type; for example, they can remove a top-level
|
||||
const or volatile qualifier from a type. Each class that performs a
|
||||
transformation defines a single typedef-member <i>type</i> that is the result of
|
||||
the transformation. All of the type-traits classes are defined inside namespace <font size="2" face="Courier New">boost</font>;
|
||||
for brevity, namespace-qualification is omitted in most of the code samples
|
||||
given.</p>
|
||||
<h4>Implementation</h4>
|
||||
<p>There are far too many separate classes contained in the type-traits library
|
||||
to give a full implementation here - see the source code in the Boost library
|
||||
for the full details - however, most of the implementation is fairly repetitive
|
||||
anyway, so here we will just give you a flavour for how some of the classes are
|
||||
implemented. Beginning with possibly the simplest class in the library, is_void<T>
|
||||
has a member <i>value</i> that is true only if T is void.</p>
|
||||
<pre>template <typename T>
|
||||
struct is_void
|
||||
{ static const bool value = false; };
|
||||
|
||||
template <>
|
||||
struct is_void<void>
|
||||
{ static const bool value = true; };</pre>
|
||||
<p>Here we define a primary version of the template class <font size="2" face="Courier New">is_void</font>,
|
||||
and provide a full-specialisation when T is void. While full specialisation of a
|
||||
template class is an important technique, sometimes we need a solution that is
|
||||
halfway between a fully generic solution, and a full specialisation. This is
|
||||
exactly the situation for which the standards committee defined partial
|
||||
template-class specialisation. As an example, consider the class
|
||||
boost::is_pointer<T>: here we needed a primary version that handles all
|
||||
the cases where T is not a pointer, and a partial specialisation to handle all
|
||||
the cases where T is a pointer:</p>
|
||||
<pre>template <typename T>
|
||||
struct is_pointer
|
||||
{ static const bool value = false; };
|
||||
|
||||
template <typename T>
|
||||
struct is_pointer<T*>
|
||||
{ static const bool value = true; };</pre>
|
||||
<p>The syntax for partial specialisation is somewhat arcane and could easily
|
||||
occupy an article in its own right; like full specialisation, in order to write
|
||||
a partial specialisation for a class, you must first declare the primary
|
||||
template. The partial specialisation contains an extra <<EFBFBD>> after the
|
||||
class name that contains the partial specialisation parameters; these define the
|
||||
types that will bind to that partial specialisation rather than the default
|
||||
template. The rules for what can appear in a partial specialisation are somewhat
|
||||
convoluted, but as a rule of thumb if you can legally write two function
|
||||
overloads of the form:</p>
|
||||
<pre>void foo(T);
|
||||
void foo(U);</pre>
|
||||
<p>Then you can also write a partial specialisation of the form:</p>
|
||||
<pre>template <typename T>
|
||||
class c{ /*details*/ };
|
||||
|
||||
template <typename T>
|
||||
|
||||
class c<U>{ /*details*/ };</pre>
|
||||
<p>This rule is by no means foolproof, but it is reasonably simple to remember
|
||||
and close enough to the actual rule to be useful for everyday use.</p>
|
||||
<p>As a more complex example of partial specialisation consider the class
|
||||
remove_bounds<T>. This class defines a single typedef-member <i>type</i>
|
||||
that is the same type as T but with any top-level array bounds removed; this is
|
||||
an example of a traits class that performs a transformation on a type:</p>
|
||||
<pre>template <typename T>
|
||||
struct remove_bounds
|
||||
{ typedef T type; };
|
||||
|
||||
template <typename T, std::size_t N>
|
||||
struct remove_bounds<T[N]>
|
||||
{ typedef T type; };</pre>
|
||||
<p>The aim of remove_bounds is this: imagine a generic algorithm that is passed
|
||||
an array type as a template parameter, <font size="2" face="Courier New">remove_bounds</font>
|
||||
provides a means of determining the underlying type of the array. For example <code>remove_bounds<int[4][5]>::type</code>
|
||||
would evaluate to the type <code>int[5]</code>. This example also shows that the
|
||||
number of template parameters in a partial specialisation does not have to match
|
||||
the number in the default template. However, the number of parameters that
|
||||
appear after the class name do have to match the number and type of the
|
||||
parameters in the default template.</p>
|
||||
<h4>Optimised copy</h4>
|
||||
<p>As an example of how the type traits classes can be used, consider the
|
||||
standard library algorithm copy:</p>
|
||||
<pre>template<typename Iter1, typename Iter2>
|
||||
Iter2 copy(Iter1 first, Iter1 last, Iter2 out);</pre>
|
||||
<p>Obviously, there's no problem writing a generic version of copy that works
|
||||
for all iterator types Iter1 and Iter2; however, there are some circumstances
|
||||
when the copy operation can best be performed by a call to <font size="2" face="Courier New">memcpy</font>.
|
||||
In order to implement copy in terms of <font size="2" face="Courier New">memcpy</font>
|
||||
all of the following conditions need to be met:</p>
|
||||
<ul>
|
||||
<li>Both of the iterator types Iter1 and Iter2 must be pointers.</li>
|
||||
<li>Both Iter1 and Iter2 must point to the same type - excluding <font size="2" face="Courier New">const</font>
|
||||
and <font size="2" face="Courier New">volatile</font>-qualifiers.</li>
|
||||
<li>The type pointed to by Iter1 must have a trivial assignment operator.</li>
|
||||
</ul>
|
||||
<p>By trivial assignment operator we mean that the type is either a scalar
|
||||
type[3] or:</p>
|
||||
<ul>
|
||||
<li>The type has no user defined assignment operator.</li>
|
||||
<li>The type does not have any data members that are references.</li>
|
||||
<li>All base classes, and all data member objects must have trivial assignment
|
||||
operators.</li>
|
||||
</ul>
|
||||
<p>If all these conditions are met then a type can be copied using <font size="2" face="Courier New">memcpy</font>
|
||||
rather than using a compiler generated assignment operator. The type-traits
|
||||
library provides a class <i>has_trivial_assign</i>, such that <code>has_trivial_assign<T>::value</code>
|
||||
is true only if T has a trivial assignment operator. This class "just
|
||||
works" for scalar types, but has to be explicitly specialised for
|
||||
class/struct types that also happen to have a trivial assignment operator. In
|
||||
other words if <i>has_trivial_assign</i> gives the wrong answer, it will give
|
||||
the "safe" wrong answer - that trivial assignment is not allowable.</p>
|
||||
<p>The code for an optimised version of copy that uses <font size="2" face="Courier New">memcpy</font>
|
||||
where appropriate is given in listing 1. The code begins by defining a template
|
||||
class <i>copier</i>, that takes a single Boolean template parameter, and has a
|
||||
static template member function <font size="2" face="Courier New">do_copy</font>
|
||||
which performs the generic version of <font size="2">copy</font> (in other words
|
||||
the "slow but safe version"). Following that there is a specialisation
|
||||
for <i>copier<true></i>: again this defines a static template member
|
||||
function <font size="2" face="Courier New">do_copy</font>, but this version uses
|
||||
memcpy to perform an "optimised" copy.</p>
|
||||
<p>In order to complete the implementation, what we need now is a version of
|
||||
copy, that calls <code>copier<true>::do_copy</code> if it is safe to use <font size="2" face="Courier New">memcpy</font>,
|
||||
and otherwise calls <code>copier<false>::do_copy</code> to do a
|
||||
"generic" copy. This is what the version in listing 1 does. To
|
||||
understand how the code works look at the code for <font size="2" face="Courier New">copy</font>
|
||||
and consider first the two typedefs <i>v1_t</i> and <i>v2_t</i>. These use <code>std::iterator_traits<Iter1>::value_type</code>
|
||||
to determine what type the two iterators point to, and then feed the result into
|
||||
another type-traits class <i>remove_cv</i> that removes the top-level
|
||||
const-volatile-qualifiers: this will allow copy to compare the two types without
|
||||
regard to const- or volatile-qualifiers. Next, <font size="2" face="Courier New">copy</font>
|
||||
declares an enumerated value <i>can_opt</i> that will become the template
|
||||
parameter to copier - declaring this here as a constant is really just a
|
||||
convenience - the value could be passed directly to class <font size="2" face="Courier New">copier</font>.
