Compare commits

..

3 Commits

Author SHA1 Message Date
Ralf W. Grosse-Kunstleve
09b13c55b2 Join ralf_grosse_kunstleve with HEAD
[SVN r9444]
2001-03-05 20:01:01 +00:00
nobody
aa26bc2137 This commit was manufactured by cvs2svn to create branch
'unlabeled-1.3.2'.

[SVN r9423]
2001-03-04 16:05:22 +00:00
nobody
f6533b3826 This commit was manufactured by cvs2svn to create branch
'unlabeled-1.3.2'.

[SVN r8778]
2001-01-27 11:31:59 +00:00
5 changed files with 819 additions and 443 deletions

View File

@@ -0,0 +1,53 @@
// (C) Copyright Jeremy Siek 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
#include <boost/config.hpp>
#include <iostream>
#include <iterator>
#include <vector>
#include <boost/counting_iterator.hpp>
#include <boost/iterator_adaptors.hpp>
int main(int, char*[])
{
// Example of using counting_iterator_generator
std::cout << "counting from 0 to 4:" << std::endl;
boost::counting_iterator_generator<int>::type first(0), last(4);
std::copy(first, last, std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
// Example of using make_counting_iterator()
std::cout << "counting from -5 to 4:" << std::endl;
std::copy(boost::make_counting_iterator(-5),
boost::make_counting_iterator(5),
std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
// Example of using counting iterator to create an array of pointers.
const int N = 7;
std::vector<int> numbers;
// Fill "numbers" array with [0,N)
std::copy(boost::make_counting_iterator(0), boost::make_counting_iterator(N),
std::back_inserter(numbers));
std::vector<std::vector<int>::iterator> pointers;
// Use counting iterator to fill in the array of pointers.
std::copy(boost::make_counting_iterator(numbers.begin()),
boost::make_counting_iterator(numbers.end()),
std::back_inserter(pointers));
// Use indirect iterator to print out numbers by accessing
// them through the array of pointers.
std::cout << "indirectly printing out the numbers from 0 to "
<< N << std::endl;
std::copy(boost::make_indirect_iterator(pointers.begin()),
boost::make_indirect_iterator(pointers.end()),
std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
return 0;
}

