Compare commits

...

129 Commits

Author SHA1 Message Date
61d88403a9 This commit was manufactured by cvs2svn to create tag
'Version_1_21_1'.

[SVN r9561]
2001-03-14 15:36:54 +00:00
feb370b201 1.21.0 run up including fixing broken links
[SVN r9523]
2001-03-09 14:36:41 +00:00
d1b34e64d8 Fixes for validator.w3.org
[SVN r9518]
2001-03-09 03:28:13 +00:00
b9a1eead40 Mostly clarification. Fix: changed "category" to "iterator_category" in one place.
[SVN r9517]
2001-03-09 03:10:32 +00:00
1e4bfac98c added named template parameter to table of contents
[SVN r9510]
2001-03-08 21:36:09 +00:00
3bb504fbf3 added revision history line
[SVN r9506]
2001-03-08 20:50:14 +00:00
5029791c90 split off indirect and transform tests into separate files
[SVN r9505]
2001-03-08 20:49:05 +00:00
a1a68f0970 1.21.0 run up
[SVN r9502]
2001-03-08 20:35:52 +00:00
f8543d79eb added more static asserts
[SVN r9500]
2001-03-08 20:02:00 +00:00
f353415136 added docs for iterator_traits_generator
[SVN r9498]
2001-03-08 19:19:46 +00:00
26240403b0 added a test to make sure that the type set by the generator is really the
type used


[SVN r9497]
2001-03-08 19:04:29 +00:00
3a39729b58 new file
[SVN r9488]
2001-03-08 16:33:40 +00:00
096c961d9a Patches for Intel C++
[SVN r9425]
2001-03-04 16:08:20 +00:00
01fe04a6a2 Workaround for Borland
[SVN r9424]
2001-03-04 16:07:11 +00:00
7ea4014993 Misc fixes that missed the last commit..
[SVN r9402]
2001-03-04 11:08:29 +00:00
d50b374f88 Boost Test Library initial commit
[SVN r9364]
2001-02-28 21:39:56 +00:00
27dfb25570 added function output iterator adaptor
[SVN r9351]
2001-02-27 05:50:51 +00:00
b5ed77985e added missing typename's to docs
[SVN r9324]
2001-02-25 12:04:48 +00:00
61243bd15f type_traits: more tentative EDG compiler fixes...
[SVN r9321]
2001-02-24 13:04:56 +00:00
368b94d804 Corrected numeric_limits<>::is_integral -> numeric_limits<>::is_integer
[SVN r9299]
2001-02-20 23:15:29 +00:00
a5adbbfd5f use filter_iter::policies_type instead of filter_gen::policies_type
[SVN r9292]
2001-02-20 16:01:00 +00:00
a19d13f123 More type_traits tweeks.
[SVN r9287]
2001-02-20 12:17:55 +00:00
78886ab383 Added cross-reference; improved policies documentation
[SVN r9286]
2001-02-20 03:49:26 +00:00
168012b465 Describe const/mutable interactions and give rationale for no
reverse_iterator_pair_generator.


[SVN r9285]
2001-02-20 03:04:03 +00:00
d9d58ea66e Take advantage of improved iterator_traits to do more tests on MSVC. Reordered
some #ifdefs for coherency.


[SVN r9281]
2001-02-19 22:36:22 +00:00
56f5f6e8d5 Take adavantage of improved iterator_traits to do more tests on MSVC. Hack
around an MSVC-with-STLport internal compiler error.


[SVN r9280]
2001-02-19 22:34:31 +00:00
3cb6420eda Roll back the reverse_iterator_pair_generator test
[SVN r9278]
2001-02-19 20:37:24 +00:00
60be2c1186 Added tests for reverse_iterator_pair_generator
[SVN r9273]
2001-02-19 16:21:12 +00:00
ed210f6b2c more type traits updates:
Header includes get BOOST_ prefix,
BOOST_DECL_MC dropped in favour of new BOOST_STATIC_CONSTANT (from config.hpp),
operator ! dropped in favour of boost::type_traits::ice_not template.


[SVN r9270]
2001-02-19 12:52:30 +00:00
029bc59d74 Added some missing 'explicit's
[SVN r9265]
2001-02-18 22:23:13 +00:00
961c08a82f Apply Jens' suggested fixes
[SVN r9263]
2001-02-18 21:50:57 +00:00
7ee484c614 fix minor typos
[SVN r9259]
2001-02-18 19:26:20 +00:00
05c6fbbf99 needs <boost/type_traits/same_traits.hpp>
[SVN r9253]
2001-02-18 15:19:23 +00:00
91078b7f7a type_traits: regression failure fixes from type traits changes...
[SVN r9249]
2001-02-18 11:43:01 +00:00
20d804afc4 changes to order of indirect_iterator template parameter list, and
fixed a typo


[SVN r9247]
2001-02-17 22:03:30 +00:00
c21f6d1cbf added Category parameter and made a few more edits with regards to type requirements
[SVN r9239]
2001-02-17 19:59:19 +00:00
393e79c1fd Added new type traits files.
[SVN r9238]
2001-02-17 12:25:45 +00:00
8b92c8a085 adjusted requirements for value type of the base iterator
[SVN r9236]
2001-02-17 01:51:45 +00:00
ff73dd94c9 made iterator_adaptor constructor explicit
[SVN r9235]
2001-02-17 01:50:40 +00:00
af43904f38 added "explicit" to iterator_adaptor constructor
[SVN r9234]
2001-02-17 01:44:41 +00:00
485074f265 Added a missing const. Made the tests run (somewhat) with plain MSVC again.
[SVN r9232]
2001-02-16 23:04:49 +00:00
2e0ee55b5e add missing my_int3::operator!=
[SVN r9231]
2001-02-16 21:28:59 +00:00
e9105d32cb background color and a whitespace edit
[SVN r9228]
2001-02-16 16:38:45 +00:00
964d23f68c Edits for clarity
[SVN r9224]
2001-02-16 05:51:37 +00:00
be5aaaae7b More edits for clarity. Added const/non-const example.
[SVN r9223]
2001-02-16 05:33:21 +00:00
bf13bd7b3f Massive edits
[SVN r9222]
2001-02-16 05:30:49 +00:00
352e392fcb Checked and cleaned using HTML TIDY.
[SVN r9220]
2001-02-16 02:36:36 +00:00
083b1b02df Bigtime edits
[SVN r9219]
2001-02-16 00:38:28 +00:00
648c6240a2 added another link to the generic_programming.html#policies
[SVN r9218]
2001-02-15 16:57:12 +00:00
60cab840cb removed strange ssh garbage
[SVN r9217]
2001-02-15 16:52:39 +00:00
83a4380dab added mention of traits requirement under Type Requirements section
[SVN r9216]
2001-02-15 16:49:16 +00:00
de84fe8d98 oops, meant to remove use of policies_type from filter_iterator_generator
in the last commit, but accidentally added it :(


[SVN r9215]
2001-02-15 16:43:54 +00:00
ed3cbfdb8e removed policies_type from filter_iterator_generator
[SVN r9214]
2001-02-15 16:41:48 +00:00
fda44ca17d General edits for clarity; some reorganization.
[SVN r9213]
2001-02-15 16:39:55 +00:00
272025bb07 fixed my_int::operator--
[SVN r9208]
2001-02-15 06:47:06 +00:00
8e92bcf1b2 removed policies_type from filter_iterator_generator
[SVN r9207]
2001-02-15 06:44:26 +00:00
84f1ffdefe added section on Members to cover constructors, etc. and added
a section on Operators


[SVN r9206]
2001-02-15 06:41:46 +00:00
7e25450054 added discusion of counting_iterator_traits, and added type requirements
for the Incrementable type.

added uses of user-defined types to the test


[SVN r9204]
2001-02-15 05:53:10 +00:00
4a563fa266 added missing boost::
[SVN r9199]
2001-02-14 20:35:39 +00:00
aa4c0ec000 Test new VC6 workarounds
[SVN r9198]
2001-02-13 23:32:19 +00:00
e1ecfbdc43 added output for the transform iterator example
[SVN r9187]
2001-02-13 04:38:59 +00:00
a4e122a82e changed template class to class template
[SVN r9186]
2001-02-13 04:34:44 +00:00
93216e8fb7 copyright
[SVN r9184]
2001-02-13 04:25:24 +00:00
16272c210d fixed typo
[SVN r9183]
2001-02-13 04:24:24 +00:00
e104b00da1 merged in Dave's additions and added a tutorial using the implementation
of transform iterator as the example


[SVN r9182]
2001-02-13 04:15:17 +00:00
ce5c6bcc08 removed use of istream_iterator for operator-> test, replaced with
use of concept archetypes


[SVN r9180]
2001-02-13 02:03:13 +00:00
8694ce31fe changed int* to std::vector<int>::iterator
[SVN r9178]
2001-02-12 21:59:25 +00:00
d960e5eadd added another example
[SVN r9177]
2001-02-12 21:57:19 +00:00
2dc71e87a3 new files
[SVN r9176]
2001-02-12 21:35:20 +00:00
6bf17edde2 updated url to the iterator_adaptor class
[SVN r9156]
2001-02-12 05:24:45 +00:00
88573d515d fixed Reference and Pointer template paremeter descriptions
[SVN r9155]
2001-02-12 05:20:09 +00:00
89b9f77823 obsolete and not needed
[SVN r9152]
2001-02-12 04:55:19 +00:00
765d9be17d small edit
[SVN r9151]
2001-02-12 04:53:39 +00:00
7135373008 various edits
[SVN r9150]
2001-02-12 04:52:24 +00:00
ee269884fc finished 1st draft of reverse iterator docs
[SVN r9149]
2001-02-12 04:51:56 +00:00
387540d5f1 using make_const_projection_iterator() for last example,
and a couple other minor edits


[SVN r9145]
2001-02-12 02:55:19 +00:00
2eba7b42a8 new files
[SVN r9144]
2001-02-12 02:52:26 +00:00
07115d26c7 finished 1st draft
[SVN r9143]
2001-02-12 01:50:50 +00:00
c43ed815a0 new files
[SVN r9137]
2001-02-11 20:05:00 +00:00
ff01e36d12 Compile with Borland, re-enable failing tests
[SVN r9136]
2001-02-11 19:53:56 +00:00
ac4798b16c Final fixes for Borland
[SVN r9135]
2001-02-11 19:50:14 +00:00
d4e14fed0e Fixed bugs in the iterator helpers which prevented explicitly supplied arguments from actually being used
[SVN r9128]
2001-02-11 19:31:21 +00:00
5f91259344 few edits
[SVN r9125]
2001-02-11 19:26:26 +00:00
20a9d9645d Added test of operator-> for forward and input iterators.
[SVN r9124]
2001-02-11 19:25:49 +00:00
c86f6b4abd Dave's suggested edits
[SVN r9122]
2001-02-11 18:27:40 +00:00
d66489b5b2 changed per Dave's comments
[SVN r9121]
2001-02-11 18:14:04 +00:00
b743ee9f0c #if 0'd out use of counting_iterator on non-numeric types in MSVC without STLport, so that the other tests may proceed
[SVN r9120]
2001-02-11 16:19:17 +00:00
95ba69c00a Borland fixes
[SVN r9119]
2001-02-11 16:16:53 +00:00
2ac273739c Update for compatibility with new iterator_adaptor interface
[SVN r9118]
2001-02-11 16:14:14 +00:00
5b4d28708c Fixes for Borland
[SVN r9117]
2001-02-11 16:13:38 +00:00
4cc4383488 Some fixes for Borland get it closer on that compiler
[SVN r9112]
2001-02-11 16:05:01 +00:00
8935232248 new files
[SVN r9109]
2001-02-11 05:25:19 +00:00
5c6dd2f172 various edits
[SVN r9108]
2001-02-11 04:34:32 +00:00
eeeb7ef5b9 Replaced some static_casts with explicit construction
[SVN r9107]
2001-02-11 03:12:04 +00:00
2efc9c1178 Use new adaptors interface
[SVN r9105]
2001-02-11 03:07:55 +00:00
a84c46f6e3 added another example
[SVN r9103]
2001-02-11 03:01:47 +00:00
a5c3dcdd02 redid docs for the template parameters
[SVN r9102]
2001-02-11 02:55:38 +00:00
46f7a75eb7 fixed bug in policy object constructor
[SVN r9101]
2001-02-11 02:40:02 +00:00
94b6710c5b fixed bug in policy object construction
[SVN r9100]
2001-02-11 02:39:35 +00:00
d8dd3da9ab small edit
[SVN r9099]
2001-02-11 02:38:08 +00:00
803ced004a finished 1st draft
[SVN r9098]
2001-02-11 02:35:09 +00:00
0ea7d36ad0 A fix for EDG
[SVN r9096]
2001-02-10 23:16:05 +00:00
87aafab759 new file
[SVN r9094]
2001-02-10 22:33:43 +00:00
994d310abd Use new filter_ interface.
[SVN r9090]
2001-02-10 20:11:42 +00:00
228cdcf05e All final 1.20.2 changes, including fixing broken hyperlinks
[SVN r9071]
2001-02-10 14:42:14 +00:00
42598e352c Use new reverse_ and indirect_ interfaces. Replace BOOST_NO_STD_ITERATOR_TRAITS
with BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION to prove we've normalized to core
compiler capabilities


[SVN r9067]
2001-02-10 00:38:08 +00:00
36a9e4d1da fixed usage of indirect_iterator_pair_generator
[SVN r9053]
2001-02-09 05:45:10 +00:00
456dfd0dea adjusted to changes in iterator_adaptors.hpp, added more
tests of make_xxx


[SVN r9051]
2001-02-09 05:26:48 +00:00
155457e2b5 more work on default args and explicit templat args
[SVN r9049]
2001-02-09 04:40:42 +00:00
b5c91485bf Use Jeremy's new make_reverse_iterator form; add more comprehensive
testing. Force-decay array function arguments to pointers.


[SVN r9047]
2001-02-09 03:32:59 +00:00
c959cf7870 bug fixes
[SVN r9031]
2001-02-08 04:46:41 +00:00
5878c88636 added indirect_iterator_pair_generator back in
[SVN r9026]
2001-02-08 03:35:03 +00:00
ddcef2fb19 Added tests for the make_xxx_iterator() helper functions
[SVN r9025]
2001-02-08 03:08:09 +00:00
493d124c07 rename counting_iterator() -> make_counting_iterator()
[SVN r9015]
2001-02-07 22:27:02 +00:00
f42060c616 add missing "typename"
[SVN r9005]
2001-02-07 17:51:55 +00:00
834facc932 trivial flotsam cleanup
[SVN r9004]
2001-02-07 17:23:52 +00:00
f82d0b76ee More comprehensive testing; factored out static tests for better reuse
[SVN r9001]
2001-02-07 16:38:41 +00:00
c25d225275 Replaced use of xxx_pair_generator with xxx_generator where
possible (which was all but the projection iterator).


[SVN r8996]
2001-02-07 06:36:12 +00:00
c503a274b5 Removed now-defaulted template arguments where possible
Updated names to correspond to new generator naming convention.
Added a trivial test for make_transform_iterator().
Gave traits for const iterators a mutable value_type, per std.
Resurrected my original tests for indirect iterators.


[SVN r8995]
2001-02-07 05:37:08 +00:00
087069d215 added concept check for the default iterator policy
[SVN r8990]
2001-02-07 02:44:18 +00:00
826a6dd114 changed test for transform iterator to use input_iterator instead of
random access iterator


[SVN r8937]
2001-02-04 23:46:31 +00:00
f31483838d Fix for compilers without standard iterator_traits
[SVN r8929]
2001-02-04 20:11:30 +00:00
d8a9b633d9 Fix for newly-corrected bidirectional_iterator_test requirements.
[SVN r8926]
2001-02-04 19:09:46 +00:00
c060e4466a Added use of iterator_tests.hpp
[SVN r8923]
2001-02-04 18:26:43 +00:00
a9951376f4 removed UDT -> int is_convertible test because the noncopyable -> int
test already brings out the g++ warning


[SVN r8834]
2001-01-31 19:08:27 +00:00
bda0c8f5e3 added some more tests and fixed signature of main() so this will link
with MSVC


[SVN r8833]
2001-01-31 18:54:29 +00:00
71902f23a2 Added test case for is_convertible with UDT that brings out the
warning message bug with g++.


[SVN r8821]
2001-01-31 02:12:08 +00:00
dfd6c85569 Inital checkin
[SVN r8813]
2001-01-30 16:00:37 +00:00
0e41b2cc1a Removed not_an_iterator detritus
[SVN r8808]
2001-01-29 02:14:44 +00:00
41 changed files with 4550 additions and 3316 deletions

View File

@ -1,424 +0,0 @@
/*
*
* Copyright (c) 1999
* Dr John Maddock
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Dr John Maddock makes no representations
* about the suitability of this software for any purpose.
* It is provided "as is" without express or implied warranty.
*
* This file provides some example of type_traits usage -
* by "optimising" various algorithms:
*
* opt::copy - optimised for trivial copy (cf std::copy)
* opt::fill - optimised for trivial copy/small types (cf std::fill)
* opt::destroy_array - an example of optimisation based upon omitted destructor calls
* opt::iter_swap - uses type_traits to determine whether the iterator is a proxy
* in which case it uses a "safe" approach, otherwise calls swap
* on the assumption that swap may be specialised for the pointed-to type.
*
*/
/* Release notes:
23rd July 2000:
Added explicit failure for broken compilers that don't support these examples.
Fixed broken gcc support (broken using directive).
Reordered tests slightly.
*/
#include <iostream>
#include <typeinfo>
#include <algorithm>
#include <iterator>
#include <vector>
#include <memory>
#include <boost/timer.hpp>
#include <boost/type_traits.hpp>
#include <boost/call_traits.hpp>
using std::cout;
using std::endl;
using std::cin;
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
#error "Sorry, without template partial specialisation support there isn't anything to test here..."
#endif
namespace opt{
//
// algorithm destroy_array:
// The reverse of std::unitialized_copy, takes a block of
// unitialized memory and calls destructors on all objects therein.
//
namespace detail{
template <bool>
struct array_destroyer
{
template <class T>
static void destroy_array(T* i, T* j){ do_destroy_array(i, j); }
};
template <>
struct array_destroyer<true>
{
template <class T>
static void destroy_array(T*, T*){}
};
template <class T>
void do_destroy_array(T* first, T* last)
{
while(first != last)
{
first->~T();
++first;
}
}
}; // namespace detail
template <class T>
inline void destroy_array(T* p1, T* p2)
{
detail::array_destroyer<boost::has_trivial_destructor<T>::value>::destroy_array(p1, p2);
}
//
// unoptimised versions of destroy_array:
//
template <class T>
void destroy_array1(T* first, T* last)
{
while(first != last)
{
first->~T();
++first;
}
}
template <class T>
void destroy_array2(T* first, T* last)
{
for(; first != last; ++first) first->~T();
}
//
// opt::copy
// same semantics as std::copy
// calls memcpy where appropiate.
//
namespace detail{
template <bool b>
struct copier
{
template<typename I1, typename I2>
static I2 do_copy(I1 first, I1 last, I2 out);
};
template <bool b>
template<typename I1, typename I2>
I2 copier<b>::do_copy(I1 first, I1 last, I2 out)
{
while(first != last)
{
*out = *first;
++out;
++first;
}
return out;
}
template <>
struct copier<true>
{
template<typename I1, typename I2>
static I2* do_copy(I1* first, I1* last, I2* out)
{
memcpy(out, first, (last-first)*sizeof(I2));
return out+(last-first);
}
};
}
template<typename I1, typename I2>
inline I2 copy(I1 first, I1 last, I2 out)
{
typedef typename boost::remove_cv<typename std::iterator_traits<I1>::value_type>::type v1_t;
typedef typename boost::remove_cv<typename std::iterator_traits<I2>::value_type>::type v2_t;
enum{ can_opt = boost::is_same<v1_t, v2_t>::value
&& boost::is_pointer<I1>::value
&& boost::is_pointer<I2>::value
&& boost::has_trivial_assign<v1_t>::value };
return detail::copier<can_opt>::do_copy(first, last, out);
}
//
// fill
// same as std::fill, uses memset where appropriate, along with call_traits
// to "optimise" parameter passing.
//
namespace detail{
template <bool opt>
struct filler
{
template <typename I, typename T>
static void do_fill(I first, I last, typename boost::call_traits<T>::param_type val);
};
template <bool b>
template <typename I, typename T>
void filler<b>::do_fill(I first, I last, typename boost::call_traits<T>::param_type val)
{
while(first != last)
{
*first = val;
++first;
}
}
template <>
struct filler<true>
{
template <typename I, typename T>
static void do_fill(I first, I last, T val)
{
std::memset(first, val, last-first);
}
};
}
template <class I, class T>
inline void fill(I first, I last, const T& val)
{
enum{ can_opt = boost::is_pointer<I>::value
&& boost::is_arithmetic<T>::value
&& (sizeof(T) == 1) };
typedef detail::filler<can_opt> filler_t;
filler_t::template do_fill<I,T>(first, last, val);
}
//
// iter_swap:
// tests whether iterator is a proxying iterator or not, and
// uses optimal form accordingly:
//
namespace detail{
template <bool b>
struct swapper
{
template <typename I>
static void do_swap(I one, I two)
{
typedef typename std::iterator_traits<I>::value_type v_t;
v_t v = *one;
*one = *two;
*two = v;
}
};
#ifdef __GNUC__
using std::swap;
#endif
template <>
struct swapper<true>
{
template <typename I>
static void do_swap(I one, I two)
{
using std::swap;
swap(*one, *two);
}
};
}
template <typename I1, typename I2>
inline void iter_swap(I1 one, I2 two)
{
typedef typename std::iterator_traits<I1>::reference r1_t;
typedef typename std::iterator_traits<I2>::reference r2_t;
enum{ can_opt = boost::is_reference<r1_t>::value && boost::is_reference<r2_t>::value && boost::is_same<r1_t, r2_t>::value };
detail::swapper<can_opt>::do_swap(one, two);
}
}; // namespace opt
//
// define some global data:
//
const int array_size = 1000;
int i_array[array_size] = {0,};
const int ci_array[array_size] = {0,};
char c_array[array_size] = {0,};
const char cc_array[array_size] = { 0,};
const int iter_count = 1000000;
int main()
{
//
// test destroy_array,
// compare destruction time of an array of ints
// with unoptimised form.
//
cout << "Measuring times in micro-seconds per 1000 elements processed" << endl << endl;
cout << "testing destroy_array...\n"
"[Some compilers may be able to optimise the \"unoptimised\"\n versions as well as type_traits does.]" << endl;
/*cache load*/ opt::destroy_array(i_array, i_array + array_size);
boost::timer t;
double result;
int i;
for(i = 0; i < iter_count; ++i)
{
opt::destroy_array(i_array, i_array + array_size);
}
result = t.elapsed();
cout << "destroy_array<int>: " << result << endl;
/*cache load*/ opt::destroy_array1(i_array, i_array + array_size);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::destroy_array1(i_array, i_array + array_size);
}
result = t.elapsed();
cout << "destroy_array<int>(unoptimised#1): " << result << endl;
/*cache load*/ opt::destroy_array2(i_array, i_array + array_size);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::destroy_array2(i_array, i_array + array_size);
}
result = t.elapsed();
cout << "destroy_array<int>(unoptimised#2): " << result << endl << endl;
cout << "testing fill(char)...\n"
"[Some standard library versions may already perform this optimisation.]" << endl;
/*cache load*/ opt::fill<char*, char>(c_array, c_array + array_size, (char)3);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::fill<char*, char>(c_array, c_array + array_size, (char)3);
}
result = t.elapsed();
cout << "opt::fill<char*, char>: " << result << endl;
/*cache load*/ std::fill(c_array, c_array + array_size, (char)3);
t.restart();
for(i = 0; i < iter_count; ++i)
{
std::fill(c_array, c_array + array_size, (char)3);
}
result = t.elapsed();
cout << "std::fill<char*, char>: " << result << endl << endl;
cout << "testing fill(int)...\n"
"[Tests the effect of call_traits pass-by-value optimisation -\nthe value of this optimisation may depend upon hardware characteristics.]" << endl;
/*cache load*/ opt::fill<int*, int>(i_array, i_array + array_size, 3);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::fill<int*, int>(i_array, i_array + array_size, 3);
}
result = t.elapsed();
cout << "opt::fill<int*, int>: " << result << endl;
/*cache load*/ std::fill(i_array, i_array + array_size, 3);
t.restart();
for(i = 0; i < iter_count; ++i)
{
std::fill(i_array, i_array + array_size, 3);
}
result = t.elapsed();
cout << "std::fill<int*, int>: " << result << endl << endl;
cout << "testing copy...\n"
"[Some standard library versions may already perform this optimisation.]" << endl;
/*cache load*/ opt::copy<const int*, int*>(ci_array, ci_array + array_size, i_array);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::copy<const int*, int*>(ci_array, ci_array + array_size, i_array);
}
result = t.elapsed();
cout << "opt::copy<const int*, int*>: " << result << endl;
/*cache load*/ std::copy<const int*, int*>(ci_array, ci_array + array_size, i_array);
t.restart();
for(i = 0; i < iter_count; ++i)
{
std::copy<const int*, int*>(ci_array, ci_array + array_size, i_array);
}
result = t.elapsed();
cout << "std::copy<const int*, int*>: " << result << endl;
/*cache load*/ opt::detail::copier<false>::template do_copy<const int*, int*>(ci_array, ci_array + array_size, i_array);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::detail::copier<false>::template do_copy<const int*, int*>(ci_array, ci_array + array_size, i_array);
}
result = t.elapsed();
cout << "standard \"unoptimised\" copy: " << result << endl << endl;
/*cache load*/ opt::copy<const char*, char*>(cc_array, cc_array + array_size, c_array);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::copy<const char*, char*>(cc_array, cc_array + array_size, c_array);
}
result = t.elapsed();
cout << "opt::copy<const char*, char*>: " << result << endl;
/*cache load*/ std::copy<const char*, char*>(cc_array, cc_array + array_size, c_array);
t.restart();
for(i = 0; i < iter_count; ++i)
{
std::copy<const char*, char*>(cc_array, cc_array + array_size, c_array);
}
result = t.elapsed();
cout << "std::copy<const char*, char*>: " << result << endl;
/*cache load*/ opt::detail::copier<false>::template do_copy<const char*, char*>(cc_array, cc_array + array_size, c_array);
t.restart();
for(i = 0; i < iter_count; ++i)
{
opt::detail::copier<false>::template do_copy<const char*, char*>(cc_array, cc_array + array_size, c_array);
}
result = t.elapsed();
cout << "standard \"unoptimised\" copy: " << result << endl << endl;
//
// testing iter_swap
// really just a check that it does in fact compile...
std::vector<int> v1;
v1.push_back(0);
v1.push_back(1);
std::vector<bool> v2;
v2.push_back(0);
v2.push_back(1);
opt::iter_swap(v1.begin(), v1.begin()+1);
opt::iter_swap(v2.begin(), v2.begin()+1);
cout << "Press any key to exit...";
cin.get();
}