|
||||
The value of <i>can_opt</i> is computed by verifying that all of the following
|
||||
are true:</p>
|
||||
<ul>
|
||||
<li>first that the two iterators point to the same type by using a type-traits
|
||||
class <i>is_same</i>.</li>
|
||||
<li>Then that both iterators are real pointers - using the class <i>is_pointer</i>
|
||||
described above.</li>
|
||||
<li>Finally that the pointed-to types have a trivial assignment operator using
|
||||
<i>has_trivial_assign</i>.</li>
|
||||
</ul>
|
||||
<p>Finally we can use the value of <i>can_opt</i> as the template argument to
|
||||
copier - this version of copy will now adapt to whatever parameters are passed
|
||||
to it, if its possible to use <font size="2" face="Courier New">memcpy</font>,
|
||||
then it will do so, otherwise it will use a generic copy.</p>
|
||||
<h4>Was it worth it?</h4>
|
||||
<p>It has often been repeated in these columns that "premature optimisation
|
||||
is the root of all evil" [4]. So the question must be asked: was our
|
||||
optimisation premature? To put this in perspective the timings for our version
|
||||
of copy compared a conventional generic copy[5] are shown in table 1.</p>
|
||||
<p>Clearly the optimisation makes a difference in this case; but, to be fair,
|
||||
the timings are loaded to exclude cache miss effects - without this accurate
|
||||
comparison between algorithms becomes difficult. However, perhaps we can add a
|
||||
couple of caveats to the premature optimisation rule:</p>
|
||||
<ul>
|
||||
<li>If you use the right algorithm for the job in the first place then
|
||||
optimisation will not be required; in some cases, <font size="2" face="Courier New">memcpy</font>
|
||||
is the right algorithm.</li>
|
||||
<li>If a component is going to be reused in many places by many people then
|
||||
optimisations may well be worthwhile where they would not be so for a single
|
||||
case - in other words, the likelihood that the optimisation will be
|
||||
absolutely necessary somewhere, sometime is that much higher. Just as
|
||||
importantly the perceived value of the stock implementation will be higher:
|
||||
there is no point standardising an algorithm if users reject it on the
|
||||
grounds that there are better, more heavily optimised versions available.</li>
|
||||
</ul>
|
||||
<h4>Table 1: Time taken to copy 1000 elements using copy<const T*, T*>
|
||||
(times in micro-seconds)</h4>
|
||||
<table border="1" cellpadding="7" cellspacing="1" width="529">
|
||||
<tr>
|
||||
<td valign="top" width="33%">
|
||||
<p align="center">Version</p>
|
||||
</td>
|
||||
<td valign="top" width="33%">
|
||||
<p align="center">T</p>
|
||||
</td>
|
||||
<td valign="top" width="33%">
|
||||
<p align="center">Time</p>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="33%">"Optimised" copy</td>
|
||||
<td valign="top" width="33%">char</td>
|
||||
<td valign="top" width="33%">0.99</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="33%">Conventional copy</td>
|
||||
<td valign="top" width="33%">char</td>
|
||||
<td valign="top" width="33%">8.07</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="33%">"Optimised" copy</td>
|
||||
<td valign="top" width="33%">int</td>
|
||||
<td valign="top" width="33%">2.52</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="33%">Conventional copy</td>
|
||||
<td valign="top" width="33%">int</td>
|
||||
<td valign="top" width="33%">8.02</td>
|
||||
</tr>
|
||||
</table>
|
||||
<p> </p>
|
||||
<h4>Pair of References</h4>
|
||||
<p>The optimised copy example shows how type traits may be used to perform
|
||||
optimisation decisions at compile-time. Another important usage of type traits
|
||||
is to allow code to compile that otherwise would not do so unless excessive
|
||||
partial specialization is used. This is possible by delegating partial
|
||||
specialization to the type traits classes. Our example for this form of usage is
|
||||
a pair that can hold references [6].</p>
|
||||
<p>First, let us examine the definition of "std::pair", omitting the
|
||||
comparision operators, default constructor, and template copy constructor for
|
||||
simplicity:</p>
|
||||
<pre>template <typename T1, typename T2>
|
||||
struct pair
|
||||
{
|
||||
typedef T1 first_type;
|
||||
typedef T2 second_type;
|
||||
|
||||
T1 first;
|
||||
T2 second;
|
||||
|
||||
pair(const T1 & nfirst, const T2 & nsecond)
|
||||
:first(nfirst), second(nsecond) { }
|
||||
};</pre>
|
||||
<p>Now, this "pair" cannot hold references as it currently stands,
|
||||
because the constructor would require taking a reference to a reference, which
|
||||
is currently illegal [7]. Let us consider what the constructor's parameters
|
||||
would have to be in order to allow "pair" to hold non-reference types,
|
||||
references, and constant references:</p>
|
||||
<table border="1" cellpadding="7" cellspacing="1" width="638">
|
||||
<tr>
|
||||
<td valign="top" width="50%">Type of "T1"</td>
|
||||
<td valign="top" width="50%">Type of parameter to initializing constructor</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="50%">
|
||||
<pre>T</pre>
|
||||
</td>
|
||||
<td valign="top" width="50%">
|
||||
<pre>const T &</pre>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="50%">
|
||||
<pre>T &</pre>
|
||||
</td>
|
||||
<td valign="top" width="50%">
|
||||
<pre>T &</pre>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="50%">
|
||||
<pre>const T &</pre>
|
||||
</td>
|
||||
<td valign="top" width="50%">
|
||||
<pre>const T &</pre>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
<p>A little familiarity with the type traits classes allows us to construct a
|
||||
single mapping that allows us to determine the type of parameter from the type
|
||||
of the contained class. The type traits classes provide a transformation "add_reference",
|
||||
which adds a reference to its type, unless it is already a reference.</p>
|
||||
<table border="1" cellpadding="7" cellspacing="1" width="580">
|
||||
<tr>
|
||||
<td valign="top" width="21%">Type of "T1"</td>
|
||||
<td valign="top" width="27%">Type of "const T1"</td>
|
||||
<td valign="top" width="53%">Type of "add_reference<const
|
||||
T1>::type"</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="21%">
|
||||
<pre>T</pre>
|
||||
</td>
|
||||
<td valign="top" width="27%">
|
||||
<pre>const T</pre>
|
||||
</td>
|
||||
<td valign="top" width="53%">
|
||||
<pre>const T &</pre>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="21%">
|
||||
<pre>T &</pre>
|
||||
</td>
|
||||
<td valign="top" width="27%">
|
||||
<pre>T & [8]</pre>
|
||||
</td>
|
||||
<td valign="top" width="53%">
|
||||
<pre>T &</pre>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="21%">
|
||||
<pre>const T &</pre>
|
||||
</td>
|
||||
<td valign="top" width="27%">
|
||||
<pre>const T &</pre>
|
||||
</td>
|
||||
<td valign="top" width="53%">
|
||||
<pre>const T &</pre>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
<p>This allows us to build a primary template definition for "pair"
|
||||
that can contain non-reference types, reference types, and constant reference
|
||||
types:</p>
|
||||
<pre>template <typename T1, typename T2>
|
||||
struct pair
|
||||
{
|
||||
typedef T1 first_type;
|
||||
typedef T2 second_type;
|
||||
|
||||
T1 first;
|
||||
T2 second;
|
||||
|
||||
pair(boost::add_reference<const T1>::type nfirst,
|
||||
boost::add_reference<const T2>::type nsecond)
|
||||
:first(nfirst), second(nsecond) { }
|
||||
};</pre>
|
||||
<p>Add back in the standard comparision operators, default constructor, and
|
||||
template copy constructor (which are all the same), and you have a std::pair
|
||||
that can hold reference types!</p>
|
||||
<p>This same extension <i>could</i> have been done using partial template
|
||||
specialization of "pair", but to specialize "pair" in this
|
||||
way would require three partial specializations, plus the primary template. Type
|
||||
traits allows us to define a single primary template that adjusts itself
|
||||
auto-magically to any of these partial specializations, instead of a brute-force
|
||||
partial specialization approach. Using type traits in this fashion allows
|
||||
programmers to delegate partial specialization to the type traits classes,
|
||||
resulting in code that is easier to maintain and easier to understand.</p>
|
||||
<h4>Conclusion</h4>
|
||||
<p>We hope that in this article we have been able to give you some idea of what
|
||||
type-traits are all about. A more complete listing of the available classes are
|
||||
in the boost documentation, along with further examples using type traits.
|
||||
Templates have enabled C++ uses to take the advantage of the code reuse that
|
||||
generic programming brings; hopefully this article has shown that generic
|
||||
programming does not have to sink to the lowest common denominator, and that
|
||||
templates can be optimal as well as generic.</p>
|
||||
<h4>Acknowledgements</h4>
|
||||
<p>The authors would like to thank Beman Dawes and Howard Hinnant for their
|
||||
helpful comments when preparing this article.</p>
|
||||
<h4>References</h4>
|
||||
<ol>
|
||||
<li>Nathan C. Myers, C++ Report, June 1995.</li>
|
||||
<li>The type traits library is based upon contributions by Steve Cleary, Beman
|
||||
Dawes, Howard Hinnant and John Maddock: it can be found at www.boost.org.</li>
|
||||
<li>A scalar type is an arithmetic type (i.e. a built-in integer or floating
|
||||
point type), an enumeration type, a pointer, a pointer to member, or a
|
||||
const- or volatile-qualified version of one of these types.</li>
|
||||
<li>This quote is from Donald Knuth, ACM Computing Surveys, December 1974, pg
|
||||
268.</li>
|
||||
<li>The test code is available as part of the boost utility library (see
|
||||
algo_opt_examples.cpp), the code was compiled with gcc 2.95 with all
|
||||
optimisations turned on, tests were conducted on a 400MHz Pentium II machine
|
||||
running Microsoft Windows 98.</li>
|
||||
<li>John Maddock and Howard Hinnant have submitted a "compressed_pair"
|
||||
library to Boost, which uses a technique similar to the one described here
|
||||
to hold references. Their pair also uses type traits to determine if any of
|
||||
the types are empty, and will derive instead of contain to conserve space --
|
||||
hence the name "compressed".</li>
|
||||
<li>This is actually an issue with the C++ Core Language Working Group (issue
|
||||
#106), submitted by Bjarne Stroustrup. The tentative resolution is to allow
|
||||
a "reference to a reference to T" to mean the same thing as a
|
||||
"reference to T", but only in template instantiation, in a method
|
||||
similar to multiple cv-qualifiers.</li>
|
||||
<li>For those of you who are wondering why this shouldn't be const-qualified,
|
||||
remember that references are always implicitly constant (for example, you
|
||||
can't re-assign a reference). Remember also that "const T &"
|
||||
is something completely different. For this reason, cv-qualifiers on
|
||||
template type arguments that are references are ignored.</li>
|
||||
</ol>
|
||||
<h2>Listing 1</h2>
|
||||
<pre>namespace detail{
|
||||
|
||||
template <bool b>
|
||||
struct copier
|
||||
{
|
||||
template<typename I1, typename I2>
|
||||
static I2 do_copy(I1 first,
|
||||
I1 last, I2 out);
|
||||
};
|
||||
|
||||
template <bool b>
|
||||
template<typename I1, typename I2>
|
||||
I2 copier<b>::do_copy(I1 first,
|
||||
I1 last,
|
||||
I2 out)
|
||||
{
|
||||
while(first != last)
|
||||
{
|
||||
*out = *first;
|
||||
++out;
|
||||
++first;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
template <>
|
||||
struct copier<true>
|
||||
{
|
||||
template<typename I1, typename I2>
|
||||
static I2* do_copy(I1* first, I1* last, I2* out)
|
||||
{
|
||||
memcpy(out, first, (last-first)*sizeof(I2));
|
||||
return out+(last-first);
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
template<typename I1, typename I2>
|
||||
inline I2 copy(I1 first, I1 last, I2 out)
|
||||
{
|
||||
typedef typename
|
||||
boost::remove_cv<
|
||||
typename std::iterator_traits<I1>
|
||||
::value_type>::type v1_t;
|
||||
|
||||
typedef typename
|
||||
boost::remove_cv<
|
||||
typename std::iterator_traits<I2>
|
||||
::value_type>::type v2_t;
|
||||
|
||||
enum{ can_opt =
|
||||
boost::is_same<v1_t, v2_t>::value
|
||||
&& boost::is_pointer<I1>::value
|
||||
&& boost::is_pointer<I2>::value
|
||||
&& boost::
|
||||
has_trivial_assign<v1_t>::value
|
||||
};
|
||||
|
||||
return detail::copier<can_opt>::
|
||||
do_copy(first, last, out);
|
||||
}</pre>
|
||||
<hr>
|
||||
<p><EFBFBD> Copyright John Maddock and Steve Cleary, 2000</p>
|
||||
|
||||
</body>
|
||||
|
||||
</html>
|
762
call_traits.htm
Normal file
762
call_traits.htm
Normal file
@@ -0,0 +1,762 @@
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type"
|
||||
content="text/html; charset=iso-8859-1">
|
||||
<meta name="Template"
|
||||
content="C:\PROGRAM FILES\MICROSOFT OFFICE\OFFICE\html.dot">
|
||||
<meta name="GENERATOR" content="Microsoft FrontPage Express 2.0">
|
||||
<title>Call Traits</title>
|
||||
</head>
|
||||
|
||||
<body bgcolor="#FFFFFF" text="#000000" link="#0000FF"
|
||||
vlink="#800080">
|
||||
|
||||
<h1><img src="../../c++boost.gif" width="276" height="86">Header
|
||||
<<a href="../../boost/detail/call_traits.hpp">boost/call_traits.hpp</a>></h1>
|
||||
|
||||
<p>All of the contents of <boost/call_traits.hpp> are
|
||||
defined inside namespace boost.</p>
|
||||
|
||||
<p>The template class call_traits<T> encapsulates the
|
||||
"best" method to pass a parameter of some type T to or
|
||||
from a function, and consists of a collection of typedefs defined
|
||||
as in the table below. The purpose of call_traits is to ensure
|
||||
that problems like "<a href="#refs">references to references</a>"
|
||||
never occur, and that parameters are passed in the most efficient
|
||||
manner possible (see <a href="#examples">examples</a>). In each
|
||||
case if your existing practice is to use the type defined on the
|
||||
left, then replace it with the call_traits defined type on the
|
||||
right. </p>
|
||||
|
||||
<p>Note that for compilers that do not support either partial
|
||||
specialization or member templates, no benefit will occur from
|
||||
using call_traits: the call_traits defined types will always be
|
||||
the same as the existing practice in this case. In addition if
|
||||
only member templates and not partial template specialisation is
|
||||
support by the compiler (for example Visual C++ 6) then
|
||||
call_traits can not be used with array types (although it can be
|
||||
used to solve the reference to reference problem).</p>
|
||||
|
||||
<table border="0" cellpadding="7" cellspacing="1" width="797">
|
||||
<tr>
|
||||
<td valign="top" width="17%" bgcolor="#008080"><p
|
||||
align="center">Existing practice</p>
|
||||
</td>
|
||||
<td valign="top" width="35%" bgcolor="#008080"><p
|
||||
align="center">call_traits equivalent</p>
|
||||
</td>
|
||||
<td valign="top" width="32%" bgcolor="#008080"><p
|
||||
align="center">Description</p>
|
||||
</td>
|
||||
<td valign="top" width="16%" bgcolor="#008080"><p
|
||||
align="center">Notes</p>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="17%"><p align="center">T<br>
|
||||
(return by value)</p>
|
||||
</td>
|
||||
<td valign="top" width="35%"><p align="center"><code>call_traits<T>::value_type</code></p>
|
||||
</td>
|
||||
<td valign="top" width="32%">Defines a type that
|
||||
represents the "value" of type T. Use this for
|
||||
functions that return by value, or possibly for stored
|
||||
values of type T.</td>
|
||||
<td valign="top" width="16%"><p align="center">2</p>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="17%"><p align="center">T&<br>
|
||||
(return value)</p>
|
||||
</td>
|
||||
<td valign="top" width="35%"><p align="center"><code>call_traits<T>::reference</code></p>
|
||||
</td>
|
||||
<td valign="top" width="32%">Defines a type that
|
||||
represents a reference to type T. Use for functions that
|
||||
would normally return a T&.</td>
|
||||
<td valign="top" width="16%"><p align="center">1</p>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="17%"><p align="center">const
|
||||
T&<br>
|
||||
(return value)</p>
|
||||
</td>
|
||||
<td valign="top" width="35%"><p align="center"><code>call_traits<T>::const_reference</code></p>
|
||||
</td>
|
||||
<td valign="top" width="32%">Defines a type that
|
||||
represents a constant reference to type T. Use for
|
||||
functions that would normally return a const T&.</td>
|
||||
<td valign="top" width="16%"><p align="center">1</p>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="17%"><p align="center">const
|
||||
T&<br>
|
||||
(function parameter)</p>
|
||||
</td>
|
||||
<td valign="top" width="35%"><p align="center"><code>call_traits<T>::param_type</code></p>
|
||||
</td>
|
||||
<td valign="top" width="32%">Defines a type that
|
||||
represents the "best" way to pass a parameter
|
||||
of type T to a function.</td>
|
||||
<td valign="top" width="16%"><p align="center">1,3</p>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
<p>Notes:</p>
|
||||
|
||||
<ol>
|
||||
<li>If T is already reference type, then call_traits is
|
||||
defined such that <a href="#refs">references to
|
||||
references</a> do not occur (requires partial
|
||||
specialization).</li>
|
||||
<li>If T is an array type, then call_traits defines <code>value_type</code>
|
||||
as a "constant pointer to type" rather than an
|
||||
"array of type" (requires partial
|
||||
specialization). Note that if you are using value_type as
|
||||
a stored value then this will result in storing a "constant
|
||||
pointer to an array" rather than the array itself.
