mirror of
				https://github.com/0xFEEDC0DE64/arduino-esp32.git
				synced 2025-10-31 14:11:42 +01:00 
			
		
		
		
	
		
			
	
	
		
			3444 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			3444 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|   | /*
 | ||
|  |  * Minimal code for RSA support from LibTomMath 0.41 | ||
|  |  * http://libtom.org/
 | ||
|  |  * http://libtom.org/files/ltm-0.41.tar.bz2
 | ||
|  |  * This library was released in public domain by Tom St Denis. | ||
|  |  * | ||
|  |  * The combination in this file may not use all of the optimized algorithms | ||
|  |  * from LibTomMath and may be considerable slower than the LibTomMath with its | ||
|  |  * default settings. The main purpose of having this version here is to make it | ||
|  |  * easier to build bignum.c wrapper without having to install and build an | ||
|  |  * external library. | ||
|  |  * | ||
|  |  * If CONFIG_INTERNAL_LIBTOMMATH is defined, bignum.c includes this | ||
|  |  * libtommath.c file instead of using the external LibTomMath library. | ||
|  |  */ | ||
|  | #include "c_types.h"
 | ||
|  | #include "os.h"
 | ||
|  | #include "stdarg.h"
 | ||
|  | 
 | ||
|  | #ifdef MEMLEAK_DEBUG
 | ||
|  | static const char mem_debug_file[] ICACHE_RODATA_ATTR = __FILE__; | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifndef CHAR_BIT
 | ||
|  | #define CHAR_BIT 8
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #define BN_MP_INVMOD_C
 | ||
|  | #define BN_S_MP_EXPTMOD_C /* Note: #undef in tommath_superclass.h; this would
 | ||
|  | 			   * require BN_MP_EXPTMOD_FAST_C instead */ | ||
|  | #define BN_S_MP_MUL_DIGS_C
 | ||
|  | #define BN_MP_INVMOD_SLOW_C
 | ||
|  | #define BN_S_MP_SQR_C
 | ||
|  | #define BN_S_MP_MUL_HIGH_DIGS_C /* Note: #undef in tommath_superclass.h; this
 | ||
|  | 				 * would require other than mp_reduce */ | ||
|  | 
 | ||
|  | #ifdef LTM_FAST
 | ||
|  | 
 | ||
|  | /* Use faster div at the cost of about 1 kB */ | ||
|  | #define BN_MP_MUL_D_C
 | ||
|  | 
 | ||
|  | /* Include faster exptmod (Montgomery) at the cost of about 2.5 kB in code */ | ||
|  | #define BN_MP_EXPTMOD_FAST_C
 | ||
|  | #define BN_MP_MONTGOMERY_SETUP_C
 | ||
|  | #define BN_FAST_MP_MONTGOMERY_REDUCE_C
 | ||
|  | #define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
 | ||
|  | #define BN_MP_MUL_2_C
 | ||
|  | 
 | ||
|  | /* Include faster sqr at the cost of about 0.5 kB in code */ | ||
|  | #define BN_FAST_S_MP_SQR_C
 | ||
|  | 
 | ||
|  | #else /* LTM_FAST */
 | ||
|  | 
 | ||
|  | #define BN_MP_DIV_SMALL
 | ||
|  | #define BN_MP_INIT_MULTI_C
 | ||
|  | #define BN_MP_CLEAR_MULTI_C
 | ||
|  | #define BN_MP_ABS_C
 | ||
|  | #endif /* LTM_FAST */
 | ||
|  | 
 | ||
|  | /* Current uses do not require support for negative exponent in exptmod, so we
 | ||
|  |  * can save about 1.5 kB in leaving out invmod. */ | ||
|  | #define LTM_NO_NEG_EXP
 | ||
|  | 
 | ||
|  | /* from tommath.h */ | ||
|  | 
 | ||
|  | #ifndef MIN
 | ||
|  |    #define MIN(x,y) ((x)<(y)?(x):(y))
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifndef MAX
 | ||
|  |    #define MAX(x,y) ((x)>(y)?(x):(y))
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #define  OPT_CAST(x) (x *)
 | ||
|  | 
 | ||
|  | typedef unsigned long mp_digit; | ||
|  | typedef u64 mp_word; | ||
|  | 
 | ||
|  | #define DIGIT_BIT          28
 | ||
|  | #define MP_28BIT
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #define XMALLOC  os_malloc
 | ||
|  | #define XFREE    os_free
 | ||
|  | #define XREALLOC os_realloc
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #define MP_MASK          ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
 | ||
|  | 
 | ||
|  | #define MP_LT        -1   /* less than */
 | ||
|  | #define MP_EQ         0   /* equal to */
 | ||
|  | #define MP_GT         1   /* greater than */
 | ||
|  | 
 | ||
|  | #define MP_ZPOS       0   /* positive integer */
 | ||
|  | #define MP_NEG        1   /* negative */
 | ||
|  | 
 | ||
|  | #define MP_OKAY       0   /* ok result */
 | ||
|  | #define MP_MEM        -2  /* out of mem */
 | ||
|  | #define MP_VAL        -3  /* invalid input */
 | ||
|  | 
 | ||
|  | #define MP_YES        1   /* yes response */
 | ||
|  | #define MP_NO         0   /* no response */
 | ||
|  | 
 | ||
|  | typedef int           mp_err; | ||
|  | 
 | ||
|  | /* define this to use lower memory usage routines (exptmods mostly) */ | ||
|  | #define MP_LOW_MEM
 | ||
|  | 
 | ||
|  | /* default precision */ | ||
|  | #ifndef MP_PREC
 | ||
|  |    #ifndef MP_LOW_MEM
 | ||
|  |       #define MP_PREC                 32     /* default digits of precision */
 | ||
|  |    #else
 | ||
|  |       #define MP_PREC                 8      /* default digits of precision */
 | ||
|  |    #endif   
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ | ||
|  | #define MP_WARRAY               (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
 | ||
|  | 
 | ||
|  | /* the infamous mp_int structure */ | ||
|  | typedef struct  { | ||
|  |     int used, alloc, sign; | ||
|  |     mp_digit *dp; | ||
|  | } mp_int; | ||
|  | 
 | ||
|  | 
 | ||
|  | /* ---> Basic Manipulations <--- */ | ||
|  | #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
 | ||
|  | #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
 | ||
|  | #define mp_isodd(a)  (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* prototypes for copied functions */ | ||
|  | #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
 | ||
|  | static int s_mp_exptmod(mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode); | ||