View File

@ -1,489 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>C++ Type traits</title>
</head>
<body bgcolor="#FFFFFF" link="#0000FF" vlink="#800080">
<h2 align="center">C++ Type traits</h2>
<p align="center"><em>by John Maddock and Steve Cleary</em></p>
<p align="center"><em>This is a draft of an article that will appear in a future
issue of </em><a href="http://www.ddj.com"><em>Dr Dobb's Journal</em></a></p>
<p>Generic programming (writing code which works with any data type meeting a
set of requirements) has become the method of choice for providing reusable
code. However, there are times in generic programming when &quot;generic&quot;
just isn't good enough - sometimes the differences between types are too large
for an efficient generic implementation. This is when the traits technique
becomes important - by encapsulating those properties that need to be considered
on a type by type basis inside a traits class, we can minimise the amount of
code that has to differ from one type to another, and maximise the amount of
generic code.</p>
<p>Consider an example: when working with character strings, one common
operation is to determine the length of a null terminated string. Clearly it's
possible to write generic code that can do this, but it turns out that there are
much more efficient methods available: for example, the C library functions <font size="2" face="Courier New">strlen</font>
and <font size="2" face="Courier New">wcslen</font> are usually written in
assembler, and with suitable hardware support can be considerably faster than a
generic version written in C++. The authors of the C++ standard library realised
this, and abstracted the properties of <font size="2" face="Courier New">char</font>
and <font size="2" face="Courier New">wchar_t</font> into the class <font size="2" face="Courier New">char_traits</font>.
Generic code that works with character strings can simply use <font size="2" face="Courier New">char_traits&lt;&gt;::length</font>
to determine the length of a null terminated string, safe in the knowledge that
specialisations of <font size="2" face="Courier New">char_traits</font> will use
the most appropriate method available to them.</p>
<h4>Type traits</h4>
<p>Class <font size="2" face="Courier New">char_traits</font> is a classic
example of a collection of type specific properties wrapped up in a single class
- what Nathan Myers termed a <i>baggage class</i>[1]. In the Boost type-traits
library, we[2] have written a set of very specific traits classes, each of which
encapsulate a single trait from the C++ type system; for example, is a type a
pointer or a reference type? Or does a type have a trivial constructor, or a
const-qualifier? The type-traits classes share a unified design: each class has
a single member <i>value</i>, a compile-time constant that is true if the type
has the specified property, and false otherwise. As we will show, these classes
can be used in generic programming to determine the properties of a given type
and introduce optimisations that are appropriate for that case.</p>
<p>The type-traits library also contains a set of classes that perform a
specific transformation on a type; for example, they can remove a top-level
const or volatile qualifier from a type. Each class that performs a
transformation defines a single typedef-member <i>type</i> that is the result of
the transformation. All of the type-traits classes are defined inside namespace <font size="2" face="Courier New">boost</font>;
for brevity, namespace-qualification is omitted in most of the code samples
given.</p>
<h4>Implementation</h4>
<p>There are far too many separate classes contained in the type-traits library
to give a full implementation here - see the source code in the Boost library
for the full details - however, most of the implementation is fairly repetitive
anyway, so here we will just give you a flavour for how some of the classes are
implemented. Beginning with possibly the simplest class in the library, is_void&lt;T&gt;
has a member <i>value</i> that is true only if T is void.</p>
<pre>template &lt;typename T&gt;
struct is_void
{ static const bool value = false; };
template &lt;&gt;
struct is_void&lt;void&gt;
{ static const bool value = true; };</pre>
<p>Here we define a primary version of the template class <font size="2" face="Courier New">is_void</font>,
and provide a full-specialisation when T is void. While full specialisation of a
template class is an important technique, sometimes we need a solution that is
halfway between a fully generic solution, and a full specialisation. This is
exactly the situation for which the standards committee defined partial
template-class specialisation. As an example, consider the class
boost::is_pointer&lt;T&gt;: here we needed a primary version that handles all
the cases where T is not a pointer, and a partial specialisation to handle all
the cases where T is a pointer:</p>
<pre>template &lt;typename T&gt;
struct is_pointer
{ static const bool value = false; };
template &lt;typename T&gt;
struct is_pointer&lt;T*&gt;
{ static const bool value = true; };</pre>
<p>The syntax for partial specialisation is somewhat arcane and could easily
occupy an article in its own right; like full specialisation, in order to write
a partial specialisation for a class, you must first declare the primary
template. The partial specialisation contains an extra &lt;<EFBFBD>&gt; after the
class name that contains the partial specialisation parameters; these define the
types that will bind to that partial specialisation rather than the default
template. The rules for what can appear in a partial specialisation are somewhat
convoluted, but as a rule of thumb if you can legally write two function
overloads of the form:</p>
<pre>void foo(T);
void foo(U);</pre>
<p>Then you can also write a partial specialisation of the form:</p>
<pre>template &lt;typename T&gt;
class c{ /*details*/ };
template &lt;typename T&gt;
class c&lt;U&gt;{ /*details*/ };</pre>
<p>This rule is by no means foolproof, but it is reasonably simple to remember
and close enough to the actual rule to be useful for everyday use.</p>
<p>As a more complex example of partial specialisation consider the class
remove_bounds&lt;T&gt;. This class defines a single typedef-member <i>type</i>
that is the same type as T but with any top-level array bounds removed; this is
an example of a traits class that performs a transformation on a type:</p>
<pre>template &lt;typename T&gt;
struct remove_bounds
{ typedef T type; };
template &lt;typename T, std::size_t N&gt;
struct remove_bounds&lt;T[N]&gt;
{ typedef T type; };</pre>
<p>The aim of remove_bounds is this: imagine a generic algorithm that is passed
an array type as a template parameter, <font size="2" face="Courier New">remove_bounds</font>
provides a means of determining the underlying type of the array. For example <code>remove_bounds&lt;int[4][5]&gt;::type</code>
would evaluate to the type <code>int[5]</code>. This example also shows that the
number of template parameters in a partial specialisation does not have to match
the number in the default template. However, the number of parameters that
appear after the class name do have to match the number and type of the
parameters in the default template.</p>
<h4>Optimised copy</h4>
<p>As an example of how the type traits classes can be used, consider the
standard library algorithm copy:</p>
<pre>template&lt;typename Iter1, typename Iter2&gt;
Iter2 copy(Iter1 first, Iter1 last, Iter2 out);</pre>
<p>Obviously, there's no problem writing a generic version of copy that works
for all iterator types Iter1 and Iter2; however, there are some circumstances
when the copy operation can best be performed by a call to <font size="2" face="Courier New">memcpy</font>.
In order to implement copy in terms of <font size="2" face="Courier New">memcpy</font>
all of the following conditions need to be met:</p>
<ul>
<li>Both of the iterator types Iter1 and Iter2 must be pointers.</li>
<li>Both Iter1 and Iter2 must point to the same type - excluding <font size="2" face="Courier New">const</font>
and <font size="2" face="Courier New">volatile</font>-qualifiers.</li>
<li>The type pointed to by Iter1 must have a trivial assignment operator.</li>
</ul>
<p>By trivial assignment operator we mean that the type is either a scalar
type[3] or:</p>
<ul>
<li>The type has no user defined assignment operator.</li>
<li>The type does not have any data members that are references.</li>
<li>All base classes, and all data member objects must have trivial assignment
operators.</li>
</ul>
<p>If all these conditions are met then a type can be copied using <font size="2" face="Courier New">memcpy</font>
rather than using a compiler generated assignment operator. The type-traits
library provides a class <i>has_trivial_assign</i>, such that <code>has_trivial_assign&lt;T&gt;::value</code>
is true only if T has a trivial assignment operator. This class &quot;just
works&quot; for scalar types, but has to be explicitly specialised for
class/struct types that also happen to have a trivial assignment operator. In
other words if <i>has_trivial_assign</i> gives the wrong answer, it will give
the &quot;safe&quot; wrong answer - that trivial assignment is not allowable.</p>
<p>The code for an optimised version of copy that uses <font size="2" face="Courier New">memcpy</font>
where appropriate is given in listing 1. The code begins by defining a template
class <i>copier</i>, that takes a single Boolean template parameter, and has a
static template member function <font size="2" face="Courier New">do_copy</font>
which performs the generic version of <font size="2">copy</font> (in other words
the &quot;slow but safe version&quot;). Following that there is a specialisation
for <i>copier&lt;true&gt;</i>: again this defines a static template member
function <font size="2" face="Courier New">do_copy</font>, but this version uses
memcpy to perform an &quot;optimised&quot; copy.</p>
<p>In order to complete the implementation, what we need now is a version of
copy, that calls <code>copier&lt;true&gt;::do_copy</code> if it is safe to use <font size="2" face="Courier New">memcpy</font>,
and otherwise calls <code>copier&lt;false&gt;::do_copy</code> to do a
&quot;generic&quot; copy. This is what the version in listing 1 does. To
understand how the code works look at the code for <font size="2" face="Courier New">copy</font>
and consider first the two typedefs <i>v1_t</i> and <i>v2_t</i>. These use <code>std::iterator_traits&lt;Iter1&gt;::value_type</code>
to determine what type the two iterators point to, and then feed the result into
another type-traits class <i>remove_cv</i> that removes the top-level
const-volatile-qualifiers: this will allow copy to compare the two types without
regard to const- or volatile-qualifiers. Next, <font size="2" face="Courier New">copy</font>
declares an enumerated value <i>can_opt</i> that will become the template
parameter to copier - declaring this here as a constant is really just a
convenience - the value could be passed directly to class <font size="2" face="Courier New">copier</font>.
The value of <i>can_opt</i> is computed by verifying that all of the following
are true:</p>
<ul>
<li>first that the two iterators point to the same type by using a type-traits
class <i>is_same</i>.</li>
<li>Then that both iterators are real pointers - using the class <i>is_pointer</i>
described above.</li>
<li>Finally that the pointed-to types have a trivial assignment operator using
<i>has_trivial_assign</i>.</li>
</ul>
<p>Finally we can use the value of <i>can_opt</i> as the template argument to
copier - this version of copy will now adapt to whatever parameters are passed
to it, if its possible to use <font size="2" face="Courier New">memcpy</font>,
then it will do so, otherwise it will use a generic copy.</p>
<h4>Was it worth it?</h4>
<p>It has often been repeated in these columns that &quot;premature optimisation
is the root of all evil&quot; [4]. So the question must be asked: was our
optimisation premature? To put this in perspective the timings for our version
of copy compared a conventional generic copy[5] are shown in table 1.</p>
<p>Clearly the optimisation makes a difference in this case; but, to be fair,
the timings are loaded to exclude cache miss effects - without this accurate
comparison between algorithms becomes difficult. However, perhaps we can add a
couple of caveats to the premature optimisation rule:</p>
<ul>
<li>If you use the right algorithm for the job in the first place then
optimisation will not be required; in some cases, <font size="2" face="Courier New">memcpy</font>
is the right algorithm.</li>
<li>If a component is going to be reused in many places by many people then
optimisations may well be worthwhile where they would not be so for a single
case - in other words, the likelihood that the optimisation will be
absolutely necessary somewhere, sometime is that much higher. Just as
importantly the perceived value of the stock implementation will be higher:
there is no point standardising an algorithm if users reject it on the
grounds that there are better, more heavily optimised versions available.</li>
</ul>
<h4>Table 1: Time taken to copy 1000 elements using copy&lt;const T*, T*&gt;
(times in micro-seconds)</h4>
<table border="1" cellpadding="7" cellspacing="1" width="529">
<tr>
<td valign="top" width="33%">
<p align="center">Version</p>
</td>
<td valign="top" width="33%">
<p align="center">T</p>
</td>
<td valign="top" width="33%">
<p align="center">Time</p>
</td>
</tr>
<tr>
<td valign="top" width="33%">&quot;Optimised&quot; copy</td>
<td valign="top" width="33%">char</td>
<td valign="top" width="33%">0.99</td>
</tr>
<tr>
<td valign="top" width="33%">Conventional copy</td>
<td valign="top" width="33%">char</td>
<td valign="top" width="33%">8.07</td>
</tr>
<tr>
<td valign="top" width="33%">&quot;Optimised&quot; copy</td>
<td valign="top" width="33%">int</td>
<td valign="top" width="33%">2.52</td>
</tr>
<tr>
<td valign="top" width="33%">Conventional copy</td>
<td valign="top" width="33%">int</td>
<td valign="top" width="33%">8.02</td>
</tr>
</table>
<p>&nbsp;</p>
<h4>Pair of References</h4>
<p>The optimised copy example shows how type traits may be used to perform
optimisation decisions at compile-time. Another important usage of type traits
is to allow code to compile that otherwise would not do so unless excessive
partial specialization is used. This is possible by delegating partial
specialization to the type traits classes. Our example for this form of usage is
a pair that can hold references [6].</p>
<p>First, let us examine the definition of &quot;std::pair&quot;, omitting the
comparision operators, default constructor, and template copy constructor for
simplicity:</p>
<pre>template &lt;typename T1, typename T2&gt;
struct pair
{
typedef T1 first_type;
typedef T2 second_type;
T1 first;
T2 second;
pair(const T1 &amp; nfirst, const T2 &amp; nsecond)
:first(nfirst), second(nsecond) { }
};</pre>
<p>Now, this &quot;pair&quot; cannot hold references as it currently stands,
because the constructor would require taking a reference to a reference, which
is currently illegal [7]. Let us consider what the constructor's parameters
would have to be in order to allow &quot;pair&quot; to hold non-reference types,
references, and constant references:</p>
<table border="1" cellpadding="7" cellspacing="1" width="638">
<tr>
<td valign="top" width="50%">Type of &quot;T1&quot;</td>
<td valign="top" width="50%">Type of parameter to initializing constructor</td>
</tr>
<tr>
<td valign="top" width="50%">
<pre>T</pre>
</td>
<td valign="top" width="50%">
<pre>const T &amp;</pre>
</td>
</tr>
<tr>
<td valign="top" width="50%">
<pre>T &amp;</pre>
</td>
<td valign="top" width="50%">
<pre>T &amp;</pre>
</td>
</tr>
<tr>
<td valign="top" width="50%">
<pre>const T &amp;</pre>
</td>
<td valign="top" width="50%">
<pre>const T &amp;</pre>
</td>
</tr>
</table>
<p>A little familiarity with the type traits classes allows us to construct a
single mapping that allows us to determine the type of parameter from the type
of the contained class. The type traits classes provide a transformation &quot;add_reference&quot;,
which adds a reference to its type, unless it is already a reference.</p>
<table border="1" cellpadding="7" cellspacing="1" width="580">
<tr>
<td valign="top" width="21%">Type of &quot;T1&quot;</td>
<td valign="top" width="27%">Type of &quot;const T1&quot;</td>
<td valign="top" width="53%">Type of &quot;add_reference&lt;const
T1&gt;::type&quot;</td>
</tr>
<tr>
<td valign="top" width="21%">
<pre>T</pre>
</td>
<td valign="top" width="27%">
<pre>const T</pre>
</td>
<td valign="top" width="53%">
<pre>const T &amp;</pre>
</td>
</tr>
<tr>
<td valign="top" width="21%">
<pre>T &amp;</pre>
</td>
<td valign="top" width="27%">
<pre>T &amp; [8]</pre>
</td>
<td valign="top" width="53%">
<pre>T &amp;</pre>
</td>
</tr>
<tr>
<td valign="top" width="21%">
<pre>const T &amp;</pre>
</td>
<td valign="top" width="27%">
<pre>const T &amp;</pre>
</td>
<td valign="top" width="53%">
<pre>const T &amp;</pre>
</td>
</tr>
</table>
<p>This allows us to build a primary template definition for &quot;pair&quot;
that can contain non-reference types, reference types, and constant reference
types:</p>
<pre>template &lt;typename T1, typename T2&gt;
struct pair
{
typedef T1 first_type;
typedef T2 second_type;
T1 first;
T2 second;
pair(boost::add_reference&lt;const T1&gt;::type nfirst,
boost::add_reference&lt;const T2&gt;::type nsecond)
:first(nfirst), second(nsecond) { }
};</pre>
<p>Add back in the standard comparision operators, default constructor, and
template copy constructor (which are all the same), and you have a std::pair
that can hold reference types!</p>
<p>This same extension <i>could</i> have been done using partial template
specialization of &quot;pair&quot;, but to specialize &quot;pair&quot; in this
way would require three partial specializations, plus the primary template. Type
traits allows us to define a single primary template that adjusts itself
auto-magically to any of these partial specializations, instead of a brute-force
partial specialization approach. Using type traits in this fashion allows
programmers to delegate partial specialization to the type traits classes,
resulting in code that is easier to maintain and easier to understand.</p>
<h4>Conclusion</h4>
<p>We hope that in this article we have been able to give you some idea of what
type-traits are all about. A more complete listing of the available classes are
in the boost documentation, along with further examples using type traits.
Templates have enabled C++ uses to take the advantage of the code reuse that
generic programming brings; hopefully this article has shown that generic
programming does not have to sink to the lowest common denominator, and that
templates can be optimal as well as generic.</p>
<h4>Acknowledgements</h4>
<p>The authors would like to thank Beman Dawes and Howard Hinnant for their
helpful comments when preparing this article.</p>
<h4>References</h4>
<ol>
<li>Nathan C. Myers, C++ Report, June 1995.</li>
<li>The type traits library is based upon contributions by Steve Cleary, Beman
Dawes, Howard Hinnant and John Maddock: it can be found at www.boost.org.</li>
<li>A scalar type is an arithmetic type (i.e. a built-in integer or floating
point type), an enumeration type, a pointer, a pointer to member, or a
const- or volatile-qualified version of one of these types.</li>
<li>This quote is from Donald Knuth, ACM Computing Surveys, December 1974, pg
268.</li>
<li>The test code is available as part of the boost utility library (see
algo_opt_examples.cpp), the code was compiled with gcc 2.95 with all
optimisations turned on, tests were conducted on a 400MHz Pentium II machine
running Microsoft Windows 98.</li>
<li>John Maddock and Howard Hinnant have submitted a &quot;compressed_pair&quot;
library to Boost, which uses a technique similar to the one described here
to hold references. Their pair also uses type traits to determine if any of
the types are empty, and will derive instead of contain to conserve space --
hence the name &quot;compressed&quot;.</li>
<li>This is actually an issue with the C++ Core Language Working Group (issue
#106), submitted by Bjarne Stroustrup. The tentative resolution is to allow
a &quot;reference to a reference to T&quot; to mean the same thing as a
&quot;reference to T&quot;, but only in template instantiation, in a method
similar to multiple cv-qualifiers.</li>
<li>For those of you who are wondering why this shouldn't be const-qualified,
remember that references are always implicitly constant (for example, you
can't re-assign a reference). Remember also that &quot;const T &amp;&quot;
is something completely different. For this reason, cv-qualifiers on
template type arguments that are references are ignored.</li>
</ol>
<h2>Listing 1</h2>
<pre>namespace detail{
template &lt;bool b&gt;
struct copier
{
template&lt;typename I1, typename I2&gt;
static I2 do_copy(I1 first,
I1 last, I2 out);
};
template &lt;bool b&gt;
template&lt;typename I1, typename I2&gt;
I2 copier&lt;b&gt;::do_copy(I1 first,
I1 last,
I2 out)
{
while(first != last)
{
*out = *first;
++out;
++first;
}
return out;
}
template &lt;&gt;
struct copier&lt;true&gt;
{
template&lt;typename I1, typename I2&gt;
static I2* do_copy(I1* first, I1* last, I2* out)
{
memcpy(out, first, (last-first)*sizeof(I2));
return out+(last-first);
}
};
}
template&lt;typename I1, typename I2&gt;
inline I2 copy(I1 first, I1 last, I2 out)
{
typedef typename
boost::remove_cv&lt;
typename std::iterator_traits&lt;I1&gt;
::value_type&gt;::type v1_t;
typedef typename
boost::remove_cv&lt;
typename std::iterator_traits&lt;I2&gt;
::value_type&gt;::type v2_t;
enum{ can_opt =
boost::is_same&lt;v1_t, v2_t&gt;::value
&amp;&amp; boost::is_pointer&lt;I1&gt;::value
&amp;&amp; boost::is_pointer&lt;I2&gt;::value
&amp;&amp; boost::
has_trivial_assign&lt;v1_t&gt;::value
};
return detail::copier&lt;can_opt&gt;::
do_copy(first, last, out);
}</pre>
<hr>
<p><EFBFBD> Copyright John Maddock and Steve Cleary, 2000</p>
</body>
</html>

View File

@ -34,9 +34,9 @@ specialization or member templates, no benefit will occur from
using call_traits: the call_traits defined types will always be
the same as the existing practice in this case. In addition if
only member templates and not partial template specialisation is
support by the compiler (for example Visual C++ 6) then call_traits
can not be used with array types (although it can be used to
solve the reference to reference problem).</p>
support by the compiler (for example Visual C++ 6) then
call_traits can not be used with array types (although it can be
used to solve the reference to reference problem).</p>
<table border="0" cellpadding="7" cellspacing="1" width="797">
<tr>
@ -79,7 +79,8 @@ solve the reference to reference problem).</p>
</td>
</tr>
<tr>
<td valign="top" width="17%"><p align="center">const T&amp;<br>
<td valign="top" width="17%"><p align="center">const
T&amp;<br>
(return value)</p>
</td>
<td valign="top" width="35%"><p align="center"><code>call_traits&lt;T&gt;::const_reference</code></p>
@ -91,7 +92,8 @@ solve the reference to reference problem).</p>
</td>
</tr>
<tr>
<td valign="top" width="17%"><p align="center">const T&amp;<br>
<td valign="top" width="17%"><p align="center">const
T&amp;<br>
(function parameter)</p>
</td>
<td valign="top" width="35%"><p align="center"><code>call_traits&lt;T&gt;::param_type</code></p>
@ -332,8 +334,8 @@ possible:</p>
<p>The following table shows the effect that call_traits has on
various types, the table assumes that the compiler supports
partial specialization: if it doesn't then all types behave in
the same way as the entry for &quot;myclass&quot;, and call_traits
can not be used with reference or array types.</p>
the same way as the entry for &quot;myclass&quot;, and
call_traits can not be used with reference or array types.</p>
<table border="0" cellpadding="7" cellspacing="1" width="766">
<tr>
@ -388,7 +390,8 @@ can not be used with reference or array types.</p>
</td>
<td valign="top" width="17%"><p align="center">int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">const int&amp;</p>
<td valign="top" width="17%"><p align="center">const
int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">int const</p>
</td>
@ -420,7 +423,8 @@ can not be used with reference or array types.</p>
</td>
<td valign="top" width="17%"><p align="center">int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">const int&amp;</p>
<td valign="top" width="17%"><p align="center">const
int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">int&amp;</p>
</td>
@ -432,13 +436,17 @@ can not be used with reference or array types.</p>
<td valign="top" width="17%" bgcolor="#C0C0C0"><p
align="center">const int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">const int&amp;</p>
<td valign="top" width="17%"><p align="center">const
int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">const int&amp;</p>
<td valign="top" width="17%"><p align="center">const
int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">const int&amp;</p>
<td valign="top" width="17%"><p align="center">const
int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">const int&amp;</p>
<td valign="top" width="17%"><p align="center">const
int&amp;</p>
</td>
<td valign="top" width="17%"><p align="center">All
constant-references.</p>
@ -486,8 +494,8 @@ can not be used with reference or array types.</p>
<p>The following class is a trivial class that stores some type T
by value (see the <a href="call_traits_test.cpp">call_traits_test.cpp</a>
file), the aim is to illustrate how each of the available call_traits
typedefs may be used:</p>
file), the aim is to illustrate how each of the available
call_traits typedefs may be used:</p>
<pre>template &lt;class T&gt;
struct contained
@ -523,14 +531,14 @@ problem):</h4>
<pre>template &lt;class Operation&gt;
class binder1st :
public unary_function&lt;Operation::second_argument_type, Operation::result_type&gt;
public unary_function&lt;typename Operation::second_argument_type, typename Operation::result_type&gt;
{
protected:
Operation op;
Operation::first_argument_type value;
typename Operation::first_argument_type value;
public:
binder1st(const Operation&amp; x, const Operation::first_argument_type&amp; y);
Operation::result_type operator()(const Operation::second_argument_type&amp; x) const;
binder1st(const Operation&amp; x, const typename Operation::first_argument_type&amp; y);
typename Operation::result_type operator()(const typename Operation::second_argument_type&amp; x) const;
}; </pre>
<p>Now consider what happens in the relatively common case that
@ -541,7 +549,7 @@ reference to a reference as an argument, and that is not
currently legal. The solution here is to modify <code>operator()</code>
to use call_traits:</p>
<pre>Operation::result_type operator()(call_traits&lt;Operation::second_argument_type&gt;::param_type x) const;</pre>
<pre>typename Operation::result_type operator()(typename call_traits&lt;typename Operation::second_argument_type&gt;::param_type x) const;</pre>
<p>Now in the case that <code>Operation::second_argument_type</code>
is a reference type, the argument is passed as a reference, and
@ -575,9 +583,9 @@ std::pair&lt;
degraded to pointers if the deduced types are arrays, similar
situations occur in the standard binders and adapters: in
principle in any function that &quot;wraps&quot; a temporary
whose type is deduced. Note that the function arguments to make_pair
are not expressed in terms of call_traits: doing so would prevent
template argument deduction from functioning.</p>
whose type is deduced. Note that the function arguments to
make_pair are not expressed in terms of call_traits: doing so
would prevent template argument deduction from functioning.</p>
<h4><a name="ex4"></a>Example 4 (optimising fill):</h4>
@ -666,10 +674,10 @@ be any worse than existing practice.</p>
<p>Pointers follow the same rational as small built-in types.</p>
<p>For reference types the rational follows <a href="#refs">Example
2</a> - references to references are not allowed, so the call_traits
members must be defined such that these problems do not occur.
There is a proposal to modify the language such that &quot;a
reference to a reference is a reference&quot; (issue #106,
2</a> - references to references are not allowed, so the
call_traits members must be defined such that these problems do
not occur. There is a proposal to modify the language such that
&quot;a reference to a reference is a reference&quot; (issue #106,
submitted by Bjarne Stroustrup), call_traits&lt;T&gt;::value_type
and call_traits&lt;T&gt;::param_type both provide the same effect
as that proposal, without the need for a language change (in
@ -687,11 +695,11 @@ struct A
void foo(T t);
};</pre>
<p><font face="Times New Roman">In this case if we instantiate A&lt;int[2]&gt;
then the declared type of the parameter passed to member function
foo is int[2], but it's actual type is const int*, if we try to
use the type T within the function body, then there is a strong
likelyhood that our code will not compile:</font></p>
<p><font face="Times New Roman">In this case if we instantiate
A&lt;int[2]&gt; then the declared type of the parameter passed to
member function foo is int[2], but it's actual type is const int*,
if we try to use the type T within the function body, then there
is a strong likelyhood that our code will not compile:</font></p>
<pre>template &lt;class T&gt;
void A&lt;T&gt;::foo(T t)
@ -706,13 +714,13 @@ declared type:</p>
<pre>template &lt;class T&gt;
struct A
{
void foo(call_traits&lt;T&gt;::value_type t);
void foo(typename call_traits&lt;T&gt;::value_type t);
};
template &lt;class T&gt;
void A&lt;T&gt;::foo(call_traits&lt;T&gt;::value_type t)
void A&lt;T&gt;::foo(typename call_traits&lt;T&gt;::value_type t)
{
call_traits&lt;T&gt;::value_type dup(t); // OK even if T is an array type.
typename call_traits&lt;T&gt;::value_type dup(t); // OK even if T is an array type.
}</pre>
<p>For value_type (return by value), again only a pointer may be

View File

@ -16,7 +16,7 @@
#include <typeinfo>
#include <boost/call_traits.hpp>
#include "type_traits_test.hpp"
#include <boost/type_traits/type_traits_test.hpp>
//
// struct contained models a type that contains a type (for example std::pair)
// arrays are contained by value, and have to be treated as a special case:
@ -98,18 +98,18 @@ std::pair<
using namespace std;
//
// struct checker:
// struct call_traits_checker:
// verifies behaviour of contained example:
//
template <class T>
struct checker
struct call_traits_checker
{
typedef typename boost::call_traits<T>::param_type param_type;
void operator()(param_type);
};
template <class T>
void checker<T>::operator()(param_type p)
void call_traits_checker<T>::operator()(param_type p)
{
T t(p);
contained<T> c(t);
@ -117,18 +117,19 @@ void checker<T>::operator()(param_type p)
assert(t == c.value());
assert(t == c.get());
assert(t == c.const_get());
#ifndef __ICL
//cout << "typeof contained<" << typeid(T).name() << ">::v_ is: " << typeid(&contained<T>::v_).name() << endl;
cout << "typeof contained<" << typeid(T).name() << ">::value() is: " << typeid(&contained<T>::value).name() << endl;
cout << "typeof contained<" << typeid(T).name() << ">::get() is: " << typeid(&contained<T>::get).name() << endl;
cout << "typeof contained<" << typeid(T).name() << ">::const_get() is: " << typeid(&contained<T>::const_get).name() << endl;
cout << "typeof contained<" << typeid(T).name() << ">::call() is: " << typeid(&contained<T>::call).name() << endl;
cout << endl;
#endif
}
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <class T, std::size_t N>
struct checker<T[N]>
struct call_traits_checker<T[N]>
{
typedef typename boost::call_traits<T[N]>::param_type param_type;
void operator()(param_type t)
@ -176,32 +177,32 @@ void check_make_pair(T c, U u, V v)
}
struct UDT
struct comparible_UDT
{
int i_;
UDT() : i_(2){}
bool operator == (const UDT& v){ return v.i_ == i_; }
comparible_UDT() : i_(2){}
bool operator == (const comparible_UDT& v){ return v.i_ == i_; }
};
int main()
int main(int argc, char *argv[ ])
{
checker<UDT> c1;
UDT u;
call_traits_checker<comparible_UDT> c1;
comparible_UDT u;
c1(u);
checker<int> c2;
call_traits_checker<int> c2;
int i = 2;
c2(i);
int* pi = &i;
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) || !defined(BOOST_NO_MEMBER_TEMPLATES)
checker<int*> c3;
call_traits_checker<int*> c3;
c3(pi);
checker<int&> c4;
call_traits_checker<int&> c4;
c4(i);
checker<const int&> c5;
call_traits_checker<const int&> c5;
c5(i);
#if !defined (BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
int a[2] = {1,2};
checker<int[2]> c6;
call_traits_checker<int[2]> c6;
c6(a);
#endif
#endif
@ -220,10 +221,10 @@ int main()
typedef int& r_type;
typedef const r_type cr_type;
type_test(UDT, boost::call_traits<UDT>::value_type)
type_test(UDT&, boost::call_traits<UDT>::reference)
type_test(const UDT&, boost::call_traits<UDT>::const_reference)
type_test(const UDT&, boost::call_traits<UDT>::param_type)
type_test(comparible_UDT, boost::call_traits<comparible_UDT>::value_type)
type_test(comparible_UDT&, boost::call_traits<comparible_UDT>::reference)
type_test(const comparible_UDT&, boost::call_traits<comparible_UDT>::const_reference)
type_test(const comparible_UDT&, boost::call_traits<comparible_UDT>::param_type)
type_test(int, boost::call_traits<int>::value_type)
type_test(int&, boost::call_traits<int>::reference)
type_test(const int&, boost::call_traits<int>::const_reference)
@ -271,9 +272,7 @@ int main()
test_count += 20;
#endif
std::cout << std::endl << test_count << " tests completed (" << failures << " failures)... press any key to exit";
std::cin.get();
return failures;
return check_result(argc, argv);
}
//
@ -364,3 +363,15 @@ template struct call_traits_test<int[2], true>;
#endif
#endif
#ifdef BOOST_MSVC
unsigned int expected_failures = 10;
#elif defined(__BORLANDC__)
unsigned int expected_failures = 2;
#elif defined(__GNUC__)
unsigned int expected_failures = 4;
#else
unsigned int expected_failures = 0;
#endif