View File

@@ -0,0 +1,428 @@
// (C) Copyright Steve Cleary, Beman Dawes, Howard Hinnant & John Maddock 2000.
// Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// compressed_pair: pair that "compresses" empty members
// (see libs/utility/compressed_pair.htm)
//
// JM changes 25 Jan 2000:
// Removed default arguments from compressed_pair_switch to get
// C++ Builder 4 to accept them
// rewriten swap to get gcc and C++ builder to compile.
// added partial specialisations for case T1 == T2 to avoid duplicate constructor defs.
#ifndef BOOST_DETAIL_COMPRESSED_PAIR_HPP
#define BOOST_DETAIL_COMPRESSED_PAIR_HPP
#include <algorithm>
#ifndef BOOST_OBJECT_TYPE_TRAITS_HPP
#include <boost/type_traits/object_traits.hpp>
#endif
#ifndef BOOST_SAME_TRAITS_HPP
#include <boost/type_traits/same_traits.hpp>
#endif
#ifndef BOOST_CALL_TRAITS_HPP
#include <boost/call_traits.hpp>
#endif
namespace boost
{
// compressed_pair
namespace details
{
// JM altered 26 Jan 2000:
template <class T1, class T2, bool IsSame, bool FirstEmpty, bool SecondEmpty>
struct compressed_pair_switch;
template <class T1, class T2>
struct compressed_pair_switch<T1, T2, false, false, false>
{static const int value = 0;};
template <class T1, class T2>
struct compressed_pair_switch<T1, T2, false, true, true>
{static const int value = 3;};
template <class T1, class T2>
struct compressed_pair_switch<T1, T2, false, true, false>
{static const int value = 1;};
template <class T1, class T2>
struct compressed_pair_switch<T1, T2, false, false, true>
{static const int value = 2;};
template <class T1, class T2>
struct compressed_pair_switch<T1, T2, true, true, true>
{static const int value = 4;};
template <class T1, class T2>
struct compressed_pair_switch<T1, T2, true, false, false>
{static const int value = 5;};
template <class T1, class T2, int Version> class compressed_pair_imp;
#ifdef __GNUC__
// workaround for GCC (JM):
using std::swap;
#endif
//
// can't call unqualified swap from within classname::swap
// as Koenig lookup rules will find only the classname::swap
// member function not the global declaration, so use cp_swap
// as a forwarding function (JM):
template <typename T>
inline void cp_swap(T& t1, T& t2)
{
#ifndef __GNUC__
using std::swap;
#endif
swap(t1, t2);
}
// 0 derive from neither
template <class T1, class T2>
class compressed_pair_imp<T1, T2, 0>
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_imp() {}
compressed_pair_imp(first_param_type x, second_param_type y)
: first_(x), second_(y) {}
explicit compressed_pair_imp(first_param_type x)
: first_(x) {}
explicit compressed_pair_imp(second_param_type y)
: second_(y) {}
first_reference first() {return first_;}
first_const_reference first() const {return first_;}
second_reference second() {return second_;}
second_const_reference second() const {return second_;}
void swap(compressed_pair_imp& y)
{
cp_swap(first_, y.first_);
cp_swap(second_, y.second_);
}
private:
first_type first_;
second_type second_;
};
// 1 derive from T1
template <class T1, class T2>
class compressed_pair_imp<T1, T2, 1>
: private T1
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_imp() {}
compressed_pair_imp(first_param_type x, second_param_type y)
: first_type(x), second_(y) {}
explicit compressed_pair_imp(first_param_type x)
: first_type(x) {}
explicit compressed_pair_imp(second_param_type y)
: second_(y) {}
first_reference first() {return *this;}
first_const_reference first() const {return *this;}
second_reference second() {return second_;}
second_const_reference second() const {return second_;}
void swap(compressed_pair_imp& y)
{
// no need to swap empty base class:
cp_swap(second_, y.second_);
}
private:
second_type second_;
};
// 2 derive from T2
template <class T1, class T2>
class compressed_pair_imp<T1, T2, 2>
: private T2
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_imp() {}
compressed_pair_imp(first_param_type x, second_param_type y)
: second_type(y), first_(x) {}
explicit compressed_pair_imp(first_param_type x)
: first_(x) {}
explicit compressed_pair_imp(second_param_type y)
: second_type(y) {}
first_reference first() {return first_;}
first_const_reference first() const {return first_;}
second_reference second() {return *this;}
second_const_reference second() const {return *this;}
void swap(compressed_pair_imp& y)
{
// no need to swap empty base class:
cp_swap(first_, y.first_);
}
private:
first_type first_;
};
// 3 derive from T1 and T2
template <class T1, class T2>
class compressed_pair_imp<T1, T2, 3>
: private T1,
private T2
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_imp() {}
compressed_pair_imp(first_param_type x, second_param_type y)
: first_type(x), second_type(y) {}