|  | static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs); | ||
|  | static int s_mp_sqr(mp_int * a, mp_int * b); | ||
|  | static int s_mp_mul_high_digs(mp_int * a, mp_int * b, mp_int * c, int digs); | ||
|  | 
 | ||
|  | static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs); | ||
|  | 
 | ||
|  | #ifdef BN_MP_INIT_MULTI_C
 | ||
|  | static int mp_init_multi(mp_int *mp, ...); | ||
|  | #endif
 | ||
|  | #ifdef BN_MP_CLEAR_MULTI_C
 | ||
|  | static void mp_clear_multi(mp_int *mp, ...); | ||
|  | #endif
 | ||
|  | static int mp_lshd(mp_int * a, int b); | ||
|  | static void mp_set(mp_int * a, mp_digit b); | ||
|  | static void mp_clamp(mp_int * a); | ||
|  | static void mp_exch(mp_int * a, mp_int * b); | ||
|  | static void mp_rshd(mp_int * a, int b); | ||
|  | static void mp_zero(mp_int * a); | ||
|  | static int mp_mod_2d(mp_int * a, int b, mp_int * c); | ||
|  | static int mp_div_2d(mp_int * a, int b, mp_int * c, mp_int * d); | ||
|  | static int mp_init_copy(mp_int * a, mp_int * b); | ||
|  | static int mp_mul_2d(mp_int * a, int b, mp_int * c); | ||
|  | #ifndef LTM_NO_NEG_EXP
 | ||
|  | static int mp_div_2(mp_int * a, mp_int * b); | ||
|  | static int mp_invmod(mp_int * a, mp_int * b, mp_int * c); | ||
|  | static int mp_invmod_slow(mp_int * a, mp_int * b, mp_int * c); | ||
|  | #endif /* LTM_NO_NEG_EXP */
 | ||
|  | static int mp_copy(mp_int * a, mp_int * b); | ||
|  | static int mp_count_bits(mp_int * a); | ||
|  | static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d); | ||
|  | static int mp_mod(mp_int * a, mp_int * b, mp_int * c); | ||
|  | static int mp_grow(mp_int * a, int size); | ||
|  | static int mp_cmp_mag(mp_int * a, mp_int * b); | ||
|  | #ifdef BN_MP_ABS_C
 | ||
|  | static int mp_abs(mp_int * a, mp_int * b); | ||
|  | #endif
 | ||
|  | static int mp_sqr(mp_int * a, mp_int * b); | ||
|  | static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d); | ||
|  | static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d); | ||
|  | static int mp_2expt(mp_int * a, int b); | ||
|  | static int mp_reduce_setup(mp_int * a, mp_int * b); | ||
|  | static int mp_reduce(mp_int * x, mp_int * m, mp_int * mu); | ||
|  | static int mp_init_size(mp_int * a, int size); | ||
|  | #ifdef BN_MP_EXPTMOD_FAST_C
 | ||
|  | static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode); | ||
|  | #endif /* BN_MP_EXPTMOD_FAST_C */
 | ||
|  | #ifdef BN_FAST_S_MP_SQR_C
 | ||
|  | static int fast_s_mp_sqr (mp_int * a, mp_int * b); | ||
|  | #endif /* BN_FAST_S_MP_SQR_C */
 | ||
|  | #ifdef BN_MP_MUL_D_C
 | ||
|  | static int mp_mul_d (mp_int * a, mp_digit b, mp_int * c); | ||
|  | #endif /* BN_MP_MUL_D_C */
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* functions from bn_<func name>.c */ | ||
|  | 
 | ||
|  | 
 | ||
|  | /* reverse an array, used for radix code */ | ||
|  | static void ICACHE_FLASH_ATTR | ||
|  | bn_reverse (unsigned char *s, int len) | ||
|  | { | ||
|  |   int     ix, iy; | ||
|  |   unsigned char t; | ||
|  | 
 | ||
|  |   ix = 0; | ||
|  |   iy = len - 1; | ||
|  |   while (ix < iy) { | ||
|  |     t     = s[ix]; | ||
|  |     s[ix] = s[iy]; | ||
|  |     s[iy] = t; | ||
|  |     ++ix; | ||
|  |     --iy; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* low level addition, based on HAC pp.594, Algorithm 14.7 */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | s_mp_add (mp_int * a, mp_int * b, mp_int * c) | ||
|  | { | ||
|  |   mp_int *x; | ||
|  |   int     olduse, res, min, max; | ||
|  | 
 | ||
|  |   /* find sizes, we let |a| <= |b| which means we have to sort
 | ||
|  |    * them.  "x" will point to the input with the most digits | ||
|  |    */ | ||
|  |   if (a->used > b->used) { | ||
|  |     min = b->used; | ||
|  |     max = a->used; | ||
|  |     x = a; | ||
|  |   } else { | ||
|  |     min = a->used; | ||
|  |     max = b->used; | ||
|  |     x = b; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* init result */ | ||
|  |   if (c->alloc < max + 1) { | ||
|  |     if ((res = mp_grow (c, max + 1)) != MP_OKAY) { | ||
|  |       return res; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* get old used digit count and set new one */ | ||
|  |   olduse = c->used; | ||
|  |   c->used = max + 1; | ||
|  | 
 | ||
|  |   { | ||
|  |     register mp_digit u, *tmpa, *tmpb, *tmpc; | ||
|  |     register int i; | ||
|  | 
 | ||
|  |     /* alias for digit pointers */ | ||
|  | 
 | ||
|  |     /* first input */ | ||
|  |     tmpa = a->dp; | ||
|  | 
 | ||
|  |     /* second input */ | ||
|  |     tmpb = b->dp; | ||
|  | 
 | ||
|  |     /* destination */ | ||
|  |     tmpc = c->dp; | ||
|  | 
 | ||
|  |     /* zero the carry */ | ||
|  |     u = 0; | ||
|  |     for (i = 0; i < min; i++) { | ||
|  |       /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */ | ||
|  |       *tmpc = *tmpa++ + *tmpb++ + u; | ||
|  | 
 | ||
|  |       /* U = carry bit of T[i] */ | ||
|  |       u = *tmpc >> ((mp_digit)DIGIT_BIT); | ||
|  | 
 | ||
|  |       /* take away carry bit from T[i] */ | ||
|  |       *tmpc++ &= MP_MASK; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* now copy higher words if any, that is in A+B 
 | ||
|  |      * if A or B has more digits add those in  | ||
|  |      */ | ||
|  |     if (min != max) { | ||
|  |       for (; i < max; i++) { | ||
|  |         /* T[i] = X[i] + U */ | ||
|  |         *tmpc = x->dp[i] + u; | ||
|  | 
 | ||
|  |         /* U = carry bit of T[i] */ | ||
|  |         u = *tmpc >> ((mp_digit)DIGIT_BIT); | ||
|  | 
 | ||
|  |         /* take away carry bit from T[i] */ | ||