View File

@ -14,15 +14,10 @@
#include <cassert>
#include <boost/compressed_pair.hpp>
#include "type_traits_test.hpp"
#include <boost/type_traits/type_traits_test.hpp>
using namespace boost;
struct empty_POD_UDT{};
struct empty_UDT
{
~empty_UDT(){};
};
namespace boost {
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
template <> struct is_empty<empty_UDT>
@ -59,7 +54,7 @@ struct non_empty2
{ return a.i == b.i; }
};
int main()
int main(int argc, char *argv[ ])
{
compressed_pair<int, double> cp1(1, 1.3);
assert(cp1.first() == 1);
@ -101,15 +96,13 @@ int main()
cp7.first();
double* pd = cp7.second();
#endif
value_test(true, (sizeof(compressed_pair<empty_UDT, int>) < sizeof(std::pair<empty_UDT, int>)))
value_test(true, (sizeof(compressed_pair<int, empty_UDT>) < sizeof(std::pair<int, empty_UDT>)))
value_test(true, (sizeof(compressed_pair<empty_UDT, empty_UDT>) < sizeof(std::pair<empty_UDT, empty_UDT>)))
value_test(true, (sizeof(compressed_pair<empty_UDT, empty_POD_UDT>) < sizeof(std::pair<empty_UDT, empty_POD_UDT>)))
value_test(true, (sizeof(compressed_pair<empty_UDT, compressed_pair<empty_POD_UDT, int> >) < sizeof(std::pair<empty_UDT, std::pair<empty_POD_UDT, int> >)))
soft_value_test(true, (sizeof(compressed_pair<empty_UDT, int>) < sizeof(std::pair<empty_UDT, int>)))
soft_value_test(true, (sizeof(compressed_pair<int, empty_UDT>) < sizeof(std::pair<int, empty_UDT>)))
soft_value_test(true, (sizeof(compressed_pair<empty_UDT, empty_UDT>) < sizeof(std::pair<empty_UDT, empty_UDT>)))
soft_value_test(true, (sizeof(compressed_pair<empty_UDT, empty_POD_UDT>) < sizeof(std::pair<empty_UDT, empty_POD_UDT>)))
soft_value_test(true, (sizeof(compressed_pair<empty_UDT, compressed_pair<empty_POD_UDT, int> >) < sizeof(std::pair<empty_UDT, std::pair<empty_POD_UDT, int> >)))
std::cout << std::endl << test_count << " tests completed (" << failures << " failures)... press any key to exit";
std::cin.get();
return failures;
return check_result(argc, argv);
}
//
@ -154,6 +147,8 @@ template compressed_pair<double, int[2]>::compressed_pair();
#endif // __MWERKS__
#endif // BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
unsigned int expected_failures = 0;

325
counting_iterator.htm Normal file
View File

@ -0,0 +1,325 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Counting Iterator Adaptor Documentation</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)"
align="center" width="277" height="86">
<h1>Counting Iterator Adaptor</h1>
Defined in header
<a href="../../boost/counting_iterator.hpp">boost/counting_iterator.hpp</a>
<p>
How would you fill up a vector with the numbers zero
through one hundred using <a
href="http://www.sgi.com/tech/stl/copy.html"><tt>std::copy()</tt></a>? The
only iterator operation missing from builtin integer types is an
<tt>operator*()</tt> that returns the current
value of the integer. The counting iterator adaptor adds this crucial piece of
functionality to whatever type it wraps. One can use the
counting iterator adaptor not only with integer types, but with any
type that is <tt>Incrementable</tt> (see type requirements <a href="#requirements">below</a>). The
following <b>pseudo-code</b> shows the general idea of how the
counting iterator is implemented.
</p>
<pre>
// inside a hypothetical counting_iterator class...
typedef Incrementable value_type;
value_type counting_iterator::operator*() const {
return this->base; // no dereference!
}
</pre>
All of the other operators of the counting iterator behave in the same
fashion as the <tt>Incrementable</tt> base type.
<h2>Synopsis</h2>
<pre>
namespace boost {
template &lt;class Incrementable&gt;
struct <a href="#counting_iterator_traits">counting_iterator_traits</a>;
template &lt;class Incrementable&gt;
struct <a href="#counting_iterator_generator">counting_iterator_generator</a>;
template &lt;class Incrementable&gt;
typename counting_iterator_generator&lt;Incrementable&gt;::type
<a href="#make_counting_iterator">make_counting_iterator</a>(Incrementable x);
}
</pre>
<hr>
<h2><a name="counting_iterator_generator">The Counting Iterator Type
Generator</a></h2>
The class template <tt>counting_iterator_generator&lt;Incrementable&gt;</tt> is a <a href="../../more/generic_programming.html#type_generator">type generator</a> for counting iterators.
<pre>
template &lt;class Incrementable&gt;
class counting_iterator_generator
{
public:
typedef <a href="./iterator_adaptors.htm#iterator_adaptor">iterator_adaptor</a>&lt;...&gt; type;
};
</pre>
<h3>Example</h3>
In this example we use the counting iterator generator to create a
counting iterator, and count from zero to four.
<pre>
#include &lt;boost/config.hpp&gt;
#include &lt;iostream&gt;
#include &lt;boost/counting_iterator.hpp&gt;
int main(int, char*[])
{
// Example of using counting_iterator_generator
std::cout &lt;&lt; "counting from 0 to 4:" &lt;&lt; std::endl;
boost::counting_iterator_generator&lt;int&gt;::type first(0), last(4);
std::copy(first, last, std::ostream_iterator&lt;int&gt;(std::cout, " "));
std::cout &lt;&lt; std::endl;
// to be continued...
</pre>
The output from this part is:
<pre>
counting from 0 to 4:
0 1 2 3
</pre>
<h3>Template Parameters</h3>
<Table border>
<TR>
<TH>Parameter</TH><TH>Description</TH>
</TR>
<TR>
<TD><tt>Incrementable</tt></TD>
<TD>The type being wrapped by the adaptor.</TD>
</TR>
</Table>
<h3>Model of</h3>
If the <tt>Incrementable</tt> type has all of the functionality of a
<a href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random
Access Iterator</a> except the <tt>operator*()</tt>, then the counting
iterator will be a model of <a
href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random
Access Iterator</a>. If the <tt>Incrementable</tt> type has less
functionality, then the counting iterator will have correspondingly
less functionality.
<h3><a name="requirements">Type Requirements</a></h3>
The <tt>Incrementable</tt> type must be <a
href="http://www.sgi.com/tech/stl/DefaultConstructible.html">Default
Constructible</a>, <a href="./CopyConstructible.html">Copy
Constructible</a>, and <a href="./Assignable.html">Assignable</a>.
Also, the <tt>Incrementable</tt> type must provide access to an
associated <tt>difference_type</tt> and <tt>iterator_category</tt>
through the <a
href="#counting_iterator_traits"><tt>counting_iterator_traits</tt></a>
class.
<p>
Furthermore, if you wish to create a counting iterator that is a <a
href="http://www.sgi.com/tech/stl/ForwardIterator.html"> Forward
Iterator</a>, then the following expressions must be valid:
<pre>
Incrementable i, j;
++i // pre-increment
i == j // operator equal
</pre>
If you wish to create a counting iterator that is a <a
href="http://www.sgi.com/tech/stl/BidirectionalIterator.html">
Bidirectional Iterator</a>, then pre-decrement is also required:
<pre>
--i
</pre>
If you wish to create a counting iterator that is a <a
href="http://www.sgi.com/tech/stl/RandomAccessIterator.html"> Random
Access Iterator</a>, then these additional expressions are also required:
<pre>
<a href="#counting_iterator_traits">counting_iterator_traits</a>&lt;Incrementable&gt;::difference_type n;
i += n
n = i - j
i < j
</pre>
<h3>Members</h3>
The counting iterator type implements the member functions and
operators required of the <a
href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random
Access Iterator</a> concept. In addition it has the following
constructor:
<pre>
counting_iterator_generator::type(const Incrementable&amp; i)
</pre>
<p>
<hr>
<p>
<h2><a name="make_counting_iterator">The Counting Iterator Object Generator</a></h2>
<pre>
template &lt;class Incrementable&gt;
typename counting_iterator_generator&lt;Incrementable&gt;::type
make_counting_iterator(Incrementable base);
</pre>
An <a href="../../more/generic_programming.html#object_generator">object
generator</a> function that provides a convenient way to create counting
iterators.<p>
<h3>Example</h3>
In this example we count from negative five to positive five, this
time using the <tt>make_counting_iterator()</tt> function to save some
typing.
<pre>
// continuing from previous example...
std::cout &lt;&lt; "counting from -5 to 4:" &lt;&lt; std::endl;
std::copy(boost::make_counting_iterator(-5),
boost::make_counting_iterator(5),
std::ostream_iterator&lt;int&gt;(std::cout, " "));
std::cout &lt;&lt; std::endl;
// to be continued...
</pre>
The output from this part is:
<pre>
counting from -5 to 4:
-5 -4 -3 -2 -1 0 1 2 3 4
</pre>
In the next example we create an array of numbers, and then create a
second array of pointers, where each pointer is the address of a
number in the first array. The counting iterator makes it easy to do
this since dereferencing a counting iterator that is wrapping an
iterator over the array of numbers just returns a pointer to the
current location in the array. We then use the <a
href="./indirect_iterator.htm">indirect iterator adaptor</a> to print
out the number in the array by accessing the numbers through the array
of pointers.
<pre>
// continuing from previous example...
const int N = 7;
std::vector&lt;int&gt; numbers;
// Fill "numbers" array with [0,N)
std::copy(boost::make_counting_iterator(0), boost::make_counting_iterator(N),
std::back_inserter(numbers));
std::vector&lt;std::vector&lt;int&gt;::iterator&gt; pointers;
// Use counting iterator to fill in the array of pointers.
std::copy(boost::make_counting_iterator(numbers.begin()),
boost::make_counting_iterator(numbers.end()),
std::back_inserter(pointers));
// Use indirect iterator to print out numbers by accessing
// them through the array of pointers.
std::cout &lt;&lt; "indirectly printing out the numbers from 0 to "
&lt;&lt; N &lt;&lt; std::endl;
std::copy(boost::make_indirect_iterator(pointers.begin()),
boost::make_indirect_iterator(pointers.end()),
std::ostream_iterator&lt;int&gt;(std::cout, " "));
std::cout &lt;&lt; std::endl;
</pre>
The output is:
<pre>
indirectly printing out the numbers from 0 to 7
0 1 2 3 4 5 6
</pre>
<hr>
<h2><a name="counting_iterator_traits">Counting Iterator Traits</a></h2>
The counting iterator adaptor needs to determine the appropriate
<tt>difference_type</tt> and <tt>iterator_category</tt> to use based on the
<tt>Incrementable</tt> type supplied by the user. The
<tt>counting_iterator_traits</tt> class provides these types. If the
<tt>Incrementable</tt> type is an integral type or an iterator, these types
will be correctly deduced by the <tt>counting_iterator_traits</tt> provided by
the library. Otherwise, the user must specialize
<tt>counting_iterator_traits</tt> for her type or add nested typedefs to
her type to fulfill the needs of
<a href="http://www.sgi.com/tech/stl/iterator_traits.html">
<tt>std::iterator_traits</tt></a>.
<p>The following pseudocode describes how the <tt>counting_iterator_traits</tt> are determined:
<pre>
template &lt;class Incrementable&gt;
struct counting_iterator_traits
{
if (numeric_limits&lt;Incrementable&gt::is_specialized) {
if (!numeric_limits&lt;Incrementable&gt::is_integer)
COMPILE_TIME_ERROR;
if (!numeric_limits&lt;Incrementable&gt::is_bounded
&amp;&amp; numeric_limits&lt;Incrementable&gt;::is_signed) {
typedef Incrementable difference_type;
}
else if (numeric_limits&lt;Incrementable&gt::is_integral) {
typedef <i>next-larger-signed-type-or-intmax_t</i> difference_type;
}
typedef std::random_access_iterator_tag iterator_category;
} else {
typedef std::iterator_traits&lt;Incrementable&gt;::difference_type difference_type;
typedef std::iterator_traits&lt;Incrementable&gt;::iterator_category iterator_category;
}
};
</pre>
<p>The italicized sections above are implementation details, but it is important
to know that the <tt>difference_type</tt> for integral types is selected so that
it can always represent the difference between two values if such a built-in
integer exists. On platforms with a working <tt>std::numeric_limits</tt>
implementation, the <tt>difference_type</tt> for any variable-length signed
integer type <tt>T</tt> is <tt>T</tt> itself.
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->28 Feb 2001<!--webbot bot="Timestamp" endspan i-checksum="14390" --></p>
<p><EFBFBD> Copyright Jeremy Siek 2000. Permission to copy, use,
modify, sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided &quot;as is&quot;
without express or implied warranty, and with no claim as to its suitability for
any purpose.</p>
</body>
</html>
<!-- LocalWords: html charset alt gif hpp incrementable const namespace htm
-->
<!-- LocalWords: struct typename iostream int Siek CopyConstructible pre
-->

View File

@ -0,0 +1,53 @@
// (C) Copyright Jeremy Siek 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
#include <boost/config.hpp>
#include <iostream>
#include <iterator>
#include <vector>
#include <boost/counting_iterator.hpp>
#include <boost/iterator_adaptors.hpp>
int main(int, char*[])
{
// Example of using counting_iterator_generator
std::cout << "counting from 0 to 4:" << std::endl;
boost::counting_iterator_generator<int>::type first(0), last(4);
std::copy(first, last, std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
// Example of using make_counting_iterator()
std::cout << "counting from -5 to 4:" << std::endl;
std::copy(boost::make_counting_iterator(-5),
boost::make_counting_iterator(5),
std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
// Example of using counting iterator to create an array of pointers.
const int N = 7;
std::vector<int> numbers;
// Fill "numbers" array with [0,N)
std::copy(boost::make_counting_iterator(0), boost::make_counting_iterator(N),
std::back_inserter(numbers));
std::vector<std::vector<int>::iterator> pointers;
// Use counting iterator to fill in the array of pointers.
std::copy(boost::make_counting_iterator(numbers.begin()),
boost::make_counting_iterator(numbers.end()),
std::back_inserter(pointers));
// Use indirect iterator to print out numbers by accessing
// them through the array of pointers.
std::cout << "indirectly printing out the numbers from 0 to "
<< N << std::endl;
std::copy(boost::make_indirect_iterator(pointers.begin()),
boost::make_indirect_iterator(pointers.end()),
std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
return 0;
}

View File

@ -6,9 +6,24 @@
// See http://www.boost.org for most recent version including documentation.
//
// Revision History
// 16 Feb 2001 Added a missing const. Made the tests run (somewhat) with
// plain MSVC again. (David Abrahams)
// 11 Feb 2001 #if 0'd out use of counting_iterator on non-numeric types in
// MSVC without STLport, so that the other tests may proceed
// (David Abrahams)
// 04 Feb 2001 Added use of iterator_tests.hpp (David Abrahams)
// 28 Jan 2001 Removed not_an_iterator detritus (David Abrahams)
// 24 Jan 2001 Initial revision (David Abrahams)
#include <boost/config.hpp>
#ifdef BOOST_MSVC
# pragma warning(disable:4786) // identifier truncated in debug info
#endif
#include <boost/pending/iterator_tests.hpp>
#include <boost/counting_iterator.hpp>
#include <boost/detail/iterator.hpp>
#include <iostream>
#include <climits>
#include <iterator>
#include <stdlib.h>
@ -37,8 +52,6 @@ template <class T> struct is_numeric
};
};
struct not_an_iterator_tag {};
// Special tests for RandomAccess CountingIterators.
template <class CountingIterator>
void category_test(
@ -65,12 +78,39 @@ void category_test(
// Show that values outside the range can't be found
assert(!std::binary_search(start, boost::prior(finish), *finish));
// Do the generic random_access_iterator_test
typedef typename CountingIterator::value_type value_type;
std::vector<value_type> v;
for (value_type z = *start; z != *finish; ++z)
v.push_back(z);
if (v.size() >= 2)
{
// Note that this test requires a that the first argument is
// dereferenceable /and/ a valid iterator prior to the first argument
boost::random_access_iterator_test(start + 1, v.size() - 1, v.begin() + 1);
}
}
// Otherwise, we'll have to skip those.
// Special tests for bidirectional CountingIterators
template <class CountingIterator>
void category_test(CountingIterator, CountingIterator, std::forward_iterator_tag)
void category_test(CountingIterator start, CountingIterator finish, std::bidirectional_iterator_tag)
{
if (finish != start
&& finish != boost::next(start)
&& finish != boost::next(boost::next(start)))
{
// Note that this test requires a that the first argument is
// dereferenceable /and/ a valid iterator prior to the first argument
boost::bidirectional_iterator_test(boost::next(start), boost::next(*start), boost::next(boost::next(*start)));
}
}
template <class CountingIterator>
void category_test(CountingIterator start, CountingIterator finish, std::forward_iterator_tag)
{
if (finish != start && finish != boost::next(start))
boost::forward_iterator_test(start, *start, boost::next(*start));
}
template <class CountingIterator>
@ -97,7 +137,7 @@ void test_aux(CountingIterator start, CountingIterator finish)
template <class Incrementable>
void test(Incrementable start, Incrementable finish)
{
test_aux(boost::counting_iterator(start), boost::counting_iterator(finish));
test_aux(boost::make_counting_iterator(start), boost::make_counting_iterator(finish));
}
template <class Integer>
@ -112,7 +152,7 @@ template <class Container>
void test_container(Container* = 0) // default arg works around MSVC bug
{
Container c(1 + (unsigned)rand() % 1673);
const typename Container::iterator start = c.begin();
// back off by 1 to leave room for dereferenceable value at the end
@ -120,11 +160,67 @@ void test_container(Container* = 0) // default arg works around MSVC bug
std::advance(finish, c.size() - 1);
test(start, finish);
test(static_cast<typename Container::const_iterator>(start),
static_cast<typename Container::const_iterator>(finish));
typedef typename Container::const_iterator const_iterator;
test(const_iterator(start), const_iterator(finish));
}
class my_int1 {
public:
my_int1() { }
my_int1(int x) : m_int(x) { }
my_int1& operator++() { ++m_int; return *this; }
bool operator==(const my_int1& x) const { return m_int == x.m_int; }
private:
int m_int;
};
namespace boost {
template <>
struct counting_iterator_traits<my_int1> {
typedef std::ptrdiff_t difference_type;
typedef std::forward_iterator_tag iterator_category;
};
}
class my_int2 {
public:
typedef void value_type;
typedef void pointer;
typedef void reference;
typedef std::ptrdiff_t difference_type;
typedef std::bidirectional_iterator_tag iterator_category;
my_int2() { }
my_int2(int x) : m_int(x) { }
my_int2& operator++() { ++m_int; return *this; }
my_int2& operator--() { --m_int; return *this; }
bool operator==(const my_int2& x) const { return m_int == x.m_int; }
private:
int m_int;
};
class my_int3 {
public:
typedef void value_type;
typedef void pointer;
typedef void reference;
typedef std::ptrdiff_t difference_type;
typedef std::random_access_iterator_tag iterator_category;
my_int3() { }
my_int3(int x) : m_int(x) { }
my_int3& operator++() { ++m_int; return *this; }
my_int3& operator+=(std::ptrdiff_t n) { m_int += n; return *this; }
std::ptrdiff_t operator-(const my_int3& x) const { return m_int - x.m_int; }
my_int3& operator--() { --m_int; return *this; }
bool operator==(const my_int3& x) const { return m_int == x.m_int; }
bool operator!=(const my_int3& x) const { return m_int != x.m_int; }
bool operator<(const my_int3& x) const { return m_int < x.m_int; }
private:
int m_int;
};
int main()
{
// Test the built-in integer types.
@ -142,14 +238,26 @@ int main()
test_integer<long long>();
test_integer<unsigned long long>();
#endif
// Some tests on container iterators, to prove we handle a few different categories
// wrapping an iterator or non-built-in integer type causes an INTERNAL
// COMPILER ERROR in MSVC without STLport. I'm clueless as to why.
#if !defined(BOOST_MSVC) || defined(__SGI_STL_PORT)
// Test user-defined type.
test_integer<my_int1>();
test_integer<my_int2>();
test_integer<my_int3>();
// Some tests on container iterators, to prove we handle a few different categories
test_container<std::vector<int> >();
test_container<std::list<int> >();
#ifndef BOOST_NO_SLIST
# ifndef BOOST_NO_SLIST
test_container<BOOST_STD_EXTENSION_NAMESPACE::slist<int> >();
#endif
# endif
// Also prove that we can handle raw pointers.
int array[2000];
test(boost::counting_iterator(array), boost::counting_iterator(array+2000-1));
test(boost::make_counting_iterator(array), boost::make_counting_iterator(array+2000-1));
#endif
std::cout << "test successful " << std::endl;
return 0;
}

273
filter_iterator.htm Normal file
View File

@ -0,0 +1,273 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Filter Iterator Adaptor Documentation</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)"
align="center" width="277" height="86">
<h1>Filter Iterator Adaptor</h1>
Defined in header
<a href="../../boost/iterator_adaptors.hpp">boost/iterator_adaptors.hpp</a>
<p>
The filter iterator adaptor creates a view of an iterator range in
which some elements of the range are skipped over. A <a
href="http://www.sgi.com/tech/stl/Predicate.html">Predicate</a>
function object controls which elements are skipped. When the
predicate is applied to an element, if it returns <tt>true</tt> then
the element is retained and if it returns <tt>false</tt> then the
element is skipped over.
<h2>Synopsis</h2>
<pre>
namespace boost {
template &lt;class Predicate, class BaseIterator, ...&gt;
class filter_iterator_generator;
template &lt;class Predicate, class BaseIterator&gt;
typename filter_iterator_generator&lt;Predicate, BaseIterator&gt;::type
make_filter_iterator(BaseIterator first, BaseIterator last, const Predicate& p = Predicate());
}
</pre>
<hr>
<h2><a name="filter_iterator_generator">The Filter Iterator Type
Generator</a></h2>
The class <tt>filter_iterator_generator</tt> is a helper class whose
purpose is to construct a filter iterator type. The template
parameters for this class are the <tt>Predicate</tt> function object
type and the <tt>BaseIterator</tt> type that is being wrapped. In
most cases the associated types for the wrapped iterator can be
deduced from <tt>std::iterator_traits</tt>, but in some situations the
user may want to override these types, so there are also template
parameters for each of the iterator's associated types.
<pre>
template &lt;class Predicate, class BaseIterator,
class Value, class Reference, class Pointer, class Category, class Distance>
class filter_iterator_generator
{
public:
typedef <tt><a href="./iterator_adaptors.htm#iterator_adaptor">iterator_adaptor</a>&lt...&gt;</tt> type; // the resulting filter iterator type
}
</pre>
<h3>Example</h3>
The following example uses filter iterator to print out all the
positive integers in an array.
<pre>
struct is_positive_number {
bool operator()(int x) { return 0 &lt; x; }
};
int main() {
int numbers[] = { 0, -1, 4, -3, 5, 8, -2 };
const int N = sizeof(numbers)/sizeof(int);
typedef boost::filter_iterator_generator&lt;is_positive_number, int*, int&gt;::type FilterIter;
is_positive_number predicate;
FilterIter::policies_type policies(predicate, numbers + N);
FilterIter filter_iter_first(numbers, policies);
FilterIter filter_iter_last(numbers + N, policies);
std::copy(filter_iter_first, filter_iter_last, std::ostream_iterator&lt;int&gt;(std::cout, " "));
std::cout &lt;&lt; std::endl;
return 0;
}
</pre>
The output is:
<pre>
4 5 8
</pre>
<h3>Template Parameters</h3>
<Table border>
<TR>
<TH>Parameter</TH><TH>Description</TH>
</TR>
<TR>
<TD><a href="http://www.sgi.com/tech/stl/Predicate.html"><tt>Predicate</tt></a></TD>
<TD>The function object that determines which elements are retained and which elements are skipped.
</TR>
<TR>
<TD><tt>BaseIterator</tt></TD>
<TD>The iterator type being wrapped. This type must at least be a model
of the <a href="http://www.sgi.com/tech/stl/InputIterator">InputIterator</a> concept.</TD>
</TR>
<TR>
<TD><tt>Value</tt></TD>
<TD>The <tt>value_type</tt> of the resulting iterator,
unless const. If const, a conforming compiler strips constness for the
<tt>value_type</tt>. Typically the default for this parameter is the
appropriate type<a href="#1">[1]</a>.<br> <b>Default:</b>
<tt>std::iterator_traits&lt;BaseIterator&gt;::value_type</TD>
</TR>
<TR>
<TD><tt>Reference</tt></TD>
<TD>The <tt>reference</tt> type of the resulting iterator, and in
particular, the result type of <tt>operator*()</tt>. Typically the default for
this parameter is the appropriate type.<br> <b>Default:</b> If
<tt>Value</tt> is supplied, <tt>Value&amp;</tt> is used. Otherwise
<tt>std::iterator_traits&lt;BaseIterator&gt;::reference</tt> is
used.</TD>
</TR>
<TR>
<TD><tt>Pointer</tt></TD>
<TD>The <tt>pointer</tt> type of the resulting iterator, and in
particular, the result type of <tt>operator->()</tt>.
Typically the default for
this parameter is the appropriate type.<br>
<b>Default:</b> If <tt>Value</tt> was supplied, then <tt>Value*</tt>,
otherwise <tt>std::iterator_traits&lt;BaseIterator&gt;::pointer</tt>.</TD>
</TR>
<TR>
<TD><tt>Category</tt></TD>
<TD>The <tt>iterator_category</tt> type for the resulting iterator.
Typically the
default for this parameter is the appropriate type. If you override
this parameter, do not use <tt>bidirectional_iterator_tag</tt>
because filter iterators can not go in reverse.<br>
<b>Default:</b> <tt>std::iterator_traits&lt;BaseIterator&gt;::iterator_category</tt></TD>
</TR>
<TR>
<TD><tt>Distance</tt></TD>
<TD>The <tt>difference_type</tt> for the resulting iterator. Typically the default for
this parameter is the appropriate type.<br>
<b>Default:</b> <tt>std::iterator_traits&lt;BaseIterator&gt;::difference_type</TD>
</TR>
</table>
<h3>Model of</h3>
The filter iterator adaptor (the type
<tt>filter_iterator_generator<...>::type</tt>) may be a model of <a
href="http://www.sgi.com/tech/stl/InputIterator.html">InputIterator</a> or <a
href="http://www.sgi.com/tech/stl/ForwardIterator.html">ForwardIterator</a>
depending on the adapted iterator type.
<h3>Members</h3>
The filter iterator type implements all of the member functions and
operators required of the <a
href="http://www.sgi.com/tech/stl/ForwardIterator.html">ForwardIterator</a>
concept. In addition it has the following constructor:
<pre>filter_iterator_generator::type(const BaseIterator& it, const Policies& p = Policies())</pre>
<p>
The policies type has only one public function, which is its constructor:
<pre>filter_iterator_generator::policies_type(const Predicate& p, const BaseIterator& end)</pre>
<p>
<hr>
<p>
<h2><a name="make_filter_iterator">The Make Filter Iterator Function</a></h2>
<pre>
template &lt;class Predicate, class BaseIterator&gt;
typename detail::filter_generator&lt;Predicate, BaseIterator&gt;::type
make_filter_iterator(BaseIterator first, BaseIterator last, const Predicate& p = Predicate())
</pre>
This function provides a convenient way to create filter iterators.
<h3>Example</h3>
In this example we print out all numbers in the array that are
greater than negative two.
<pre>
int main()
{
int numbers[] = { 0, -1, 4, -3, 5, 8, -2 };
const int N = sizeof(numbers)/sizeof(int);
std::copy(boost::make_filter_iterator(numbers, numbers + N,
std::bind2nd(std::greater<int>(), -2)),
boost::make_filter_iterator(numbers + N, numbers + N,
std::bind2nd(std::greater<int>(), -2)),
std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
}
</pre>
The output is:
<pre>
0 -1 4 5 8
</pre>
<p>
In the next example we print the positive numbers using the
<tt>make_filter_iterator()</tt> function.
<pre>
struct is_positive_number {
bool operator()(int x) { return 0 &lt; x; }
};
int main()
{
int numbers[] = { 0, -1, 4, -3, 5, 8, -2 };
const int N = sizeof(numbers)/sizeof(int);
std::copy(boost::make_filter_iterator&lt;is_positive_number&gt;(numbers, numbers + N),
boost::make_filter_iterator&lt;is_positive_number&gt;(numbers + N, numbers + N),
std::ostream_iterator&lt;int&gt;(std::cout, " "));
std::cout &lt;&lt; std::endl;
return 0;
}
</pre>
The output is:
<pre>
4 5 8
</pre>
<h3>Notes</h3>
<a name="1">[1]</a> If the compiler does not support partial
specialization and the wrapped iterator type is a builtin pointer then
the <tt>Value</tt> type must be explicitly specified (don't use the
default).
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->09 Mar 2001<!--webbot bot="Timestamp" endspan i-checksum="14894" --></p>
<p><EFBFBD> Copyright Jeremy Siek 2000. Permission to copy, use,
modify, sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided &quot;as is&quot;
without express or implied warranty, and with no claim as to its suitability for
any purpose.</p>
</body>
</html>

View File

@ -0,0 +1,53 @@
// Example of using the filter iterator adaptor from
// boost/iterator_adaptors.hpp.
// (C) Copyright Jeremy Siek 1999. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
#include <boost/config.hpp>
#include <algorithm>
#include <functional>
#include <iostream>
#include <boost/iterator_adaptors.hpp>
struct is_positive_number {
bool operator()(int x) { return 0 < x; }
};
int main()
{
int numbers[] = { 0, -1, 4, -3, 5, 8, -2 };
const int N = sizeof(numbers)/sizeof(int);
// Example using make_filter_iterator()
std::copy(boost::make_filter_iterator<is_positive_number>(numbers, numbers + N),
boost::make_filter_iterator<is_positive_number>(numbers + N, numbers + N),
std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
// Example using filter_iterator_generator
typedef boost::filter_iterator_generator<is_positive_number, int*, int>::type
FilterIter;
is_positive_number predicate;
FilterIter::policies_type policies(predicate, numbers + N);
FilterIter filter_iter_first(numbers, policies);
FilterIter filter_iter_last(numbers + N, policies);
std::copy(filter_iter_first, filter_iter_last, std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
// Another example using make_filter_iterator()
std::copy(boost::make_filter_iterator(numbers, numbers + N,
std::bind2nd(std::greater<int>(), -2)),
boost::make_filter_iterator(numbers + N, numbers + N,
std::bind2nd(std::greater<int>(), -2)),
std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
return 0;
}

41
fun_out_iter_example.cpp Normal file
View File

@ -0,0 +1,41 @@
// (C) Copyright Jeremy Siek 2001. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// Revision History:
// 27 Feb 2001 Jeremy Siek
// Initial checkin.
#include <iostream>
#include <string>
#include <vector>
#include <boost/function_output_iterator.hpp>
struct string_appender {
string_appender(std::string& s) : m_str(s) { }
void operator()(const std::string& x) const {
m_str += x;
}
std::string& m_str;
};
int main(int, char*[])
{
std::vector<std::string> x;
x.push_back("hello");
x.push_back(" ");
x.push_back("world");
x.push_back("!");
std::string s = "";
std::copy(x.begin(), x.end(),
boost::make_function_output_iterator(string_appender(s)));
std::cout << s << std::endl;
return 0;
}