explicit compressed_pair_imp(first_param_type x)
: first_type(x) {}
explicit compressed_pair_imp(second_param_type y)
: second_type(y) {}
first_reference first() {return *this;}
first_const_reference first() const {return *this;}
second_reference second() {return *this;}
second_const_reference second() const {return *this;}
//
// no need to swap empty bases:
void swap(compressed_pair_imp&) {}
};
// JM
// 4 T1 == T2, T1 and T2 both empty
// Note does not actually store an instance of T2 at all -
// but reuses T1 base class for both first() and second().
template <class T1, class T2>
class compressed_pair_imp<T1, T2, 4>
: private T1
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_imp() {}
compressed_pair_imp(first_param_type x, second_param_type)
: first_type(x) {}
explicit compressed_pair_imp(first_param_type x)
: first_type(x) {}
first_reference first() {return *this;}
first_const_reference first() const {return *this;}
second_reference second() {return *this;}
second_const_reference second() const {return *this;}
void swap(compressed_pair_imp&) {}
private:
};
// 5 T1 == T2 and are not empty: //JM
template <class T1, class T2>
class compressed_pair_imp<T1, T2, 5>
{
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair_imp() {}
compressed_pair_imp(first_param_type x, second_param_type y)
: first_(x), second_(y) {}
explicit compressed_pair_imp(first_param_type x)
: first_(x), second_(x) {}
first_reference first() {return first_;}
first_const_reference first() const {return first_;}
second_reference second() {return second_;}
second_const_reference second() const {return second_;}
void swap(compressed_pair_imp<T1, T2, 5>& y)
{
cp_swap(first_, y.first_);
cp_swap(second_, y.second_);
}
private:
first_type first_;
second_type second_;
};
} // details
template <class T1, class T2>
class compressed_pair
: private ::boost::details::compressed_pair_imp<T1, T2,
::boost::details::compressed_pair_switch<
T1,
T2,
::boost::is_same<typename remove_cv<T1>::type, typename remove_cv<T2>::type>::value,
::boost::is_empty<T1>::value,
::boost::is_empty<T2>::value>::value>
{
private:
typedef details::compressed_pair_imp<T1, T2,
::boost::details::compressed_pair_switch<
T1,
T2,
::boost::is_same<typename remove_cv<T1>::type, typename remove_cv<T2>::type>::value,
::boost::is_empty<T1>::value,
::boost::is_empty<T2>::value>::value> base;
public:
typedef T1 first_type;
typedef T2 second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair() : base() {}
compressed_pair(first_param_type x, second_param_type y) : base(x, y) {}
explicit compressed_pair(first_param_type x) : base(x) {}
explicit compressed_pair(second_param_type y) : base(y) {}
first_reference first() {return base::first();}
first_const_reference first() const {return base::first();}
second_reference second() {return base::second();}
second_const_reference second() const {return base::second();}
void swap(compressed_pair& y) { base::swap(y); }
};
// JM
// Partial specialisation for case where T1 == T2:
//
template <class T>
class compressed_pair<T, T>
: private details::compressed_pair_imp<T, T,
::boost::details::compressed_pair_switch<
T,
T,
::boost::is_same<typename remove_cv<T>::type, typename remove_cv<T>::type>::value,
::boost::is_empty<T>::value,
::boost::is_empty<T>::value>::value>
{
private:
typedef details::compressed_pair_imp<T, T,
::boost::details::compressed_pair_switch<
T,
T,
::boost::is_same<typename remove_cv<T>::type, typename remove_cv<T>::type>::value,
::boost::is_empty<T>::value,
::boost::is_empty<T>::value>::value> base;
public:
typedef T first_type;
typedef T second_type;
typedef typename call_traits<first_type>::param_type first_param_type;
typedef typename call_traits<second_type>::param_type second_param_type;
typedef typename call_traits<first_type>::reference first_reference;
typedef typename call_traits<second_type>::reference second_reference;
typedef typename call_traits<first_type>::const_reference first_const_reference;
typedef typename call_traits<second_type>::const_reference second_const_reference;
compressed_pair() : base() {}
compressed_pair(first_param_type x, second_param_type y) : base(x, y) {}
explicit compressed_pair(first_param_type x) : base(x) {}
first_reference first() {return base::first();}
first_const_reference first() const {return base::first();}
second_reference second() {return base::second();}
second_const_reference second() const {return base::second();}
void swap(compressed_pair& y) { base::swap(y); }
};
template <class T1, class T2>
inline
void
swap(compressed_pair<T1, T2>& x, compressed_pair<T1, T2>& y)
{
x.swap(y);
}
} // boost
#endif // BOOST_DETAIL_COMPRESSED_PAIR_HPP