|  |         *tmpc++ &= MP_MASK; | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     /* add carry */ | ||
|  |     *tmpc++ = u; | ||
|  | 
 | ||
|  |     /* clear digits above oldused */ | ||
|  |     for (i = c->used; i < olduse; i++) { | ||
|  |       *tmpc++ = 0; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   mp_clamp (c); | ||
|  |   return MP_OKAY; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | s_mp_sub (mp_int * a, mp_int * b, mp_int * c) | ||
|  | { | ||
|  |   int     olduse, res, min, max; | ||
|  | 
 | ||
|  |   /* find sizes */ | ||
|  |   min = b->used; | ||
|  |   max = a->used; | ||
|  | 
 | ||
|  |   /* init result */ | ||
|  |   if (c->alloc < max) { | ||
|  |     if ((res = mp_grow (c, max)) != MP_OKAY) { | ||
|  |       return res; | ||
|  |     } | ||
|  |   } | ||
|  |   olduse = c->used; | ||
|  |   c->used = max; | ||
|  | 
 | ||
|  |   { | ||
|  |     register mp_digit u, *tmpa, *tmpb, *tmpc; | ||
|  |     register int i; | ||
|  | 
 | ||
|  |     /* alias for digit pointers */ | ||
|  |     tmpa = a->dp; | ||
|  |     tmpb = b->dp; | ||
|  |     tmpc = c->dp; | ||
|  | 
 | ||
|  |     /* set carry to zero */ | ||
|  |     u = 0; | ||
|  |     for (i = 0; i < min; i++) { | ||
|  |       /* T[i] = A[i] - B[i] - U */ | ||
|  |       *tmpc = *tmpa++ - *tmpb++ - u; | ||
|  | 
 | ||
|  |       /* U = carry bit of T[i]
 | ||
|  |        * Note this saves performing an AND operation since | ||
|  |        * if a carry does occur it will propagate all the way to the | ||
|  |        * MSB.  As a result a single shift is enough to get the carry | ||
|  |        */ | ||
|  |       u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); | ||
|  | 
 | ||
|  |       /* Clear carry from T[i] */ | ||
|  |       *tmpc++ &= MP_MASK; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* now copy higher words if any, e.g. if A has more digits than B  */ | ||
|  |     for (; i < max; i++) { | ||
|  |       /* T[i] = A[i] - U */ | ||
|  |       *tmpc = *tmpa++ - u; | ||
|  | 
 | ||
|  |       /* U = carry bit of T[i] */ | ||
|  |       u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); | ||
|  | 
 | ||
|  |       /* Clear carry from T[i] */ | ||
|  |       *tmpc++ &= MP_MASK; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* clear digits above used (since we may not have grown result above) */ | ||
|  |     for (i = c->used; i < olduse; i++) { | ||
|  |       *tmpc++ = 0; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   mp_clamp (c); | ||
|  |   return MP_OKAY; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* init a new mp_int */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_init (mp_int * a) | ||
|  | { | ||
|  |   int i; | ||
|  | 
 | ||
|  |   /* allocate memory required and clear it */ | ||
|  |   a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC); | ||
|  |   if (a->dp == NULL) { | ||
|  |     return MP_MEM; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* set the digits to zero */ | ||
|  |   for (i = 0; i < MP_PREC; i++) { | ||
|  |       a->dp[i] = 0; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* set the used to zero, allocated digits to the default precision
 | ||
|  |    * and sign to positive */ | ||
|  |   a->used  = 0; | ||
|  |   a->alloc = MP_PREC; | ||
|  |   a->sign  = MP_ZPOS; | ||
|  | 
 | ||
|  |   return MP_OKAY; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* clear one (frees)  */ | ||
|  | static void ICACHE_FLASH_ATTR | ||
|  | mp_clear (mp_int * a) | ||
|  | { | ||
|  |   int i; | ||
|  | 
 | ||
|  |   /* only do anything if a hasn't been freed previously */ | ||
|  |   if (a->dp != NULL) { | ||
|  |     /* first zero the digits */ | ||
|  |     for (i = 0; i < a->used; i++) { | ||
|  |         a->dp[i] = 0; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* free ram */ | ||
|  |     XFREE(a->dp); | ||
|  | 
 | ||
|  |     /* reset members to make debugging easier */ | ||
|  |     a->dp    = NULL; | ||
|  |     a->alloc = a->used = 0; | ||
|  |     a->sign  = MP_ZPOS; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* high level addition (handles signs) */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_add (mp_int * a, mp_int * b, mp_int * c) | ||
|  | { | ||
|  |   int     sa, sb, res; | ||
|  | 
 | ||
|  |   /* get sign of both inputs */ | ||
|  |   sa = a->sign; | ||
|  |   sb = b->sign; | ||
|  | 
 | ||
|  |   /* handle two cases, not four */ | ||
|  |   if (sa == sb) { | ||
|  |     /* both positive or both negative */ | ||
|  |     /* add their magnitudes, copy the sign */ | ||
|  |     c->sign = sa; | ||
|  |     res = s_mp_add (a, b, c); | ||
|  |   } else { | ||
|  |     /* one positive, the other negative */ | ||
|  |     /* subtract the one with the greater magnitude from */ | ||
|  |     /* the one of the lesser magnitude.  The result gets */ | ||
|  |     /* the sign of the one with the greater magnitude. */ | ||
|  |     if (mp_cmp_mag (a, b) == MP_LT) { | ||
|  |       c->sign = sb; | ||
|  |       res = s_mp_sub (b, a, c); | ||
|  |     } else { | ||
|  |       c->sign = sa; | ||
|  |       res = s_mp_sub (a, b, c); | ||
|  |     } | ||
|  |   } | ||
|  |   return res; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* high level subtraction (handles signs) */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_sub (mp_int * a, mp_int * b, mp_int * c) | ||
|  | { | ||
|  |   int     sa, sb, res; | ||
|  | 
 | ||
|  |   sa = a->sign; | ||
|  |   sb = b->sign; | ||
|  | 
 | ||
|  |   if (sa != sb) { | ||
|  |     /* subtract a negative from a positive, OR */ | ||