|
||||
This may or may not be a good thing depending upon what
|
||||
you actually need (in other words take care!).</li>
|
||||
<li>If T is a small built in type or a pointer, then <code>param_type</code>
|
||||
is defined as <code>T const</code>, instead of <code>T
|
||||
const&</code>. This can improve the ability of the
|
||||
compiler to optimize loops in the body of the function if
|
||||
they depend upon the passed parameter, the semantics of
|
||||
the passed parameter is otherwise unchanged (requires
|
||||
partial specialization).</li>
|
||||
</ol>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<h3>Copy constructibility</h3>
|
||||
|
||||
<p>The following table defines which call_traits types can always
|
||||
be copy-constructed from which other types, those entries marked
|
||||
with a '?' are true only if and only if T is copy constructible:</p>
|
||||
|
||||
<table border="0" cellpadding="7" cellspacing="1" width="766">
|
||||
<tr>
|
||||
<td valign="top" width="17%"> </td>
|
||||
<td valign="top" colspan="5" width="85%"
|
||||
bgcolor="#008080"><p align="center">To:</p>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="17%" bgcolor="#008080">From:</td>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
|
||||
align="center">T</p>
|
||||
</td>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
|
||||
align="center">value_type</p>
|
||||
</td>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
|
||||
align="center">reference</p>
|
||||
</td>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
|
||||
align="center">const_reference</p>
|
||||
</td>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
|
||||
align="center">param_type</p>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0">T</td>
|
||||
<td valign="top" width="17%"><p align="center">?</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">?</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">Y</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">Y</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">Y</p>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0">value_type</td>
|
||||
<td valign="top" width="17%"><p align="center">?</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">?</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">N</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">N</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">Y</p>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0">reference</td>
|
||||
<td valign="top" width="17%"><p align="center">?</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">?</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">Y</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">Y</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">Y</p>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0">const_reference</td>
|
||||
<td valign="top" width="17%"><p align="center">?</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">N</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">N</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">Y</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">Y</p>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0">param_type</td>
|
||||
<td valign="top" width="17%"><p align="center">?</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">?</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">N</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">N</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">Y</p>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p>If T is an assignable type the following assignments are
|
||||
possible:</p>
|
||||
|
||||
<table border="0" cellpadding="7" cellspacing="1" width="766">
|
||||
<tr>
|
||||
<td valign="top" width="17%"> </td>
|
||||
<td valign="top" colspan="5" width="85%"
|
||||
bgcolor="#008080"><p align="center">To:</p>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="17%" bgcolor="#008080">From:</td>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
|
||||
align="center">T</p>
|
||||
</td>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
|
||||
align="center">value_type</p>
|
||||
</td>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
|
||||
align="center">reference</p>
|
||||
</td>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
|
||||
align="center">const_reference</p>
|
||||
</td>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
|
||||
align="center">param_type</p>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0">T</td>
|
||||
<td valign="top" width="17%"><p align="center">Y</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">Y</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">-</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">-</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">-</p>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0">value_type</td>
|
||||
<td valign="top" width="17%"><p align="center">Y</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">Y</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">-</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">-</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">-</p>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0">reference</td>
|
||||
<td valign="top" width="17%"><p align="center">Y</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">Y</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">-</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">-</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">-</p>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0">const_reference</td>
|
||||
<td valign="top" width="17%"><p align="center">Y</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">Y</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">-</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">-</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">-</p>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0">param_type</td>
|
||||
<td valign="top" width="17%"><p align="center">Y</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">Y</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">-</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">-</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">-</p>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<h3><a name="examples"></a>Examples</h3>
|
||||
|
||||
<p>The following table shows the effect that call_traits has on
|
||||
various types, the table assumes that the compiler supports
|
||||
partial specialization: if it doesn't then all types behave in
|
||||
the same way as the entry for "myclass", and
|
||||
call_traits can not be used with reference or array types.</p>
|
||||
|
||||
<table border="0" cellpadding="7" cellspacing="1" width="766">
|
||||
<tr>
|
||||
<td valign="top" width="17%"> </td>
|
||||
<td valign="top" colspan="5" width="85%"
|
||||
bgcolor="#008080"><p align="center">Call_traits type:</p>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="17%" bgcolor="#008080"><p
|
||||
align="center">Original type T</p>
|
||||
</td>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
|
||||
align="center">value_type</p>
|
||||
</td>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
|
||||
align="center">reference</p>
|
||||
</td>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
|
||||
align="center">const_reference</p>
|
||||
</td>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
|
||||
align="center">param_type</p>
|
||||
</td>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
|
||||
align="center">Applies to:</p>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
|
||||
align="center">myclass</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">myclass</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">myclass&</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">const
|
||||
myclass&</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">myclass
|
||||
const&</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">All user
|
||||
defined types.</p>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
|
||||
align="center">int</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">int</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">int&</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">const
|
||||
int&</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">int const</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">All small
|
||||
built-in types.</p>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
|
||||
align="center">int*</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">int*</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">int*&</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">int*const&</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">int* const</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">All
|
||||
pointer types.</p>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
|
||||
align="center">int&</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">int&</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">int&</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">const
|
||||
int&</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">int&</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">All
|
||||
reference types.</p>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
|
||||
align="center">const int&</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">const
|
||||
int&</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">const
|
||||
int&</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">const
|
||||
int&</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">const
|
||||
int&</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">All
|
||||
constant-references.</p>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
|
||||
align="center">int[3]</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">const int*</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">int(&)[3]</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">const int(&)[3]</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">const int*
|
||||
const</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">All array
|
||||
types.</p>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
|
||||
align="center">const int[3]</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">const int*</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">const int(&)[3]</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">const int(&)[3]</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">const int*
|
||||
const</p>
|
||||
</td>
|
||||
<td valign="top" width="17%"><p align="center">All
|
||||
constant-array types.</p>
|
||||
</td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<h4>Example 1:</h4>
|
||||
|
||||
<p>The following class is a trivial class that stores some type T
|
||||
by value (see the <a href="call_traits_test.cpp">call_traits_test.cpp</a>
|
||||
file), the aim is to illustrate how each of the available
|
||||
call_traits typedefs may be used:</p>
|
||||
|
||||
<pre>template <class T>
|
||||
struct contained
|
||||
{
|
||||
// define our typedefs first, arrays are stored by value
|
||||
// so value_type is not the same as result_type:
|
||||
typedef typename boost::call_traits<T>::param_type param_type;
|
||||
typedef typename boost::call_traits<T>::reference reference;
|
||||
typedef typename boost::call_traits<T>::const_reference const_reference;
|
||||
typedef T value_type;
|
||||
typedef typename boost::call_traits<T>::value_type result_type;
|
||||
|
||||
// stored value:
|
||||
value_type v_;
|
||||
|
||||
// constructors:
|
||||
contained() {}
|
||||
contained(param_type p) : v_(p){}
|
||||
// return byval:
|
||||
result_type value() { return v_; }
|
||||
// return by_ref:
|
||||
reference get() { return v_; }
|
||||
const_reference const_get()const { return v_; }
|
||||
// pass value:
|
||||
void call(param_type p){}
|
||||
|
||||
};</pre>
|
||||
|
||||
<h4><a name="refs"></a>Example 2 (the reference to reference
|
||||
problem):</h4>
|
||||
|
||||
<p>Consider the definition of std::binder1st:</p>
|
||||
|
||||
<pre>template <class Operation>
|
||||
class binder1st :
|
||||
public unary_function<typename Operation::second_argument_type, typename Operation::result_type>
|
||||
{
|
||||
protected:
|
||||
Operation op;
|
||||