View File

@ -0,0 +1,169 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>
<head>
<meta name="generator" content="HTML Tidy, see www.w3.org">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Function Output Iterator Adaptor Documentation</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align=
"center" width="277" height="86">
<h1>Function Output Iterator Adaptor</h1>
Defined in header <a href=
"../../boost/function_output_iterator.hpp">boost/function_output_iterator.hpp</a>
<p>The function output iterator adaptor makes it easier to create
custom output iterators. The adaptor takes a <a
href="http://www.sgi.com/tech/stl/UnaryFunction.html">Unary
Function</a> and creates a model of <a
href="http://www.sgi.com/tech/stl/OutputIterator.html">Output
Iterator</a>. Each item assigned to the output iterator is passed
as an argument to the unary function. The motivation for this
iterator is that creating a C++ Standard conforming output
iterator is non-trivial, particularly because the proper
implementation usually requires a proxy object. On the other hand,
creating a function (or function object) is much simpler.
<h2>Synopsis</h2>
<blockquote>
<pre>
namespace boost {
template &lt;class UnaryFunction&gt;
class function_output_iterator;
template &lt;class UnaryFunction&gt;
function_output_iterator&lt;UnaryFunction&gt;
make_function_output_iterator(const UnaryFunction&amp; f = UnaryFunction())
}
</pre>
</blockquote>
<h3>Example</h3>
In this example we create an output iterator that appends
each item onto the end of a string, using the <tt>string_appender</tt>
function.
<blockquote>
<pre>
#include &lt;iostream&gt;
#include &lt;string&gt;
#include &lt;vector&gt;
#include &lt;boost/function_output_iterator.hpp&gt;
struct string_appender {
string_appender(std::string&amp; s) : m_str(s) { }
void operator()(const std::string&amp; x) const {
m_str += x;
}
std::string&amp; m_str;
};
int main(int, char*[])
{
std::vector&lt;std::string&gt; x;
x.push_back("hello");
x.push_back(" ");
x.push_back("world");
x.push_back("!");
std::string s = "";
std::copy(x.begin(), x.end(),
boost::make_function_output_iterator(string_appender(s)));
std::cout &lt;&lt; s &lt;&lt; std::endl;
return 0;
}
</pre>
</blockquote>
<hr>
<h2><a name="function_output_iterator">The Function Output Iterator Class</a></h2>
<blockquote>
<pre>
template &lt;class UnaryFunction&gt;
class function_output_iterator;
</pre>
</blockquote>
The <tt>function_output_iterator</tt> class creates an <a
href="http://www.sgi.com/tech/stl/OutputIterator.html">Output
Iterator</a> out of a
<a href="http://www.sgi.com/tech/stl/UnaryFunction.html">Unary
Function</a>. Each item assigned to the output iterator is passed
as an argument to the unary function.
<h3>Template Parameters</h3>
<table border>
<tr>
<th>Parameter
<th>Description
<tr>
<td><tt>UnaryFunction</tt>
<td>The function type being wrapped. The return type of the
function is not used, so it can be <tt>void</tt>. The
function must be a model of <a
href="http://www.sgi.com/tech/stl/UnaryFunction.html">Unary
Function</a>.</td>
</table>
<h3>Concept Model</h3>
The function output iterator class is a model of <a
href="http://www.sgi.com/tech/stl/OutputIterator.html">Output
Iterator</a>.
<h2>Members</h3>
The function output iterator implements the member functions
and operators required of the <a
href="http://www.sgi.com/tech/stl/OutputIterator.html">Output
Iterator</a> concept. In addition it has the following constructor:
<pre>
explicit function_output_iterator(const UnaryFunction& f = UnaryFunction())
</pre>
<br>
<br>
<hr>
<h2><a name="make_function_output_iterator">The Function Output Iterator Object
Generator</a></h2>
The <tt>make_function_output_iterator()</tt> function provides a
more convenient way to create function output iterator objects. The
function saves the user the trouble of explicitly writing out the
iterator types. If the default argument is used, the function
type must be provided as an explicit template argument.
<blockquote>
<pre>
template &lt;class UnaryFunction&gt;
function_output_iterator&lt;UnaryFunction&gt;
make_function_output_iterator(const UnaryFunction&amp; f = UnaryFunction())
</pre>
</blockquote>
<hr>
<p>&copy; Copyright Jeremy Siek 2001. Permission to copy, use,
modify, sell and distribute this document is granted provided this
copyright notice appears in all copies. This document is provided
"as is" without express or implied warranty, and with no claim as
to its suitability for any purpose.
</body>
</html>

366
half_open_range_test.cpp Normal file
View File

@ -0,0 +1,366 @@
// (C) Copyright David Abrahams 2001. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears in
// all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
// See http://www.boost.org for most recent version including documentation.
//
// Revision History
// 11 Feb 2001 Compile with Borland, re-enable failing tests (David Abrahams)
// 29 Jan 2001 Initial revision (David Abrahams)
#include <boost/half_open_range.hpp>
#include <boost/utility.hpp>
#include <iterator>
#include <stdlib.h>
#include <vector>
#include <list>
#include <cassert>
#include <stdexcept>
#ifndef BOOST_NO_LIMITS
# include <limits>
#endif
#ifndef BOOST_NO_SLIST
# include <slist>
#endif
inline unsigned unsigned_random(unsigned max)
{
return (max > 0) ? (unsigned)rand() % max : 0;
}
// Special tests for ranges supporting random access
template <class T>
void category_test_1(
const boost::half_open_range<T>& r, std::random_access_iterator_tag)
{
typedef boost::half_open_range<T> range;
typedef typename range::size_type size_type;
size_type size = r.size();
// pick a random offset
size_type offset = unsigned_random(size);
typename range::value_type x = *(r.begin() + offset);
// test contains(value_type)
assert(r.contains(r.start()) == !r.empty());
assert(!r.contains(r.finish()));
assert(r.contains(x) == (offset != size));
range::const_iterator p = r.find(x);
assert((p == r.end()) == (x == r.finish()));
assert(r.find(r.finish()) == r.end());
if (offset != size)
{
assert(x == r[offset]);
assert(x == r.at(offset));
}
bool caught_out_of_range = false;
try {
bool never_initialized = x == r.at(size);
(void)never_initialized;
}
catch(std::out_of_range&)
{
caught_out_of_range = true;
}
catch(...)
{
}
assert(caught_out_of_range);
}
// Those tests must be skipped for other ranges
template <class T>
void category_test_1(
const boost::half_open_range<T>&, std::forward_iterator_tag)
{
}
unsigned indices[][2] = { {0,0},{0,1},{0,2},{0,3},
{1,1},{1,2},{1,3},
{2,2},{2,3},
{3,3}};
template <class Range>
void category_test_2(
const std::vector<Range>& ranges, unsigned i, unsigned j, std::random_access_iterator_tag)
{
typedef Range range;
const range& ri = ranges[i];
const range& rj = ranges[j];
if (indices[i][0] <= indices[j][0] && indices[i][1] >= indices[j][1])
assert(ri.contains(rj));
if (ri.contains(rj))
assert((ri & rj) == rj);
assert(boost::intersects(ri, rj) == !(ri & rj).empty());
range t1(ri);
t1 &= rj;
assert(t1 == range(indices[i][0] > indices[j][0] ? ri.start() : rj.start(),
indices[i][1] < indices[j][1] ? ri.finish() : rj.finish()));
assert(t1 == (ri & rj));
range t2(ri);
t2 |= rj;
if (ri.empty())
assert(t2 == rj);
else if (rj.empty())
assert(t2 == ri);
else
assert(t2 == range(indices[i][0] < indices[j][0] ? ri.start() : rj.start(),
indices[i][1] > indices[j][1] ? ri.finish() : rj.finish()));
assert(t2 == (ri | rj));
if (i == j)
assert(ri == rj);
if (ri.empty() || rj.empty())
assert((ri == rj) == (ri.empty() && rj.empty()));
else
assert((ri == rj) == (ri.start() == rj.start() && ri.finish() == rj.finish()));
assert((ri == rj) == !(ri != rj));
bool same = ri == rj;
bool one_empty = ri.empty() != rj.empty();
std::less<range> less;
std::less_equal<range> less_equal;
std::greater<range> greater;
std::greater_equal<range> greater_equal;
if (same)
{
assert(greater_equal(ri,rj));
assert(less_equal(ri,rj));
assert(!greater(ri,rj));
assert(!less(ri,rj));
}
else if (one_empty)
{
const range& empty = ri.empty() ? ri : rj;
const range& non_empty = rj.empty() ? ri : rj;
assert(less(empty,non_empty));
assert(less_equal(empty,non_empty));
assert(!greater(empty,non_empty));
assert(!greater_equal(empty,non_empty));
assert(!less(non_empty,empty));
assert(!less_equal(non_empty,empty));
assert(greater(non_empty,empty));
assert(greater_equal(non_empty,empty));
}
else {
if (indices[i][0] < indices[j][0] ||
indices[i][0] == indices[j][0] && indices[i][1] < indices[j][1])
{
assert(!greater_equal(ri,rj));
assert(less(ri,rj));
}
if (indices[i][0] < indices[j][0] ||
indices[i][0] == indices[j][0] && indices[i][1] <= indices[j][1])
{
assert(!greater(ri,rj));
assert(less_equal(ri,rj));
}
if (indices[i][0] > indices[j][0] ||
indices[i][0] == indices[j][0] && indices[i][1] > indices[j][1])
{
assert(!less_equal(ri,rj));
assert(greater(ri,rj));
}
if (indices[i][0] > indices[j][0] ||
indices[i][0] == indices[j][0] && indices[i][1] >= indices[j][1])
{
assert(!less(ri,rj));
assert(greater_equal(ri,rj));
}
}
}
template <class Range>
void category_test_2(
const std::vector<Range>&, unsigned, unsigned, std::forward_iterator_tag)
{
}
template <class T>
void category_test_2(
const std::vector<boost::half_open_range<T> >&, unsigned, unsigned, std::bidirectional_iterator_tag)
{
}
template <class Range>
void test_back(Range& x, std::bidirectional_iterator_tag)
{
assert(x.back() == boost::prior(x.finish()));
}
template <class Range>
void test_back(Range& x, std::forward_iterator_tag)
{
}
template <class T>
boost::half_open_range<T> range_identity(const boost::half_open_range<T>& x)
{
return x;
}
template <class T>
void test(T x0, T x1, T x2, T x3)
{
std::vector<boost::half_open_range<T> > ranges;
typedef boost::half_open_range<T> range;
T bounds[4] = { x0, x1, x2, x3 };
const std::size_t num_ranges = sizeof(indices)/sizeof(*indices);
// test construction
for (std::size_t n = 0; n < num_ranges;++n)
{
T start = bounds[indices[n][0]];
T finish = bounds[indices[n][1]];
boost::half_open_range<T> r(start, finish);
ranges.push_back(r);
}
// test implicit conversion from std::pair<T,T>
range converted = std::pair<T,T>(x0,x0);
(void)converted;
// test assignment, equality and inequality
range r00 = range(x0, x0);
assert(r00 == range(x0,x0));
assert(r00 == range(x1,x1)); // empty ranges are all equal
if (x3 != x0)
assert(r00 != range(x0, x3));
r00 = range(x0, x3);
assert(r00 == range(x0, x3));
if (x3 != x0)
assert(r00 != range(x0, x0));
typedef typename range::iterator iterator;
typedef typename iterator::iterator_category category;
for (unsigned i = 0; i < num_ranges; ++i)
{
const range& r = ranges[i];
// test begin(), end(), basic iteration.
unsigned count = 0;
for (range::const_iterator p = r.begin(), finish = r.end();
p != finish;
++p, ++count)
{
assert(count < 2100);
}
// test size(), empty(), front(), back()
assert((unsigned)r.size() == count);
if (indices[i][0] == indices[i][1])
assert(r.empty());
if (r.empty())
assert(r.size() == 0);
if (!r.empty())
{
assert(r.front() == r.start());
test_back(r, category());
}
// test swap
range r1(r);
range r2(x0,x3);
const bool same = r1 == r2;
r1.swap(r2);
assert(r1 == range(x0,x3));
assert(r2 == r);
if (!same) {
assert(r1 != r);
assert(r2 != range(x0,x3));
}
// do individual tests for random-access iterators
category_test_1(r, category());
}
for (unsigned j = 0; j < num_ranges; ++j) {
for (unsigned k = 0; k < num_ranges; ++k) {
category_test_2(ranges, j, k, category());
}
}
}
template <class Integer>
void test_integer(Integer* = 0) // default arg works around MSVC bug
{
Integer a = 0;
Integer b = a + unsigned_random(128 - a);
Integer c = b + unsigned_random(128 - b);
Integer d = c + unsigned_random(128 - c);
test(a, b, c, d);
}
template <class Container>
void test_container(Container* = 0) // default arg works around MSVC bug
{
Container c(unsigned_random(1673));
const typename Container::size_type offset1 = unsigned_random(c.size());
const typename Container::size_type offset2 = unsigned_random(c.size() - offset1);
typename Container::iterator internal1 = c.begin();
std::advance(internal1, offset1);
typename Container::iterator internal2 = internal1;
std::advance(internal2, offset2);
test(c.begin(), internal1, internal2, c.end());
typedef typename Container::const_iterator const_iterator;
test(const_iterator(c.begin()),
const_iterator(internal1),
const_iterator(internal2),
const_iterator(c.end()));
}
int main()
{
// Test the built-in integer types.
test_integer<char>();
test_integer<unsigned char>();
test_integer<signed char>();
test_integer<wchar_t>();
test_integer<short>();
test_integer<unsigned short>();
test_integer<int>();
test_integer<unsigned int>();
test_integer<long>();
test_integer<unsigned long>();
#if defined(ULLONG_MAX) || defined(ULONG_LONG_MAX)
test_integer<long long>();
test_integer<unsigned long long>();
#endif
// Some tests on container iterators, to prove we handle a few different categories
test_container<std::vector<int> >();
test_container<std::list<int> >();
#ifndef BOOST_NO_SLIST
test_container<BOOST_STD_EXTENSION_NAMESPACE::slist<int> >();
#endif
// Also prove that we can handle raw pointers.
int array[2000];
const std::size_t a = 0;
const std::size_t b = a + unsigned_random(2000 - a);
const std::size_t c = b + unsigned_random(2000 - b);
test(array, array+b, array+c, array+2000);
return 0;
}

View File

@ -23,8 +23,11 @@
#include <boost/config.hpp>
#endif
#ifndef BOOST_TYPE_TRAITS_HPP
#include <boost/type_traits.hpp>
#ifndef BOOST_ARITHMETIC_TYPE_TRAITS_HPP
#include <boost/type_traits/arithmetic_traits.hpp>
#endif
#ifndef BOOST_COMPOSITE_TYPE_TRAITS_HPP
#include <boost/type_traits/composite_traits.hpp>
#endif
namespace boost{

View File

@ -19,8 +19,11 @@
#define BOOST_DETAIL_COMPRESSED_PAIR_HPP
#include <algorithm>
#ifndef BOOST_TYPE_TRAITS_HPP
#include <boost/type_traits.hpp>
#ifndef BOOST_OBJECT_TYPE_TRAITS_HPP
#include <boost/type_traits/object_traits.hpp>
#endif
#ifndef BOOST_SAME_TRAITS_HPP
#include <boost/type_traits/same_traits.hpp>
#endif
#ifndef BOOST_CALL_TRAITS_HPP
#include <boost/call_traits.hpp>
@ -422,3 +425,4 @@ swap(compressed_pair<T1, T2>& x, compressed_pair<T1, T2>& y)
#endif // BOOST_DETAIL_COMPRESSED_PAIR_HPP

View File

@ -24,8 +24,11 @@
#include <boost/config.hpp>
#endif
#ifndef BOOST_TYPE_TRAITS_HPP
#include <boost/type_traits.hpp>
#ifndef BOOST_ARITHMETIC_TYPE_TRAITS_HPP
#include <boost/type_traits/arithmetic_traits.hpp>
#endif
#ifndef BOOST_COMPOSITE_TYPE_TRAITS_HPP
#include <boost/type_traits/composite_traits.hpp>
#endif
namespace boost{

View File

@ -26,8 +26,11 @@
#define BOOST_OB_COMPRESSED_PAIR_HPP
#include <algorithm>
#ifndef BOOST_TYPE_TRAITS_HPP
#include <boost/type_traits.hpp>
#ifndef BOOST_OBJECT_TYPE_TRAITS_HPP
#include <boost/type_traits/object_traits.hpp>
#endif
#ifndef BOOST_SAME_TRAITS_HPP
#include <boost/type_traits/same_traits.hpp>
#endif
#ifndef BOOST_CALL_TRAITS_HPP
#include <boost/call_traits.hpp>

View File

@ -15,6 +15,8 @@
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 11 Feb 01 Fixed bugs in the iterator helpers which prevented explicitly
// supplied arguments from actually being used (Dave Abrahams)
// 04 Jul 00 Fixed NO_OPERATORS_IN_NAMESPACE bugs, major cleanup and
// refactoring of compiler workarounds, additional documentation
// (Alexy Gurtovoy and Mark Rodgers with some help and prompting from
@ -514,7 +516,7 @@ struct forward_iterator_helper
: equality_comparable<T
, incrementable<T
, dereferenceable<T,P
, boost::iterator<std::forward_iterator_tag, V, D
, boost::iterator<std::forward_iterator_tag,V,D,P,R
> > > > {};
template <class T,
@ -527,7 +529,7 @@ struct bidirectional_iterator_helper
, incrementable<T
, decrementable<T
, dereferenceable<T,P
, boost::iterator<std::bidirectional_iterator_tag, V, D
, boost::iterator<std::bidirectional_iterator_tag,V,D,P,R
> > > > > {};
template <class T,
@ -544,7 +546,7 @@ struct random_access_iterator_helper
, addable2<T,D
, subtractable2<T,D
, indexable<T,D,R
, boost::iterator<std::random_access_iterator_tag, V, D
, boost::iterator<std::random_access_iterator_tag,V,D,P,R
> > > > > > > > >
{
#ifndef __BORLANDC__

443
indirect_iterator.htm Normal file
View File

@ -0,0 +1,443 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>
<head>
<meta name="generator" content="HTML Tidy, see www.w3.org">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Indirect Iterator Adaptor Documentation</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align=
"center" width="277" height="86">
<h1>Indirect Iterator Adaptor</h1>
Defined in header <a href=
"../../boost/iterator_adaptors.hpp">boost/iterator_adaptors.hpp</a>
<p>The indirect iterator adaptor augments an iterator by applying an
<b>extra</b> dereference inside of <tt>operator*()</tt>. For example, this
iterator makes it possible to view a container of pointers or
smart-pointers (e.g. <tt>std::list&lt;boost::shared_ptr&lt;foo&gt;
&gt;</tt>) as if it were a container of the pointed-to type. The following
<b>pseudo-code</b> shows the basic idea of the indirect iterator:
<blockquote>
<pre>
// inside a hypothetical indirect_iterator class...
typedef std::iterator_traits&lt;BaseIterator&gt;::value_type Pointer;
typedef std::iterator_traits&lt;Pointer&gt;::reference reference;
reference indirect_iterator::operator*() const {
return **this-&gt;base_iterator;
}
</pre>
</blockquote>
<h2>Synopsis</h2>
<blockquote>
<pre>
namespace boost {
template &lt;class BaseIterator,
class Value, class Reference, class Category, class Pointer&gt;
struct indirect_iterator_generator;
template &lt;class BaseIterator,
class Value, class Reference, class ConstReference,
class Category, class Pointer, class ConstPointer&gt;
struct indirect_iterator_pair_generator;
template &lt;class BaseIterator&gt;
typename indirect_iterator_generator&lt;BaseIterator&gt;::type
make_indirect_iterator(BaseIterator base)
}
</pre>
</blockquote>
<hr>
<h2><a name="indirect_iterator_generator">The Indirect Iterator Type
Generator</a></h2>
The <tt>indirect_iterator_generator</tt> template is a <a href=
"../../more/generic_programming.html#type_generator">generator</a> of
indirect iterator types. The main template parameter for this class is the
<tt>BaseIterator</tt> type that is being wrapped. In most cases the type of
the elements being pointed to can be deduced using
<tt>std::iterator_traits</tt>, but in some situations the user may want to
override this type, so there are also template parameters that allow a user
to control the <tt>value_type</tt>, <tt>pointer</tt>, and
<tt>reference</tt> types of the resulting iterators.
<blockquote>
<pre>
template &lt;class BaseIterator,
class Value, class Reference, class Pointer&gt;
class indirect_iterator_generator
{
public:
typedef <tt><a href=
"./iterator_adaptors.htm#iterator_adaptor">iterator_adaptor</a>&lt;...&gt;</tt> type; // the resulting indirect iterator type
};
</pre>
</blockquote>
<h3>Example</h3>
This example uses the <tt>indirect_iterator_generator</tt> to create
indirect iterators which dereference the pointers stored in the
<tt>pointers_to_chars</tt> array to access the <tt>char</tt>s in the
<tt>characters</tt> array.
<blockquote>
<pre>
#include &lt;boost/config.hpp&gt;
#include &lt;vector&gt;
#include &lt;iostream&gt;
#include &lt;iterator&gt;
#include &lt;boost/iterator_adaptors.hpp&gt;
int main(int, char*[])
{
char characters[] = "abcdefg";
const int N = sizeof(characters)/sizeof(char) - 1; // -1 since characters has a null char
char* pointers_to_chars[N]; // at the end.
for (int i = 0; i &lt; N; ++i)
pointers_to_chars[i] = &amp;characters[i];
boost::indirect_iterator_generator&lt;char**, char&gt;::type
indirect_first(pointers_to_chars), indirect_last(pointers_to_chars + N);
std::copy(indirect_first, indirect_last, std::ostream_iterator&lt;char&gt;(std::cout, ","));
std::cout &lt;&lt; std::endl;
// to be continued...
</pre>
</blockquote>
<h3>Template Parameters</h3>
<table border>
<tr>
<th>Parameter
<th>Description
<tr>
<td><tt>BaseIterator</tt>
<td>The iterator type being wrapped. The <tt>value_type</tt>
of the base iterator should itself be dereferenceable.
The return type of the <tt>operator*</tt> for the
<tt>value_type</tt> should match the <tt>Reference</tt> type.
<tr>
<td><tt>Value</tt>
<td>The <tt>value_type</tt> of the resulting iterator, unless const. If
Value is <tt>const X</tt>, a conforming compiler makes the
<tt>value_type</tt> <tt><i>non-</i>const X</tt><a href=
"iterator_adaptors.htm#1">[1]</a>. Note that if the default
is used for <tt>Value</tt>, then there must be a valid specialization
of <tt>iterator_traits</tt> for the value type of the base iterator.
<br>
<b>Default:</b> <tt>std::iterator_traits&lt;<br>
<20> std::iterator_traits&lt;BaseIterator&gt;::value_type
&gt;::value_type</tt><a href="#2">[2]</a>
<tr>
<td><tt>Reference</tt>
<td>The <tt>reference</tt> type of the resulting iterator, and in
particular, the result type of <tt>operator*()</tt>.<br>
<b>Default:</b> <tt>Value&amp;</tt>
<tr>
<td><tt>Pointer</tt>
<td>The <tt>pointer</tt> type of the resulting iterator, and in
particular, the result type of <tt>operator-&gt;()</tt>.<br>
<b>Default:</b> <tt>Value*</tt>
<tr>
<td><tt>Category</tt>
<td>The <tt>iterator_category</tt> type for the resulting iterator.<br>
<b>Default:</b>
<tt>std::iterator_traits&lt;BaseIterator&gt;::iterator_category</tt>
</table>
<h3>Concept Model</h3>
The indirect iterator will model whichever <a href=
"http://www.sgi.com/tech/stl/Iterators.html">standard iterator
concept category</a> is modeled by the base iterator. Thus, if the
base iterator is a model of <a href=
"http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random
Access Iterator</a> then so is the resulting indirect iterator. If
the base iterator models a more restrictive concept, the resulting
indirect iterator will model the same concept <a href="#3">[3]</a>.
<h3>Members</h3>
The indirect iterator type implements the member functions and operators
required of the <a href=
"http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random Access
Iterator</a> concept. In addition it has the following constructor:
<pre>
explicit indirect_iterator_generator::type(const BaseIterator&amp; it)
</pre>
<br>
<br>
<hr>
<p>
<h2><a name="indirect_iterator_pair_generator">The Indirect Iterator Pair
Generator</a></h2>
Sometimes a pair of <tt>const</tt>/non-<tt>const</tt> pair of iterators is
needed, such as when implementing a container. The
<tt>indirect_iterator_pair_generator</tt> class makes it more convenient to
create this pair of iterator types.
<blockquote>
<pre>
template &lt;class BaseIterator,
class Value, class Pointer, class Reference,
class ConstPointer, class ConstReference&gt;
class indirect_iterator_pair_generator
{
public:
typedef <tt><a href=
"./iterator_adaptors.htm#iterator_adaptor">iterator_adaptor</a>&lt;...&gt;</tt> iterator; // the mutable indirect iterator type
typedef <tt><a href=
"./iterator_adaptors.htm#iterator_adaptor">iterator_adaptor</a>&lt;...&gt;</tt> const_iterator; // the immutable indirect iterator type
};
</pre>
</blockquote>
<h3>Example</h3>
<blockquote>
<pre>
// continuing from the last example...
typedef boost::indirect_iterator_pair_generator&lt;char**,
char, char*, char&amp;, const char*, const char&amp;&gt; PairGen;
char mutable_characters[N];
char* pointers_to_mutable_chars[N];
for (int i = 0; i &lt; N; ++i)
pointers_to_mutable_chars[i] = &amp;mutable_characters[i];
PairGen::iterator mutable_indirect_first(pointers_to_mutable_chars),
mutable_indirect_last(pointers_to_mutable_chars + N);
PairGen::const_iterator const_indirect_first(pointers_to_chars),
const_indirect_last(pointers_to_chars + N);
std::transform(const_indirect_first, const_indirect_last,
mutable_indirect_first, std::bind1st(std::plus&lt;char&gt;(), 1));
std::copy(mutable_indirect_first, mutable_indirect_last,
std::ostream_iterator&lt;char&gt;(std::cout, ","));
std::cout &lt;&lt; std::endl;
// to be continued...
</pre>
</blockquote>
<p>The output is:
<blockquote>
<pre>
b,c,d,e,f,g,h,
</pre>
</blockquote>
<h3>Template Parameters</h3>
<table border>
<tr>
<th>Parameter
<th>Description
<tr>
<td><tt>BaseIterator</tt>
<td>The iterator type being wrapped. The <tt>value_type</tt> of the
base iterator should itself be dereferenceable.
The return type of the <tt>operator*</tt> for the
<tt>value_type</tt> should match the <tt>Reference</tt> type.
<tr>
<td><tt>Value</tt>
<td>The <tt>value_type</tt> of the resulting iterators.
If Value is <tt>const X</tt>, a conforming compiler makes the
<tt>value_type</tt> <tt><i>non-</i>const X</tt><a href=
"iterator_adaptors.htm#1">[1]</a>. Note that if the default
is used for <tt>Value</tt>, then there must be a valid
specialization of <tt>iterator_traits</tt> for the value type
of the base iterator.<br>
<b>Default:</b> <tt>std::iterator_traits&lt;<br>
<20> std::iterator_traits&lt;BaseIterator&gt;::value_type
&gt;::value_type</tt><a href="#2">[2]</a>
<tr>
<td><tt>Reference</tt>
<td>The <tt>reference</tt> type of the resulting <tt>iterator</tt>, and
in particular, the result type of its <tt>operator*()</tt>.<br>
<b>Default:</b> <tt>Value&amp;</tt>
<tr>
<td><tt>Pointer</tt>
<td>The <tt>pointer</tt> type of the resulting <tt>iterator</tt>, and
in particular, the result type of its <tt>operator-&gt;()</tt>.<br>
<b>Default:</b> <tt>Value*</tt>
<tr>
<td><tt>ConstReference</tt>
<td>The <tt>reference</tt> type of the resulting
<tt>const_iterator</tt>, and in particular, the result type of its
<tt>operator*()</tt>.<br>
<b>Default:</b> <tt>const Value&amp;</tt>
<tr>
<td><tt>ConstPointer</tt>
<td>The <tt>pointer</tt> type of the resulting <tt>const_iterator</tt>,
and in particular, the result type of its <tt>operator-&gt;()</tt>.<br>
<b>Default:</b> <tt>const Value*</tt>
<tr>
<td><tt>Category</tt>
<td>The <tt>iterator_category</tt> type for the resulting iterator.<br>
<b>Default:</b>
<tt>std::iterator_traits&lt;BaseIterator&gt;::iterator_category</tt>
</table>
<h3>Concept Model</h3>
The indirect iterators will model whichever <a href=
"http://www.sgi.com/tech/stl/Iterators.html">standard iterator
concept category</a> is modeled by the base iterator. Thus, if the
base iterator is a model of <a href=
"http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random
Access Iterator</a> then so are the resulting indirect
iterators. If the base iterator models a more restrictive concept,
the resulting indirect iterators will model the same concept <a
href="#3">[3]</a>.
<h3>Members</h3>
The resulting <tt>iterator</tt> and <tt>const_iterator</tt> types implement
the member functions and operators required of the <a href=
"http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random Access
Iterator</a> concept. In addition they support the following constructors:
<blockquote>
<pre>
explicit indirect_iterator_pair_generator::iterator(const BaseIterator&amp; it)
explicit indirect_iterator_pair_generator::const_iterator(const BaseIterator&amp; it)
</pre>
</blockquote>
<br>
<br>
<hr>
<p>
<h2><a name="make_indirect_iterator">The Indirect Iterator Object
Generator</a></h2>
The <tt>make_indirect_iterator()</tt> function provides a more convenient
way to create indirect iterator objects. The function saves the user the
trouble of explicitly writing out the iterator types.
<blockquote>
<pre>
template &lt;class BaseIterator&gt;
typename indirect_iterator_generator&lt;BaseIterator&gt;::type
make_indirect_iterator(BaseIterator base)
</pre>
</blockquote>
<h3>Example</h3>
Here we again print the <tt>char</tt>s from the array <tt>characters</tt>
by accessing them through the array of pointers <tt>pointer_to_chars</tt>,
but this time we use the <tt>make_indirect_iterator()</tt> function which
saves us some typing.
<blockquote>
<pre>
// continuing from the last example...
std::copy(boost::make_indirect_iterator(pointers_to_chars),
boost::make_indirect_iterator(pointers_to_chars + N),
std::ostream_iterator&lt;char&gt;(std::cout, ","));
std::cout &lt;&lt; std::endl;
return 0;
}
</pre>
</blockquote>
The output is:
<blockquote>
<pre>
a,b,c,d,e,f,g,
</pre>
</blockquote>
<hr>
<h3>Notes</h3>
<p>
<p><a name="2">[2]</a> If your compiler does not support partial
specialization and the base iterator or its <tt>value_type</tt> is a
builtin pointer type, you will not be able to use the default for
<tt>Value</tt> and will need to specify this type explicitly.
<p><a name="3">[3]</a>There is a caveat to which concept the
indirect iterator can model. If the return type of the
<tt>operator*</tt> for the base iterator's value type is not a
true reference, then strickly speaking, the indirect iterator can
not be a model of <a href=
"http://www.sgi.com/tech/stl/ForwardIterator.html">Forward
Iterator</a> or any of the concepts that refine it. In this case
the <tt>Category</tt> for the indirect iterator should be
specified as <tt>std::input_iterator_tag</tt>. However, even in
this case, if the base iterator is a random access iterator, the
resulting indirect iterator will still satisfy most of the
requirements for <a href=
"http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random
Access Iterator</a>.
<hr>
<p>Revised
<!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->28 Feb 2001<!--webbot bot="Timestamp" endspan i-checksum="14390" -->
<p>&copy; Copyright Jeremy Siek and David Abrahams 2001. Permission to
copy, use, modify, sell and distribute this document is granted provided
this copyright notice appears in all copies. This document is provided "as
is" without express or implied warranty, and with no claim as to its
suitability for any purpose.
<!-- LocalWords: html charset alt gif hpp BaseIterator const namespace struct
-->
<!-- LocalWords: ConstPointer ConstReference typename iostream int abcdefg
-->
<!-- LocalWords: sizeof PairGen pre Jeremy Siek David Abrahams
-->
</body>
</html>