|  |     /* subtract a positive from a negative. */ | ||
|  |     /* In either case, ADD their magnitudes, */ | ||
|  |     /* and use the sign of the first number. */ | ||
|  |     c->sign = sa; | ||
|  |     res = s_mp_add (a, b, c); | ||
|  |   } else { | ||
|  |     /* subtract a positive from a positive, OR */ | ||
|  |     /* subtract a negative from a negative. */ | ||
|  |     /* First, take the difference between their */ | ||
|  |     /* magnitudes, then... */ | ||
|  |     if (mp_cmp_mag (a, b) != MP_LT) { | ||
|  |       /* Copy the sign from the first */ | ||
|  |       c->sign = sa; | ||
|  |       /* The first has a larger or equal magnitude */ | ||
|  |       res = s_mp_sub (a, b, c); | ||
|  |     } else { | ||
|  |       /* The result has the *opposite* sign from */ | ||
|  |       /* the first number. */ | ||
|  |       c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS; | ||
|  |       /* The second has a larger magnitude */ | ||
|  |       res = s_mp_sub (b, a, c); | ||
|  |     } | ||
|  |   } | ||
|  |   return res; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* high level multiplication (handles sign) */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_mul (mp_int * a, mp_int * b, mp_int * c) | ||
|  | { | ||
|  |   int     res, neg; | ||
|  |   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; | ||
|  | 
 | ||
|  |   /* use Toom-Cook? */ | ||
|  | #ifdef BN_MP_TOOM_MUL_C
 | ||
|  |   if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) { | ||
|  |     res = mp_toom_mul(a, b, c); | ||
|  |   } else  | ||
|  | #endif
 | ||
|  | #ifdef BN_MP_KARATSUBA_MUL_C
 | ||
|  |   /* use Karatsuba? */ | ||
|  |   if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) { | ||
|  |     res = mp_karatsuba_mul (a, b, c); | ||
|  |   } else  | ||
|  | #endif
 | ||
|  |   { | ||
|  |     /* can we use the fast multiplier?
 | ||
|  |      * | ||
|  |      * The fast multiplier can be used if the output will  | ||
|  |      * have less than MP_WARRAY digits and the number of  | ||
|  |      * digits won't affect carry propagation | ||
|  |      */ | ||
|  | #ifdef BN_FAST_S_MP_MUL_DIGS_C
 | ||
|  |     int     digs = a->used + b->used + 1; | ||
|  | 
 | ||
|  |     if ((digs < MP_WARRAY) && | ||
|  |         MIN(a->used, b->used) <=  | ||
|  |         (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { | ||
|  |       res = fast_s_mp_mul_digs (a, b, c, digs); | ||
|  |     } else  | ||
|  | #endif
 | ||
|  | #ifdef BN_S_MP_MUL_DIGS_C
 | ||
|  |       res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */ | ||
|  | #else
 | ||
|  | #error mp_mul could fail
 | ||
|  |       res = MP_VAL; | ||
|  | #endif
 | ||
|  | 
 | ||
|  |   } | ||
|  |   c->sign = (c->used > 0) ? neg : MP_ZPOS; | ||
|  |   return res; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* d = a * b (mod c) */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d) | ||
|  | { | ||
|  |   int     res; | ||
|  |   mp_int  t; | ||
|  | 
 | ||
|  |   if ((res = mp_init (&t)) != MP_OKAY) { | ||
|  |     return res; | ||
|  |   } | ||
|  | 
 | ||
|  |   if ((res = mp_mul (a, b, &t)) != MP_OKAY) { | ||
|  |     mp_clear (&t); | ||
|  |     return res; | ||
|  |   } | ||
|  |   res = mp_mod (&t, c, d); | ||
|  |   mp_clear (&t); | ||
|  |   return res; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* c = a mod b, 0 <= c < b */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_mod (mp_int * a, mp_int * b, mp_int * c) | ||
|  | { | ||
|  |   mp_int  t; | ||
|  |   int     res; | ||
|  | 
 | ||
|  |   if ((res = mp_init (&t)) != MP_OKAY) { | ||
|  |     return res; | ||
|  |   } | ||
|  | 
 | ||
|  |   if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) { | ||
|  |     mp_clear (&t); | ||
|  |     return res; | ||
|  |   } | ||
|  | 
 | ||
|  |   if (t.sign != b->sign) { | ||
|  |     res = mp_add (b, &t, c); | ||
|  |   } else { | ||
|  |     res = MP_OKAY; | ||
|  |     mp_exch (&t, c); | ||
|  |   } | ||
|  | 
 | ||
|  |   mp_clear (&t); | ||
|  |   return res; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* this is a shell function that calls either the normal or Montgomery
 | ||
|  |  * exptmod functions.  Originally the call to the montgomery code was | ||
|  |  * embedded in the normal function but that wasted a lot of stack space | ||
|  |  * for nothing (since 99% of the time the Montgomery code would be called) | ||
|  |  */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) | ||
|  | { | ||
|  |   int dr; | ||
|  | 
 | ||
|  |   /* modulus P must be positive */ | ||
|  |   if (P->sign == MP_NEG) { | ||
|  |      return MP_VAL; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* if exponent X is negative we have to recurse */ | ||
|  |   if (X->sign == MP_NEG) { | ||
|  | #ifdef LTM_NO_NEG_EXP
 | ||
|  |         return MP_VAL; | ||
|  | #else /* LTM_NO_NEG_EXP */
 | ||
|  | #ifdef BN_MP_INVMOD_C
 | ||
|  |      mp_int tmpG, tmpX; | ||
|  |      int err; | ||
|  | 
 | ||
|  |      /* first compute 1/G mod P */ | ||
|  |      if ((err = mp_init(&tmpG)) != MP_OKAY) { | ||
|  |         return err; | ||
|  |      } | ||
|  |      if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { | ||
|  |         mp_clear(&tmpG); | ||
|  |         return err; | ||
|  |      } | ||
|  | 
 | ||
|  |      /* now get |X| */ | ||
|  |      if ((err = mp_init(&tmpX)) != MP_OKAY) { | ||
|  |         mp_clear(&tmpG); | ||
|  |         return err; | ||
|  |      } | ||
|  |      if ((err = mp_abs(X, &tmpX)) != MP_OKAY) { | ||
|  |         mp_clear_multi(&tmpG, &tmpX, NULL); | ||