View File

@@ -0,0 +1,128 @@
// (C) Copyright Steve Cleary, Beman Dawes, Howard Hinnant & John Maddock 2000.
// Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
//
// Crippled version for crippled compilers:
// see libs/utility/call_traits.htm
//
/* Release notes:
01st October 2000:
Fixed call_traits on VC6, using "poor man's partial specialisation",
using ideas taken from "Generative programming" by Krzysztof Czarnecki
& Ulrich Eisenecker.
*/
#ifndef BOOST_OB_CALL_TRAITS_HPP
#define BOOST_OB_CALL_TRAITS_HPP
#ifndef BOOST_CONFIG_HPP
#include <boost/config.hpp>
#endif
#ifndef BOOST_ARITHMETIC_TYPE_TRAITS_HPP
#include <boost/type_traits/arithmetic_traits.hpp>
#endif
#ifndef BOOST_COMPOSITE_TYPE_TRAITS_HPP
#include <boost/type_traits/composite_traits.hpp>
#endif
namespace boost{
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) || !defined(BOOST_NO_MEMBER_TEMPLATES)
//
// use member templates to emulate
// partial specialisation:
//
namespace detail{
template <class T>
struct standard_call_traits
{
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef const T& param_type;
};
template <class T>
struct simple_call_traits
{
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef const T param_type;
};
template <class T>
struct reference_call_traits
{
typedef T value_type;
typedef T reference;
typedef T const_reference;
typedef T param_type;
};
template <bool simple, bool reference>
struct call_traits_chooser
{
template <class T>
struct rebind
{
typedef standard_call_traits<T> type;
};
};
template <>
struct call_traits_chooser<true, false>
{
template <class T>
struct rebind
{
typedef simple_call_traits<T> type;
};
};
template <>
struct call_traits_chooser<false, true>
{
template <class T>
struct rebind
{
typedef reference_call_traits<T> type;
};
};
} // namespace detail
template <typename T>
struct call_traits
{
private:
typedef detail::call_traits_chooser<(is_pointer<T>::value || is_arithmetic<T>::value) && sizeof(T) <= sizeof(void*), is_reference<T>::value> chooser;
typedef typename chooser::template rebind<T> bound_type;
typedef typename bound_type::type call_traits_type;
public:
typedef typename call_traits_type::value_type value_type;
typedef typename call_traits_type::reference reference;
typedef typename call_traits_type::const_reference const_reference;
typedef typename call_traits_type::param_type param_type;
};
#else
//
// sorry call_traits is completely non-functional
// blame your broken compiler:
//
template <typename T>
struct call_traits
{
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef const T& param_type;
};
#endif // member templates
}
#endif // BOOST_OB_CALL_TRAITS_HPP