View File

@ -0,0 +1,61 @@
// (C) Copyright Jeremy Siek 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
#include <boost/config.hpp>
#include <vector>
#include <iostream>
#include <iterator>
#include <functional>
#include <boost/iterator_adaptors.hpp>
int main(int, char*[])
{
char characters[] = "abcdefg";
const int N = sizeof(characters)/sizeof(char) - 1; // -1 since characters has a null char
char* pointers_to_chars[N]; // at the end.
for (int i = 0; i < N; ++i)
pointers_to_chars[i] = &characters[i];
// Example of using indirect_iterator_generator
boost::indirect_iterator_generator<char**, char>::type
indirect_first(pointers_to_chars), indirect_last(pointers_to_chars + N);
std::copy(indirect_first, indirect_last, std::ostream_iterator<char>(std::cout, ","));
std::cout << std::endl;
// Example of using indirect_iterator_pair_generator
typedef boost::indirect_iterator_pair_generator<char**,
char, char*, char&, const char*, const char&> PairGen;
char mutable_characters[N];
char* pointers_to_mutable_chars[N];
for (int i = 0; i < N; ++i)
pointers_to_mutable_chars[i] = &mutable_characters[i];
PairGen::iterator mutable_indirect_first(pointers_to_mutable_chars),
mutable_indirect_last(pointers_to_mutable_chars + N);
PairGen::const_iterator const_indirect_first(pointers_to_chars),
const_indirect_last(pointers_to_chars + N);
std::transform(const_indirect_first, const_indirect_last,
mutable_indirect_first, std::bind1st(std::plus<char>(), 1));
std::copy(mutable_indirect_first, mutable_indirect_last,
std::ostream_iterator<char>(std::cout, ","));
std::cout << std::endl;
// Example of using make_indirect_iterator()
std::copy(boost::make_indirect_iterator(pointers_to_chars),
boost::make_indirect_iterator(pointers_to_chars + N),
std::ostream_iterator<char>(std::cout, ","));
std::cout << std::endl;
return 0;
}

151
indirect_iterator_test.cpp Normal file
View File

@ -0,0 +1,151 @@
// (C) Copyright Jeremy Siek 1999. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// Revision History
// 08 Mar 2001 Jeremy Siek
// Moved test of indirect iterator into its own file. It to
// to be in iterator_adaptor_test.cpp.
#include <boost/config.hpp>
#include <iostream>
#include <algorithm>
#include <boost/iterator_adaptors.hpp>
#include <boost/pending/iterator_tests.hpp>
#include <boost/concept_archetype.hpp>
#include <stdlib.h>
#include <deque>
#include <set>
struct my_iterator_tag : public std::random_access_iterator_tag { };
using boost::dummyT;
typedef std::deque<int> storage;
typedef std::deque<int*> pointer_deque;
typedef std::set<storage::iterator> iterator_set;
void more_indirect_iterator_tests()
{
// For some reason all heck breaks loose in the compiler under these conditions.
#if !defined(BOOST_MSVC) || !defined(__STL_DEBUG)
storage store(1000);
std::generate(store.begin(), store.end(), rand);
pointer_deque ptr_deque;
iterator_set iter_set;
for (storage::iterator p = store.begin(); p != store.end(); ++p)
{
ptr_deque.push_back(&*p);
iter_set.insert(p);
}
typedef boost::indirect_iterator_pair_generator<
pointer_deque::iterator
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
, int
#endif
> IndirectDeque;
IndirectDeque::iterator db(ptr_deque.begin());
IndirectDeque::iterator de(ptr_deque.end());
assert(static_cast<std::size_t>(de - db) == store.size());
assert(db + store.size() == de);
IndirectDeque::const_iterator dci(db);
assert(db == dci);
assert(dci == db);
assert(dci != de);
assert(dci < de);
assert(dci <= de);
assert(de >= dci);
assert(de > dci);
dci = de;
assert(dci == de);
boost::random_access_iterator_test(db + 1, store.size() - 1, boost::next(store.begin()));
*db = 999;
assert(store.front() == 999);
// Borland C++ is getting very confused about the typedef's here
typedef boost::indirect_iterator_generator<
iterator_set::iterator
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
, int
#endif
>::type indirect_set_iterator;
typedef boost::indirect_iterator_generator<
iterator_set::iterator,
const int
>::type const_indirect_set_iterator;
indirect_set_iterator sb(iter_set.begin());
indirect_set_iterator se(iter_set.end());
const_indirect_set_iterator sci(iter_set.begin());
assert(sci == sb);
assert(sci != se);
sci = se;
assert(sci == se);
*boost::prior(se) = 888;
assert(store.back() == 888);
assert(std::equal(sb, se, store.begin()));
boost::bidirectional_iterator_test(boost::next(sb), store[1], store[2]);
assert(std::equal(db, de, store.begin()));
#endif
}
int
main()
{
dummyT array[] = { dummyT(0), dummyT(1), dummyT(2),
dummyT(3), dummyT(4), dummyT(5) };
const int N = sizeof(array)/sizeof(dummyT);
// Test indirect_iterator_generator
{
dummyT* ptr[N];
for (int k = 0; k < N; ++k)
ptr[k] = array + k;
typedef boost::indirect_iterator_generator<dummyT**
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
, dummyT
#endif
>::type indirect_iterator;
typedef boost::indirect_iterator_generator<dummyT**, const dummyT>::type const_indirect_iterator;
indirect_iterator i(ptr);
boost::random_access_iterator_test(i, N, array);
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
boost::random_access_iterator_test(boost::make_indirect_iterator(ptr), N, array);
#endif
// check operator->
assert((*i).m_x == i->foo());
const_indirect_iterator j(ptr);
boost::random_access_iterator_test(j, N, array);
dummyT*const* const_ptr = ptr;
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
boost::random_access_iterator_test(boost::make_indirect_iterator(const_ptr), N, array);
#endif
boost::const_nonconst_iterator_test(i, ++j);
more_indirect_iterator_tests();
}
std::cout << "test successful " << std::endl;
return 0;
}

View File

@ -11,15 +11,15 @@
// Revision History
// 21 Jan 01 Initial version (Jeremy Siek)
#include <list>
#include <boost/config.hpp>
#include <list>
#include <boost/pending/iterator_adaptors.hpp>
#include <boost/detail/iterator.hpp>
int main()
{
typedef boost::iterator_adaptor<int*, boost::default_iterator_policies,
boost::iterator<std::bidirectional_iterator_tag, int> > adaptor_type;
typedef boost::iterator_adaptor<std::list<int>::iterator,
boost::default_iterator_policies,
int,int&,int*,std::bidirectional_iterator_tag> adaptor_type;
adaptor_type i;
i += 4;

View File

@ -11,16 +11,16 @@
// Revision History
// 21 Jan 01 Initial version (Jeremy Siek)
#include <boost/config.hpp>
#include <iostream>
#include <iterator>
#include <boost/config.hpp>
#include <boost/pending/iterator_adaptors.hpp>
#include <boost/detail/iterator.hpp>
int main()
{
typedef boost::iterator_adaptor<int*, boost::default_iterator_policies,
boost::iterator<std::input_iterator_tag, int> > adaptor_type;
typedef boost::iterator_adaptor<std::istream_iterator<int>,
boost::default_iterator_policies,
int,int&,int*,std::input_iterator_tag> adaptor_type;
adaptor_type iter;
--iter;

View File

@ -1,32 +0,0 @@
// Test boost/pending/iterator_adaptors.hpp
// (C) Copyright Jeremy Siek 1999. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 21 Jan 01 Initial version (Jeremy Siek)
#include <list>
#include <boost/config.hpp>
#include <boost/pending/iterator_adaptors.hpp>
#include <boost/detail/iterator.hpp>
class foo {
public:
void bar() { }
};
int main()
{
typedef boost::iterator_adaptor<foo*, boost::default_iterator_policies,
boost::iterator<std::input_iterator_tag, foo> > adaptor_type;
adaptor_type i;
i->bar();
return 0;
}

61
iter_traits_gen_test.cpp Normal file
View File

@ -0,0 +1,61 @@
// (C) Copyright Jeremy Siek 2000. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// 8 Mar 2001 Jeremy Siek
// Initial checkin.
#include <boost/iterator_adaptors.hpp>
#include <boost/pending/iterator_tests.hpp>
#include <boost/static_assert.hpp>
class bar { };
void foo(bar) { }
int
main()
{
using boost::dummyT;
dummyT array[] = { dummyT(0), dummyT(1), dummyT(2),
dummyT(3), dummyT(4), dummyT(5) };
typedef boost::iterator_adaptor<dummyT*,
boost::default_iterator_policies, dummyT> my_iter;
my_iter mi(array);
{
typedef boost::iterator_adaptor<my_iter, boost::default_iterator_policies,
boost::iterator_traits_generator
::reference<dummyT>
::iterator_category<std::input_iterator_tag> > iter_type;
BOOST_STATIC_ASSERT((boost::is_same<iter_type::iterator_category*,
std::input_iterator_tag*>::value));
BOOST_STATIC_ASSERT(( ! boost::is_convertible<iter_type::iterator_category*,
std::forward_iterator_tag*>::value));
iter_type i(mi);
boost::input_iterator_test(i, dummyT(0), dummyT(1));
}
{
typedef boost::iterator_adaptor<dummyT*,
boost::default_iterator_policies,
boost::iterator_traits_generator
::value_type<dummyT>
::reference<const dummyT&>
::pointer<const dummyT*>
::iterator_category<std::forward_iterator_tag>
::difference_type<std::ptrdiff_t> > adaptor_type;
adaptor_type i(array);
boost::input_iterator_test(i, dummyT(0), dummyT(1));
int zero = 0;
if (zero) // don't do this, just make sure it compiles
assert((*i).m_x == i->foo());
}
return 0;
}

View File

@ -1,4 +1,4 @@
// Demonstrate and test boost/operators.hpp on std::iterators -------------//
// Test boost/iterator_adaptors.hpp
// (C) Copyright Jeremy Siek 1999. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
@ -9,6 +9,36 @@
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 08 Mar 01 Moved indirect and transform tests to separate files.
// (Jeremy Siek)
// 19 Feb 01 Take adavantage of improved iterator_traits to do more tests
// on MSVC. Hack around an MSVC-with-STLport internal compiler
// error. (David Abrahams)
// 11 Feb 01 Added test of operator-> for forward and input iterators.
// (Jeremy Siek)
// 11 Feb 01 Borland fixes (David Abrahams)
// 10 Feb 01 Use new adaptors interface. (David Abrahams)
// 10 Feb 01 Use new filter_ interface. (David Abrahams)
// 09 Feb 01 Use new reverse_ and indirect_ interfaces. Replace
// BOOST_NO_STD_ITERATOR_TRAITS with
// BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION to prove we've
// normalized to core compiler capabilities (David Abrahams)
// 08 Feb 01 Use Jeremy's new make_reverse_iterator form; add more
// comprehensive testing. Force-decay array function arguments to
// pointers.
// 07 Feb 01 Added tests for the make_xxx_iterator() helper functions.
// (Jeremy Siek)
// 07 Feb 01 Replaced use of xxx_pair_generator with xxx_generator where
// possible (which was all but the projection iterator).
// (Jeremy Siek)
// 06 Feb 01 Removed now-defaulted template arguments where possible
// Updated names to correspond to new generator naming convention.
// Added a trivial test for make_transform_iterator().
// Gave traits for const iterators a mutable value_type, per std.
// Resurrected my original tests for indirect iterators.
// (David Abrahams)
// 04 Feb 01 Fix for compilers without standard iterator_traits
// (David Abrahams)
// 13 Jun 00 Added const version of the iterator tests (Jeremy Siek)
// 12 Dec 99 Initial version with iterator operators (Jeremy Siek)
@ -17,34 +47,20 @@
#include <algorithm>
#include <functional>
#include <boost/pending/iterator_adaptors.hpp>
#include <boost/iterator_adaptors.hpp>
#include <boost/pending/iterator_tests.hpp>
#include <boost/pending/integer_range.hpp>
#include <boost/concept_archetype.hpp>
#include <stdlib.h>
#include <vector>
#include <deque>
#include <set>
struct my_iterator_tag : public std::random_access_iterator_tag { };
using boost::dummyT;
struct my_iter_traits {
typedef dummyT value_type;
typedef dummyT* pointer;
typedef dummyT& reference;
typedef my_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
};
struct my_const_iter_traits {
typedef dummyT value_type;
typedef const dummyT* pointer;
typedef const dummyT& reference;
typedef my_iterator_tag iterator_category;
typedef std::ptrdiff_t difference_type;
};
typedef boost::iterator_adaptors
<dummyT*, const dummyT*,
my_iter_traits, my_const_iter_traits> My;
struct mult_functor {
typedef int result_type;
@ -77,6 +93,10 @@ struct one_or_four {
}
};
typedef std::deque<int> storage;
typedef std::deque<int*> pointer_deque;
typedef std::set<storage::iterator> iterator_set;
int
main()
{
@ -87,88 +107,121 @@ main()
// sanity check, if this doesn't pass the test is buggy
boost::random_access_iterator_test(array,N,array);
// Test the iterator_adaptors
// Check that the policy concept checks and the default policy
// implementation match up.
boost::function_requires<
boost::RandomAccessIteratorPoliciesConcept<
boost::default_iterator_policies, int*,
boost::iterator<std::random_access_iterator_tag, int, std::ptrdiff_t,
int*, int&>
> >();
// Test the iterator_adaptor
{
My::iterator i = array;
boost::iterator_adaptor<dummyT*, boost::default_iterator_policies, dummyT> i(array);
boost::random_access_iterator_test(i, N, array);
My::const_iterator j = array;
boost::iterator_adaptor<const dummyT*, boost::default_iterator_policies, const dummyT> j(array);
boost::random_access_iterator_test(j, N, array);
boost::const_nonconst_iterator_test(i, ++j);
}
// Test transform_iterator
{
int x[N], y[N];
for (int k = 0; k < N; ++k)
x[k] = k;
std::copy(x, x + N, y);
for (int k2 = 0; k2 < N; ++k2)
x[k2] = x[k2] * 2;
boost::transform_iterator<mult_functor, int*,
boost::iterator<std::random_access_iterator_tag,int> >::type
i(y, mult_functor(2));
boost::random_access_iterator_test(i, N, x);
}
// Test indirect_iterators
{
dummyT* ptr[N];
for (int k = 0; k < N; ++k)
ptr[k] = array + k;
typedef boost::indirect_iterators<dummyT**, dummyT*, const dummyT*,
boost::iterator<std::random_access_iterator_tag, dummyT*>,
boost::iterator<std::random_access_iterator_tag, dummyT>,
boost::iterator<std::random_access_iterator_tag, const dummyT>
> Indirect;
Indirect::iterator i = ptr;
boost::random_access_iterator_test(i, N, array);
Indirect::const_iterator j = ptr;
boost::random_access_iterator_test(j, N, array);
boost::const_nonconst_iterator_test(i, ++j);
}
// Test projection_iterators
// Test projection_iterator_pair_generator
{
typedef std::pair<dummyT,dummyT> Pair;
Pair pair_array[N];
for (int k = 0; k < N; ++k)
pair_array[k].first = array[k];
typedef boost::projection_iterators<select1st_<Pair>,
Pair*, const Pair*,
boost::iterator<std::random_access_iterator_tag, Pair>,
boost::iterator<std::random_access_iterator_tag, const Pair>
typedef boost::projection_iterator_pair_generator<select1st_<Pair>,
Pair*, const Pair*
> Projection;
Projection::iterator i = pair_array;
Projection::iterator i(pair_array);
boost::random_access_iterator_test(i, N, array);
Projection::const_iterator j = pair_array;
boost::random_access_iterator_test(boost::make_projection_iterator(pair_array, select1st_<Pair>()), N, array);
boost::random_access_iterator_test(boost::make_projection_iterator< select1st_<Pair> >(pair_array), N, array);
Projection::const_iterator j(pair_array);
boost::random_access_iterator_test(j, N, array);
boost::random_access_iterator_test(boost::make_const_projection_iterator(pair_array, select1st_<Pair>()), N, array);
boost::random_access_iterator_test(boost::make_const_projection_iterator<select1st_<Pair> >(pair_array), N, array);
boost::const_nonconst_iterator_test(i, ++j);
}
// Test reverse_iterators
// Test reverse_iterator_generator
{
dummyT reversed[N];
std::copy(array, array + N, reversed);
std::reverse(reversed, reversed + N);
typedef boost::reverse_iterators<dummyT*, const dummyT*,
boost::iterator<std::random_access_iterator_tag,dummyT>,
boost::iterator<std::random_access_iterator_tag,const dummyT>
> Reverse;
Reverse::iterator i = reversed + N;
typedef boost::reverse_iterator_generator<dummyT*
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
, dummyT
#endif
>::type reverse_iterator;
reverse_iterator i(reversed + N);
boost::random_access_iterator_test(i, N, array);
Reverse::const_iterator j = reversed + N;
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
boost::random_access_iterator_test(boost::make_reverse_iterator(reversed + N), N, array);
#endif
typedef boost::reverse_iterator_generator<const dummyT*
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
, const dummyT
#endif
>::type const_reverse_iterator;
const_reverse_iterator j(reversed + N);
boost::random_access_iterator_test(j, N, array);
const dummyT* const_reversed = reversed;
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
boost::random_access_iterator_test(boost::make_reverse_iterator(const_reversed + N), N, array);
#endif
boost::const_nonconst_iterator_test(i, ++j);
}
// Test reverse_iterator_generator again, with traits fully deducible on all platforms
{
std::deque<dummyT> reversed_container;
std::reverse_copy(array, array + N, std::back_inserter(reversed_container));
const std::deque<dummyT>::iterator reversed = reversed_container.begin();
typedef boost::reverse_iterator_generator<
std::deque<dummyT>::iterator>::type reverse_iterator;
typedef boost::reverse_iterator_generator<
std::deque<dummyT>::const_iterator, const dummyT>::type const_reverse_iterator;
// MSVC/STLport gives an INTERNAL COMPILER ERROR when any computation
// (e.g. "reversed + N") is used in the constructor below.
const std::deque<dummyT>::iterator finish = reversed_container.end();
reverse_iterator i(finish);
boost::random_access_iterator_test(i, N, array);
boost::random_access_iterator_test(boost::make_reverse_iterator(reversed + N), N, array);
const_reverse_iterator j = reverse_iterator(finish);
boost::random_access_iterator_test(j, N, array);
const std::deque<dummyT>::const_iterator const_reversed = reversed;
boost::random_access_iterator_test(boost::make_reverse_iterator(const_reversed + N), N, array);
// Many compilers' builtin deque iterators don't interoperate well, though
// STLport fixes that problem.
#if defined(__SGI_STL_PORT) || !defined(__GNUC__) && !defined(__BORLANDC__) && !defined(BOOST_MSVC)
boost::const_nonconst_iterator_test(i, ++j);
#endif
}
// Test integer_range's iterators
{
int int_array[] = { 0, 1, 2, 3, 4, 5 };
@ -178,13 +231,105 @@ main()
// Test filter iterator
{
typedef boost::filter_iterator<one_or_four, dummyT*,
boost::iterator<std::forward_iterator_tag, dummyT, std::ptrdiff_t,
dummyT*, dummyT&> >::type FilterIter;
FilterIter i(array);
boost::forward_iterator_test(i, 1, 4);
// Using typedefs for filter_gen::type confused Borland terribly.
typedef boost::detail::non_bidirectional_category<dummyT*>::type category;
typedef boost::filter_iterator_generator<one_or_four, dummyT*
#ifdef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
, dummyT
#endif
>::type filter_iter;
#if defined(__BORLANDC__)
// Borland is choking on accessing the policies_type explicitly
// from the filter_iter.
boost::forward_iterator_test(make_filter_iterator(array, array+N,
one_or_four()),
dummyT(1), dummyT(4));
#else
filter_iter i(array, filter_iter::policies_type(one_or_four(), array + N));
boost::forward_iterator_test(i, dummyT(1), dummyT(4));
#endif
#if !defined(__BORLANDC__)
//
enum { is_forward = boost::is_same<
filter_iter::iterator_category,
std::forward_iterator_tag>::value };
BOOST_STATIC_ASSERT(is_forward);
#endif
// On compilers not supporting partial specialization, we can do more type
// deduction with deque iterators than with pointers... unless the library
// is broken ;-(
#if !defined(BOOST_MSVC) || defined(__SGI_STL_PORT)
std::deque<dummyT> array2;
std::copy(array+0, array+N, std::back_inserter(array2));
boost::forward_iterator_test(
boost::make_filter_iterator(array2.begin(), array2.end(), one_or_four()),
dummyT(1), dummyT(4));
boost::forward_iterator_test(
boost::make_filter_iterator<one_or_four>(array2.begin(), array2.end()),
dummyT(1), dummyT(4));
#endif
#if !defined(BOOST_MSVC) // This just freaks MSVC out completely
boost::forward_iterator_test(
boost::make_filter_iterator<one_or_four>(
boost::make_reverse_iterator(array2.end()),
boost::make_reverse_iterator(array2.begin())
),
dummyT(4), dummyT(1));
#endif
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
boost::forward_iterator_test(
boost::make_filter_iterator(array+0, array+N, one_or_four()),
dummyT(1), dummyT(4));
boost::forward_iterator_test(
boost::make_filter_iterator<one_or_four>(array, array + N),
dummyT(1), dummyT(4));
#endif
}
// check operator-> with a forward iterator
{
boost::forward_iterator_archetype<dummyT> forward_iter;
#if defined(__BORLANDC__)
typedef boost::iterator_adaptor<boost::forward_iterator_archetype<dummyT>,
boost::default_iterator_policies,
dummyT, const dummyT&, const dummyT*,
std::forward_iterator_tag, std::ptrdiff_t> adaptor_type;
#else
typedef boost::iterator_adaptor<boost::forward_iterator_archetype<dummyT>,
boost::default_iterator_policies,
boost::iterator_traits_generator
::value_type<dummyT>
::reference<const dummyT&>
::pointer<const dummyT*>
::iterator_category<std::forward_iterator_tag>
::difference_type<std::ptrdiff_t> > adaptor_type;
#endif
adaptor_type i(forward_iter);
int zero = 0;
if (zero) // don't do this, just make sure it compiles
assert((*i).m_x == i->foo());
}
// check operator-> with an input iterator
{
boost::input_iterator_archetype<dummyT> input_iter;
typedef boost::iterator_adaptor<boost::input_iterator_archetype<dummyT>,
boost::default_iterator_policies,
dummyT, const dummyT&, const dummyT*,
std::input_iterator_tag, std::ptrdiff_t> adaptor_type;
adaptor_type i(input_iter);
int zero = 0;
if (zero) // don't do this, just make sure it compiles
assert((*i).m_x == i->foo());
}
std::cout << "test successful " << std::endl;
return 0;
}

File diff suppressed because it is too large Load Diff

View File

@ -7,6 +7,16 @@
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 04 Mar 2001 Patches for Intel C++ (Dave Abrahams)
// 19 Feb 2001 Take advantage of improved iterator_traits to do more tests
// on MSVC. Reordered some #ifdefs for coherency.
// (David Abrahams)
// 13 Feb 2001 Test new VC6 workarounds (David Abrahams)
// 11 Feb 2001 Final fixes for Borland (David Abrahams)
// 11 Feb 2001 Some fixes for Borland get it closer on that compiler
// (David Abrahams)
// 07 Feb 2001 More comprehensive testing; factored out static tests for
// better reuse (David Abrahams)
// 21 Jan 2001 Quick fix to my_iterator, which wasn't returning a
// reference type from operator* (David Abrahams)
// 19 Jan 2001 Initial version with iterator operators (David Abrahams)
@ -21,105 +31,162 @@
#include <cassert>
#include <iostream>
struct my_iterator
: public boost::forward_iterator_helper<my_iterator, const char, long>
// An iterator for which we can get traits.
struct my_iterator1
: boost::forward_iterator_helper<my_iterator1, char, long, const char*, const char&>
{
my_iterator(const char* p) : m_p(p) {}
my_iterator1(const char* p) : m_p(p) {}
bool operator==(const my_iterator& rhs) const
bool operator==(const my_iterator1& rhs) const
{ return this->m_p == rhs.m_p; }
my_iterator& operator++() { ++this->m_p; return *this; }
my_iterator1& operator++() { ++this->m_p; return *this; }
const char& operator*() { return *m_p; }
private:
const char* m_p;
};
// Test difference_type and iterator_category
// Used to prove that we don't require std::iterator<> in the hierarchy under
// MSVC6, and that we can compute all the traits for a standard-conforming UDT
// iterator.
struct my_iterator2
: boost::equality_comparable<my_iterator2
, boost::incrementable<my_iterator2
, boost::dereferenceable<my_iterator2,const char*> > >
{
typedef char value_type;
typedef long difference_type;
typedef const char* pointer;
typedef const char& reference;
typedef std::forward_iterator_tag iterator_category;
my_iterator2(const char* p) : m_p(p) {}
bool operator==(const my_iterator2& rhs) const
{ return this->m_p == rhs.m_p; }
// istream_iterator (forward_iterator_tag, ptrdiff_t)
BOOST_STATIC_ASSERT((
boost::is_same<
boost::detail::iterator_traits<std::istream_iterator<int> >::iterator_category,
std::input_iterator_tag
>::value));
my_iterator2& operator++() { ++this->m_p; return *this; }
const char& operator*() { return *m_p; }
private:
const char* m_p;
};
BOOST_STATIC_ASSERT((
boost::is_same<
boost::detail::iterator_traits<std::istream_iterator<int> >::difference_type,
std::ptrdiff_t
>::value));
// Used to prove that we're not overly confused by the existence of
// std::iterator<> in the hierarchy under MSVC6 - we should find that
// boost::detail::iterator_traits<my_iterator3>::difference_type is int.
struct my_iterator3 : my_iterator1
{
typedef int difference_type;
my_iterator3(const char* p) : my_iterator1(p) {}
};
// ostream_iterator (output_iterator_tag, void)
BOOST_STATIC_ASSERT((
boost::is_same<
boost::detail::iterator_traits<std::ostream_iterator<int> >::iterator_category,
std::output_iterator_tag
>::value));
template <class Iterator,
class value_type, class difference_type, class pointer, class reference, class category>
struct non_portable_tests
{
// Unfortunately, the VC6 standard library doesn't supply these :(
BOOST_STATIC_ASSERT((
boost::is_same<
typename boost::detail::iterator_traits<Iterator>::pointer,
pointer
>::value));
BOOST_STATIC_ASSERT((
boost::is_same<
typename boost::detail::iterator_traits<Iterator>::reference,
reference
>::value));
};
BOOST_STATIC_ASSERT((
boost::is_same<
boost::detail::iterator_traits<std::ostream_iterator<int> >::difference_type,
void
>::value));
template <class Iterator,
class value_type, class difference_type, class pointer, class reference, class category>
struct portable_tests
{
BOOST_STATIC_ASSERT((
boost::is_same<
typename boost::detail::iterator_traits<Iterator>::difference_type,
difference_type
>::value));
BOOST_STATIC_ASSERT((
boost::is_same<
typename boost::detail::iterator_traits<Iterator>::iterator_category,
category
>::value));
};
// Test iterator_traits
template <class Iterator,
class value_type, class difference_type, class pointer, class reference, class category>
struct input_iterator_test
: portable_tests<Iterator,value_type,difference_type,pointer,reference,category>
{
BOOST_STATIC_ASSERT((
boost::is_same<
typename boost::detail::iterator_traits<Iterator>::value_type,
value_type
>::value));
};
template <class Iterator,
class value_type, class difference_type, class pointer, class reference, class category>
struct non_pointer_test
: input_iterator_test<Iterator,value_type,difference_type,pointer,reference,category>
, non_portable_tests<Iterator,value_type,difference_type,pointer,reference,category>
{
};
template <class Iterator,
class value_type, class difference_type, class pointer, class reference, class category>
struct maybe_pointer_test
: portable_tests<Iterator,value_type,difference_type,pointer,reference,category>
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
, non_portable_tests<Iterator,value_type,difference_type,pointer,reference,category>
#endif
{
};
input_iterator_test<std::istream_iterator<int>, int, std::ptrdiff_t, int*, int&, std::input_iterator_tag>
istream_iterator_test;
//
#if defined(__BORLANDC__) && !defined(__SGI_STL_PORT)
typedef ::std::char_traits<char>::off_type distance;
non_pointer_test<std::ostream_iterator<int>,int,
distance,int*,int&,std::output_iterator_tag> ostream_iterator_test;
#elif defined(BOOST_MSVC_STD_ITERATOR)
non_pointer_test<std::ostream_iterator<int>,
int, void, void, void, std::output_iterator_tag>
ostream_iterator_test;
#else
non_pointer_test<std::ostream_iterator<int>,
void, void, void, void, std::output_iterator_tag>
ostream_iterator_test;
#endif
// list<int>::iterator (bidirectional_iterator_tag, ptrdiff_t)
BOOST_STATIC_ASSERT((
boost::is_same<
boost::detail::iterator_traits<std::list<int>::iterator>::iterator_category,
std::bidirectional_iterator_tag
>::value));
#ifdef __KCC
typedef long std_list_diff_type;
#else
typedef std::ptrdiff_t std_list_diff_type;
#endif
non_pointer_test<std::list<int>::iterator, int, std_list_diff_type, int*, int&, std::bidirectional_iterator_tag>
list_iterator_test;
BOOST_STATIC_ASSERT((
boost::is_same<
boost::detail::iterator_traits<std::list<int>::iterator>::difference_type,
std_list_diff_type
>::value));
maybe_pointer_test<std::vector<int>::iterator, int, std::ptrdiff_t, int*, int&, std::random_access_iterator_tag>
vector_iterator_test;
// vector<int>::iterator (random_access_iterator_tag, ptrdiff_t)
BOOST_STATIC_ASSERT((
boost::is_same<
boost::detail::iterator_traits<std::vector<int>::iterator>::iterator_category,
std::random_access_iterator_tag
>::value));
maybe_pointer_test<int*, int, std::ptrdiff_t, int*, int&, std::random_access_iterator_tag>
int_pointer_test;
non_pointer_test<my_iterator1, char, long, const char*, const char&, std::forward_iterator_tag>
my_iterator1_test;
BOOST_STATIC_ASSERT((
boost::is_same<
boost::detail::iterator_traits<std::vector<int>::iterator>::difference_type,
std::ptrdiff_t
>::value));
non_pointer_test<my_iterator2, char, long, const char*, const char&, std::forward_iterator_tag>
my_iterator2_test;
// int* (random_access_iterator_tag, ptrdiff_t)
BOOST_STATIC_ASSERT((
boost::is_same<
boost::detail::iterator_traits<int*>::iterator_category,
std::random_access_iterator_tag
>::value));
BOOST_STATIC_ASSERT((
boost::is_same<
boost::detail::iterator_traits<int*>::difference_type,
std::ptrdiff_t
>::value));
// my_iterator (forward_iterator_tag, long)
BOOST_STATIC_ASSERT((
boost::is_same<
boost::detail::iterator_traits<my_iterator>::iterator_category,
std::forward_iterator_tag
>::value));
BOOST_STATIC_ASSERT((
boost::is_same<
boost::detail::iterator_traits<my_iterator>::difference_type,
long
>::value));
non_pointer_test<my_iterator3, char, int, const char*, const char&, std::forward_iterator_tag>
my_iterator3_test;
int main()
{
@ -135,7 +202,9 @@ int main()
assert(boost::detail::distance(v.begin(), v.end()) == length);
assert(boost::detail::distance(&ints[0], ints + length) == length);
assert(boost::detail::distance(my_iterator(chars), my_iterator(chars + length)) == length);
assert(boost::detail::distance(my_iterator1(chars), my_iterator1(chars + length)) == length);
assert(boost::detail::distance(my_iterator2(chars), my_iterator2(chars + length)) == length);
assert(boost::detail::distance(my_iterator3(chars), my_iterator3(chars + length)) == length);
}
return 0;
}