|  |         return err; | ||
|  |      } | ||
|  | 
 | ||
|  |      /* and now compute (1/G)**|X| instead of G**X [X < 0] */ | ||
|  |      err = mp_exptmod(&tmpG, &tmpX, P, Y); | ||
|  |      mp_clear_multi(&tmpG, &tmpX, NULL); | ||
|  |      return err; | ||
|  | #else 
 | ||
|  | #error mp_exptmod would always fail
 | ||
|  |      /* no invmod */ | ||
|  |      return MP_VAL; | ||
|  | #endif
 | ||
|  | #endif /* LTM_NO_NEG_EXP */
 | ||
|  |   } | ||
|  | 
 | ||
|  | /* modified diminished radix reduction */ | ||
|  | #if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
 | ||
|  |   if (mp_reduce_is_2k_l(P) == MP_YES) { | ||
|  |      return s_mp_exptmod(G, X, P, Y, 1); | ||
|  |   } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifdef BN_MP_DR_IS_MODULUS_C
 | ||
|  |   /* is it a DR modulus? */ | ||
|  |   dr = mp_dr_is_modulus(P); | ||
|  | #else
 | ||
|  |   /* default to no */ | ||
|  |   dr = 0; | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifdef BN_MP_REDUCE_IS_2K_C
 | ||
|  |   /* if not, is it a unrestricted DR modulus? */ | ||
|  |   if (dr == 0) { | ||
|  |      dr = mp_reduce_is_2k(P) << 1; | ||
|  |   } | ||
|  | #endif
 | ||
|  |      | ||
|  |   /* if the modulus is odd or dr != 0 use the montgomery method */ | ||
|  | #ifdef BN_MP_EXPTMOD_FAST_C
 | ||
|  |   if (mp_isodd (P) == 1 || dr !=  0) { | ||
|  |     return mp_exptmod_fast (G, X, P, Y, dr); | ||
|  |   } else { | ||
|  | #endif
 | ||
|  | #ifdef BN_S_MP_EXPTMOD_C
 | ||
|  |     /* otherwise use the generic Barrett reduction technique */ | ||
|  |     return s_mp_exptmod (G, X, P, Y, 0); | ||
|  | #else
 | ||
|  | #error mp_exptmod could fail
 | ||
|  |     /* no exptmod for evens */ | ||
|  |     return MP_VAL; | ||
|  | #endif
 | ||
|  | #ifdef BN_MP_EXPTMOD_FAST_C
 | ||
|  |   } | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* compare two ints (signed)*/ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_cmp (mp_int * a, mp_int * b) | ||
|  | { | ||
|  |   /* compare based on sign */ | ||
|  |   if (a->sign != b->sign) { | ||
|  |      if (a->sign == MP_NEG) { | ||
|  |         return MP_LT; | ||
|  |      } else { | ||
|  |         return MP_GT; | ||
|  |      } | ||
|  |   } | ||
|  |    | ||
|  |   /* compare digits */ | ||
|  |   if (a->sign == MP_NEG) { | ||
|  |      /* if negative compare opposite direction */ | ||
|  |      return mp_cmp_mag(b, a); | ||
|  |   } else { | ||
|  |      return mp_cmp_mag(a, b); | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* compare a digit */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_cmp_d(mp_int * a, mp_digit b) | ||
|  | { | ||
|  |   /* compare based on sign */ | ||
|  |   if (a->sign == MP_NEG) { | ||
|  |     return MP_LT; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* compare based on magnitude */ | ||
|  |   if (a->used > 1) { | ||
|  |     return MP_GT; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* compare the only digit of a to b */ | ||
|  |   if (a->dp[0] > b) { | ||
|  |     return MP_GT; | ||
|  |   } else if (a->dp[0] < b) { | ||
|  |     return MP_LT; | ||
|  |   } else { | ||
|  |     return MP_EQ; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | #ifndef LTM_NO_NEG_EXP
 | ||
|  | /* hac 14.61, pp608 */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_invmod (mp_int * a, mp_int * b, mp_int * c) | ||
|  | { | ||
|  |   /* b cannot be negative */ | ||
|  |   if (b->sign == MP_NEG || mp_iszero(b) == 1) { | ||
|  |     return MP_VAL; | ||
|  |   } | ||
|  | 
 | ||
|  | #ifdef BN_FAST_MP_INVMOD_C
 | ||
|  |   /* if the modulus is odd we can use a faster routine instead */ | ||
|  |   if (mp_isodd (b) == 1) { | ||
|  |     return fast_mp_invmod (a, b, c); | ||
|  |   } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifdef BN_MP_INVMOD_SLOW_C
 | ||
|  |   return mp_invmod_slow(a, b, c); | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifndef BN_FAST_MP_INVMOD_C
 | ||
|  | #ifndef BN_MP_INVMOD_SLOW_C
 | ||
|  | #error mp_invmod would always fail
 | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  |   return MP_VAL; | ||
|  | } | ||
|  | #endif /* LTM_NO_NEG_EXP */
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* get the size for an unsigned equivalent */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_unsigned_bin_size (mp_int * a) | ||
|  | { | ||
|  |   int     size = mp_count_bits (a); | ||
|  |   return (size / 8 + ((size & 7) != 0 ? 1 : 0)); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | #ifndef LTM_NO_NEG_EXP
 | ||
|  | /* hac 14.61, pp608 */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c) | ||
|  | { | ||
|  |   mp_int  x, y, u, v, A, B, C, D; | ||
|  |   int     res; | ||
|  | 
 | ||
|  |   /* b cannot be negative */ | ||
|  |   if (b->sign == MP_NEG || mp_iszero(b) == 1) { | ||
|  |     return MP_VAL; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* init temps */ | ||
|  |   if ((res = mp_init_multi(&x, &y, &u, &v,  | ||
|  |                            &A, &B, &C, &D, NULL)) != MP_OKAY) { | ||
|  |      return res; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* x = a, y = b */ | ||
|  |   if ((res = mp_mod(a, b, &x)) != MP_OKAY) { | ||
|  |       goto LBL_ERR; | ||
|  |   } | ||
|  |   if ((res = mp_copy (b, &y)) != MP_OKAY) { | ||
|  |     goto LBL_ERR; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* 2. [modified] if x,y are both even then return an error! */ | ||
|  |   if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) { | ||
|  |     res = MP_VAL; | ||
|  |     goto LBL_ERR; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ | ||