typename Operation::first_argument_type value;
|
||||
public:
|
||||
binder1st(const Operation& x, const typename Operation::first_argument_type& y);
|
||||
typename Operation::result_type operator()(const typename Operation::second_argument_type& x) const;
|
||||
}; </pre>
|
||||
|
||||
<p>Now consider what happens in the relatively common case that
|
||||
the functor takes its second argument as a reference, that
|
||||
implies that <code>Operation::second_argument_type</code> is a
|
||||
reference type, <code>operator()</code> will now end up taking a
|
||||
reference to a reference as an argument, and that is not
|
||||
currently legal. The solution here is to modify <code>operator()</code>
|
||||
to use call_traits:</p>
|
||||
|
||||
<pre>typename Operation::result_type operator()(typename call_traits<typename Operation::second_argument_type>::param_type x) const;</pre>
|
||||
|
||||
<p>Now in the case that <code>Operation::second_argument_type</code>
|
||||
is a reference type, the argument is passed as a reference, and
|
||||
the no "reference to reference" occurs.</p>
|
||||
|
||||
<h4><a name="ex3"></a>Example 3 (the make_pair problem):</h4>
|
||||
|
||||
<p>If we pass the name of an array as one (or both) arguments to <code>std::make_pair</code>,
|
||||
then template argument deduction deduces the passed parameter as
|
||||
"const reference to array of T", this also applies to
|
||||
string literals (which are really array literals). Consequently
|
||||
instead of returning a pair of pointers, it tries to return a
|
||||
pair of arrays, and since an array type is not copy-constructible
|
||||
the code fails to compile. One solution is to explicitly cast the
|
||||
arguments to make_pair to pointers, but call_traits provides a
|
||||
better (i.e. automatic) solution (and one that works safely even
|
||||
in generic code where the cast might do the wrong thing):</p>
|
||||
|
||||
<pre>template <class T1, class T2>
|
||||
std::pair<
|
||||
typename boost::call_traits<T1>::value_type,
|
||||
typename boost::call_traits<T2>::value_type>
|
||||
make_pair(const T1& t1, const T2& t2)
|
||||
{
|
||||
return std::pair<
|
||||
typename boost::call_traits<T1>::value_type,
|
||||
typename boost::call_traits<T2>::value_type>(t1, t2);
|
||||
}</pre>
|
||||
|
||||
<p>Here, the deduced argument types will be automatically
|
||||
degraded to pointers if the deduced types are arrays, similar
|
||||
situations occur in the standard binders and adapters: in
|
||||
principle in any function that "wraps" a temporary
|
||||
whose type is deduced. Note that the function arguments to
|
||||
make_pair are not expressed in terms of call_traits: doing so
|
||||
would prevent template argument deduction from functioning.</p>
|
||||
|
||||
<h4><a name="ex4"></a>Example 4 (optimising fill):</h4>
|
||||
|
||||
<p>The call_traits template will "optimize" the passing
|
||||
of a small built-in type as a function parameter, this mainly has
|
||||
an effect when the parameter is used within a loop body. In the
|
||||
following example (see <a href="algo_opt_examples.cpp">algo_opt_examples.cpp</a>),
|
||||
a version of std::fill is optimized in two ways: if the type
|
||||
passed is a single byte built-in type then std::memset is used to
|
||||
effect the fill, otherwise a conventional C++ implemention is
|
||||
used, but with the passed parameter "optimized" using
|
||||
call_traits:</p>
|
||||
|
||||
<pre>namespace detail{
|
||||
|
||||
template <bool opt>
|
||||
struct filler
|
||||
{
|
||||
template <typename I, typename T>
|
||||
static void do_fill(I first, I last, typename boost::call_traits<T>::param_type val);
|
||||
{
|
||||
while(first != last)
|
||||
{
|
||||
*first = val;
|
||||
++first;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct filler<true>
|
||||
{
|
||||
template <typename I, typename T>
|
||||
static void do_fill(I first, I last, T val)
|
||||
{
|
||||
memset(first, val, last-first);
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
template <class I, class T>
|
||||
inline void fill(I first, I last, const T& val)
|
||||
{
|
||||
enum{ can_opt = boost::is_pointer<I>::value
|
||||
&& boost::is_arithmetic<T>::value
|
||||
&& (sizeof(T) == 1) };
|
||||
typedef detail::filler<can_opt> filler_t;
|
||||
filler_t::template do_fill<I,T>(first, last, val);
|
||||
}</pre>
|
||||
|
||||
<p>Footnote: the reason that this is "optimal" for
|
||||
small built-in types is that with the value passed as "T
|
||||
const" instead of "const T&" the compiler is
|
||||
able to tell both that the value is constant and that it is free
|
||||
of aliases. With this information the compiler is able to cache
|
||||
the passed value in a register, unroll the loop, or use
|
||||
explicitly parallel instructions: if any of these are supported.
|
||||
Exactly how much mileage you will get from this depends upon your
|
||||
compiler - we could really use some accurate benchmarking
|
||||
software as part of boost for cases like this.</p>
|
||||
|
||||
<p>Note that the function arguments to fill are not expressed in
|
||||
terms of call_traits: doing so would prevent template argument
|
||||
deduction from functioning. Instead fill acts as a "thin
|
||||
wrapper" that is there to perform template argument
|
||||
deduction, the compiler will optimise away the call to fill all
|
||||
together, replacing it with the call to filler<>::do_fill,
|
||||
which does use call_traits.</p>
|
||||
|
||||
<h3>Rationale</h3>
|
||||
|
||||
<p>The following notes are intended to briefly describe the
|
||||
rational behind choices made in call_traits.</p>
|
||||
|
||||
<p>All user-defined types follow "existing practice"
|
||||
and need no comment.</p>
|
||||
|
||||
<p>Small built-in types (what the standard calls fundamental
|
||||
types [3.9.1]) differ from existing practice only in the <i>param_type</i>
|
||||
typedef. In this case passing "T const" is compatible
|
||||
with existing practice, but may improve performance in some cases
|
||||
(see <a href="#ex4">Example 4</a>), in any case this should never
|
||||
be any worse than existing practice.</p>
|
||||
|
||||
<p>Pointers follow the same rational as small built-in types.</p>
|
||||
|
||||
<p>For reference types the rational follows <a href="#refs">Example
|
||||
2</a> - references to references are not allowed, so the
|
||||
call_traits members must be defined such that these problems do
|
||||
not occur. There is a proposal to modify the language such that
|
||||
"a reference to a reference is a reference" (issue #106,
|
||||
submitted by Bjarne Stroustrup), call_traits<T>::value_type
|
||||
and call_traits<T>::param_type both provide the same effect
|
||||
as that proposal, without the need for a language change (in
|
||||
other words it's a workaround).</p>
|
||||
|
||||
<p>For array types, a function that takes an array as an argument
|
||||
will degrade the array type to a pointer type: this means that
|
||||
the type of the actual parameter is different from its declared
|
||||
type, something that can cause endless problems in template code
|
||||
that relies on the declared type of a parameter. For example:</p>
|
||||
|
||||
<pre>template <class T>
|
||||
struct A
|
||||
{
|
||||
void foo(T t);
|
||||
};</pre>
|
||||
|
||||
<p><font face="Times New Roman">In this case if we instantiate
|
||||
A<int[2]> then the declared type of the parameter passed to
|
||||
member function foo is int[2], but it's actual type is const int*,
|
||||
if we try to use the type T within the function body, then there
|
||||
is a strong likelyhood that our code will not compile:</font></p>
|
||||
|
||||
<pre>template <class T>
|
||||
void A<T>::foo(T t)
|
||||
{
|
||||
T dup(t); // doesn't compile for case that T is an array.
|
||||
}</pre>
|
||||
|
||||
<p>By using call_traits the degradation from array to pointer is
|
||||
explicit, and the type of the parameter is the same as it's
|
||||
declared type:</p>
|
||||
|
||||
<pre>template <class T>
|
||||
struct A
|
||||
{
|
||||
void foo(typename call_traits<T>::value_type t);
|
||||
};
|
||||
|
||||
template <class T>
|
||||
void A<T>::foo(typename call_traits<T>::value_type t)
|
||||
{
|
||||
typename call_traits<T>::value_type dup(t); // OK even if T is an array type.
|
||||
}</pre>
|
||||
|
||||
<p>For value_type (return by value), again only a pointer may be
|
||||
returned, not a copy of the whole array, and again call_traits
|
||||
makes the degradation explicit. The value_type member is useful
|
||||
whenever an array must be explicitly degraded to a pointer - <a
|
||||
href="#ex3">Example 3</a> provides the test case (Footnote: the
|
||||
array specialisation for call_traits is the least well understood
|
||||
of all the call_traits specialisations, if the given semantics
|
||||
cause specific problems for you, or don't solve a particular
|
||||
array-related problem, then I would be interested to hear about
|
||||
it. Most people though will probably never need to use this
|
||||
specialisation).</p>
|
||||
|
||||
<hr>
|
||||
|
||||
<p>Revised 01 September 2000</p>
|
||||
|
||||
<p><EFBFBD> Copyright boost.org 2000. Permission to copy, use, modify,
|
||||
sell and distribute this document is granted provided this
|
||||
copyright notice appears in all copies. This document is provided
|
||||
"as is" without express or implied warranty, and with
|
||||
no claim as to its suitability for any purpose.</p>
|
||||
|
||||
<p>Based on contributions by Steve Cleary, Beman Dawes, Howard
|
||||
Hinnant and John Maddock.</p>
|
||||
|
||||
<p>Maintained by <a href="mailto:John_Maddock@compuserve.com">John
|
||||
Maddock</a>, the latest version of this file can be found at <a
|
||||
href="http://www.boost.org/">www.boost.org</a>, and the boost
|
||||
discussion list at <a href="http://www.egroups.com/list/boost">www.egroups.com/list/boost</a>.</p>
|
||||
|
||||
<p>.</p>
|
||||
|
||||
<p> </p>
|
||||
|
||||
<p> </p>
|
||||
</body>
|
||||
</html>
|
366
half_open_range_test.cpp
Normal file
366
half_open_range_test.cpp
Normal file
@@ -0,0 +1,366 @@
|
||||
// (C) Copyright David Abrahams 2001. Permission to copy, use, modify, sell and
|
||||
// distribute this software is granted provided this copyright notice appears in
|
||||
// all copies. This software is provided "as is" without express or implied
|
||||
// warranty, and with no claim as to its suitability for any purpose.
|
||||
//
|
||||
// See http://www.boost.org for most recent version including documentation.
|
||||
//
|
||||
// Revision History
|
||||
// 11 Feb 2001 Compile with Borland, re-enable failing tests (David Abrahams)
|
||||
// 29 Jan 2001 Initial revision (David Abrahams)
|
||||
|
||||
#include <boost/half_open_range.hpp>
|
||||
#include <boost/utility.hpp>
|
||||
#include <iterator>
|
||||
#include <stdlib.h>
|
||||
#include <vector>
|
||||
#include <list>
|
||||
#include <cassert>
|
||||
#include <stdexcept>
|
||||
#ifndef BOOST_NO_LIMITS
|
||||
# include <limits>
|
||||
#endif
|
||||
#ifndef BOOST_NO_SLIST
|
||||
# include <slist>
|
||||
#endif
|
||||
|
||||
inline unsigned unsigned_random(unsigned max)
|
||||
{
|
||||
return (max > 0) ? (unsigned)rand() % max : 0;
|
||||
}
|
||||
|
||||
// Special tests for ranges supporting random access
|
||||
template <class T>
|
||||
void category_test_1(
|
||||
const boost::half_open_range<T>& r, std::random_access_iterator_tag)
|
||||
{
|
||||
typedef boost::half_open_range<T> range;
|
||||
typedef typename range::size_type size_type;
|
||||
size_type size = r.size();
|
||||
|
||||
// pick a random offset
|
||||
size_type offset = unsigned_random(size);
|
||||
|
||||
typename range::value_type x = *(r.begin() + offset);
|
||||
// test contains(value_type)
|
||||
assert(r.contains(r.start()) == !r.empty());
|
||||
assert(!r.contains(r.finish()));
|
||||
assert(r.contains(x) == (offset != size));
|
||||
|
||||
range::const_iterator p = r.find(x);
|
||||
assert((p == r.end()) == (x == r.finish()));
|
||||
assert(r.find(r.finish()) == r.end());
|
||||
|
||||
if (offset != size)
|
||||
{
|
||||
assert(x == r[offset]);
|
||||
assert(x == r.at(offset));
|
||||
}
|
||||
|
||||
bool caught_out_of_range = false;
|
||||
try {
|
||||
bool never_initialized = x == r.at(size);
|
||||
(void)never_initialized;
|
||||
}
|
||||
catch(std::out_of_range&)
|
||||
{
|
||||
caught_out_of_range = true;
|
||||
}
|
||||
catch(...)