View File

@@ -1,443 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>
<head>
<meta name="generator" content="HTML Tidy, see www.w3.org">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Indirect Iterator Adaptor Documentation</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align=
"center" width="277" height="86">
<h1>Indirect Iterator Adaptor</h1>
Defined in header <a href=
"../../boost/iterator_adaptors.hpp">boost/iterator_adaptors.hpp</a>
<p>The indirect iterator adaptor augments an iterator by applying an
<b>extra</b> dereference inside of <tt>operator*()</tt>. For example, this
iterator makes it possible to view a container of pointers or
smart-pointers (e.g. <tt>std::list&lt;boost::shared_ptr&lt;foo&gt;
&gt;</tt>) as if it were a container of the pointed-to type. The following
<b>pseudo-code</b> shows the basic idea of the indirect iterator:
<blockquote>
<pre>
// inside a hypothetical indirect_iterator class...
typedef std::iterator_traits&lt;BaseIterator&gt;::value_type Pointer;
typedef std::iterator_traits&lt;Pointer&gt;::reference reference;
reference indirect_iterator::operator*() const {
return **this-&gt;base_iterator;
}
</pre>
</blockquote>
<h2>Synopsis</h2>
<blockquote>
<pre>
namespace boost {
template &lt;class BaseIterator,
class Value, class Reference, class Category, class Pointer&gt;
struct indirect_iterator_generator;
template &lt;class BaseIterator,
class Value, class Reference, class ConstReference,
class Category, class Pointer, class ConstPointer&gt;
struct indirect_iterator_pair_generator;
template &lt;class BaseIterator&gt;
typename indirect_iterator_generator&lt;BaseIterator&gt;::type
make_indirect_iterator(BaseIterator base)
}
</pre>
</blockquote>
<hr>
<h2><a name="indirect_iterator_generator">The Indirect Iterator Type
Generator</a></h2>
The <tt>indirect_iterator_generator</tt> template is a <a href=
"../../more/generic_programming.html#type_generator">generator</a> of
indirect iterator types. The main template parameter for this class is the
<tt>BaseIterator</tt> type that is being wrapped. In most cases the type of
the elements being pointed to can be deduced using
<tt>std::iterator_traits</tt>, but in some situations the user may want to
override this type, so there are also template parameters that allow a user
to control the <tt>value_type</tt>, <tt>pointer</tt>, and
<tt>reference</tt> types of the resulting iterators.
<blockquote>
<pre>
template &lt;class BaseIterator,
class Value, class Reference, class Pointer&gt;
class indirect_iterator_generator
{
public:
typedef <tt><a href=
"./iterator_adaptors.htm#iterator_adaptor">iterator_adaptor</a>&lt;...&gt;</tt> type; // the resulting indirect iterator type
};
</pre>
</blockquote>
<h3>Example</h3>
This example uses the <tt>indirect_iterator_generator</tt> to create
indirect iterators which dereference the pointers stored in the
<tt>pointers_to_chars</tt> array to access the <tt>char</tt>s in the
<tt>characters</tt> array.
<blockquote>
<pre>
#include &lt;boost/config.hpp&gt;
#include &lt;vector&gt;
#include &lt;iostream&gt;
#include &lt;iterator&gt;
#include &lt;boost/iterator_adaptors.hpp&gt;
int main(int, char*[])
{
char characters[] = "abcdefg";
const int N = sizeof(characters)/sizeof(char) - 1; // -1 since characters has a null char
char* pointers_to_chars[N]; // at the end.
for (int i = 0; i &lt; N; ++i)
pointers_to_chars[i] = &amp;characters[i];
boost::indirect_iterator_generator&lt;char**, char&gt;::type
indirect_first(pointers_to_chars), indirect_last(pointers_to_chars + N);
std::copy(indirect_first, indirect_last, std::ostream_iterator&lt;char&gt;(std::cout, ","));
std::cout &lt;&lt; std::endl;
// to be continued...
</pre>
</blockquote>
<h3>Template Parameters</h3>
<table border>
<tr>
<th>Parameter
<th>Description
<tr>
<td><tt>BaseIterator</tt>
<td>The iterator type being wrapped. The <tt>value_type</tt>
of the base iterator should itself be dereferenceable.
The return type of the <tt>operator*</tt> for the
<tt>value_type</tt> should match the <tt>Reference</tt> type.
<tr>
<td><tt>Value</tt>
<td>The <tt>value_type</tt> of the resulting iterator, unless const. If
Value is <tt>const X</tt>, a conforming compiler makes the
<tt>value_type</tt> <tt><i>non-</i>const X</tt><a href=
"iterator_adaptors.htm#1">[1]</a>. Note that if the default
is used for <tt>Value</tt>, then there must be a valid specialization
of <tt>iterator_traits</tt> for the value type of the base iterator.
<br>
<b>Default:</b> <tt>std::iterator_traits&lt;<br>
<20> std::iterator_traits&lt;BaseIterator&gt;::value_type