|  |   if ((res = mp_copy (&x, &u)) != MP_OKAY) { | ||
|  |     goto LBL_ERR; | ||
|  |   } | ||
|  |   if ((res = mp_copy (&y, &v)) != MP_OKAY) { | ||
|  |     goto LBL_ERR; | ||
|  |   } | ||
|  |   mp_set (&A, 1); | ||
|  |   mp_set (&D, 1); | ||
|  | 
 | ||
|  | top: | ||
|  |   /* 4.  while u is even do */ | ||
|  |   while (mp_iseven (&u) == 1) { | ||
|  |     /* 4.1 u = u/2 */ | ||
|  |     if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { | ||
|  |       goto LBL_ERR; | ||
|  |     } | ||
|  |     /* 4.2 if A or B is odd then */ | ||
|  |     if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) { | ||
|  |       /* A = (A+y)/2, B = (B-x)/2 */ | ||
|  |       if ((res = mp_add (&A, &y, &A)) != MP_OKAY) { | ||
|  |          goto LBL_ERR; | ||
|  |       } | ||
|  |       if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { | ||
|  |          goto LBL_ERR; | ||
|  |       } | ||
|  |     } | ||
|  |     /* A = A/2, B = B/2 */ | ||
|  |     if ((res = mp_div_2 (&A, &A)) != MP_OKAY) { | ||
|  |       goto LBL_ERR; | ||
|  |     } | ||
|  |     if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { | ||
|  |       goto LBL_ERR; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* 5.  while v is even do */ | ||
|  |   while (mp_iseven (&v) == 1) { | ||
|  |     /* 5.1 v = v/2 */ | ||
|  |     if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { | ||
|  |       goto LBL_ERR; | ||
|  |     } | ||
|  |     /* 5.2 if C or D is odd then */ | ||
|  |     if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) { | ||
|  |       /* C = (C+y)/2, D = (D-x)/2 */ | ||
|  |       if ((res = mp_add (&C, &y, &C)) != MP_OKAY) { | ||
|  |          goto LBL_ERR; | ||
|  |       } | ||
|  |       if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { | ||
|  |          goto LBL_ERR; | ||
|  |       } | ||
|  |     } | ||
|  |     /* C = C/2, D = D/2 */ | ||
|  |     if ((res = mp_div_2 (&C, &C)) != MP_OKAY) { | ||
|  |       goto LBL_ERR; | ||
|  |     } | ||
|  |     if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { | ||
|  |       goto LBL_ERR; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* 6.  if u >= v then */ | ||
|  |   if (mp_cmp (&u, &v) != MP_LT) { | ||
|  |     /* u = u - v, A = A - C, B = B - D */ | ||
|  |     if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { | ||
|  |       goto LBL_ERR; | ||
|  |     } | ||
|  | 
 | ||
|  |     if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) { | ||
|  |       goto LBL_ERR; | ||
|  |     } | ||
|  | 
 | ||
|  |     if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { | ||
|  |       goto LBL_ERR; | ||
|  |     } | ||
|  |   } else { | ||
|  |     /* v - v - u, C = C - A, D = D - B */ | ||
|  |     if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { | ||
|  |       goto LBL_ERR; | ||
|  |     } | ||
|  | 
 | ||
|  |     if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) { | ||
|  |       goto LBL_ERR; | ||
|  |     } | ||
|  | 
 | ||
|  |     if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { | ||
|  |       goto LBL_ERR; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* if not zero goto step 4 */ | ||
|  |   if (mp_iszero (&u) == 0) | ||
|  |     goto top; | ||
|  | 
 | ||
|  |   /* now a = C, b = D, gcd == g*v */ | ||
|  | 
 | ||
|  |   /* if v != 1 then there is no inverse */ | ||
|  |   if (mp_cmp_d (&v, 1) != MP_EQ) { | ||
|  |     res = MP_VAL; | ||
|  |     goto LBL_ERR; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* if its too low */ | ||
|  |   while (mp_cmp_d(&C, 0) == MP_LT) { | ||
|  |       if ((res = mp_add(&C, b, &C)) != MP_OKAY) { | ||
|  |          goto LBL_ERR; | ||
|  |       } | ||
|  |   } | ||
|  |    | ||
|  |   /* too big */ | ||
|  |   while (mp_cmp_mag(&C, b) != MP_LT) { | ||
|  |       if ((res = mp_sub(&C, b, &C)) != MP_OKAY) { | ||
|  |          goto LBL_ERR; | ||
|  |       } | ||
|  |   } | ||
|  |    | ||
|  |   /* C is now the inverse */ | ||
|  |   mp_exch (&C, c); | ||
|  |   res = MP_OKAY; | ||
|  | LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL); | ||
|  |   return res; | ||
|  | } | ||
|  | #endif /* LTM_NO_NEG_EXP */
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* compare maginitude of two ints (unsigned) */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_cmp_mag (mp_int * a, mp_int * b) | ||
|  | { | ||
|  |   int     n; | ||
|  |   mp_digit *tmpa, *tmpb; | ||
|  | 
 | ||
|  |   /* compare based on # of non-zero digits */ | ||
|  |   if (a->used > b->used) { | ||
|  |     return MP_GT; | ||
|  |   } | ||
|  |    | ||
|  |   if (a->used < b->used) { | ||
|  |     return MP_LT; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* alias for a */ | ||
|  |   tmpa = a->dp + (a->used - 1); | ||
|  | 
 | ||
|  |   /* alias for b */ | ||
|  |   tmpb = b->dp + (a->used - 1); | ||
|  | 
 | ||
|  |   /* compare based on digits  */ | ||
|  |   for (n = 0; n < a->used; ++n, --tmpa, --tmpb) { | ||
|  |     if (*tmpa > *tmpb) { | ||
|  |       return MP_GT; | ||
|  |     } | ||
|  | 
 | ||
|  |     if (*tmpa < *tmpb) { | ||
|  |       return MP_LT; | ||
|  |     } | ||
|  |   } | ||
|  |   return MP_EQ; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* reads a unsigned char array, assumes the msb is stored first [big endian] */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c) | ||
|  | { | ||
|  |   int     res; | ||
|  | 
 | ||
|  |   /* make sure there are at least two digits */ | ||
|  |   if (a->alloc < 2) { | ||
|  |      if ((res = mp_grow(a, 2)) != MP_OKAY) { | ||