|
||||
{
|
||||
}
|
||||
assert(caught_out_of_range);
|
||||
}
|
||||
|
||||
// Those tests must be skipped for other ranges
|
||||
template <class T>
|
||||
void category_test_1(
|
||||
const boost::half_open_range<T>&, std::forward_iterator_tag)
|
||||
{
|
||||
}
|
||||
|
||||
unsigned indices[][2] = { {0,0},{0,1},{0,2},{0,3},
|
||||
{1,1},{1,2},{1,3},
|
||||
{2,2},{2,3},
|
||||
{3,3}};
|
||||
|
||||
template <class Range>
|
||||
void category_test_2(
|
||||
const std::vector<Range>& ranges, unsigned i, unsigned j, std::random_access_iterator_tag)
|
||||
{
|
||||
typedef Range range;
|
||||
const range& ri = ranges[i];
|
||||
const range& rj = ranges[j];
|
||||
|
||||
if (indices[i][0] <= indices[j][0] && indices[i][1] >= indices[j][1])
|
||||
assert(ri.contains(rj));
|
||||
|
||||
if (ri.contains(rj))
|
||||
assert((ri & rj) == rj);
|
||||
assert(boost::intersects(ri, rj) == !(ri & rj).empty());
|
||||
|
||||
range t1(ri);
|
||||
t1 &= rj;
|
||||
assert(t1 == range(indices[i][0] > indices[j][0] ? ri.start() : rj.start(),
|
||||
indices[i][1] < indices[j][1] ? ri.finish() : rj.finish()));
|
||||
assert(t1 == (ri & rj));
|
||||
|
||||
range t2(ri);
|
||||
t2 |= rj;
|
||||
|
||||
if (ri.empty())
|
||||
assert(t2 == rj);
|
||||
else if (rj.empty())
|
||||
assert(t2 == ri);
|
||||
else
|
||||
assert(t2 == range(indices[i][0] < indices[j][0] ? ri.start() : rj.start(),
|
||||
indices[i][1] > indices[j][1] ? ri.finish() : rj.finish()));
|
||||
assert(t2 == (ri | rj));
|
||||
if (i == j)
|
||||
assert(ri == rj);
|
||||
|
||||
if (ri.empty() || rj.empty())
|
||||
assert((ri == rj) == (ri.empty() && rj.empty()));
|
||||
else
|
||||
assert((ri == rj) == (ri.start() == rj.start() && ri.finish() == rj.finish()));
|
||||
|
||||
assert((ri == rj) == !(ri != rj));
|
||||
|
||||
bool same = ri == rj;
|
||||
bool one_empty = ri.empty() != rj.empty();
|
||||
|
||||
std::less<range> less;
|
||||
std::less_equal<range> less_equal;
|
||||
std::greater<range> greater;
|
||||
std::greater_equal<range> greater_equal;
|
||||
|
||||
if (same)
|
||||
{
|
||||
assert(greater_equal(ri,rj));
|
||||
assert(less_equal(ri,rj));
|
||||
assert(!greater(ri,rj));
|
||||
assert(!less(ri,rj));
|
||||
}
|
||||
else if (one_empty)
|
||||
{
|
||||
const range& empty = ri.empty() ? ri : rj;
|
||||
const range& non_empty = rj.empty() ? ri : rj;
|
||||
|
||||
assert(less(empty,non_empty));
|
||||
assert(less_equal(empty,non_empty));
|
||||
assert(!greater(empty,non_empty));
|
||||
assert(!greater_equal(empty,non_empty));
|
||||
assert(!less(non_empty,empty));
|
||||
assert(!less_equal(non_empty,empty));
|
||||
assert(greater(non_empty,empty));
|
||||
assert(greater_equal(non_empty,empty));
|
||||
}
|
||||
else {
|
||||
if (indices[i][0] < indices[j][0] ||
|
||||
indices[i][0] == indices[j][0] && indices[i][1] < indices[j][1])
|
||||
{
|
||||
assert(!greater_equal(ri,rj));
|
||||
assert(less(ri,rj));
|
||||
}
|
||||
|
||||
if (indices[i][0] < indices[j][0] ||
|
||||
indices[i][0] == indices[j][0] && indices[i][1] <= indices[j][1])
|
||||
{
|
||||
assert(!greater(ri,rj));
|
||||
assert(less_equal(ri,rj));
|
||||
}
|
||||
|
||||
if (indices[i][0] > indices[j][0] ||
|
||||
indices[i][0] == indices[j][0] && indices[i][1] > indices[j][1])
|
||||
{
|
||||
assert(!less_equal(ri,rj));
|
||||
assert(greater(ri,rj));
|
||||
}
|
||||
|
||||
if (indices[i][0] > indices[j][0] ||
|
||||
indices[i][0] == indices[j][0] && indices[i][1] >= indices[j][1])
|
||||
{
|
||||
assert(!less(ri,rj));
|
||||
assert(greater_equal(ri,rj));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template <class Range>
|
||||
void category_test_2(
|
||||
const std::vector<Range>&, unsigned, unsigned, std::forward_iterator_tag)
|
||||
{
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void category_test_2(
|
||||
const std::vector<boost::half_open_range<T> >&, unsigned, unsigned, std::bidirectional_iterator_tag)
|
||||
{
|
||||
}
|
||||
|
||||
template <class Range>
|
||||
void test_back(Range& x, std::bidirectional_iterator_tag)
|
||||
{
|
||||
assert(x.back() == boost::prior(x.finish()));
|
||||
}
|
||||
|
||||
template <class Range>
|
||||
void test_back(Range& x, std::forward_iterator_tag)
|
||||
{
|
||||
}
|
||||
|
||||
template <class T>
|
||||
boost::half_open_range<T> range_identity(const boost::half_open_range<T>& x)
|
||||
{
|
||||
return x;
|
||||
}
|
||||
|
||||
template <class T>
|
||||
void test(T x0, T x1, T x2, T x3)
|
||||
{
|
||||
std::vector<boost::half_open_range<T> > ranges;
|
||||
typedef boost::half_open_range<T> range;
|
||||
|
||||
T bounds[4] = { x0, x1, x2, x3 };
|
||||
|
||||
const std::size_t num_ranges = sizeof(indices)/sizeof(*indices);
|
||||
// test construction
|
||||
for (std::size_t n = 0; n < num_ranges;++n)
|
||||
{
|
||||
T start = bounds[indices[n][0]];
|
||||
T finish = bounds[indices[n][1]];
|
||||
boost::half_open_range<T> r(start, finish);
|
||||
ranges.push_back(r);
|
||||
}
|
||||
|
||||
// test implicit conversion from std::pair<T,T>
|
||||
range converted = std::pair<T,T>(x0,x0);
|
||||
(void)converted;
|
||||
|
||||
// test assignment, equality and inequality
|
||||
range r00 = range(x0, x0);
|
||||
assert(r00 == range(x0,x0));
|
||||
assert(r00 == range(x1,x1)); // empty ranges are all equal
|
||||
if (x3 != x0)
|
||||
assert(r00 != range(x0, x3));
|
||||
r00 = range(x0, x3);
|
||||
assert(r00 == range(x0, x3));
|
||||
if (x3 != x0)
|
||||
assert(r00 != range(x0, x0));
|
||||
|
||||
typedef typename range::iterator iterator;
|
||||
typedef typename iterator::iterator_category category;
|
||||
|
||||
for (unsigned i = 0; i < num_ranges; ++i)
|
||||
{
|
||||
const range& r = ranges[i];
|
||||
|
||||
// test begin(), end(), basic iteration.
|
||||
unsigned count = 0;
|
||||
for (range::const_iterator p = r.begin(), finish = r.end();
|
||||
p != finish;
|
||||
++p, ++count)
|
||||
{
|
||||
assert(count < 2100);
|
||||
}
|
||||
|
||||
// test size(), empty(), front(), back()
|
||||
assert((unsigned)r.size() == count);
|
||||
if (indices[i][0] == indices[i][1])
|
||||
assert(r.empty());
|
||||
if (r.empty())
|
||||
assert(r.size() == 0);
|
||||
if (!r.empty())
|
||||
{
|
||||
assert(r.front() == r.start());
|
||||
test_back(r, category());
|
||||
}
|
||||
|
||||
// test swap
|
||||
range r1(r);
|
||||
range r2(x0,x3);
|
||||
const bool same = r1 == r2;
|
||||
r1.swap(r2);
|
||||
assert(r1 == range(x0,x3));
|
||||
assert(r2 == r);
|
||||
if (!same) {
|
||||
assert(r1 != r);
|
||||
assert(r2 != range(x0,x3));
|
||||
}
|
||||
|
||||
// do individual tests for random-access iterators
|
||||
category_test_1(r, category());
|
||||
}
|
||||
|
||||
for (unsigned j = 0; j < num_ranges; ++j) {
|
||||
for (unsigned k = 0; k < num_ranges; ++k) {
|
||||
category_test_2(ranges, j, k, category());
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template <class Integer>
|
||||
void test_integer(Integer* = 0) // default arg works around MSVC bug
|
||||
{
|
||||
Integer a = 0;
|
||||
Integer b = a + unsigned_random(128 - a);
|
||||
Integer c = b + unsigned_random(128 - b);
|
||||
Integer d = c + unsigned_random(128 - c);
|
||||
|
||||
test(a, b, c, d);
|
||||
}
|
||||
|
||||
template <class Container>
|
||||
void test_container(Container* = 0) // default arg works around MSVC bug
|
||||
{
|
||||
Container c(unsigned_random(1673));
|
||||
|
||||
const typename Container::size_type offset1 = unsigned_random(c.size());
|
||||
const typename Container::size_type offset2 = unsigned_random(c.size() - offset1);
|
||||
typename Container::iterator internal1 = c.begin();
|
||||
std::advance(internal1, offset1);
|
||||
typename Container::iterator internal2 = internal1;
|
||||
std::advance(internal2, offset2);
|
||||
|
||||
test(c.begin(), internal1, internal2, c.end());
|
||||
|
||||
typedef typename Container::const_iterator const_iterator;
|
||||
test(const_iterator(c.begin()),
|
||||
const_iterator(internal1),
|
||||
const_iterator(internal2),
|
||||
const_iterator(c.end()));
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
// Test the built-in integer types.
|
||||
test_integer<char>();
|
||||
test_integer<unsigned char>();
|
||||
test_integer<signed char>();
|
||||
test_integer<wchar_t>();
|
||||
test_integer<short>();
|
||||
test_integer<unsigned short>();
|
||||
test_integer<int>();
|
||||
test_integer<unsigned int>();
|
||||
test_integer<long>();
|
||||
test_integer<unsigned long>();
|
||||
#if defined(ULLONG_MAX) || defined(ULONG_LONG_MAX)
|
||||
test_integer<long long>();
|
||||
test_integer<unsigned long long>();
|
||||
#endif
|
||||
// Some tests on container iterators, to prove we handle a few different categories
|
||||
test_container<std::vector<int> >();
|
||||
test_container<std::list<int> >();
|
||||
#ifndef BOOST_NO_SLIST
|
||||
test_container<BOOST_STD_EXTENSION_NAMESPACE::slist<int> >();
|
||||
#endif
|
||||
// Also prove that we can handle raw pointers.