&gt;::value_type</tt><a href="#2">[2]</a>
<tr>
<td><tt>Reference</tt>
<td>The <tt>reference</tt> type of the resulting iterator, and in
particular, the result type of <tt>operator*()</tt>.<br>
<b>Default:</b> <tt>Value&amp;</tt>
<tr>
<td><tt>Pointer</tt>
<td>The <tt>pointer</tt> type of the resulting iterator, and in
particular, the result type of <tt>operator-&gt;()</tt>.<br>
<b>Default:</b> <tt>Value*</tt>
<tr>
<td><tt>Category</tt>
<td>The <tt>iterator_category</tt> type for the resulting iterator.<br>
<b>Default:</b>
<tt>std::iterator_traits&lt;BaseIterator&gt;::iterator_category</tt>
</table>
<h3>Concept Model</h3>
The indirect iterator will model whichever <a href=
"http://www.sgi.com/tech/stl/Iterators.html">standard iterator
concept category</a> is modeled by the base iterator. Thus, if the
base iterator is a model of <a href=
"http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random
Access Iterator</a> then so is the resulting indirect iterator. If
the base iterator models a more restrictive concept, the resulting
indirect iterator will model the same concept <a href="#3">[3]</a>.
<h3>Members</h3>
The indirect iterator type implements the member functions and operators
required of the <a href=
"http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random Access
Iterator</a> concept. In addition it has the following constructor:
<pre>
explicit indirect_iterator_generator::type(const BaseIterator&amp; it)
</pre>
<br>
<br>
<hr>
<p>
<h2><a name="indirect_iterator_pair_generator">The Indirect Iterator Pair
Generator</a></h2>
Sometimes a pair of <tt>const</tt>/non-<tt>const</tt> pair of iterators is
needed, such as when implementing a container. The
<tt>indirect_iterator_pair_generator</tt> class makes it more convenient to
create this pair of iterator types.
<blockquote>
<pre>
template &lt;class BaseIterator,
class Value, class Pointer, class Reference,
class ConstPointer, class ConstReference&gt;
class indirect_iterator_pair_generator
{
public:
typedef <tt><a href=
"./iterator_adaptors.htm#iterator_adaptor">iterator_adaptor</a>&lt;...&gt;</tt> iterator; // the mutable indirect iterator type
typedef <tt><a href=
"./iterator_adaptors.htm#iterator_adaptor">iterator_adaptor</a>&lt;...&gt;</tt> const_iterator; // the immutable indirect iterator type
};
</pre>
</blockquote>
<h3>Example</h3>
<blockquote>
<pre>
// continuing from the last example...
typedef boost::indirect_iterator_pair_generator&lt;char**,
char, char*, char&amp;, const char*, const char&amp;&gt; PairGen;
char mutable_characters[N];
char* pointers_to_mutable_chars[N];
for (int i = 0; i &lt; N; ++i)
pointers_to_mutable_chars[i] = &amp;mutable_characters[i];
PairGen::iterator mutable_indirect_first(pointers_to_mutable_chars),
mutable_indirect_last(pointers_to_mutable_chars + N);
PairGen::const_iterator const_indirect_first(pointers_to_chars),
const_indirect_last(pointers_to_chars + N);
std::transform(const_indirect_first, const_indirect_last,
mutable_indirect_first, std::bind1st(std::plus&lt;char&gt;(), 1));
std::copy(mutable_indirect_first, mutable_indirect_last,
std::ostream_iterator&lt;char&gt;(std::cout, ","));
std::cout &lt;&lt; std::endl;
// to be continued...
</pre>
</blockquote>
<p>The output is:
<blockquote>
<pre>
b,c,d,e,f,g,h,
</pre>
</blockquote>
<h3>Template Parameters</h3>
<table border>
<tr>
<th>Parameter
<th>Description
<tr>
<td><tt>BaseIterator</tt>
<td>The iterator type being wrapped. The <tt>value_type</tt> of the
base iterator should itself be dereferenceable.
The return type of the <tt>operator*</tt> for the
<tt>value_type</tt> should match the <tt>Reference</tt> type.
<tr>
<td><tt>Value</tt>
<td>The <tt>value_type</tt> of the resulting iterators.
If Value is <tt>const X</tt>, a conforming compiler makes the
<tt>value_type</tt> <tt><i>non-</i>const X</tt><a href=
"iterator_adaptors.htm#1">[1]</a>. Note that if the default
is used for <tt>Value</tt>, then there must be a valid
specialization of <tt>iterator_traits</tt> for the value type
of the base iterator.<br>
<b>Default:</b> <tt>std::iterator_traits&lt;<br>
<20> std::iterator_traits&lt;BaseIterator&gt;::value_type
&gt;::value_type</tt><a href="#2">[2]</a>
<tr>
<td><tt>Reference</tt>
<td>The <tt>reference</tt> type of the resulting <tt>iterator</tt>, and
in particular, the result type of its <tt>operator*()</tt>.<br>
<b>Default:</b> <tt>Value&amp;</tt>
<tr>
<td><tt>Pointer</tt>
<td>The <tt>pointer</tt> type of the resulting <tt>iterator</tt>, and
in particular, the result type of its <tt>operator-&gt;()</tt>.<br>