|  |         return res; | ||
|  |      } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* zero the int */ | ||
|  |   mp_zero (a); | ||
|  | 
 | ||
|  |   /* read the bytes in */ | ||
|  |   while (c-- > 0) { | ||
|  |     if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) { | ||
|  |       return res; | ||
|  |     } | ||
|  | 
 | ||
|  | #ifndef MP_8BIT
 | ||
|  |       a->dp[0] |= *b++; | ||
|  |       a->used += 1; | ||
|  | #else
 | ||
|  |       a->dp[0] = (*b & MP_MASK); | ||
|  |       a->dp[1] |= ((*b++ >> 7U) & 1); | ||
|  |       a->used += 2; | ||
|  | #endif
 | ||
|  |   } | ||
|  |   mp_clamp (a); | ||
|  |   return MP_OKAY; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* store in unsigned [big endian] format */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_to_unsigned_bin (mp_int * a, unsigned char *b) | ||
|  | { | ||
|  |   int     x, res; | ||
|  |   mp_int  t; | ||
|  | 
 | ||
|  |   if ((res = mp_init_copy (&t, a)) != MP_OKAY) { | ||
|  |     return res; | ||
|  |   } | ||
|  | 
 | ||
|  |   x = 0; | ||
|  |   while (mp_iszero (&t) == 0) { | ||
|  | #ifndef MP_8BIT
 | ||
|  |       b[x++] = (unsigned char) (t.dp[0] & 255); | ||
|  | #else
 | ||
|  |       b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7)); | ||
|  | #endif
 | ||
|  |     if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) { | ||
|  |       mp_clear (&t); | ||
|  |       return res; | ||
|  |     } | ||
|  |   } | ||
|  |   bn_reverse (b, x); | ||
|  |   mp_clear (&t); | ||
|  |   return MP_OKAY; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* shift right by a certain bit count (store quotient in c, optional remainder in d) */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d) | ||
|  | { | ||
|  |   mp_digit D, r, rr; | ||
|  |   int     x, res; | ||
|  |   mp_int  t; | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* if the shift count is <= 0 then we do no work */ | ||
|  |   if (b <= 0) { | ||
|  |     res = mp_copy (a, c); | ||
|  |     if (d != NULL) { | ||
|  |       mp_zero (d); | ||
|  |     } | ||
|  |     return res; | ||
|  |   } | ||
|  | 
 | ||
|  |   if ((res = mp_init (&t)) != MP_OKAY) { | ||
|  |     return res; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* get the remainder */ | ||
|  |   if (d != NULL) { | ||
|  |     if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) { | ||
|  |       mp_clear (&t); | ||
|  |       return res; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* copy */ | ||
|  |   if ((res = mp_copy (a, c)) != MP_OKAY) { | ||
|  |     mp_clear (&t); | ||
|  |     return res; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* shift by as many digits in the bit count */ | ||
|  |   if (b >= (int)DIGIT_BIT) { | ||
|  |     mp_rshd (c, b / DIGIT_BIT); | ||
|  |   } | ||
|  | 
 | ||
|  |   /* shift any bit count < DIGIT_BIT */ | ||
|  |   D = (mp_digit) (b % DIGIT_BIT); | ||
|  |   if (D != 0) { | ||
|  |     register mp_digit *tmpc, mask, shift; | ||
|  | 
 | ||
|  |     /* mask */ | ||
|  |     mask = (((mp_digit)1) << D) - 1; | ||
|  | 
 | ||
|  |     /* shift for lsb */ | ||
|  |     shift = DIGIT_BIT - D; | ||
|  | 
 | ||
|  |     /* alias */ | ||
|  |     tmpc = c->dp + (c->used - 1); | ||
|  | 
 | ||
|  |     /* carry */ | ||
|  |     r = 0; | ||
|  |     for (x = c->used - 1; x >= 0; x--) { | ||
|  |       /* get the lower  bits of this word in a temp */ | ||
|  |       rr = *tmpc & mask; | ||
|  | 
 | ||
|  |       /* shift the current word and mix in the carry bits from the previous word */ | ||
|  |       *tmpc = (*tmpc >> D) | (r << shift); | ||
|  |       --tmpc; | ||
|  | 
 | ||
|  |       /* set the carry to the carry bits of the current word found above */ | ||
|  |       r = rr; | ||
|  |     } | ||
|  |   } | ||
|  |   mp_clamp (c); | ||
|  |   if (d != NULL) { | ||
|  |     mp_exch (&t, d); | ||
|  |   } | ||
|  |   mp_clear (&t); | ||
|  |   return MP_OKAY; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_init_copy (mp_int * a, mp_int * b) | ||
|  | { | ||
|  |   int     res; | ||
|  | 
 | ||
|  |   if ((res = mp_init (a)) != MP_OKAY) { | ||
|  |     return res; | ||
|  |   } | ||
|  |   return mp_copy (b, a); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* set to zero */ | ||
|  | static void ICACHE_FLASH_ATTR | ||
|  | mp_zero (mp_int * a) | ||
|  | { | ||
|  |   int       n; | ||
|  |   mp_digit *tmp; | ||
|  | 
 | ||
|  |   a->sign = MP_ZPOS; | ||
|  |   a->used = 0; | ||
|  | 
 | ||
|  |   tmp = a->dp; | ||
|  |   for (n = 0; n < a->alloc; n++) { | ||
|  |      *tmp++ = 0; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* copy, b = a */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_copy (mp_int * a, mp_int * b) | ||
|  | { | ||
|  |   int     res, n; | ||
|  | 
 | ||
|  |   /* if dst == src do nothing */ | ||
|  |   if (a == b) { | ||
|  |     return MP_OKAY; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* grow dest */ | ||
|  |   if (b->alloc < a->used) { | ||
|  |      if ((res = mp_grow (b, a->used)) != MP_OKAY) { | ||
|  |         return res; | ||
|  |      } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* zero b and copy the parameters over */ | ||
|  |   { | ||
|  |     register mp_digit *tmpa, *tmpb; | ||
|  | 
 | ||
|  |     /* pointer aliases */ | ||
|  | 
 | ||
|  |     /* source */ | ||
|  |     tmpa = a->dp; | ||
|  | 
 | ||
|  |     /* destination */ | ||
|  |     tmpb = b->dp; | ||
|  | 
 | ||
|  |     /* copy all the digits */ | ||
|  |     for (n = 0; n < a->used; n++) { | ||