|
||||
int array[2000];
|
||||
const std::size_t a = 0;
|
||||
const std::size_t b = a + unsigned_random(2000 - a);
|
||||
const std::size_t c = b + unsigned_random(2000 - b);
|
||||
test(array, array+b, array+c, array+2000);
|
||||
return 0;
|
||||
}
|
565
include/boost/operators.hpp
Normal file
565
include/boost/operators.hpp
Normal file
@@ -0,0 +1,565 @@
|
||||
// Boost operators.hpp header file ----------------------------------------//
|
||||
|
||||
// (C) Copyright David Abrahams 1999. Permission to copy, use,
|
||||
// modify, sell and distribute this software is granted provided this
|
||||
// copyright notice appears in all copies. This software is provided
|
||||
// "as is" without express or implied warranty, and with no claim as
|
||||
// to its suitability for any purpose.
|
||||
|
||||
// (C) Copyright Jeremy Siek 1999. Permission to copy, use, modify,
|
||||
// sell and distribute this software is granted provided this
|
||||
// copyright notice appears in all copies. This software is provided
|
||||
// "as is" without express or implied warranty, and with no claim as
|
||||
// to its suitability for any purpose.
|
||||
|
||||
// See http://www.boost.org for most recent version including documentation.
|
||||
|
||||
// Revision History
|
||||
// 11 Feb 01 Fixed bugs in the iterator helpers which prevented explicitly
|
||||
// supplied arguments from actually being used (Dave Abrahams)
|
||||
// 04 Jul 00 Fixed NO_OPERATORS_IN_NAMESPACE bugs, major cleanup and
|
||||
// refactoring of compiler workarounds, additional documentation
|
||||
// (Alexy Gurtovoy and Mark Rodgers with some help and prompting from
|
||||
// Dave Abrahams)
|
||||
// 28 Jun 00 General cleanup and integration of bugfixes from Mark Rodgers and
|
||||
// Jeremy Siek (Dave Abrahams)
|
||||
// 20 Jun 00 Changes to accommodate Borland C++Builder 4 and Borland C++ 5.5
|
||||
// (Mark Rodgers)
|
||||
// 20 Jun 00 Minor fixes to the prior revision (Aleksey Gurtovoy)
|
||||
// 10 Jun 00 Support for the base class chaining technique was added
|
||||
// (Aleksey Gurtovoy). See documentation and the comments below
|
||||
// for the details.
|
||||
// 12 Dec 99 Initial version with iterator operators (Jeremy Siek)
|
||||
// 18 Nov 99 Change name "divideable" to "dividable", remove unnecessary
|
||||
// specializations of dividable, subtractable, modable (Ed Brey)
|
||||
// 17 Nov 99 Add comments (Beman Dawes)
|
||||
// Remove unnecessary specialization of operators<> (Ed Brey)
|
||||
// 15 Nov 99 Fix less_than_comparable<T,U> second operand type for first two
|
||||
// operators.(Beman Dawes)
|
||||
// 12 Nov 99 Add operators templates (Ed Brey)
|
||||
// 11 Nov 99 Add single template parameter version for compilers without
|
||||
// partial specialization (Beman Dawes)
|
||||
// 10 Nov 99 Initial version
|
||||
|
||||
// 10 Jun 00:
|
||||
// An additional optional template parameter was added to most of
|
||||
// operator templates to support the base class chaining technique (see
|
||||
// documentation for the details). Unfortunately, a straightforward
|
||||
// implementation of this change would have broken compatibility with the
|
||||
// previous version of the library by making it impossible to use the same
|
||||
// template name (e.g. 'addable') for both the 1- and 2-argument versions of
|
||||
// an operator template. This implementation solves the backward-compatibility
|
||||
// issue at the cost of some simplicity.
|
||||
//
|
||||
// One of the complications is an existence of special auxiliary class template
|
||||
// 'is_chained_base<>' (see 'detail' namespace below), which is used
|
||||
// to determine whether its template parameter is a library's operator template
|
||||
// or not. You have to specialize 'is_chained_base<>' for each new
|
||||
// operator template you add to the library.
|
||||
//
|
||||
// However, most of the non-trivial implementation details are hidden behind
|
||||
// several local macros defined below, and as soon as you understand them,
|
||||
// you understand the whole library implementation.
|
||||
|
||||
#ifndef BOOST_OPERATORS_HPP
|
||||
#define BOOST_OPERATORS_HPP
|
||||
|
||||
#include <boost/config.hpp>
|
||||
#include <boost/iterator.hpp>
|
||||
|
||||
#if defined(__sgi) && !defined(__GNUC__)
|
||||
#pragma set woff 1234
|
||||
#endif
|
||||
|
||||
#if defined(BOOST_MSVC)
|
||||
# pragma warning( disable : 4284 ) // complaint about return type of
|
||||
#endif // operator-> not begin a UDT
|
||||
|
||||
namespace boost {
|
||||
namespace detail {
|
||||
|
||||
class empty_base {};
|
||||
|
||||
} // namespace detail
|
||||
} // namespace boost
|
||||
|
||||
// In this section we supply the xxxx1 and xxxx2 forms of the operator
|
||||
// templates, which are explicitly targeted at the 1-type-argument and
|
||||
// 2-type-argument operator forms, respectively. Some compilers get confused
|
||||
// when inline friend functions are overloaded in namespaces other than the
|
||||
// global namespace. When BOOST_NO_OPERATORS_IN_NAMESPACE is defined, all of
|
||||
// these templates must go in the global namespace.
|
||||
|
||||
#ifndef BOOST_NO_OPERATORS_IN_NAMESPACE
|
||||
namespace boost
|
||||
{
|
||||
#endif
|
||||
|
||||
// Basic operator classes (contributed by Dave Abrahams) ------------------//
|
||||
|
||||
// Note that friend functions defined in a class are implicitly inline.
|
||||
// See the C++ std, 11.4 [class.friend] paragraph 5
|
||||
|
||||
template <class T, class U, class B = ::boost::detail::empty_base>
|
||||
struct less_than_comparable2 : B
|
||||
{
|
||||
friend bool operator<=(const T& x, const U& y) { return !(x > y); }
|
||||
friend bool operator>=(const T& x, const U& y) { return !(x < y); }
|
||||
friend bool operator>(const U& x, const T& y) { return y < x; }
|
||||
friend bool operator<(const U& x, const T& y) { return y > x; }
|
||||
friend bool operator<=(const U& x, const T& y) { return !(y < x); }
|
||||
friend bool operator>=(const U& x, const T& y) { return !(y > x); }
|
||||
};
|
||||
|
||||
template <class T, class B = ::boost::detail::empty_base>
|
||||
struct less_than_comparable1 : B
|
||||
{
|
||||
friend bool operator>(const T& x, const T& y) { return y < x; }
|
||||
friend bool operator<=(const T& x, const T& y) { return !(y < x); }
|
||||
friend bool operator>=(const T& x, const T& y) { return !(x < y); }
|
||||
};
|
||||
|
||||
template <class T, class U, class B = ::boost::detail::empty_base>
|
||||
struct equality_comparable2 : B
|
||||
{
|
||||
friend bool operator==(const U& y, const T& x) { return x == y; }
|
||||
friend bool operator!=(const U& y, const T& x) { return !(x == y); }
|
||||
friend bool operator!=(const T& y, const U& x) { return !(y == x); }
|
||||
};
|
||||
|
||||
template <class T, class B = ::boost::detail::empty_base>
|
||||
struct equality_comparable1 : B
|
||||
{
|
||||
friend bool operator!=(const T& x, const T& y) { return !(x == y); }
|
||||
};
|
||||
|
||||
template <class T, class U, class B = ::boost::detail::empty_base>
|
||||
struct multipliable2 : B
|
||||
{
|
||||
friend T operator*(T x, const U& y) { return x *= y; }
|
||||
friend T operator*(const U& y, T x) { return x *= y; }
|
||||
};
|
||||
|
||||
template <class T, class B = ::boost::detail::empty_base>
|
||||
struct multipliable1 : B
|
||||
{
|
||||
friend T operator*(T x, const T& y) { return x *= y; }
|
||||
};
|
||||
|
||||
template <class T, class U, class B = ::boost::detail::empty_base>
|
||||
struct addable2 : B
|
||||
{
|
||||
friend T operator+(T x, const U& y) { return x += y; }
|
||||
friend T operator+(const U& y, T x) { return x += y; }
|
||||
};
|
||||
|
||||
template <class T, class B = ::boost::detail::empty_base>
|
||||
struct addable1 : B
|
||||
{
|
||||
friend T operator+(T x, const T& y) { return x += y; }
|
||||
};
|
||||
|
||||
template <class T, class U, class B = ::boost::detail::empty_base>
|
||||
struct subtractable2 : B
|
||||
{
|
||||
friend T operator-(T x, const U& y) { return x -= y; }
|
||||
};
|
||||
|
||||
template <class T, class B = ::boost::detail::empty_base>
|
||||
struct subtractable1 : B
|
||||
{
|
||||
friend T operator-(T x, const T& y) { return x -= y; }
|
||||
};
|
||||
|
||||
template <class T, class U, class B = ::boost::detail::empty_base>
|
||||
struct dividable2 : B
|
||||
{
|
||||
friend T operator/(T x, const U& y) { return x /= y; }
|
||||
};
|
||||
|
||||
template <class T, class B = ::boost::detail::empty_base>
|
||||
struct dividable1 : B
|
||||
{
|
||||
friend T operator/(T x, const T& y) { return x /= y; }
|
||||
};
|
||||
|
||||
template <class T, class U, class B = ::boost::detail::empty_base>
|
||||
struct modable2 : B
|
||||
{
|
||||
friend T operator%(T x, const U& y) { return x %= y; }
|
||||
};
|
||||
|
||||
template <class T, class B = ::boost::detail::empty_base>
|
||||
struct modable1 : B
|
||||
{
|
||||
friend T operator%(T x, const T& y) { return x %= y; }
|
||||
};
|
||||
|
||||
template <class T, class U, class B = ::boost::detail::empty_base>
|
||||
struct xorable2 : B
|
||||
{
|
||||
friend T operator^(T x, const U& y) { return x ^= y; }
|
||||
friend T operator^(const U& y, T x) { return x ^= y; }
|
||||
};
|
||||
|
||||
template <class T, class B = ::boost::detail::empty_base>
|
||||
struct xorable1 : B
|
||||
{
|
||||
friend T operator^(T x, const T& y) { return x ^= y; }
|
||||
};
|
||||
|
||||
template <class T, class U, class B = ::boost::detail::empty_base>
|
||||
struct andable2 : B
|
||||
{
|
||||
friend T operator&(T x, const U& y) { return x &= y; }
|
||||
friend T operator&(const U& y, T x) { return x &= y; }
|
||||
};
|
||||
|
||||
template <class T, class B = ::boost::detail::empty_base>
|
||||
struct andable1 : B
|
||||
{
|
||||
friend T operator&(T x, const T& y) { return x &= y; }
|
||||
};
|
||||
|
||||
template <class T, class U, class B = ::boost::detail::empty_base>
|
||||
struct orable2 : B
|
||||
{
|
||||
friend T operator|(T x, const U& y) { return x |= y; }
|
||||
friend T operator|(const U& y, T x) { return x |= y; }
|
||||
};
|
||||
|
||||
template <class T, class B = ::boost::detail::empty_base>
|
||||
struct orable1 : B
|
||||
{
|
||||
friend T operator|(T x, const T& y) { return x |= y; }
|
||||
};
|
||||
|
||||
// incrementable and decrementable contributed by Jeremy Siek
|
||||
|
||||
template <class T, class B = ::boost::detail::empty_base>
|
||||
struct incrementable : B
|
||||
{
|
||||
friend T operator++(T& x, int)
|
||||
{
|
||||
incrementable_type tmp(x);
|
||||
++x;
|
||||
return tmp;
|
||||
}
|
||||
private: // The use of this typedef works around a Borland bug
|
||||
typedef T incrementable_type;
|
||||
};
|
||||
|
||||
template <class T, class B = ::boost::detail::empty_base>
|
||||
struct decrementable : B
|
||||
{
|
||||
friend T operator--(T& x, int)
|
||||
{
|
||||
decrementable_type tmp(x);
|
||||
--x;
|
||||
return tmp;
|
||||
}
|
||||
private: // The use of this typedef works around a Borland bug
|
||||
typedef T decrementable_type;
|
||||
};
|
||||
|
||||
// Iterator operator classes (contributed by Jeremy Siek) ------------------//
|
||||
|
||||
template <class T, class P, class B = ::boost::detail::empty_base>
|
||||
struct dereferenceable : B
|
||||
{
|
||||
P operator->() const
|
||||
{
|
||||
return &*static_cast<const T&>(*this);
|
||||
}
|
||||
};
|
||||
|
||||
template <class T, class I, class R, class B = ::boost::detail::empty_base>
|
||||
struct indexable : B
|
||||
{
|
||||
R operator[](I n) const
|
||||
{
|
||||
return *(static_cast<const T&>(*this) + n);
|
||||
}
|
||||
};
|
||||
|
||||
#ifndef BOOST_NO_OPERATORS_IN_NAMESPACE
|
||||
} // namespace boost
|
||||
#endif // BOOST_NO_OPERATORS_IN_NAMESPACE
|
||||
|
||||
|
||||
// BOOST_IMPORT_TEMPLATE1/BOOST_IMPORT_TEMPLATE2 -
|
||||
//
|
||||
// When BOOST_NO_OPERATORS_IN_NAMESPACE is defined we need a way to import an
|
||||
// operator template into the boost namespace. BOOST_IMPORT_TEMPLATE1 is used
|
||||
// for one-argument forms of operator templates; BOOST_IMPORT_TEMPLATE2 for
|
||||
// two-argument forms. Note that these macros expect to be invoked from within
|
||||
// boost.