<b>Default:</b> <tt>Value*</tt>
<tr>
<td><tt>ConstReference</tt>
<td>The <tt>reference</tt> type of the resulting
<tt>const_iterator</tt>, and in particular, the result type of its
<tt>operator*()</tt>.<br>
<b>Default:</b> <tt>const Value&amp;</tt>
<tr>
<td><tt>ConstPointer</tt>
<td>The <tt>pointer</tt> type of the resulting <tt>const_iterator</tt>,
and in particular, the result type of its <tt>operator-&gt;()</tt>.<br>
<b>Default:</b> <tt>const Value*</tt>
<tr>
<td><tt>Category</tt>
<td>The <tt>iterator_category</tt> type for the resulting iterator.<br>
<b>Default:</b>
<tt>std::iterator_traits&lt;BaseIterator&gt;::iterator_category</tt>
</table>
<h3>Concept Model</h3>
The indirect iterators will model whichever <a href=
"http://www.sgi.com/tech/stl/Iterators.html">standard iterator
concept category</a> is modeled by the base iterator. Thus, if the
base iterator is a model of <a href=
"http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random
Access Iterator</a> then so are the resulting indirect
iterators. If the base iterator models a more restrictive concept,
the resulting indirect iterators will model the same concept <a
href="#3">[3]</a>.
<h3>Members</h3>
The resulting <tt>iterator</tt> and <tt>const_iterator</tt> types implement
the member functions and operators required of the <a href=
"http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random Access
Iterator</a> concept. In addition they support the following constructors:
<blockquote>
<pre>
explicit indirect_iterator_pair_generator::iterator(const BaseIterator&amp; it)
explicit indirect_iterator_pair_generator::const_iterator(const BaseIterator&amp; it)
</pre>
</blockquote>
<br>
<br>
<hr>
<p>
<h2><a name="make_indirect_iterator">The Indirect Iterator Object
Generator</a></h2>
The <tt>make_indirect_iterator()</tt> function provides a more convenient
way to create indirect iterator objects. The function saves the user the
trouble of explicitly writing out the iterator types.
<blockquote>
<pre>
template &lt;class BaseIterator&gt;
typename indirect_iterator_generator&lt;BaseIterator&gt;::type
make_indirect_iterator(BaseIterator base)
</pre>
</blockquote>
<h3>Example</h3>
Here we again print the <tt>char</tt>s from the array <tt>characters</tt>
by accessing them through the array of pointers <tt>pointer_to_chars</tt>,
but this time we use the <tt>make_indirect_iterator()</tt> function which
saves us some typing.
<blockquote>
<pre>
// continuing from the last example...
std::copy(boost::make_indirect_iterator(pointers_to_chars),
boost::make_indirect_iterator(pointers_to_chars + N),
std::ostream_iterator&lt;char&gt;(std::cout, ","));
std::cout &lt;&lt; std::endl;
return 0;
}
</pre>
</blockquote>
The output is:
<blockquote>
<pre>
a,b,c,d,e,f,g,
</pre>
</blockquote>
<hr>
<h3>Notes</h3>
<p>
<p><a name="2">[2]</a> If your compiler does not support partial
specialization and the base iterator or its <tt>value_type</tt> is a
builtin pointer type, you will not be able to use the default for
<tt>Value</tt> and will need to specify this type explicitly.
<p><a name="3">[3]</a>There is a caveat to which concept the
indirect iterator can model. If the return type of the
<tt>operator*</tt> for the base iterator's value type is not a
true reference, then strickly speaking, the indirect iterator can
not be a model of <a href=
"http://www.sgi.com/tech/stl/ForwardIterator.html">Forward
Iterator</a> or any of the concepts that refine it. In this case
the <tt>Category</tt> for the indirect iterator should be
specified as <tt>std::input_iterator_tag</tt>. However, even in
this case, if the base iterator is a random access iterator, the
resulting indirect iterator will still satisfy most of the
requirements for <a href=
"http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random
Access Iterator</a>.
<hr>
<p>Revised
<!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->18 Feb 2001<!--webbot bot="Timestamp" endspan i-checksum="14389" -->
<p>&copy; Copyright Jeremy Siek and David Abrahams 2001. Permission to
copy, use, modify, sell and distribute this document is granted provided
this copyright notice appears in all copies. This document is provided "as
is" without express or implied warranty, and with no claim as to its
suitability for any purpose.
<!-- LocalWords: html charset alt gif hpp BaseIterator const namespace struct
-->
<!-- LocalWords: ConstPointer ConstReference typename iostream int abcdefg
-->
<!-- LocalWords: sizeof PairGen pre Jeremy Siek David Abrahams
-->
</body>
</html>