View File

@ -7,6 +7,7 @@
// See http://www.boost.org for most recent version including documentation.
// Revision History
// 11 Feb 2001 Fixes for Borland (David Abrahams)
// 23 Jan 2001 Added test for wchar_t (David Abrahams)
// 23 Jan 2001 Now statically selecting a test for signed numbers to avoid
// warnings with fancy compilers. Added commentary and
@ -349,8 +350,15 @@ void test(Number* = 0)
<< "digits: " << std::numeric_limits<Number>::digits << "\n"
#endif
<< "..." << std::flush;
typedef typename boost::detail::numeric_traits<Number>::difference_type difference_type;
BOOST_STATIC_ASSERT(boost::detail::is_signed<difference_type>::value);
// factoring out difference_type for the assert below confused Borland :(
typedef boost::detail::is_signed<
#ifndef BOOST_MSVC
typename
#endif
boost::detail::numeric_traits<Number>::difference_type
> is_signed;
BOOST_STATIC_ASSERT(is_signed::value);
typedef typename boost::detail::if_true<
boost::detail::is_signed<Number>::value

View File

@ -585,7 +585,7 @@ complicated than the old one, we think it's worth it to make the library more
useful in real world. Alexy Gurtovoy contributed the code which supports the new
usage idiom while allowing the library remain backward-compatible.</p>
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->27 Sep 2000<!--webbot bot="Timestamp" endspan i-checksum="14936" --></p>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->28 Sep 2000<!--webbot bot="Timestamp" endspan i-checksum="14938" --></p>
<p><EFBFBD> Copyright David Abrahams and Beman Dawes 1999-2000. Permission to copy,
use, modify, sell and distribute this document is granted provided this
copyright notice appears in all copies. This document is provided &quot;as

391
projection_iterator.htm Normal file
View File

@ -0,0 +1,391 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Projection Iterator Adaptor Documentation</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)"
align="center" width="277" height="86">
<h1>Projection Iterator Adaptor</h1>
Defined in header
<a href="../../boost/iterator_adaptors.hpp">boost/iterator_adaptors.hpp</a>
<p>
The projection iterator adaptor is similar to the <a
href="./transform_iterator.htm">transform iterator adaptor</a> in that
its <tt>operator*()</tt> applies some function to the result of
dereferencing the base iterator and then returns the result. The
difference is that the function must return a reference to some
existing object (for example, a data member within the
<tt>value_type</tt> of the base iterator). The following
<b>pseudo-code</b> gives the basic idea. The data member <tt>p</tt> is
the function object.
<pre>
reference projection_iterator::operator*() const {
return this->p(*this->base_iterator);
}
</pre>
<h2>Synopsis</h2>
<pre>
namespace boost {
template &lt;class <a href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html">AdaptableUnaryFunction</a>, class BaseIterator&gt;
struct projection_iterator_generator;
template &lt;class <a href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html">AdaptableUnaryFunction</a>,
class BaseIterator, class ConstBaseIterator&gt;
struct projection_iterator_pair_generator;
template &lt;class <a href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html">AdaptableUnaryFunction</a>, class BaseIterator&gt;
typename projection_iterator_generator&lt;AdaptableUnaryFunction, BaseIterator&gt;::type
make_projection_iterator(BaseIterator base,
const AdaptableUnaryFunction& p = AdaptableUnaryFunction())
template &lt;class <a href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html">AdaptableUnaryFunction</a>, class ConstBaseIterator&gt;
typename projection_iterator_generator&lt;AdaptableUnaryFunction, ConstBaseIterator&gt;::type
make_const_projection_iterator(ConstBaseIterator base,
const AdaptableUnaryFunction& p = AdaptableUnaryFunction())
}
</pre>
<hr>
<h2><a name="projection_iterator_generator">The Projection Iterator Type
Generator</a></h2>
The class <tt>projection_iterator_generator</tt> is a helper class
whose purpose is to construct an projection iterator type. The main
template parameter for this class is the <a
href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html"><tt>AdaptableUnaryFunction</tt></a>
function object type and the <tt>BaseIterator</tt> type that is being
wrapped.
<pre>
template &lt;class <a href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html">AdaptableUnaryFunction</a>, class BaseIterator&gt;
class projection_iterator_generator
{
public:
typedef <tt><a href="./iterator_adaptors.htm#iterator_adaptor">iterator_adaptor</a>&lt...&gt;</tt> type; // the resulting projection iterator type
};
</pre>
<h3>Example</h3>
In the following example we have a list of personnel records. Each
record has an employee's name and ID number. We want to be able to
traverse through the list accessing either the name or the ID numbers
of the employees using the projection iterator so we create the
function object classes <tt>select_name</tt> and
<tt>select_ID</tt>. We then use the
<tt>projection_iterator_generator</tt> class to create a projection
iterator and use it to print out the names of the employees.
<pre>
#include &lt;boost/config.hpp&gt;
#include &lt;list&gt;
#include &lt;iostream&gt;
#include &lt;iterator&gt;
#include &lt;algorithm&gt;
#include &lt;string&gt;
#include &lt;boost/iterator_adaptors.hpp&gt;
struct personnel_record {
personnel_record(std::string n, int id) : m_name(n), m_ID(id) { }
std::string m_name;
int m_ID;
};
struct select_name {
typedef personnel_record argument_type;
typedef std::string result_type;
const std::string&amp; operator()(const personnel_record&amp; r) const {
return r.m_name;
}
std::string&amp; operator()(personnel_record&amp; r) const {
return r.m_name;
}
};
struct select_ID {
typedef personnel_record argument_type;
typedef int result_type;
const int&amp; operator()(const personnel_record&amp; r) const {
return r.m_ID;
}
int&amp; operator()(personnel_record&amp; r) const {
return r.m_ID;
}
};
int main(int, char*[])
{
std::list&lt;personnel_record&gt; personnel_list;
personnel_list.push_back(personnel_record("Barney", 13423));
personnel_list.push_back(personnel_record("Fred", 12343));
personnel_list.push_back(personnel_record("Wilma", 62454));
personnel_list.push_back(personnel_record("Betty", 20490));
// Example of using projection_iterator_generator
// to print out the names in the personnel list.
boost::projection_iterator_generator&lt;select_name,
std::list&lt;personnel_record&gt;::iterator&gt;::type
personnel_first(personnel_list.begin()),
personnel_last(personnel_list.end());
std::copy(personnel_first, personnel_last,
std::ostream_iterator&lt;std::string&gt;(std::cout, "\n"));
std::cout &lt;&lt; std::endl;
// to be continued...
</pre>
The output for this part is:
<pre>
Barney
Fred
Wilma
Betty
</pre>
<h3>Template Parameters</h3>
<Table border>
<TR>
<TH>Parameter</TH><TH>Description</TH>
</TR>
<TR>
<TD><a href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html"><tt>AdaptableUnaryFunction</tt></a></TD>
<TD>The type of the function object. The <tt>argument_type</tt> of the
function must match the value type of the base iterator. The function
should return a reference to the function's <tt>result_type</tt>.
The <tt>result_type</tt> will be the resulting iterator's <tt>value_type</tt>.
</TD>
</TD>
<TR>
<TD><tt>BaseIterator</tt></TD>
<TD>The iterator type being wrapped.</TD>
</TD>
</TR>
</Table>
<h3>Model of</h3>
If the base iterator is a model of <a
href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random
Access Iterator</a> then so is the resulting projection iterator. If
the base iterator supports less functionality than this the resulting
projection iterator will also support less functionality.
<h3>Members</h3>
The projection iterator type implements the member functions and
operators required of the <a
href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random
Access Iterator</a> concept.
In addition it has the following constructor:
<pre>
projection_iterator_generator::type(const BaseIterator&amp; it,
const AdaptableUnaryFunction&amp; p = AdaptableUnaryFunction())
</pre>
<p>
<hr>
<p>
<h2><a name="projection_iterator_pair_generator">The Projection Iterator Pair
Generator</a></h2>
Sometimes a mutable/const pair of iterator types is needed, such as
when implementing a container type. The
<tt>projection_iterator_pair_generator</tt> class makes it more
convenient to create this pair of iterator types.
<pre>
template &lt;class <a href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html">AdaptableUnaryFunction</a>, class BaseIterator, class ConstBaseIterator&gt;
class projection_iterator_pair_generator
{
public:
typedef <tt><a href="./iterator_adaptors.htm#iterator_adaptor">iterator_adaptor</a>&lt...&gt;</tt> iterator; // the mutable projection iterator type
typedef <tt><a href="./iterator_adaptors.htm#iterator_adaptor">iterator_adaptor</a>&lt...&gt;</tt> const_iterator; // the immutable projection iterator type
};
</pre>
<h3>Example</h3>
In this part of the example we use the
<tt>projection_iterator_pair_generator</tt> to create a mutable/const
pair of projection iterators that access the ID numbers of the
personnel. We use the mutable iterator to re-index the ID numbers from
zero. We then use the constant iterator to print the ID numbers out.
<pre>
// continuing from the last example...
typedef boost::projection_iterator_pair_generator&lt;select_ID,
std::list&lt;personnel_record&gt;::iterator,
std::list&lt;personnel_record&gt;::const_iterator&gt; PairGen;
PairGen::iterator ID_first(personnel_list.begin()),
ID_last(personnel_list.end());
int new_id = 0;
while (ID_first != ID_last) {
*ID_first = new_id++;
++ID_first;
}
PairGen::const_iterator const_ID_first(personnel_list.begin()),
const_ID_last(personnel_list.end());
std::copy(const_ID_first, const_ID_last,
std::ostream_iterator&lt;int&gt;(std::cout, " "));
std::cout &lt;&lt; std::endl;
std::cout &lt;&lt; std::endl;
// to be continued...
</pre&gt;
The output is:
<pre>
0 1 2 3
</pre>
<h3>Template Parameters</h3>
<Table border>
<TR>
<TH>Parameter</TH><TH>Description</TH>
</TR>
<TR>
<TD><a href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html"><tt>AdaptableUnaryFunction</tt></a></TD>
<TD>The type of the function object. The <tt>argument_type</tt> of the
function must match the value type of the base iterator. The function
should return a true reference to the function's <tt>result_type</tt>.
The <tt>result_type</tt> will be the resulting iterator's <tt>value_type</tt>.
</TD>
</TD>
<TR>
<TD><tt>BaseIterator</tt></TD>
<TD>The mutable iterator type being wrapped.</TD>
</TD>
</TR>
<TR>
<TD><tt>ConstBaseIterator</tt></TD>
<TD>The constant iterator type being wrapped.</TD>
</TD>
</TR>
</Table>
<h3>Model of</h3>
If the base iterator types model the <a
href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random
Access Iterator</a> then so do the resulting projection iterator
types. If the base iterators support less functionality the
resulting projection iterator types will also support less
functionality. The resulting <tt>iterator</tt> type is mutable, and
the resulting <tt>const_iterator</tt> type is constant.
<h3>Members</h3>
The resulting <tt>iterator</tt> and <tt>const_iterator</tt> types
implements the member functions and operators required of the <a
href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random
Access Iterator</a> concept. In addition they support the following
constructors:
<pre>
projection_iterator_pair_generator::iterator(const BaseIterator&amp; it,
const AdaptableUnaryFunction&amp; p = AdaptableUnaryFunction())</pre>
<pre>
projection_iterator_pair_generator::const_iterator(const BaseIterator&amp; it,
const AdaptableUnaryFunction&amp; p = AdaptableUnaryFunction())
</pre>
<p>
<hr>
<p>
<h2><a name="make_projection_iterator">The Projection Iterator Object Generators</a></h2>
The <tt>make_projection_iterator()</tt> and
<tt>make_const_projection_iterator()</tt> functions provide a more
convenient way to create projection iterator objects. The functions
save the user the trouble of explicitly writing out the iterator
types.
<pre>
template &lt;class <a href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html">AdaptableUnaryFunction</a>, class BaseIterator&gt;
typename projection_iterator_generator&lt;AdaptableUnaryFunction, BaseIterator&gt;::type
make_projection_iterator(BaseIterator base,
const AdaptableUnaryFunction& p = AdaptableUnaryFunction())
template &lt;class <a href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html">AdaptableUnaryFunction</a>, class ConstBaseIterator&gt;
typename projection_iterator_generator&lt;AdaptableUnaryFunction, ConstBaseIterator&gt;::type
make_const_projection_iterator(ConstBaseIterator base,
const AdaptableUnaryFunction& p = AdaptableUnaryFunction())
</pre>
<h3>Example</h3>
In this part of the example, we again print out the names of the
personnel, but this time we use the
<tt>make_const_projection_iterator()</tt> function to save some typing.
<pre>
// continuing from the last example...
std::copy
(boost::make_const_projection_iterator&lt;select_name&gt;(personnel_list.begin()),
boost::make_const_projection_iterator&lt;select_name&gt;(personnel_list.end()),
std::ostream_iterator<std::string>(std::cout, "\n"));
return 0;
}
</pre>
The output is:
<pre>
Barney
Fred
Wilma
Betty
</pre>
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->28 Feb 2001<!--webbot bot="Timestamp" endspan i-checksum="14390" --></p>
<p><EFBFBD> Copyright Jeremy Siek 2000. Permission to copy, use,
modify, sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided &quot;as is&quot;
without express or implied warranty, and with no claim as to its suitability for
any purpose.</p>
</body>
</html>
<!-- LocalWords: html charset alt gif hpp BaseIterator const namespace struct
-->
<!-- LocalWords: ConstPointer ConstReference typename iostream int abcdefg
-->
<!-- LocalWords: sizeof PairGen pre Siek htm AdaptableUnaryFunction
-->
<!-- LocalWords: ConstBaseIterator
-->

View File

@ -0,0 +1,96 @@
// (C) Copyright Jeremy Siek 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
#include <boost/config.hpp>
#include <list>
#include <iostream>
#include <iterator>
#include <algorithm>
#include <string>
#include <boost/iterator_adaptors.hpp>
struct personnel_record {
personnel_record(std::string n, int id) : m_name(n), m_ID(id) { }
std::string m_name;
int m_ID;
};
struct select_name {
typedef personnel_record argument_type;
typedef std::string result_type;
const std::string& operator()(const personnel_record& r) const {
return r.m_name;
}
std::string& operator()(personnel_record& r) const {
return r.m_name;
}
};
struct select_ID {
typedef personnel_record argument_type;
typedef int result_type;
const int& operator()(const personnel_record& r) const {
return r.m_ID;
}
int& operator()(personnel_record& r) const {
return r.m_ID;
}
};
int main(int, char*[])
{
std::list<personnel_record> personnel_list;
personnel_list.push_back(personnel_record("Barney", 13423));
personnel_list.push_back(personnel_record("Fred", 12343));
personnel_list.push_back(personnel_record("Wilma", 62454));
personnel_list.push_back(personnel_record("Betty", 20490));
// Example of using projection_iterator_generator
// to print out the names in the personnel list.
boost::projection_iterator_generator<select_name,
std::list<personnel_record>::iterator>::type
personnel_first(personnel_list.begin()),
personnel_last(personnel_list.end());
std::copy(personnel_first, personnel_last,
std::ostream_iterator<std::string>(std::cout, "\n"));
std::cout << std::endl;
// Example of using projection_iterator_pair_generator
// to assign new ID numbers to the personnel.
typedef boost::projection_iterator_pair_generator<select_ID,
std::list<personnel_record>::iterator,
std::list<personnel_record>::const_iterator> PairGen;
PairGen::iterator ID_first(personnel_list.begin()),
ID_last(personnel_list.end());
int new_id = 0;
while (ID_first != ID_last) {
*ID_first = new_id++;
++ID_first;
}
PairGen::const_iterator const_ID_first(personnel_list.begin()),
const_ID_last(personnel_list.end());
std::copy(const_ID_first, const_ID_last,
std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
std::cout << std::endl;
// Example of using make_const_projection_iterator()
// to print out the names in the personnel list again.
std::copy
(boost::make_const_projection_iterator<select_name>(personnel_list.begin()),
boost::make_const_projection_iterator<select_name>(personnel_list.end()),
std::ostream_iterator<std::string>(std::cout, "\n"));
return 0;
}

331
reverse_iterator.htm Normal file
View File

@ -0,0 +1,331 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">
<html>
<head>
<meta name="generator" content="HTML Tidy, see www.w3.org">
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Reverse Iterator Adaptor Documentation</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)" align=
"center" width="277" height="86">
<h1>Reverse Iterator Adaptor</h1>
Defined in header <a href=
"../../boost/iterator_adaptors.hpp">boost/iterator_adaptors.hpp</a>
<p>The reverse iterator adaptor flips the direction of a base iterator's
motion. Invoking <tt>operator++()</tt> moves the base iterator backward and
invoking <tt>operator--()</tt> moves the base iterator forward. The Boost
reverse iterator adaptor is better to use than the
<tt>std::reverse_iterator</tt> class in situations where pairs of
mutable/constant iterators are needed (e.g., in containers) because
comparisons and conversions between the mutable and const versions are
implemented correctly.
<h2>Synopsis</h2>
<pre>
namespace boost {
template &lt;class <a href=
"http://www.sgi.com/tech/stl/BidirectionalIterator.html">BidirectionalIterator</a>,
class Value, class Reference, class Pointer, class Category, class Distance&gt;
struct reverse_iterator_generator;
template &lt;class <a href=
"http://www.sgi.com/tech/stl/BidirectionalIterator.html">BidirectionalIterator</a>&gt;
typename reverse_iterator_generator&lt;BidirectionalIterator&gt;::type
make_reverse_iterator(BidirectionalIterator base)
}
</pre>
<hr>
<h2><a name="reverse_iterator_generator">The Reverse Iterator Type
Generator</a></h2>
The <tt>reverse_iterator_generator</tt> template is a <a href=
"../../more/generic_programming.html#type_generator">generator</a> of
reverse iterator types. The main template parameter for this class is the
base <tt>BidirectionalIterator</tt> type that is being adapted. In most
cases the associated types of the base iterator can be deduced using
<tt>std::iterator_traits</tt>, but in some situations the user may want to
override these types, so there are also template parameters for the base
iterator's associated types.
<blockquote>
<pre>
template &lt;class <a href=
"http://www.sgi.com/tech/stl/BidirectionalIterator.html">BidirectionalIterator</a>,
class Value, class Reference, class Pointer, class Category, class Distance&gt;
class reverse_iterator_generator
{
public:
typedef <tt><a href=
"./iterator_adaptors.htm#iterator_adaptor">iterator_adaptor</a>&lt;...&gt;</tt> type; // the resulting reverse iterator type
};
</pre>
</blockquote>
<h3>Example</h3>
In this example we sort a sequence of letters and then output the sequence
in descending order using reverse iterators.
<blockquote>
<pre>
#include &lt;boost/config.hpp&gt;
#include &lt;iostream&gt;
#include &lt;algorithm&gt;
#include &lt;boost/iterator_adaptors.hpp&gt;
int main(int, char*[])
{
char letters[] = "hello world!";
const int N = sizeof(letters)/sizeof(char) - 1;
std::cout &lt;&lt; "original sequence of letters:\t"
&lt;&lt; letters &lt;&lt; std::endl;
std::sort(letters, letters + N);
// Use reverse_iterator_generator to print a sequence
// of letters in reverse order.
boost::reverse_iterator_generator&lt;char*&gt;::type
reverse_letters_first(letters + N),
reverse_letters_last(letters);
std::cout &lt;&lt; "letters in descending order:\t";
std::copy(reverse_letters_first, reverse_letters_last,
std::ostream_iterator&lt;char&gt;(std::cout));
std::cout &lt;&lt; std::endl;
// to be continued...
</pre>
</blockquote>
The output is:
<blockquote>
<pre>
original sequence of letters: hello world!
letters in descending order: wroolllhed!
</pre>
</blockquote>
<h3>Template Parameters</h3>
<table border>
<tr>
<th>Parameter
<th>Description
<tr>
<td><tt><a href=
"http://www.sgi.com/tech/stl/BidirectionalIterator.html">BidirectionalIterator</a></tt>
<td>The iterator type being wrapped.
<tr>
<td><tt>Value</tt>
<td>The value-type of the base iterator and the resulting reverse
iterator.<br>
<b>Default:</b><tt>std::iterator_traits&lt;BidirectionalIterator&gt;::value_type</tt>
<tr>
<td><tt>Reference</tt>
<td>The <tt>reference</tt> type of the resulting iterator, and in
particular, the result type of <tt>operator*()</tt>.<br>
<b>Default:</b> If <tt>Value</tt> is supplied, <tt>Value&amp;</tt> is
used. Otherwise
<tt>std::iterator_traits&lt;BidirectionalIterator&gt;::reference</tt>
is used.
<tr>
<td><tt>Pointer</tt>
<td>The <tt>pointer</tt> type of the resulting iterator, and in
particular, the result type of <tt>operator-&gt;()</tt>.<br>
<b>Default:</b> If <tt>Value</tt> was supplied, then <tt>Value*</tt>,
otherwise
<tt>std::iterator_traits&lt;BidirectionalIterator&gt;::pointer</tt>.
<tr>
<td><tt>Category</tt>
<td>The <tt>iterator_category</tt> type for the resulting iterator.<br>
<b>Default:</b>
<tt>std::iterator_traits&lt;BidirectionalIterator&gt;::iterator_category</tt>
<tr>
<td><tt>Distance</tt>
<td>The <tt>difference_type</tt> for the resulting iterator.<br>
<b>Default:</b>
<tt>std::iterator_traits&lt;BidirectionalIterator&amp;gt::difference_type</tt>
</table>
<h3>Concept Model</h3>
The indirect iterator will model whichever <a href=
"http://www.sgi.com/tech/stl/Iterators.html">standard iterator concept
category</a> is modeled by the base iterator. Thus, if the base iterator is
a model of <a href=
"http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random Access
Iterator</a> then so is the resulting indirect iterator. If the base
iterator models a more restrictive concept, the resulting indirect iterator
will model the same concept. The base iterator must be at least a <a href=
"http://www.sgi.com/tech/stl/BidirectionalIterator.html">Bidirectional
Iterator</a>
<h3>Members</h3>
The reverse iterator type implements the member functions and operators
required of the <a href=
"http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random Access
Iterator</a> concept. In addition it has the following constructor:
<blockquote>
<pre>
reverse_iterator_generator::type(const BidirectionalIterator&amp; it)
</pre>
</blockquote>
<br>
<br>
<hr>
<p>
<h2><a name="make_reverse_iterator">The Reverse Iterator Object
Generator</a></h2>
The <tt>make_reverse_iterator()</tt> function provides a more convenient
way to create reverse iterator objects. The function saves the user the
trouble of explicitly writing out the iterator types.
<blockquote>
<pre>
template &lt;class BidirectionalIterator&gt;
typename reverse_iterator_generator&lt;BidirectionalIterator&gt;::type
make_reverse_iterator(BidirectionalIterator base);
</pre>
</blockquote>
<h3>Example</h3>
In this part of the example we use <tt>make_reverse_iterator()</tt> to
print the sequence of letters in reverse-reverse order, which is the
original order.
<blockquote>
<pre>
// continuing from the previous example...
std::cout &lt;&lt; "letters in ascending order:\t";
std::copy(boost::make_reverse_iterator(reverse_letters_last),
boost::make_reverse_iterator(reverse_letters_first),
std::ostream_iterator&lt;char&gt;(std::cout));
std::cout &lt;&lt; std::endl;
return 0;
}
</pre>
</blockquote>
The output is:
<blockquote>
<pre>
letters in ascending order: !dehllloorw
</pre>
</blockquote>
<hr>
<h2><a name="interactions">Constant/Mutable Iterator Interactions</a></h2>
<p>One failing of the standard <tt><a
href="http://www.sgi.com/tech/stl/ReverseIterator.html">reverse_iterator</a></tt>
adaptor is that it doesn't properly support interactions between adapted
<tt>const</tt> and non-<tt>const</tt> iterators. For example:
<blockquote>
<pre>
#include &lt;vector&gt;
template &lt;class T&gt; void convert(T x) {}
// Test interactions of a matched pair of random access iterators
template &lt;class Iterator, class ConstIterator&gt;
void test_interactions(Iterator i, ConstIterator ci)
{
bool eq = i == ci; // comparisons
bool ne = i != ci;
bool lt = i &lt; ci;
bool le = i &lt;= ci;
bool gt = i &gt; ci;
bool ge = i &gt;= ci;
std::size_t distance = i - ci; // difference
ci = i; // assignment
ConstIterator ci2(i); // construction
convert&lt;ConstIterator&gt;(i); // implicit conversion
}
void f()
{
typedef std::vector&lt;int&gt; vec;
vec v;
const vec&amp; cv;
test_interactions(v.begin(), cv.begin()); // <font color="#007F00">OK</font>
test_interactions(v.rbegin(), cv.rbegin()); // <font color="#FF0000">ERRORS ON EVERY TEST!!</font>
</pre>
</blockquote>
Reverse iterators created with <tt>boost::reverse_iterator_generator</tt> don't have this problem, though:
<blockquote>
<pre>
typedef boost::reverse_iterator_generator&lt;vec::iterator&gt;::type ri;
typedef boost::reverse_iterator_generator&lt;vec::const_iterator&gt;::type cri;
test_interactions(ri(v.begin()), cri(cv.begin())); // <font color="#007F00">OK!!</font>
</pre>
</blockquote>
Or, more simply,
<blockquote>
<pre>
test_interactions(
boost::make_reverse_iterator(v.begin()),
boost::make_reverse_iterator(cv.begin())); // <font color="#007F00">OK!!</font>
}
</pre>
</blockquote>
<p>If you are wondering why there is no
<tt>reverse_iterator_pair_generator</tt> in the manner of <tt><a
href="projection_iterator.htm#projection_iterator_pair_generator">projection_iterator_pair_generator</a></tt>,
the answer is simple: we tried it, but found that in practice it took
<i>more</i> typing to use <tt>reverse_iterator_pair_generator</tt> than to
simply use <tt>reverse_iterator_generator</tt> twice!<br><br>
<hr>
<p>Revised
<!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->28 Feb 2001<!--webbot bot="Timestamp" endspan i-checksum="14390" -->
<p>&copy; Copyright Jeremy Siek 2000. Permission to copy, use, modify, sell
and distribute this document is granted provided this copyright notice
appears in all copies. This document is provided "as is" without express or
implied warranty, and with no claim as to its suitability for any purpose.
<!-- LocalWords: html charset alt gif hpp BidirectionalIterator const namespace struct
-->
<!-- LocalWords: ConstPointer ConstReference typename iostream int abcdefg
-->
<!-- LocalWords: sizeof PairGen pre Siek wroolllhed dehllloorw
-->
</body>
</html>