|
||||
|
||||
#if defined(BOOST_NO_OPERATORS_IN_NAMESPACE)
|
||||
|
||||
# if defined(BOOST_NO_USING_TEMPLATE)
|
||||
|
||||
// Because a Borland C++ 5.5 bug prevents a using declaration from working,
|
||||
// we are forced to use inheritance for that compiler.
|
||||
# define BOOST_IMPORT_TEMPLATE2(template_name) \
|
||||
template <class T, class U, class B = ::boost::detail::empty_base> \
|
||||
struct template_name : ::template_name<T, U, B> {};
|
||||
|
||||
# define BOOST_IMPORT_TEMPLATE1(template_name) \
|
||||
template <class T, class B = ::boost::detail::empty_base> \
|
||||
struct template_name : ::template_name<T, B> {};
|
||||
|
||||
# else
|
||||
|
||||
// Otherwise, bring the names in with a using-declaration to avoid
|
||||
// stressing the compiler
|
||||
# define BOOST_IMPORT_TEMPLATE2(template_name) using ::template_name;
|
||||
# define BOOST_IMPORT_TEMPLATE1(template_name) using ::template_name;
|
||||
|
||||
# endif // BOOST_NO_USING_TEMPLATE
|
||||
|
||||
#else // !BOOST_NO_OPERATORS_IN_NAMESPACE
|
||||
|
||||
// The template is already in boost so we have nothing to do.
|
||||
# define BOOST_IMPORT_TEMPLATE2(template_name)
|
||||
# define BOOST_IMPORT_TEMPLATE1(template_name)
|
||||
|
||||
#endif // BOOST_NO_OPERATORS_IN_NAMESPACE
|
||||
|
||||
//
|
||||
// Here's where we put it all together, defining the xxxx forms of the templates
|
||||
// in namespace boost. We also define specializations of is_chained_base<> for
|
||||
// the xxxx, xxxx1, and xxxx2 templates, importing them into boost:: as
|
||||
// neccessary.
|
||||
//
|
||||
#if !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
|
||||
|
||||
// is_chained_base<> - a traits class used to distinguish whether an operator
|
||||
// template argument is being used for base class chaining, or is specifying a
|
||||
// 2nd argument type.
|
||||
|
||||
namespace boost {
|
||||
// A type parameter is used instead of a plain bool because Borland's compiler
|
||||
// didn't cope well with the more obvious non-type template parameter.
|
||||
namespace detail {
|
||||
struct true_t {};
|
||||
struct false_t {};
|
||||
} // namespace detail
|
||||
|
||||
// Unspecialized version assumes that most types are not being used for base
|
||||
// class chaining. We specialize for the operator templates defined in this
|
||||
// library.
|
||||
template<class T> struct is_chained_base {
|
||||
typedef ::boost::detail::false_t value;
|
||||
};
|
||||
|
||||
} // namespace boost
|
||||
|
||||
// Import a 2-type-argument operator template into boost (if neccessary) and
|
||||
// provide a specialization of 'is_chained_base<>' for it.
|
||||
# define BOOST_OPERATOR_TEMPLATE2(template_name2) \
|
||||
BOOST_IMPORT_TEMPLATE2(template_name2) \
|
||||
template<class T, class U, class B> \
|
||||
struct is_chained_base< ::boost::template_name2<T, U, B> > { \
|
||||
typedef ::boost::detail::true_t value; \
|
||||
};
|
||||
|
||||
// Import a 1-type-argument operator template into boost (if neccessary) and
|
||||
// provide a specialization of 'is_chained_base<>' for it.
|
||||
# define BOOST_OPERATOR_TEMPLATE1(template_name1) \
|
||||
BOOST_IMPORT_TEMPLATE1(template_name1) \
|
||||
template<class T, class B> \
|
||||
struct is_chained_base< ::boost::template_name1<T, B> > { \
|
||||
typedef ::boost::detail::true_t value; \
|
||||
};
|
||||
|
||||
// BOOST_OPERATOR_TEMPLATE(template_name) defines template_name<> such that it
|
||||
// can be used for specifying both 1-argument and 2-argument forms. Requires the
|
||||
// existence of two previously defined class templates named '<template_name>1'
|
||||
// and '<template_name>2' which must implement the corresponding 1- and 2-
|
||||
// argument forms.
|
||||
//
|
||||
// The template type parameter O == is_chained_base<U>::value is used to
|
||||
// distinguish whether the 2nd argument to <template_name> is being used for
|
||||
// base class chaining from another boost operator template or is describing a
|
||||
// 2nd operand type. O == true_t only when U is actually an another operator
|
||||
// template from the library. Partial specialization is used to select an
|
||||
// implementation in terms of either '<template_name>1' or '<template_name>2'.
|
||||
//
|
||||
|
||||
# define BOOST_OPERATOR_TEMPLATE(template_name) \
|
||||
template <class T \
|
||||
,class U = T \
|
||||
,class B = ::boost::detail::empty_base \
|
||||
,class O = typename is_chained_base<U>::value \
|
||||
> \
|
||||
struct template_name : template_name##2<T, U, B> {}; \
|
||||
\
|
||||
template<class T, class U, class B> \
|
||||
struct template_name<T, U, B, ::boost::detail::true_t> \
|
||||
: template_name##1<T, U> {}; \
|
||||
\
|
||||
template <class T, class B> \
|
||||
struct template_name<T, T, B, ::boost::detail::false_t> \
|
||||
: template_name##1<T, B> {}; \
|
||||
\
|
||||
template<class T, class U, class B, class O> \
|
||||
struct is_chained_base< ::boost::template_name<T, U, B, O> > { \
|
||||
typedef ::boost::detail::true_t value; \
|
||||
}; \
|
||||
\
|
||||
BOOST_OPERATOR_TEMPLATE2(template_name##2) \
|
||||
BOOST_OPERATOR_TEMPLATE1(template_name##1)
|
||||
|
||||
|
||||
#else // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
|
||||
|
||||
# define BOOST_OPERATOR_TEMPLATE2(template_name2) \
|
||||
BOOST_IMPORT_TEMPLATE2(template_name2)
|
||||
# define BOOST_OPERATOR_TEMPLATE1(template_name1) \
|
||||
BOOST_IMPORT_TEMPLATE1(template_name1)
|
||||
|
||||
// In this case we can only assume that template_name<> is equivalent to the
|
||||
// more commonly needed template_name1<> form.
|
||||
# define BOOST_OPERATOR_TEMPLATE(template_name) \
|
||||
template <class T, class B = ::boost::detail::empty_base> \
|
||||
struct template_name : template_name##1<T, B> {};
|
||||
|
||||
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
|
||||
|
||||
namespace boost {
|
||||
|
||||
BOOST_OPERATOR_TEMPLATE(less_than_comparable)
|
||||
BOOST_OPERATOR_TEMPLATE(equality_comparable)
|
||||
BOOST_OPERATOR_TEMPLATE(multipliable)
|
||||
BOOST_OPERATOR_TEMPLATE(addable)
|
||||
BOOST_OPERATOR_TEMPLATE(subtractable)
|
||||
BOOST_OPERATOR_TEMPLATE(dividable)
|
||||
BOOST_OPERATOR_TEMPLATE(modable)
|
||||
BOOST_OPERATOR_TEMPLATE(xorable)
|
||||
BOOST_OPERATOR_TEMPLATE(andable)
|
||||
BOOST_OPERATOR_TEMPLATE(orable)
|
||||
|
||||
BOOST_OPERATOR_TEMPLATE1(incrementable)
|
||||
BOOST_OPERATOR_TEMPLATE1(decrementable)
|
||||
BOOST_OPERATOR_TEMPLATE2(dereferenceable)
|
||||
|
||||
// indexable doesn't follow the patterns above (it has 4 template arguments), so
|
||||
// we just write out the compiler hacks explicitly.
|
||||
#ifdef BOOST_NO_OPERATORS_IN_NAMESPACE
|
||||
# ifdef BOOST_NO_USING_TEMPLATE
|
||||
template <class T, class I, class R, class B = ::boost::detail::empty_base>
|
||||
struct indexable : ::indexable<T,I,R,B> {};
|
||||
# else
|
||||
using ::indexable;
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
|
||||
template <class T, class I, class R, class B>
|
||||
struct is_chained_base< ::boost::indexable<T, I, R, B> > {
|
||||
typedef ::boost::detail::true_t operator_template_type;
|
||||
};
|
||||
#endif
|
||||
|
||||
#undef BOOST_OPERATOR_TEMPLATE
|
||||
#undef BOOST_OPERATOR_TEMPLATE2
|
||||
#undef BOOST_OPERATOR_TEMPLATE1
|
||||
#undef BOOST_IMPORT_TEMPLATE1
|
||||
#undef BOOST_IMPORT_TEMPLATE2
|
||||
|
||||
// The following 'operators' classes can only be used portably if the derived class
|
||||
// declares ALL of the required member operators.