210
iterator_traits_test.cpp Normal file
View File

@@ -0,0 +1,210 @@
// (C) Copyright David Abrahams 2001. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 04 Mar 2001 Patches for Intel C++ (Dave Abrahams)
// 19 Feb 2001 Take advantage of improved iterator_traits to do more tests
// on MSVC. Reordered some #ifdefs for coherency.
// (David Abrahams)
// 13 Feb 2001 Test new VC6 workarounds (David Abrahams)
// 11 Feb 2001 Final fixes for Borland (David Abrahams)
// 11 Feb 2001 Some fixes for Borland get it closer on that compiler
// (David Abrahams)
// 07 Feb 2001 More comprehensive testing; factored out static tests for
// better reuse (David Abrahams)
// 21 Jan 2001 Quick fix to my_iterator, which wasn't returning a
// reference type from operator* (David Abrahams)
// 19 Jan 2001 Initial version with iterator operators (David Abrahams)
#include <boost/detail/iterator.hpp>
#include <boost/type_traits.hpp>
#include <boost/operators.hpp>
#include <boost/static_assert.hpp>
#include <iterator>
#include <vector>
#include <list>
#include <cassert>
#include <iostream>
// An iterator for which we can get traits.
struct my_iterator1
: boost::forward_iterator_helper<my_iterator1, char, long, const char*, const char&>
{
my_iterator1(const char* p) : m_p(p) {}
bool operator==(const my_iterator1& rhs) const
{ return this->m_p == rhs.m_p; }
my_iterator1& operator++() { ++this->m_p; return *this; }
const char& operator*() { return *m_p; }
private:
const char* m_p;
};
// Used to prove that we don't require std::iterator<> in the hierarchy under
// MSVC6, and that we can compute all the traits for a standard-conforming UDT
// iterator.
struct my_iterator2
: boost::equality_comparable<my_iterator2
, boost::incrementable<my_iterator2
, boost::dereferenceable<my_iterator2,const char*> > >
{
typedef char value_type;
typedef long difference_type;
typedef const char* pointer;
typedef const char& reference;
typedef std::forward_iterator_tag iterator_category;
my_iterator2(const char* p) : m_p(p) {}
bool operator==(const my_iterator2& rhs) const
{ return this->m_p == rhs.m_p; }
my_iterator2& operator++() { ++this->m_p; return *this; }
const char& operator*() { return *m_p; }
private:
const char* m_p;
};
// Used to prove that we're not overly confused by the existence of
// std::iterator<> in the hierarchy under MSVC6 - we should find that
// boost::detail::iterator_traits<my_iterator3>::difference_type is int.
struct my_iterator3 : my_iterator1
{
typedef int difference_type;
my_iterator3(const char* p) : my_iterator1(p) {}
};
template <class Iterator,
class value_type, class difference_type, class pointer, class reference, class category>
struct non_portable_tests
{
// Unfortunately, the VC6 standard library doesn't supply these :(
BOOST_STATIC_ASSERT((
boost::is_same<
typename boost::detail::iterator_traits<Iterator>::pointer,
pointer
>::value));
BOOST_STATIC_ASSERT((
boost::is_same<
typename boost::detail::iterator_traits<Iterator>::reference,
reference
>::value));
};
template <class Iterator,
class value_type, class difference_type, class pointer, class reference, class category>
struct portable_tests
{
BOOST_STATIC_ASSERT((
boost::is_same<
typename boost::detail::iterator_traits<Iterator>::difference_type,
difference_type
>::value));
BOOST_STATIC_ASSERT((
boost::is_same<
typename boost::detail::iterator_traits<Iterator>::iterator_category,
category
>::value));
};
// Test iterator_traits
template <class Iterator,
class value_type, class difference_type, class pointer, class reference, class category>
struct input_iterator_test
: portable_tests<Iterator,value_type,difference_type,pointer,reference,category>
{
BOOST_STATIC_ASSERT((
boost::is_same<
typename boost::detail::iterator_traits<Iterator>::value_type,
value_type
>::value));
};
template <class Iterator,
class value_type, class difference_type, class pointer, class reference, class category>
struct non_pointer_test
: input_iterator_test<Iterator,value_type,difference_type,pointer,reference,category>
, non_portable_tests<Iterator,value_type,difference_type,pointer,reference,category>
{
};
template <class Iterator,
class value_type, class difference_type, class pointer, class reference, class category>
struct maybe_pointer_test
: portable_tests<Iterator,value_type,difference_type,pointer,reference,category>
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
, non_portable_tests<Iterator,value_type,difference_type,pointer,reference,category>
#endif
{
};
input_iterator_test<std::istream_iterator<int>, int, std::ptrdiff_t, int*, int&, std::input_iterator_tag>
istream_iterator_test;
//
#if defined(__BORLANDC__) && !defined(__SGI_STL_PORT)
typedef ::std::char_traits<char>::off_type distance;
non_pointer_test<std::ostream_iterator<int>,int,
distance,int*,int&,std::output_iterator_tag> ostream_iterator_test;
#elif defined(BOOST_MSVC_STD_ITERATOR)
non_pointer_test<std::ostream_iterator<int>,
int, void, void, void, std::output_iterator_tag>
ostream_iterator_test;
#else
non_pointer_test<std::ostream_iterator<int>,
void, void, void, void, std::output_iterator_tag>
ostream_iterator_test;
#endif
#ifdef __KCC
typedef long std_list_diff_type;
#else
typedef std::ptrdiff_t std_list_diff_type;
#endif
non_pointer_test<std::list<int>::iterator, int, std_list_diff_type, int*, int&, std::bidirectional_iterator_tag>
list_iterator_test;
maybe_pointer_test<std::vector<int>::iterator, int, std::ptrdiff_t, int*, int&, std::random_access_iterator_tag>
vector_iterator_test;
maybe_pointer_test<int*, int, std::ptrdiff_t, int*, int&, std::random_access_iterator_tag>
int_pointer_test;
non_pointer_test<my_iterator1, char, long, const char*, const char&, std::forward_iterator_tag>
my_iterator1_test;
non_pointer_test<my_iterator2, char, long, const char*, const char&, std::forward_iterator_tag>
my_iterator2_test;
non_pointer_test<my_iterator3, char, int, const char*, const char&, std::forward_iterator_tag>
my_iterator3_test;
int main()
{
char chars[100];
int ints[100];
for (std::ptrdiff_t length = 3; length < 100; length += length / 3)
{
std::list<int> l(length);
assert(boost::detail::distance(l.begin(), l.end()) == length);
std::vector<int> v(length);
assert(boost::detail::distance(v.begin(), v.end()) == length);
assert(boost::detail::distance(&ints[0], ints + length) == length);
assert(boost::detail::distance(my_iterator1(chars), my_iterator1(chars + length)) == length);
assert(boost::detail::distance(my_iterator2(chars), my_iterator2(chars + length)) == length);
assert(boost::detail::distance(my_iterator3(chars), my_iterator3(chars + length)) == length);
}
return 0;
}