View File

@ -0,0 +1,42 @@
// (C) Copyright Jeremy Siek 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
#include <boost/config.hpp>
#include <iostream>
#include <algorithm>
#include <boost/iterator_adaptors.hpp>
int main(int, char*[])
{
char letters[] = "hello world!";
const int N = sizeof(letters)/sizeof(char) - 1;
std::cout << "original sequence of letters:\t"
<< letters << std::endl;
std::sort(letters, letters + N);
// Use reverse_iterator_generator to print a sequence
// of letters in reverse order.
boost::reverse_iterator_generator<char*>::type
reverse_letters_first(letters + N),
reverse_letters_last(letters);
std::cout << "letters in descending order:\t";
std::copy(reverse_letters_first, reverse_letters_last,
std::ostream_iterator<char>(std::cout));
std::cout << std::endl;
// Use make_reverse_iterator() to print the sequence
// of letters in reverse-reverse order.
std::cout << "letters in ascending order:\t";
std::copy(boost::make_reverse_iterator(reverse_letters_last),
boost::make_reverse_iterator(reverse_letters_first),
std::ostream_iterator<char>(std::cout));
std::cout << std::endl;
return 0;
}

215
transform_iterator.htm Normal file
View File

@ -0,0 +1,215 @@
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
<meta name="GENERATOR" content="Microsoft FrontPage 4.0">
<meta name="ProgId" content="FrontPage.Editor.Document">
<title>Transform Iterator Adaptor Documentation</title>
</head>
<body bgcolor="#FFFFFF" text="#000000">
<img src="../../c++boost.gif" alt="c++boost.gif (8819 bytes)"
align="center" width="277" height="86">
<h1>Transform Iterator Adaptor</h1>
Defined in header
<a href="../../boost/iterator_adaptors.hpp">boost/iterator_adaptors.hpp</a>
<p>
The transform iterator adaptor augments an iterator by applying some
function object to the result of dereferencing the iterator. Another
words, the <tt>operator*</tt> of the transform iterator first
dereferences the base iterator, passes the result of this to the
function object, and then returns the result. The following
<b>pseudo-code</b> shows the basic idea:
<pre>
value_type transform_iterator::operator*() const {
return this->f(*this->base_iterator);
}
</pre>
All of the other operators of the transform iterator behave in the
same fashion as those of the base iterator.
<h2>Synopsis</h2>
<pre>
namespace boost {
template &lt;class <a href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html">AdaptableUnaryFunction</a>, class BaseIterator&gt;
class transform_iterator_generator;
template &lt;class <a href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html">AdaptableUnaryFunction</a>, class BaseIterator&gt;
typename transform_iterator_generator&lt;AdaptableUnaryFunction,Iterator&gt;::type
make_transform_iterator(BaseIterator base, const AdaptableUnaryFunction&amp; f = AdaptableUnaryFunction());
}
</pre>
<hr>
<h2><a name="transform_iterator_generator">The Transform Iterator Type
Generator</a></h2>
The class <tt>transform_iterator_generator</tt> is a helper class whose
purpose is to construct a transform iterator type. The template
parameters for this class are the <tt>AdaptableUnaryFunction</tt> function object
type and the <tt>BaseIterator</tt> type that is being wrapped.
<pre>
template &lt;class AdaptableUnaryFunction, class Iterator&gt;
class transform_iterator_generator
{
public:
typedef <a href="./iterator_adaptors.htm#iterator_adaptor">iterator_adaptor</a>&lt;...&gt; type;
};
</pre>
<h3>Example</h3>
<p>
The following is an example of how to use the
<tt>transform_iterator_generator</tt> class to iterate through a range of
numbers, multiplying each of them by 2 when they are dereferenced.
<p>
<PRE>
#include &lt;functional&gt;
#include &lt;iostream&gt;
#include &lt;boost/iterator_adaptors.hpp&gt;
int
main(int, char*[])
{
int x[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
typedef std::binder1st&lt; std::multiplies&lt;int&gt; &gt; Function;
typedef boost::transform_iterator_generator&lt;Function, int*&gt;::type doubling_iterator;
doubling_iterator i(x, std::bind1st(std::multiplies&lt;int&gt;(), 2)),
i_end(x + sizeof(x)/sizeof(int), std::bind1st(std::multiplies&lt;int&gt;(), 2));
std::cout &lt;&lt; "multiplying the array by 2:" &lt;&lt; std::endl;
while (i != i_end)
std::cout &lt;&lt; *i++ &lt;&lt; " ";
std::cout &lt;&lt; std::endl;
// to be continued...
</PRE>
The output from this part is:
<pre>
2 4 6 8 10 12 14 16
</pre>
<h3>Template Parameters</h3>
<Table border>
<TR>
<TH>Parameter</TH><TH>Description</TH>
</TR>
<TR>
<TD><a href="http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html"><tt>AdaptableUnaryFunction</tt></a></TD>
<TD>The function object that transforms each element in the iterator
range. The <tt>argument_type</tt> of the function object must match
the value type of the base iterator. The <tt>result_type</tt> of the
function object will be the resulting iterator's
<tt>value_type</tt>. If you want the resulting iterator to behave as
an iterator, the result of the function should be solely a function of
its argument.</TD>
</TR>
<TR>
<TD><tt>BaseIterator</tt></TD>
<TD>The iterator type being wrapped. This type must at least be a model
of the <a href="http://www.sgi.com/tech/stl/InputIterator">InputIterator</a> concept.</TD>
</TR>
</Table>
<h3>Model of</h3>
The transform iterator adaptor (the type
<tt>transform_iterator_generator<...>::type</tt>) is a model of <a
href="http://www.sgi.com/tech/stl/InputIterator.html">Input Iterator</a><a href="#1">[1]</a>.
<h3>Members</h3>
The transform iterator type implements the member functions and
operators required of the <a
href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random Access Iterator</a>
concept, except that the <tt>reference</tt> type is the same as the <tt>value_type</tt>
so <tt>operator*()</tt> returns by-value. In addition it has the following constructor:
<pre>
transform_iterator_generator::type(const BaseIterator&amp; it,
const AdaptableUnaryFunction&amp; f = AdaptableUnaryFunction())
</pre>
<p>
<hr>
<p>
<h2><a name="make_transform_iterator">The Transform Iterator Object Generator</a></h2>
<pre>
template &lt;class AdaptableUnaryFunction, class BaseIterator&gt;
typename transform_iterator_generator&lt;AdaptableUnaryFunction,BaseIterator&gt;::type
make_transform_iterator(BaseIterator base,
const AdaptableUnaryFunction&amp; f = AdaptableUnaryFunction());
</pre>
This function provides a convenient way to create transform iterators.
<h3>Example</h3>
Continuing from the previous example, we use the <tt>make_transform_iterator()</tt>
function to add four to each element of the array.
<pre>
std::cout << "adding 4 to each element in the array:" << std::endl;
std::copy(boost::make_transform_iterator(x, std::bind1st(std::plus<int>(), 4)),
boost::make_transform_iterator(x + N, std::bind1st(std::plus<int>(), 4)),
std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
return 0;
}
</pre>
The output from this part is:
<pre>
5 6 7 8 9 10 11 12
</pre>
<h3>Notes</h3>
<a name="1">[1]</a> If the base iterator is a model of <a
href="http://www.sgi.com/tech/stl/RandomAccessIterator.html">Random Access Iterator</a>
then the transform iterator will also suppport most of the
functionality required by the Random Access Iterator concept. However, a
transform iterator can never completely satisfy the requirements for
<a
href="http://www.sgi.com/tech/stl/ForwardIterator.html">Forward Iterator</a>
(or of any concepts that refine Forward Iterator, which includes
Random Access Iterator and Bidirectional Iterator) since the <tt>operator*</tt> of the transform
iterator always returns by-value.
<hr>
<p>Revised <!--webbot bot="Timestamp" s-type="EDITED" s-format="%d %b %Y" startspan -->09 Mar 2001<!--webbot bot="Timestamp" endspan i-checksum="14894" --></p>
<p><EFBFBD> Copyright Jeremy Siek 2000. Permission to copy, use,
modify, sell and distribute this document is granted provided this copyright
notice appears in all copies. This document is provided &quot;as is&quot;
without express or implied warranty, and with no claim as to its suitability for
any purpose.</p>
</body>
</html>

View File

@ -0,0 +1,44 @@
// (C) Copyright Jeremy Siek 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
#include <functional>
#include <algorithm>
#include <iostream>
#include <boost/iterator_adaptors.hpp>
int
main(int, char*[])
{
// This is a simple example of using the transform_iterators class to
// generate iterators that multiply the value returned by dereferencing
// the iterator. In this case we are multiplying by 2.
// Would be cooler to use lambda library in this example.
int x[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
const int N = sizeof(x)/sizeof(int);
typedef std::binder1st< std::multiplies<int> > Function;
typedef boost::transform_iterator_generator<Function, int*>::type doubling_iterator;
doubling_iterator i(x, std::bind1st(std::multiplies<int>(), 2)),
i_end(x + N, std::bind1st(std::multiplies<int>(), 2));
std::cout << "multiplying the array by 2:" << std::endl;
while (i != i_end)
std::cout << *i++ << " ";
std::cout << std::endl;
std::cout << "adding 4 to each element in the array:" << std::endl;
std::copy(boost::make_transform_iterator(x, std::bind1st(std::plus<int>(), 4)),
boost::make_transform_iterator(x + N, std::bind1st(std::plus<int>(), 4)),
std::ostream_iterator<int>(std::cout, " "));
std::cout << std::endl;
return 0;
}

View File

@ -0,0 +1,54 @@
// (C) Copyright Jeremy Siek 1999. Permission to copy, use, modify,
// sell and distribute this software is granted provided this
// copyright notice appears in all copies. This software is provided
// "as is" without express or implied warranty, and with no claim as
// to its suitability for any purpose.
// Revision History
// 08 Mar 2001 Jeremy Siek
// Moved test of transform iterator into its own file. It to
// to be in iterator_adaptor_test.cpp.
#include <boost/config.hpp>
#include <iostream>
#include <algorithm>
#include <boost/iterator_adaptors.hpp>
#include <boost/pending/iterator_tests.hpp>
struct mult_functor {
typedef int result_type;
typedef int argument_type;
// Functors used with transform_iterator must be
// DefaultConstructible, as the transform_iterator must be
// DefaultConstructible to satisfy the requirements for
// TrivialIterator.
mult_functor() { }
mult_functor(int aa) : a(aa) { }
int operator()(int b) const { return a * b; }
int a;
};
int
main()
{
const int N = 10;
// Borland is getting confused about typedef's and constructors here
// Test transform_iterator
{
int x[N], y[N];
for (int k = 0; k < N; ++k)
x[k] = k;
std::copy(x, x + N, y);
for (int k2 = 0; k2 < N; ++k2)
x[k2] = x[k2] * 2;
boost::transform_iterator_generator<mult_functor, int*>::type i(y, mult_functor(2));
boost::input_iterator_test(i, x[0], x[1]);
boost::input_iterator_test(boost::make_transform_iterator(&y[0], mult_functor(2)), x[0], x[1]);
}
std::cout << "test successful " << std::endl;
return 0;
}

View File

@ -1,620 +0,0 @@
<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=iso-8859-1">
<meta name="Template"
content="C:\PROGRAM FILES\MICROSOFT OFFICE\OFFICE\html.dot">
<meta name="GENERATOR" content="Microsoft FrontPage Express 2.0">
<title>Type Traits</title>
</head>
<body bgcolor="#FFFFFF" link="#0000FF" vlink="#800080">
<h1><img src="../../c++boost.gif" width="276" height="86">Header
&lt;<a href="../../boost/detail/type_traits.hpp">boost/type_traits.hpp</a>&gt;</h1>
<p>The contents of &lt;boost/type_traits.hpp&gt; are declared in
namespace boost.</p>
<p>The file &lt;<a href="../../boost/detail/type_traits.hpp">boost/type_traits.hpp</a>&gt;
contains various template classes that describe the fundamental
properties of a type; each class represents a single type
property or a single type transformation. This documentation is
divided up into the following sections:</p>
<pre><a href="#fop">Fundamental type operations</a>
<a href="#fp">Fundamental type properties</a>
<a href="#misc">Miscellaneous</a>
<code> </code><a href="#cv">cv-Qualifiers</a>
<code> </code><a href="#ft">Fundamental Types</a>
<code> </code><a href="#ct">Compound Types</a>
<code> </code><a href="#ot">Object/Scalar Types</a>
<a href="#cs">Compiler Support Information</a>
<a href="#ec">Example Code</a></pre>
<h2><a name="fop"></a>Fundamental type operations</h2>
<p>Usage: &quot;class_name&lt;T&gt;::type&quot; performs
indicated transformation on type T.</p>
<table border="1" cellpadding="7" cellspacing="1" width="100%">
<tr>
<td valign="top" width="45%"><p align="center">Expression.</p>
</td>
<td valign="top" width="45%"><p align="center">Description.</p>
</td>
<td valign="top" width="33%"><p align="center">Compiler.</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>remove_volatile&lt;T&gt;::type</code></td>
<td valign="top" width="45%">Creates a type the same as T
but with any top level volatile qualifier removed. For
example &quot;volatile int&quot; would become &quot;int&quot;.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>remove_const&lt;T&gt;::type</code></td>
<td valign="top" width="45%">Creates a type the same as T
but with any top level const qualifier removed. For
example &quot;const int&quot; would become &quot;int&quot;.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>remove_cv&lt;T&gt;::type</code></td>
<td valign="top" width="45%">Creates a type the same as T
but with any top level cv-qualifiers removed. For example
&quot;const int&quot; would become &quot;int&quot;, and
&quot;volatile double&quot; would become &quot;double&quot;.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>remove_reference&lt;T&gt;::type</code></td>
<td valign="top" width="45%">If T is a reference type
then removes the reference, otherwise leaves T unchanged.
For example &quot;int&amp;&quot; becomes &quot;int&quot;
but &quot;int*&quot; remains unchanged.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>add_reference&lt;T&gt;::type</code></td>
<td valign="top" width="45%">If T is a reference type
then leaves T unchanged, otherwise converts T to a
reference type. For example &quot;int&amp;&quot; remains
unchanged, but &quot;double&quot; becomes &quot;double&amp;&quot;.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>remove_bounds&lt;T&gt;::type</code></td>
<td valign="top" width="45%">If T is an array type then
removes the top level array qualifier from T, otherwise
leaves T unchanged. For example &quot;int[2][3]&quot;
becomes &quot;int[3]&quot;.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
</table>
<p>&nbsp;</p>
<h2><a name="fp"></a>Fundamental type properties</h2>
<p>Usage: &quot;class_name&lt;T&gt;::value&quot; is true if
indicated property is true, false otherwise. (Note that class_name&lt;T&gt;::value
is always defined as a compile time constant).</p>
<h3><a name="misc"></a>Miscellaneous</h3>
<table border="1" cellspacing="1" width="100%">
<tr>
<td width="37%"><p align="center">Expression</p>
</td>
<td width="36%"><p align="center">Description</p>
</td>
<td width="27%"><p align="center">Compiler</p>
</td>
</tr>
<tr>
<td width="37%"><div align="center"><center><pre><code>is_same&lt;T,U&gt;::value</code></pre>
</center></div></td>
<td width="36%"><p align="center">True if T and U are the
same type.</p>
</td>
<td width="27%">&nbsp; </td>
</tr>
<tr>
<td width="37%"><div align="center"><center><pre>is_convertible&lt;T,U&gt;::value</pre>
</center></div></td>
<td width="36%"><p align="center">True if type T is
convertible to type U.</p>
</td>
<td width="27%">&nbsp;</td>
</tr>
<tr>
<td width="37%"><div align="center"><center><pre>alignment_of&lt;T&gt;::value</pre>
</center></div></td>
<td width="36%"><p align="center">An integral value
representing the minimum alignment requirements of type T
(strictly speaking defines a multiple of the type's
alignment requirement; for all compilers tested so far
however it does return the actual alignment).</p>
</td>
<td width="27%">&nbsp;</td>
</tr>
</table>
<p>&nbsp;</p>
<h3><a name="cv"></a>cv-Qualifiers</h3>
<p>The following classes determine what cv-qualifiers are present
on a type (see 3.93).</p>
<table border="1" cellpadding="7" cellspacing="1" width="100%">
<tr>
<td valign="top" width="37%"><p align="center">Expression.</p>
</td>
<td valign="top" width="37%"><p align="center">Description.</p>
</td>
<td valign="top" width="27%"><p align="center">Compiler.</p>
</td>
</tr>
<tr>
<td valign="top" width="37%"><code>is_const&lt;T&gt;::value</code></td>
<td valign="top" width="37%">True if type T is top-level
const qualified.</td>
<td valign="top" width="27%">&nbsp; </td>
</tr>
<tr>
<td valign="top" width="37%"><code>is_volatile&lt;T&gt;::value</code></td>
<td valign="top" width="37%">True if type T is top-level
volatile qualified.</td>
<td valign="top" width="27%">&nbsp; </td>
</tr>
</table>
<p>&nbsp;</p>
<h3><a name="ft"></a>Fundamental Types</h3>
<p>The following will only ever be true for cv-unqualified types;
these are closely based on the section 3.9 of the C++ Standard.</p>
<table border="1" cellpadding="7" cellspacing="1" width="100%">
<tr>
<td valign="top" width="45%"><p align="center">Expression.</p>
</td>
<td valign="top" width="45%"><p align="center">Description.</p>
</td>
<td valign="top" width="33%"><p align="center">Compiler.</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_void&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True only if T is void.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_standard_unsigned_integral&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True only if T is one of the
standard unsigned integral types (3.9.1 p3) - unsigned
char, unsigned short, unsigned int, and unsigned long.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_standard_signed_integral&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True only if T is one of the
standard signed integral types (3.9.1 p2) - signed char,
short, int, and long.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_standard_integral&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a standard
integral type(3.9.1 p7) - T is either char, wchar_t, bool
or either is_standard_signed_integral&lt;T&gt;::value or
is_standard_integral&lt;T&gt;::value is true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_standard_float&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is one of the
standard floating point types(3.9.1 p8) - float, double
or long double.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_standard_arithmetic&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a standard
arithmetic type(3.9.1 p8) - implies is_standard_integral
or is_standard_float is true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_standard_fundamental&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a standard
arithmetic type or if T is void.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_extension_unsigned_integral&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True for compiler specific
unsigned integral types.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_extension_signed_integral&lt;T&gt;&gt;:value</code></td>
<td valign="top" width="45%">True for compiler specific
signed integral types.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_extension_integral&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_extension_unsigned_integral&lt;T&gt;::value
or is_extension_signed_integral&lt;T&gt;::value is true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_extension_float&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True for compiler specific
floating point types.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_extension_arithmetic&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_extension_integral&lt;T&gt;::value
or is_extension_float&lt;T&gt;::value are true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>&nbsp;is_extension_fundamental&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_extension_arithmetic&lt;T&gt;::value
or is_void&lt;T&gt;::value are true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>&nbsp;is_unsigned_integral&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_standard_unsigned_integral&lt;T&gt;::value
or is_extention_unsigned_integral&lt;T&gt;::value are
true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_signed_integral&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_standard_signed_integral&lt;T&gt;::value
or is_extention_signed_integral&lt;T&gt;&gt;::value are
true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_integral&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_standard_integral&lt;T&gt;::value
or is_extention_integral&lt;T&gt;::value are true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_float&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_standard_float&lt;T&gt;::value
or is_extention_float&lt;T&gt;::value are true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_arithmetic&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_integral&lt;T&gt;::value
or is_float&lt;T&gt;::value are true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_fundamental&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if either is_arithmetic&lt;T&gt;::value
or is_void&lt;T&gt;::value are true.</td>
<td valign="top" width="33%">&nbsp;</td>
</tr>
</table>
<p>&nbsp;</p>
<h3><a name="ct"></a>Compound Types</h3>
<p>The following will only ever be true for cv-unqualified types,
as defined by the Standard.&nbsp;</p>
<table border="1" cellpadding="7" cellspacing="1" width="100%">
<tr>
<td valign="top" width="45%"><p align="center">Expression</p>
</td>
<td valign="top" width="45%"><p align="center">Description</p>
</td>
<td valign="top" width="33%"><p align="center">Compiler</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_array&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is an array type.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_pointer&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a regular
pointer type - including function pointers - but
excluding pointers to member functions (3.9.2 p1 and 8.3.1).</td>
<td valign="top" width="33%">&nbsp; </td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_member_pointer&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a pointer to a
non-static class member (3.9.2 p1 and 8.3.1).</td>
<td valign="top" width="33%">&nbsp; </td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_reference&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a reference
type (3.9.2 p1 and 8.3.2).</td>
<td valign="top" width="33%">&nbsp; </td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_class&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a class or
struct type.</td>
<td valign="top" width="33%"><p align="center">PD</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_union&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a union type.</td>
<td valign="top" width="33%"><p align="center">C</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_enum&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is an enumerator
type.</td>
<td valign="top" width="33%"><p align="center">C</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_compound&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is any of the
above compound types.</td>
<td valign="top" width="33%"><p align="center">PD</p>
</td>
</tr>
</table>
<p>&nbsp;</p>
<h3><a name="ot"></a>Object/Scalar Types</h3>
<p>The following ignore any top level cv-qualifiers: if <code>class_name&lt;T&gt;::value</code>
is true then <code>class_name&lt;cv-qualified-T&gt;::value</code>
will also be true.</p>
<table border="1" cellpadding="7" cellspacing="1" width="100%">
<tr>
<td valign="top" width="45%"><p align="center">Expression</p>
</td>
<td valign="top" width="45%"><p align="center">Description</p>
</td>
<td valign="top" width="33%"><p align="center">Compiler</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_object&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is not a reference
type, or a (possibly cv-qualified) void type.</td>
<td valign="top" width="33%"><p align="center">P</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_standard_scalar&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a standard
arithmetic type, an enumerated type, a pointer or a
member pointer.</td>
<td valign="top" width="33%"><p align="center">PD</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_extension_scalar&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is an extentions
arithmetic type, an enumerated type, a pointer or a
member pointer.</td>
<td valign="top" width="33%"><p align="center">PD</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_scalar&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is an arithmetic
type, an enumerated type, a pointer or a member pointer.</td>
<td valign="top" width="33%"><p align="center">PD</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_POD&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is a &quot;Plain
Old Data&quot; type (see 3.9 p2&amp;p3). Note that
although this requires compiler support to be correct in
all cases, if T is a scalar or an array of scalars then
we can correctly define T as a POD.</td>
<td valign="top" width="33%"><p align="center">PC</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>is_empty&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T is an empty struct
or class. If the compiler implements the &quot;zero sized
empty base classes&quot; optimisation, then is_empty will
correctly guess whether T is empty. Relies upon is_class
to determine whether T is a class type. Screens out enum
types by using is_convertible&lt;T,int&gt;, this means
that empty classes that overload operator int(), will not
be classified as empty.</td>
<td valign="top" width="33%"><p align="center">PCD</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>has_trivial_constructor&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T has a trivial
default constructor - that is T() is equivalent to memset.</td>
<td valign="top" width="33%"><p align="center">PC</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>has_trivial_copy&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T has a trivial copy
constructor - that is T(const T&amp;) is equivalent to
memcpy.</td>
<td valign="top" width="33%"><p align="center">PC</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>has_trivial_assign&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T has a trivial
assignment operator - that is if T::operator=(const T&amp;)
is equivalent to memcpy.</td>
<td valign="top" width="33%"><p align="center">PC</p>
</td>
</tr>
<tr>
<td valign="top" width="45%"><code>has_trivial_destructor&lt;T&gt;::value</code></td>
<td valign="top" width="45%">True if T has a trivial
destructor - that is if T::~T() has no effect.</td>
<td valign="top" width="33%"><p align="center">PC</p>
</td>
</tr>
</table>
<p>&nbsp;</p>
<h2><a name="cs"></a>Compiler Support Information</h2>
<p>The legends used in the tables above have the following
meanings:</p>
<table border="0" cellpadding="7" cellspacing="0" width="480">
<tr>
<td valign="top" width="50%"><p align="center">P</p>
</td>
<td valign="top" width="90%">Denotes that the class
requires support for partial specialisation of class
templates to work correctly.</td>
</tr>
<tr>
<td valign="top" width="50%"><p align="center">C</p>
</td>
<td valign="top" width="90%">Denotes that direct compiler
support for that traits class is required.</td>
</tr>
<tr>
<td valign="top" width="50%"><p align="center">D</p>
</td>
<td valign="top" width="90%">Denotes that the traits
class is dependent upon a class that requires direct
compiler support.</td>
</tr>
</table>
<p>&nbsp;</p>
<p>For those classes that are marked with a D or C, if compiler
support is not provided, this type trait may return &quot;false&quot;
when the correct value is actually &quot;true&quot;. The single
exception to this rule is &quot;is_class&quot;, which attempts to
guess whether or not T is really a class, and may return &quot;true&quot;
when the correct value is actually &quot;false&quot;. This can
happen if: T is a union, T is an enum, or T is a compiler-supplied
scalar type that is not specialised for in these type traits.</p>
<p><i>If there is no compiler support</i>, to ensure that these
traits <i>always</i> return the correct values, specialise 'is_enum'
for each user-defined enumeration type, 'is_union' for each user-defined
union type, 'is_empty' for each user-defined empty composite type,
and 'is_POD' for each user-defined POD type. The 'has_*' traits
should also be specialized if the user-defined type has those
traits and is <i>not</i> a POD.</p>
<p>The following rules are automatically enforced:</p>
<p>is_enum implies is_POD</p>
<p>is_POD implies has_*</p>
<p>This means, for example, if you have an empty POD-struct, just
specialize is_empty and is_POD, which will cause all the has_* to
also return true.</p>
<h2><a name="ec"></a>Example code</h2>
<p>Type-traits comes with two sample programs: <a
href="type_traits_test.cpp">type_traits_test.cpp</a> tests the
type traits classes - mostly this is a test of your compiler's
support for the concepts used in the type traits implementation,
while <a href="algo_opt_examples.cpp">algo_opt_examples.cpp</a>
uses the type traits classes to &quot;optimise&quot; some
familiar standard library algorithms.</p>
<p>There are four algorithm examples in algo_opt_examples.cpp:</p>
<table border="0" cellpadding="7" cellspacing="0" width="638">
<tr>
<td valign="top" width="50%"><pre>opt::copy</pre>
</td>
<td valign="top" width="50%">If the copy operation can be
performed using memcpy then does so, otherwise uses a
regular element by element copy (<i>c.f.</i> std::copy).</td>
</tr>
<tr>
<td valign="top" width="50%"><pre>opt::fill</pre>
</td>
<td valign="top" width="50%">If the fill operation can be
performed by memset, then does so, otherwise uses a
regular element by element assign. Also uses call_traits
to optimise how the parameters can be passed (<i>c.f.</i>
std::fill).</td>
</tr>
<tr>
<td valign="top" width="50%"><pre>opt::destroy_array</pre>
</td>
<td valign="top" width="50%">If the type in the array has
a trivial destructor then does nothing, otherwise calls
destructors for all elements in the array - this
algorithm is the reverse of std::uninitialized_copy / std::uninitialized_fill.</td>
</tr>
<tr>
<td valign="top" width="50%"><pre>opt::iter_swap</pre>
</td>
<td valign="top" width="50%">Determines whether the
iterator is a proxy-iterator: if it is then does a &quot;slow
and safe&quot; swap, otherwise calls std::swap on the
assumption that std::swap may be specialised for the
iterated type.</td>
</tr>
</table>
<p>&nbsp;</p>
<hr>
<p>Revised 01 September 2000</p>
<p><EFBFBD> Copyright boost.org 2000. Permission to copy, use, modify,
sell and distribute this document is granted provided this
copyright notice appears in all copies. This document is provided
&quot;as is&quot; without express or implied warranty, and with
no claim as to its suitability for any purpose.</p>
<p>Based on contributions by Steve Cleary, Beman Dawes, Howard
Hinnant and John Maddock.</p>
<p>Maintained by <a href="mailto:John_Maddock@compuserve.com">John
Maddock</a>, the latest version of this file can be found at <a
href="http://www.boost.org/">www.boost.org</a>, and the boost
discussion list at <a href="http://www.egroups.com/list/boost">www.egroups.com/list/boost</a>.</p>
</body>
</html>