|
||||
template <class T, class U>
|
||||
struct operators2
|
||||
: less_than_comparable2<T,U
|
||||
, equality_comparable2<T,U
|
||||
, addable2<T,U
|
||||
, subtractable2<T,U
|
||||
, multipliable2<T,U
|
||||
, dividable2<T,U
|
||||
, modable2<T,U
|
||||
, orable2<T,U
|
||||
, andable2<T,U
|
||||
, xorable2<T,U
|
||||
> > > > > > > > > > {};
|
||||
|
||||
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
|
||||
template <class T, class U = T>
|
||||
struct operators : operators2<T, U> {};
|
||||
|
||||
template <class T> struct operators<T, T>
|
||||
#else
|
||||
template <class T> struct operators
|
||||
#endif
|
||||
: less_than_comparable<T
|
||||
, equality_comparable<T
|
||||
, addable<T
|
||||
, subtractable<T
|
||||
, multipliable<T
|
||||
, dividable<T
|
||||
, modable<T
|
||||
, orable<T
|
||||
, andable<T
|
||||
, xorable<T
|
||||
, incrementable<T
|
||||
, decrementable<T
|
||||
> > > > > > > > > > > > {};
|
||||
|
||||
// Iterator helper classes (contributed by Jeremy Siek) -------------------//
|
||||
template <class T,
|
||||
class V,
|
||||
class D = std::ptrdiff_t,
|
||||
class P = V*,
|
||||
class R = V&>
|
||||
struct forward_iterator_helper
|
||||
: equality_comparable<T
|
||||
, incrementable<T
|
||||
, dereferenceable<T,P
|
||||
, boost::iterator<std::forward_iterator_tag,V,D,P,R
|
||||
> > > > {};
|
||||
|
||||
template <class T,
|
||||
class V,
|
||||
class D = std::ptrdiff_t,
|
||||
class P = V*,
|
||||
class R = V&>
|
||||
struct bidirectional_iterator_helper
|
||||
: equality_comparable<T
|
||||
, incrementable<T
|
||||
, decrementable<T
|
||||
, dereferenceable<T,P
|
||||
, boost::iterator<std::bidirectional_iterator_tag,V,D,P,R
|
||||
> > > > > {};
|
||||
|
||||
template <class T,
|
||||
class V,
|
||||
class D = std::ptrdiff_t,
|
||||
class P = V*,
|
||||
class R = V&>
|
||||
struct random_access_iterator_helper
|
||||
: equality_comparable<T
|
||||
, less_than_comparable<T
|
||||
, incrementable<T
|
||||
, decrementable<T
|
||||
, dereferenceable<T,P
|
||||
, addable2<T,D
|
||||
, subtractable2<T,D
|
||||
, indexable<T,D,R
|
||||
, boost::iterator<std::random_access_iterator_tag,V,D,P,R
|
||||
> > > > > > > > >
|
||||
{
|
||||
#ifndef __BORLANDC__
|
||||
friend D requires_difference_operator(const T& x, const T& y) {
|
||||
return x - y;
|
||||
}
|
||||
#endif
|
||||
}; // random_access_iterator_helper
|
||||
|
||||
} // namespace boost
|
||||
|
||||
#if defined(__sgi) && !defined(__GNUC__)
|
||||
#pragma reset woff 1234
|
||||
#endif
|
||||
|
||||
#endif // BOOST_OPERATORS_HPP
|
61
indirect_iterator_example.cpp
Normal file
61
indirect_iterator_example.cpp
Normal file
@@ -0,0 +1,61 @@
|
||||
// (C) Copyright Jeremy Siek 2000. Permission to copy, use, modify, sell and
|
||||
// distribute this software is granted provided this copyright notice appears
|
||||
// in all copies. This software is provided "as is" without express or implied
|
||||
// warranty, and with no claim as to its suitability for any purpose.
|
||||
|
||||
#include <boost/config.hpp>
|
||||
#include <vector>
|
||||
#include <iostream>
|
||||
#include <iterator>
|
||||
#include <functional>
|
||||
#include <boost/iterator_adaptors.hpp>
|
||||
|
||||
int main(int, char*[])
|
||||
{
|
||||
char characters[] = "abcdefg";
|
||||
const int N = sizeof(characters)/sizeof(char) - 1; // -1 since characters has a null char
|
||||
char* pointers_to_chars[N]; // at the end.
|
||||
for (int i = 0; i < N; ++i)
|
||||
pointers_to_chars[i] = &characters[i];
|
||||
|
||||
// Example of using indirect_iterator_generator
|
||||
|
||||
boost::indirect_iterator_generator<char**, char>::type
|
||||
indirect_first(pointers_to_chars), indirect_last(pointers_to_chars + N);
|
||||
|
||||
std::copy(indirect_first, indirect_last, std::ostream_iterator<char>(std::cout, ","));
|
||||
std::cout << std::endl;
|
||||
|
||||
|
||||
// Example of using indirect_iterator_pair_generator
|
||||
|
||||
typedef boost::indirect_iterator_pair_generator<char**,
|
||||
char, char*, char&, const char*, const char&> PairGen;
|
||||
|
||||
char mutable_characters[N];
|
||||
char* pointers_to_mutable_chars[N];
|
||||
for (int i = 0; i < N; ++i)
|
||||
pointers_to_mutable_chars[i] = &mutable_characters[i];
|
||||
|
||||
PairGen::iterator mutable_indirect_first(pointers_to_mutable_chars),
|
||||
mutable_indirect_last(pointers_to_mutable_chars + N);
|
||||
PairGen::const_iterator const_indirect_first(pointers_to_chars),
|
||||
const_indirect_last(pointers_to_chars + N);
|
||||
|
||||
std::transform(const_indirect_first, const_indirect_last,
|
||||
mutable_indirect_first, std::bind1st(std::plus<char>(), 1));
|
||||
|
||||
std::copy(mutable_indirect_first, mutable_indirect_last,
|
||||
std::ostream_iterator<char>(std::cout, ","));
|
||||
std::cout << std::endl;
|
||||
|
||||
|
||||
// Example of using make_indirect_iterator()
|
||||
|
||||
std::copy(boost::make_indirect_iterator(pointers_to_chars),
|
||||
boost::make_indirect_iterator(pointers_to_chars + N),
|
||||
std::ostream_iterator<char>(std::cout, ","));
|
||||
std::cout << std::endl;
|
||||
|
||||
return 0;
|
||||
}
|
104
utility.htm
Normal file
104
utility.htm
Normal file
@@ -0,0 +1,104 @@
|
||||
<html>
|
||||
|
||||
<head>
|
||||
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
|
||||
<title>Header boost/utility.hpp Documentation</title>
|
||||
</head>
|
||||
|
||||
<body bgcolor="#FFFFFF" text="#000000">
|
||||
|
||||
<h1><img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align="center" WIDTH="277" HEIGHT="86">Header
|
||||
<a href="../../boost/utility.hpp">boost/utility.hpp</a></h1>
|
||||
|
||||
<p>The entire contents of the header <code><a href="../../boost/utility.hpp"><boost/utility.hpp></a></code>
|
||||
are in <code>namespace boost</code>.</p>
|
||||
|
||||
<h2>Contents</h2>
|
||||
|
||||
<ul>
|
||||
<li>Function templates <a href="#functions next">next() and prior()</a></li>
|
||||
<li>Class <a href="#Class noncopyable">noncopyable</a></li>
|
||||
<li>Function template <a href="tie.html">tie()</a> and supporting class tied.</li>
|
||||
</ul>
|
||||
<h2> <a name="functions next">Function</a> templates next() and prior()</h2>
|
||||
|
||||
<p>Certain data types, such as the C++ Standard Library's forward and
|
||||
bidirectional iterators, do not provide addition and subtraction via operator+()
|
||||
or operator-(). This means that non-modifying computation of the next or
|
||||
prior value requires a temporary, even though operator++() or operator--() is
|
||||
provided. It also means that writing code like <code>itr+1</code> inside a
|
||||
template restricts the iterator category to random access iterators.</p>
|
||||
|
||||
<p>The next() and prior() functions provide a simple way around these problems:</p>
|
||||
|
||||
<blockquote>
|
||||
|
||||
<pre>template <class T>
|
||||
T next(T x) { return ++x; }
|
||||
|
||||
template <class X>
|
||||
T prior(T x) { return --x; }</pre>
|
||||
|
||||
</blockquote>
|
||||
|
||||
<p>Usage is simple:</p>
|
||||
|
||||
<blockquote>
|
||||
|
||||
<pre>const std::list<T>::iterator p = get_some_iterator();
|
||||
const std::list<T>::iterator prev = boost::prior(p);</pre>
|
||||
|
||||
</blockquote>
|
||||
|
||||
<p>Contributed by <a href="../../people/dave_abrahams.htm">Dave Abrahams</a>.</p>
|
||||
|
||||
<h2><a name="Class noncopyable">Class noncopyable</a></h2>
|
||||
|
||||
<p>Class <strong>noncopyable</strong> is a base class. Derive your own class from <strong>noncopyable</strong>
|
||||
when you want to prohibit copy construction and copy assignment.</p>
|
||||
|
||||
<p>Some objects, particularly those which hold complex resources like files or
|
||||
network connections, have no sensible copy semantics. Sometimes there are
|
||||
possible copy semantics, but these would be of very limited usefulness and be
|
||||
very difficult to implement correctly. Sometimes you're implementing a class that doesn't need to be copied
|
||||
just yet and you don't want to take the time to write the appropriate functions.
|
||||
Deriving from <b> noncopyable</b> will prevent the otherwise implicitly-generated
|
||||
functions (which don't have the proper semantics) from becoming a trap for other programmers.</p>
|
||||
|
||||
<p>The traditional way to deal with these is to declare a private copy constructor and copy assignment, and then
|
||||
document why this is done. But deriving from <b>noncopyable</b> is simpler
|
||||
and clearer, and doesn't require additional documentation.</p>
|
||||
|
||||
<p>The program <a href="noncopyable_test.cpp">noncopyable_test.cpp</a> can be
|
||||
used to verify class <b>noncopyable</b> works as expected. It has have been run successfully under
|
||||
GCC 2.95, Metrowerks
|
||||
CodeWarrior 5.0, and Microsoft Visual C++ 6.0 sp 3.</p>
|
||||
|
||||
<p>Contributed by <a href="../../people/dave_abrahams.htm">Dave Abrahams</a>.</p>
|
||||
|
||||
<h3>Example</h3>
|
||||
<blockquote>
|
||||
<pre>// inside one of your own headers ...
|
||||
#include <boost/utility.hpp>
|
||||
|
||||
class ResourceLadenFileSystem : boost::noncopyable {
|
||||
...</pre>
|
||||
</blockquote>
|
||||
|
||||
<h3>Rationale</h3>
|
||||
<p>Class noncopyable has protected constructor and destructor members to
|
||||
emphasize that it is to be used only as a base class. Dave Abrahams notes
|
||||
concern about the effect on compiler optimization of adding (even trivial inline)
|
||||
destructor declarations. He says "Probably this concern is misplaced, because
|
||||
noncopyable will be used mostly for classes which own resources and thus have non-trivial destruction semantics."</p>
|
||||
<hr>
|
||||
<p>Revised <!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan
|
||||
-->16 February, 2001<!--webbot bot="Timestamp" endspan i-checksum="40407"
|
||||
-->
|
||||
</p>
|
||||
<p><EFBFBD> Copyright boost.org 1999. Permission to copy, use, modify, sell and
|
||||
distribute this document is granted provided this copyright notice appears in
|
||||
all copies. This document is provided "as is" without express or
|
||||
implied warranty, and with no claim as to its suitability for any purpose.</p>
|
||||
</body>
|
||||
</html>
|
Reference in New Issue
Block a user