View File

@ -1,659 +0,0 @@
// (C) Copyright Steve Cleary, Beman Dawes, Howard Hinnant & John Maddock 2000.
// Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// standalone test program for <boost/type_traits.hpp>
/* Release notes:
20 Jan 2001:
Suppress an expected warning for MSVC
Added a test to prove that we can use void with is_same<>
Removed "press any key to exit" as it interferes with testing in large
batches.
(David Abahams)
31st July 2000:
Added extra tests for is_empty, is_convertible, alignment_of.
23rd July 2000:
Removed all call_traits tests to call_traits_test.cpp
Removed all compressed_pair tests to compressed_pair_tests.cpp
Improved tests macros
Tidied up specialistions of type_types classes for test cases.
*/
#include <iostream>
#include <typeinfo>
#include <boost/type_traits.hpp>
#include <boost/utility.hpp>
#include "type_traits_test.hpp"
using namespace boost;
// Since there is no compiler support, we should specialize:
// is_enum for all enumerations (is_enum implies is_POD)
// is_union for all unions
// is_empty for all empty composites
// is_POD for all PODs (except enums) (is_POD implies has_*)
// has_* for any UDT that has that trait and is not POD
enum enum_UDT{ one, two, three };
struct UDT
{
UDT();
~UDT();
UDT(const UDT&);
UDT& operator=(const UDT&);
int i;
void f1();
int f2();
int f3(int);
int f4(int, float);
};
struct POD_UDT { int x; };
struct empty_UDT{ ~empty_UDT(){}; };
struct empty_POD_UDT{};
union union_UDT
{
int x;
double y;
~union_UDT();
};
union POD_union_UDT
{
int x;
double y;
};
union empty_union_UDT
{
~empty_union_UDT();
};
union empty_POD_union_UDT{};
#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
namespace boost {
template <> struct is_enum<enum_UDT>
{ static const bool value = true; };
template <> struct is_POD<POD_UDT>
{ static const bool value = true; };
// this type is not POD, so we have to specialize the has_* individually
template <> struct has_trivial_constructor<empty_UDT>
{ static const bool value = true; };
template <> struct has_trivial_copy<empty_UDT>
{ static const bool value = true; };
template <> struct has_trivial_assign<empty_UDT>
{ static const bool value = true; };
template <> struct is_POD<empty_POD_UDT>
{ static const bool value = true; };
template <> struct is_union<union_UDT>
{ static const bool value = true; };
template <> struct is_union<POD_union_UDT>
{ static const bool value = true; };
template <> struct is_POD<POD_union_UDT>
{ static const bool value = true; };
template <> struct is_union<empty_union_UDT>
{ static const bool value = true; };
// this type is not POD, so we have to specialize the has_* individually
template <> struct has_trivial_constructor<empty_union_UDT>
{ static const bool value = true; };
template <> struct has_trivial_copy<empty_union_UDT>
{ static const bool value = true; };
template <> struct has_trivial_assign<empty_union_UDT>
{ static const bool value = true; };
template <> struct is_union<empty_POD_union_UDT>
{ static const bool value = true; };
template <> struct is_POD<empty_POD_union_UDT>
{ static const bool value = true; };
}
#else
namespace boost {
template <> struct is_enum<enum_UDT>
{ enum{ value = true }; };
template <> struct is_POD<POD_UDT>
{ enum{ value = true }; };
// this type is not POD, so we have to specialize the has_* individually
template <> struct has_trivial_constructor<empty_UDT>
{ enum{ value = true }; };
template <> struct has_trivial_copy<empty_UDT>
{ enum{ value = true }; };
template <> struct has_trivial_assign<empty_UDT>
{ enum{ value = true }; };
template <> struct is_POD<empty_POD_UDT>
{ enum{ value = true }; };
template <> struct is_union<union_UDT>
{ enum{ value = true }; };
template <> struct is_union<POD_union_UDT>
{ enum{ value = true }; };
template <> struct is_POD<POD_union_UDT>
{ enum{ value = true }; };
template <> struct is_union<empty_union_UDT>
{ enum{ value = true }; };
// this type is not POD, so we have to specialize the has_* individually
template <> struct has_trivial_constructor<empty_union_UDT>
{ enum{ value = true }; };
template <> struct has_trivial_copy<empty_union_UDT>
{ enum{ value = true }; };
template <> struct has_trivial_assign<empty_union_UDT>
{ enum{ value = true }; };
template <> struct is_union<empty_POD_union_UDT>
{ enum{ value = true }; };
template <> struct is_POD<empty_POD_union_UDT>
{ enum{ value = true }; };
}
#endif
class Base { };
class Deriverd : public Base { };
class NonDerived { };
enum enum1
{
one_,two_
};
enum enum2
{
three_,four_
};
struct VB
{
virtual ~VB(){};
};
struct VD : VB
{
~VD(){};
};
//
// struct non_pointer:
// used to verify that is_pointer does not return
// true for class types that implement operator void*()
//
struct non_pointer
{
operator void*(){return this;}
};
//
// struct non_empty:
// used to verify that is_empty does not emit
// spurious warnings or errors.
//
struct non_empty : boost::noncopyable
{
int i;
};
// Steve: All comments that I (Steve Cleary) have added below are prefixed with
// "Steve:" The failures that BCB4 has on the tests are due to Borland's
// not considering cv-qual's as a part of the type -- they are considered
// compiler hints only. These failures should be fixed before long.
int main()
{
std::cout << "Checking type operations..." << std::endl << std::endl;
// cv-qualifiers applied to reference types should have no effect
// declare these here for later use with is_reference and remove_reference:
typedef int& r_type;
#ifdef BOOST_MSVC
# pragma warning(push)
# pragma warning(disable:4181) // qualifier applied to reference type ignored
#endif
typedef const r_type cr_type;
#ifdef BOOST_MSVC
# pragma warning(pop)
#endif
type_test(int, remove_reference<int>::type)
type_test(const int, remove_reference<const int>::type)
type_test(int, remove_reference<int&>::type)
type_test(const int, remove_reference<const int&>::type)
type_test(volatile int, remove_reference<volatile int&>::type)
type_test(int, remove_reference<cr_type>::type)
type_test(int, remove_const<const int>::type)
// Steve: fails on BCB4
type_test(volatile int, remove_const<volatile int>::type)
// Steve: fails on BCB4
type_test(volatile int, remove_const<const volatile int>::type)
type_test(int, remove_const<int>::type)
type_test(int*, remove_const<int* const>::type)
type_test(int, remove_volatile<volatile int>::type)
// Steve: fails on BCB4
type_test(const int, remove_volatile<const int>::type)
// Steve: fails on BCB4
type_test(const int, remove_volatile<const volatile int>::type)
type_test(int, remove_volatile<int>::type)
type_test(int*, remove_volatile<int* volatile>::type)
type_test(int, remove_cv<volatile int>::type)
type_test(int, remove_cv<const int>::type)
type_test(int, remove_cv<const volatile int>::type)
type_test(int, remove_cv<int>::type)
type_test(int*, remove_cv<int* volatile>::type)
type_test(int*, remove_cv<int* const>::type)
type_test(int*, remove_cv<int* const volatile>::type)
type_test(const int *, remove_cv<const int * const>::type)
type_test(int, remove_bounds<int>::type)
type_test(int*, remove_bounds<int*>::type)
type_test(int, remove_bounds<int[3]>::type)
type_test(int[3], remove_bounds<int[2][3]>::type)
std::cout << std::endl << "Checking type properties..." << std::endl << std::endl;
value_test(true, (is_same<void, void>::value))
value_test(false, (is_same<int, void>::value))
value_test(false, (is_same<void, int>::value))
value_test(true, (is_same<int, int>::value))
value_test(false, (is_same<int, const int>::value))
value_test(false, (is_same<int, int&>::value))
value_test(false, (is_same<int*, const int*>::value))
value_test(false, (is_same<int*, int*const>::value))
value_test(false, (is_same<int, int[2]>::value))
value_test(false, (is_same<int*, int[2]>::value))
value_test(false, (is_same<int[4], int[2]>::value))
value_test(false, is_const<int>::value)
value_test(true, is_const<const int>::value)
value_test(false, is_const<volatile int>::value)
value_test(true, is_const<const volatile int>::value)
value_test(false, is_volatile<int>::value)
value_test(false, is_volatile<const int>::value)
value_test(true, is_volatile<volatile int>::value)
value_test(true, is_volatile<const volatile int>::value)
value_test(true, is_void<void>::value)
// Steve: fails on BCB4
// JM: but looks as though it should according to [3.9.3p1]?
//value_test(false, is_void<const void>::value)
value_test(false, is_void<int>::value)
value_test(false, is_standard_unsigned_integral<UDT>::value)
value_test(false, is_standard_unsigned_integral<void>::value)
value_test(false, is_standard_unsigned_integral<bool>::value)
value_test(false, is_standard_unsigned_integral<char>::value)
value_test(false, is_standard_unsigned_integral<signed char>::value)
value_test(true, is_standard_unsigned_integral<unsigned char>::value)
value_test(false, is_standard_unsigned_integral<wchar_t>::value)
value_test(false, is_standard_unsigned_integral<short>::value)
value_test(true, is_standard_unsigned_integral<unsigned short>::value)
value_test(false, is_standard_unsigned_integral<int>::value)
value_test(true, is_standard_unsigned_integral<unsigned int>::value)
value_test(false, is_standard_unsigned_integral<long>::value)
value_test(true, is_standard_unsigned_integral<unsigned long>::value)
value_test(false, is_standard_unsigned_integral<float>::value)
value_test(false, is_standard_unsigned_integral<double>::value)
value_test(false, is_standard_unsigned_integral<long double>::value)
#ifdef ULLONG_MAX
value_test(false, is_standard_unsigned_integral<long long>::value)
value_test(false, is_standard_unsigned_integral<unsigned long long>::value)
#endif
#if defined(__BORLANDC__) || defined(_MSC_VER)
value_test(false, is_standard_unsigned_integral<__int64>::value)
value_test(false, is_standard_unsigned_integral<unsigned __int64>::value)
#endif
value_test(false, is_standard_signed_integral<UDT>::value)
value_test(false, is_standard_signed_integral<void>::value)
value_test(false, is_standard_signed_integral<bool>::value)
value_test(false, is_standard_signed_integral<char>::value)
value_test(true, is_standard_signed_integral<signed char>::value)
value_test(false, is_standard_signed_integral<unsigned char>::value)
value_test(false, is_standard_signed_integral<wchar_t>::value)
value_test(true, is_standard_signed_integral<short>::value)
value_test(false, is_standard_signed_integral<unsigned short>::value)
value_test(true, is_standard_signed_integral<int>::value)
value_test(false, is_standard_signed_integral<unsigned int>::value)
value_test(true, is_standard_signed_integral<long>::value)
value_test(false, is_standard_signed_integral<unsigned long>::value)
value_test(false, is_standard_signed_integral<float>::value)
value_test(false, is_standard_signed_integral<double>::value)
value_test(false, is_standard_signed_integral<long double>::value)
#ifdef ULLONG_MAX
value_test(false, is_standard_signed_integral<long long>::value)
value_test(false, is_standard_signed_integral<unsigned long long>::value)
#endif
#if defined(__BORLANDC__) || defined(_MSC_VER)
value_test(false, is_standard_signed_integral<__int64>::value)
value_test(false, is_standard_signed_integral<unsigned __int64>::value)
#endif
value_test(false, is_standard_arithmetic<UDT>::value)
value_test(false, is_standard_arithmetic<void>::value)
value_test(true, is_standard_arithmetic<bool>::value)
value_test(true, is_standard_arithmetic<char>::value)
value_test(true, is_standard_arithmetic<signed char>::value)
value_test(true, is_standard_arithmetic<unsigned char>::value)
value_test(true, is_standard_arithmetic<wchar_t>::value)
value_test(true, is_standard_arithmetic<short>::value)
value_test(true, is_standard_arithmetic<unsigned short>::value)
value_test(true, is_standard_arithmetic<int>::value)
value_test(true, is_standard_arithmetic<unsigned int>::value)
value_test(true, is_standard_arithmetic<long>::value)
value_test(true, is_standard_arithmetic<unsigned long>::value)
value_test(true, is_standard_arithmetic<float>::value)
value_test(true, is_standard_arithmetic<double>::value)
value_test(true, is_standard_arithmetic<long double>::value)
#ifdef ULLONG_MAX
value_test(false, is_standard_arithmetic<long long>::value)
value_test(false, is_standard_arithmetic<unsigned long long>::value)
#endif
#if defined(__BORLANDC__) || defined(_MSC_VER)
value_test(false, is_standard_arithmetic<__int64>::value)
value_test(false, is_standard_arithmetic<unsigned __int64>::value)
#endif
value_test(false, is_standard_fundamental<UDT>::value)
value_test(true, is_standard_fundamental<void>::value)
value_test(true, is_standard_fundamental<bool>::value)
value_test(true, is_standard_fundamental<char>::value)
value_test(true, is_standard_fundamental<signed char>::value)
value_test(true, is_standard_fundamental<unsigned char>::value)
value_test(true, is_standard_fundamental<wchar_t>::value)
value_test(true, is_standard_fundamental<short>::value)
value_test(true, is_standard_fundamental<unsigned short>::value)
value_test(true, is_standard_fundamental<int>::value)
value_test(true, is_standard_fundamental<unsigned int>::value)
value_test(true, is_standard_fundamental<long>::value)
value_test(true, is_standard_fundamental<unsigned long>::value)
value_test(true, is_standard_fundamental<float>::value)
value_test(true, is_standard_fundamental<double>::value)
value_test(true, is_standard_fundamental<long double>::value)
#ifdef ULLONG_MAX
value_test(false, is_standard_fundamental<long long>::value)
value_test(false, is_standard_fundamental<unsigned long long>::value)
#endif
#if defined(__BORLANDC__) || defined(_MSC_VER)
value_test(false, is_standard_fundamental<__int64>::value)
value_test(false, is_standard_fundamental<unsigned __int64>::value)
#endif
value_test(false, is_arithmetic<UDT>::value)
value_test(true, is_arithmetic<char>::value)
value_test(true, is_arithmetic<signed char>::value)
value_test(true, is_arithmetic<unsigned char>::value)
value_test(true, is_arithmetic<wchar_t>::value)
value_test(true, is_arithmetic<short>::value)
value_test(true, is_arithmetic<unsigned short>::value)
value_test(true, is_arithmetic<int>::value)
value_test(true, is_arithmetic<unsigned int>::value)
value_test(true, is_arithmetic<long>::value)
value_test(true, is_arithmetic<unsigned long>::value)
value_test(true, is_arithmetic<float>::value)
value_test(true, is_arithmetic<double>::value)
value_test(true, is_arithmetic<long double>::value)
value_test(true, is_arithmetic<bool>::value)
#ifdef ULLONG_MAX
value_test(true, is_arithmetic<long long>::value)
value_test(true, is_arithmetic<unsigned long long>::value)
#endif
#if defined(__BORLANDC__) || defined(_MSC_VER)
value_test(true, is_arithmetic<__int64>::value)
value_test(true, is_arithmetic<unsigned __int64>::value)
#endif
value_test(false, is_array<int>::value)
value_test(false, is_array<int*>::value)
value_test(false, is_array<const int*>::value)
value_test(false, is_array<const volatile int*>::value)
value_test(true, is_array<int[2]>::value)
value_test(true, is_array<const int[2]>::value)
value_test(true, is_array<const volatile int[2]>::value)
value_test(true, is_array<int[2][3]>::value)
value_test(true, is_array<UDT[2]>::value)
value_test(false, is_array<int(&)[2]>::value)
typedef void(*f1)();
typedef int(*f2)(int);
typedef int(*f3)(int, bool);
typedef void (UDT::*mf1)();
typedef int (UDT::*mf2)();
typedef int (UDT::*mf3)(int);
typedef int (UDT::*mf4)(int, float);
value_test(false, is_const<f1>::value)
value_test(false, is_reference<f1>::value)
value_test(false, is_array<f1>::value)
value_test(false, is_pointer<int>::value)
value_test(false, is_pointer<int&>::value)
value_test(true, is_pointer<int*>::value)
value_test(true, is_pointer<const int*>::value)
value_test(true, is_pointer<volatile int*>::value)
value_test(true, is_pointer<non_pointer*>::value)
// Steve: was 'true', should be 'false', via 3.9.2p3, 3.9.3p1
value_test(false, is_pointer<int*const>::value)
// Steve: was 'true', should be 'false', via 3.9.2p3, 3.9.3p1
value_test(false, is_pointer<int*volatile>::value)
// Steve: was 'true', should be 'false', via 3.9.2p3, 3.9.3p1
value_test(false, is_pointer<int*const volatile>::value)
// JM 02 Oct 2000:
value_test(false, is_pointer<non_pointer>::value)
value_test(false, is_pointer<int*&>::value)
value_test(false, is_pointer<int(&)[2]>::value)
value_test(false, is_pointer<int[2]>::value)
value_test(false, is_pointer<char[sizeof(void*)]>::value)
value_test(true, is_pointer<f1>::value)
value_test(true, is_pointer<f2>::value)
value_test(true, is_pointer<f3>::value)
// Steve: was 'true', should be 'false', via 3.9.2p3
value_test(false, is_pointer<mf1>::value)
// Steve: was 'true', should be 'false', via 3.9.2p3
value_test(false, is_pointer<mf2>::value)
// Steve: was 'true', should be 'false', via 3.9.2p3
value_test(false, is_pointer<mf3>::value)
// Steve: was 'true', should be 'false', via 3.9.2p3
value_test(false, is_pointer<mf4>::value)
value_test(false, is_reference<bool>::value)
value_test(true, is_reference<int&>::value)
value_test(true, is_reference<const int&>::value)
value_test(true, is_reference<volatile int &>::value)
value_test(true, is_reference<r_type>::value)
value_test(true, is_reference<cr_type>::value)
value_test(true, is_reference<const UDT&>::value)
value_test(false, is_class<int>::value)
value_test(false, is_class<const int>::value)
value_test(false, is_class<volatile int>::value)
value_test(false, is_class<int*>::value)
value_test(false, is_class<int* const>::value)
value_test(false, is_class<int[2]>::value)
value_test(false, is_class<int&>::value)
value_test(false, is_class<mf4>::value)
value_test(false, is_class<f1>::value)
value_test(false, is_class<enum_UDT>::value)
value_test(true, is_class<UDT>::value)
value_test(true, is_class<UDT const>::value)
value_test(true, is_class<UDT volatile>::value)
value_test(true, is_class<empty_UDT>::value)
value_test(true, is_class<std::iostream>::value)
value_test(false, is_class<UDT*>::value)
value_test(false, is_class<UDT[2]>::value)
value_test(false, is_class<UDT&>::value)
value_test(true, is_object<int>::value)
value_test(true, is_object<UDT>::value)
value_test(false, is_object<int&>::value)
value_test(false, is_object<void>::value)
value_test(true, is_standard_scalar<int>::value)
value_test(true, is_extension_scalar<void*>::value)
value_test(false, is_enum<int>::value)
value_test(true, is_enum<enum_UDT>::value)
value_test(false, is_member_pointer<f1>::value)
value_test(false, is_member_pointer<f2>::value)
value_test(false, is_member_pointer<f3>::value)
value_test(true, is_member_pointer<mf1>::value)
value_test(true, is_member_pointer<mf2>::value)
value_test(true, is_member_pointer<mf3>::value)
value_test(true, is_member_pointer<mf4>::value)
value_test(false, is_empty<int>::value)
value_test(false, is_empty<int*>::value)
value_test(false, is_empty<int&>::value)
#if defined(__MWERKS__) || defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
// apparent compiler bug causes this to fail to compile:
value_fail(false, is_empty<int[2]>::value)
#else
value_test(false, is_empty<int[2]>::value)
#endif
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
value_fail(false, is_empty<f1>::value)
#else
value_test(false, is_empty<f1>::value)
#endif
value_test(false, is_empty<mf1>::value)
value_test(false, is_empty<UDT>::value)
value_test(true, is_empty<empty_UDT>::value)
value_test(true, is_empty<empty_POD_UDT>::value)
#if defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
value_fail(true, is_empty<empty_union_UDT>::value)
#else
value_test(true, is_empty<empty_union_UDT>::value)
#endif
value_test(false, is_empty<enum_UDT>::value)
value_test(true, is_empty<boost::noncopyable>::value)
value_test(false, is_empty<non_empty>::value)
value_test(true, has_trivial_constructor<int>::value)
value_test(true, has_trivial_constructor<int*>::value)
value_test(true, has_trivial_constructor<int*const>::value)
value_test(true, has_trivial_constructor<const int>::value)
value_test(true, has_trivial_constructor<volatile int>::value)
value_test(true, has_trivial_constructor<int[2]>::value)
value_test(true, has_trivial_constructor<int[3][2]>::value)
value_test(true, has_trivial_constructor<int[2][4][5][6][3]>::value)
value_test(true, has_trivial_constructor<f1>::value)
value_test(true, has_trivial_constructor<mf2>::value)
value_test(false, has_trivial_constructor<UDT>::value)
value_test(true, has_trivial_constructor<empty_UDT>::value)
value_test(true, has_trivial_constructor<enum_UDT>::value)
value_test(true, has_trivial_copy<int>::value)
value_test(true, has_trivial_copy<int*>::value)
value_test(true, has_trivial_copy<int*const>::value)
value_test(true, has_trivial_copy<const int>::value)
// Steve: was 'false' -- should be 'true' via 3.9p3, 3.9p10
value_test(true, has_trivial_copy<volatile int>::value)
value_test(true, has_trivial_copy<int[2]>::value)
value_test(true, has_trivial_copy<int[3][2]>::value)
value_test(true, has_trivial_copy<int[2][4][5][6][3]>::value)
value_test(true, has_trivial_copy<f1>::value)
value_test(true, has_trivial_copy<mf2>::value)
value_test(false, has_trivial_copy<UDT>::value)
value_test(true, has_trivial_copy<empty_UDT>::value)
value_test(true, has_trivial_copy<enum_UDT>::value)
value_test(true, has_trivial_assign<int>::value)
value_test(true, has_trivial_assign<int*>::value)
value_test(true, has_trivial_assign<int*const>::value)
value_test(true, has_trivial_assign<const int>::value)
// Steve: was 'false' -- should be 'true' via 3.9p3, 3.9p10
value_test(true, has_trivial_assign<volatile int>::value)
value_test(true, has_trivial_assign<int[2]>::value)
value_test(true, has_trivial_assign<int[3][2]>::value)
value_test(true, has_trivial_assign<int[2][4][5][6][3]>::value)
value_test(true, has_trivial_assign<f1>::value)
value_test(true, has_trivial_assign<mf2>::value)
value_test(false, has_trivial_assign<UDT>::value)
value_test(true, has_trivial_assign<empty_UDT>::value)
value_test(true, has_trivial_assign<enum_UDT>::value)
value_test(true, has_trivial_destructor<int>::value)
value_test(true, has_trivial_destructor<int*>::value)
value_test(true, has_trivial_destructor<int*const>::value)
value_test(true, has_trivial_destructor<const int>::value)
value_test(true, has_trivial_destructor<volatile int>::value)
value_test(true, has_trivial_destructor<int[2]>::value)
value_test(true, has_trivial_destructor<int[3][2]>::value)
value_test(true, has_trivial_destructor<int[2][4][5][6][3]>::value)
value_test(true, has_trivial_destructor<f1>::value)
value_test(true, has_trivial_destructor<mf2>::value)
value_test(false, has_trivial_destructor<UDT>::value)
value_test(false, has_trivial_destructor<empty_UDT>::value)
value_test(true, has_trivial_destructor<enum_UDT>::value)
value_test(true, is_POD<int>::value)
value_test(true, is_POD<int*>::value)
// Steve: was 'true', should be 'false', via 3.9p10
value_test(false, is_POD<int&>::value)
value_test(true, is_POD<int*const>::value)
value_test(true, is_POD<const int>::value)
// Steve: was 'false', should be 'true', via 3.9p10
value_test(true, is_POD<volatile int>::value)
// Steve: was 'true', should be 'false', via 3.9p10
value_test(false, is_POD<const int&>::value)
value_test(true, is_POD<int[2]>::value)
value_test(true, is_POD<int[3][2]>::value)
value_test(true, is_POD<int[2][4][5][6][3]>::value)
value_test(true, is_POD<f1>::value)
value_test(true, is_POD<mf2>::value)
value_test(false, is_POD<UDT>::value)
value_test(false, is_POD<empty_UDT>::value)
value_test(true, is_POD<enum_UDT>::value)
value_test(true, (boost::is_convertible<Deriverd,Base>::value));
value_test(true, (boost::is_convertible<Deriverd,Deriverd>::value));
value_test(true, (boost::is_convertible<Base,Base>::value));
value_test(false, (boost::is_convertible<Base,Deriverd>::value));
value_test(true, (boost::is_convertible<Deriverd,Deriverd>::value));
value_test(false, (boost::is_convertible<NonDerived,Base>::value));
value_test(false, (boost::is_convertible<boost::noncopyable, int>::value));
value_test(true, (boost::is_convertible<float,int>::value));
#if defined(BOOST_MSVC6_MEMBER_TEMPLATES) || !defined(BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION)
value_test(false, (boost::is_convertible<float,void>::value));
value_test(false, (boost::is_convertible<void,float>::value));
value_test(true, (boost::is_convertible<void,void>::value));
#endif
value_test(true, (boost::is_convertible<enum1, int>::value));
value_test(true, (boost::is_convertible<Deriverd*, Base*>::value));
value_test(false, (boost::is_convertible<Base*, Deriverd*>::value));
value_test(true, (boost::is_convertible<Deriverd&, Base&>::value));
value_test(false, (boost::is_convertible<Base&, Deriverd&>::value));
value_test(true, (boost::is_convertible<const Deriverd*, const Base*>::value));
value_test(false, (boost::is_convertible<const Base*, const Deriverd*>::value));
value_test(true, (boost::is_convertible<const Deriverd&, const Base&>::value));
value_test(false, (boost::is_convertible<const Base&, const Deriverd&>::value));
value_test(false, (boost::is_convertible<const int *, int*>::value));
value_test(false, (boost::is_convertible<const int&, int&>::value));
value_test(true, (boost::is_convertible<int*, int[2]>::value));
value_test(false, (boost::is_convertible<const int*, int[3]>::value));
value_test(true, (boost::is_convertible<const int&, int>::value));
value_test(true, (boost::is_convertible<int(&)[4], const int*>::value));
value_test(true, (boost::is_convertible<int(&)(int), int(*)(int)>::value));
value_test(true, (boost::is_convertible<int *, const int*>::value));
value_test(true, (boost::is_convertible<int&, const int&>::value));
value_test(true, (boost::is_convertible<int[2], int*>::value));
value_test(true, (boost::is_convertible<int[2], const int*>::value));
value_test(false, (boost::is_convertible<const int[2], int*>::value));
align_test(int);
align_test(char);
align_test(double);
align_test(int[4]);
align_test(int(*)(int));
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
align_test(char&);
align_test(char (&)(int));
align_test(char(&)[4]);
#endif
align_test(int*);
//align_test(const int);
align_test(VB);
align_test(VD);
std::cout << std::endl << test_count << " tests completed (" << failures << " failures)";
return failures;
}

View File

@ -1,114 +0,0 @@
// boost::compressed_pair test program
// (C) Copyright John Maddock 2000. Permission to copy, use, modify, sell and
// distribute this software is granted provided this copyright notice appears
// in all copies. This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
// common test code for type_traits_test.cpp/call_traits_test.cpp/compressed_pair_test.cpp
#ifndef BOOST_TYPE_TRAITS_TEST_HPP
#define BOOST_TYPE_TRAITS_TEST_HPP
// Variable declarations must come before test_align due to two-phase lookup
unsigned failures = 0;
unsigned test_count = 0;
//
// this one is here just to suppress warnings:
//
template <class T>
bool do_compare(T i, T j)
{
return i == j;
}
//
// this one is to verify that a constant is indeed a
// constant-integral-expression:
//
template <int>
struct ct_checker
{
};
#define BOOST_DO_JOIN( X, Y ) BOOST_DO_JOIN2(X,Y)
#define BOOST_DO_JOIN2(X, Y) X##Y
#define BOOST_JOIN( X, Y ) BOOST_DO_JOIN( X, Y )
#ifdef BOOST_MSVC
#define value_test(v, x) ++test_count;\
{typedef ct_checker<(x)> this_is_a_compile_time_check_;}\
if(!do_compare((int)v,(int)x)){++failures; std::cout << "checking value of " << #x << "...failed" << std::endl;}
#else
#define value_test(v, x) ++test_count;\
typedef ct_checker<(x)> BOOST_JOIN(this_is_a_compile_time_check_, __LINE__);\
if(!do_compare((int)v,(int)x)){++failures; std::cout << "checking value of " << #x << "...failed" << std::endl;}
#endif
#define value_fail(v, x) ++test_count; ++failures; std::cout << "checking value of " << #x << "...failed" << std::endl;
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
#define type_test(v, x) ++test_count;\
if(do_compare(boost::is_same<v, x>::value, false)){\
++failures; \
std::cout << "checking type of " << #x << "...failed" << std::endl; \
std::cout << " expected type was " << #v << std::endl; \
std::cout << " " << typeid(boost::is_same<v, x>).name() << "::value is false" << std::endl; }
#else
#define type_test(v, x) ++test_count;\
if(typeid(v) != typeid(x)){\
++failures; \
std::cout << "checking type of " << #x << "...failed" << std::endl; \
std::cout << " expected type was " << #v << std::endl; \
std::cout << " " << "typeid(" #v ") != typeid(" #x ")" << std::endl; }
#endif
template <class T>
struct test_align
{
struct padded
{
char c;
T t;
};
static void do_it()
{
padded p;
unsigned a = reinterpret_cast<char*>(&(p.t)) - reinterpret_cast<char*>(&p);
value_test(a, boost::alignment_of<T>::value);
}
};
#ifndef BOOST_NO_TEMPLATE_PARTIAL_SPECIALIZATION
template <class T>
struct test_align<T&>
{
static void do_it()
{
//
// we can't do the usual test because we can't take the address
// of a reference, so check that the result is the same as for a
// pointer type instead:
value_test(boost::alignment_of<T*>::value, boost::alignment_of<T&>::value);
}
};
#endif
#define align_test(T) test_align<T>::do_it()
//
// define tests here
//
// turn off some warnings:
#ifdef __BORLANDC__
#pragma option -w-8004
#endif
#ifdef BOOST_MSVC
#pragma warning (disable: 4018)
#endif
#endif // BOOST_TYPE_TRAITS_TEST_HPP

View File

@ -81,7 +81,7 @@ CodeWarrior 5.0, and Microsoft Visual C++ 6.0 sp 3.</p>
<pre>// inside one of your own headers ...
#include &lt;boost/utility.hpp&gt;
class ResourceLadenFileSystem : noncopyable {
class ResourceLadenFileSystem : boost::noncopyable {
...</pre>
</blockquote>
@ -93,7 +93,7 @@ destructor declarations. He says &quot;Probably this concern is misplaced, becau
noncopyable will be used mostly for classes which own resources and thus have non-trivial destruction semantics.&quot;</p>
<hr>
<p>Revised&nbsp; <!--webbot bot="Timestamp" S-Type="EDITED" S-Format="%d %B, %Y" startspan
-->28 September, 2000<!--webbot bot="Timestamp" endspan i-checksum="39343"
-->28 February, 2001<!--webbot bot="Timestamp" endspan i-checksum="40412"
-->
</p>
<p><EFBFBD> Copyright boost.org 1999. Permission to copy, use, modify, sell and