|  |       *tmpb++ = *tmpa++; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* clear high digits */ | ||
|  |     for (; n < b->used; n++) { | ||
|  |       *tmpb++ = 0; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* copy used count and sign */ | ||
|  |   b->used = a->used; | ||
|  |   b->sign = a->sign; | ||
|  |   return MP_OKAY; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* shift right a certain amount of digits */ | ||
|  | static void ICACHE_FLASH_ATTR | ||
|  | mp_rshd (mp_int * a, int b) | ||
|  | { | ||
|  |   int     x; | ||
|  | 
 | ||
|  |   /* if b <= 0 then ignore it */ | ||
|  |   if (b <= 0) { | ||
|  |     return; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* if b > used then simply zero it and return */ | ||
|  |   if (a->used <= b) { | ||
|  |     mp_zero (a); | ||
|  |     return; | ||
|  |   } | ||
|  | 
 | ||
|  |   { | ||
|  |     register mp_digit *bottom, *top; | ||
|  | 
 | ||
|  |     /* shift the digits down */ | ||
|  | 
 | ||
|  |     /* bottom */ | ||
|  |     bottom = a->dp; | ||
|  | 
 | ||
|  |     /* top [offset into digits] */ | ||
|  |     top = a->dp + b; | ||
|  | 
 | ||
|  |     /* this is implemented as a sliding window where 
 | ||
|  |      * the window is b-digits long and digits from  | ||
|  |      * the top of the window are copied to the bottom | ||
|  |      * | ||
|  |      * e.g. | ||
|  | 
 | ||
|  |      b-2 | b-1 | b0 | b1 | b2 | ... | bb |   ----> | ||
|  |                  /\                   |      ----> | ||
|  |                   \-------------------/      ----> | ||
|  |      */ | ||
|  |     for (x = 0; x < (a->used - b); x++) { | ||
|  |       *bottom++ = *top++; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* zero the top digits */ | ||
|  |     for (; x < a->used; x++) { | ||
|  |       *bottom++ = 0; | ||
|  |     } | ||
|  |   } | ||
|  |    | ||
|  |   /* remove excess digits */ | ||
|  |   a->used -= b; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* swap the elements of two integers, for cases where you can't simply swap the 
 | ||
|  |  * mp_int pointers around | ||
|  |  */ | ||
|  | static void ICACHE_FLASH_ATTR | ||
|  | mp_exch (mp_int * a, mp_int * b) | ||
|  | { | ||
|  |   mp_int  t; | ||
|  | 
 | ||
|  |   t  = *a; | ||
|  |   *a = *b; | ||
|  |   *b = t; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* trim unused digits 
 | ||
|  |  * | ||
|  |  * This is used to ensure that leading zero digits are | ||
|  |  * trimed and the leading "used" digit will be non-zero | ||
|  |  * Typically very fast.  Also fixes the sign if there | ||
|  |  * are no more leading digits | ||
|  |  */ | ||
|  | static void ICACHE_FLASH_ATTR | ||
|  | mp_clamp (mp_int * a) | ||
|  | { | ||
|  |   /* decrease used while the most significant digit is
 | ||
|  |    * zero. | ||
|  |    */ | ||
|  |   while (a->used > 0 && a->dp[a->used - 1] == 0) { | ||
|  |     --(a->used); | ||
|  |   } | ||
|  | 
 | ||
|  |   /* reset the sign flag if used == 0 */ | ||
|  |   if (a->used == 0) { | ||
|  |     a->sign = MP_ZPOS; | ||
|  |   } | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* grow as required */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_grow (mp_int * a, int size) | ||
|  | { | ||
|  |   int     i; | ||
|  |   mp_digit *tmp; | ||
|  | 
 | ||
|  |   /* if the alloc size is smaller alloc more ram */ | ||
|  |   if (a->alloc < size) { | ||
|  |     /* ensure there are always at least MP_PREC digits extra on top */ | ||
|  |     size += (MP_PREC * 2) - (size % MP_PREC); | ||
|  | 
 | ||
|  |     /* reallocate the array a->dp
 | ||
|  |      * | ||
|  |      * We store the return in a temporary variable | ||
|  |      * in case the operation failed we don't want | ||
|  |      * to overwrite the dp member of a. | ||
|  |      */ | ||
|  |     tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size); | ||
|  |     if (tmp == NULL) { | ||
|  |       /* reallocation failed but "a" is still valid [can be freed] */ | ||
|  |       return MP_MEM; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* reallocation succeeded so set a->dp */ | ||
|  |     a->dp = tmp; | ||
|  | 
 | ||
|  |     /* zero excess digits */ | ||
|  |     i        = a->alloc; | ||
|  |     a->alloc = size; | ||
|  |     for (; i < a->alloc; i++) { | ||
|  |       a->dp[i] = 0; | ||
|  |     } | ||
|  |   } | ||
|  |   return MP_OKAY; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | #ifdef BN_MP_ABS_C
 | ||
|  | /* b = |a| 
 | ||
|  |  * | ||
|  |  * Simple function copies the input and fixes the sign to positive | ||
|  |  */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_abs (mp_int * a, mp_int * b) | ||
|  | { | ||
|  |   int     res; | ||
|  | 
 | ||
|  |   /* copy a to b */ | ||
|  |   if (a != b) { | ||
|  |      if ((res = mp_copy (a, b)) != MP_OKAY) { | ||
|  |        return res; | ||
|  |      } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* force the sign of b to positive */ | ||
|  |   b->sign = MP_ZPOS; | ||
|  | 
 | ||
|  |   return MP_OKAY; | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* set to a digit */ | ||
|  | static void ICACHE_FLASH_ATTR | ||
|  | mp_set (mp_int * a, mp_digit b) | ||
|  | { | ||
|  |   mp_zero (a); | ||
|  |   a->dp[0] = b & MP_MASK; | ||
|  |   a->used  = (a->dp[0] != 0) ? 1 : 0; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | #ifndef LTM_NO_NEG_EXP
 | ||
|  | /* b = a/2 */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_div_2(mp_int * a, mp_int * b) | ||
|  | { | ||
|  |   int     x, res, oldused; | ||
|  | 
 | ||
|  |   /* copy */ | ||
|  |   if (b->alloc < a->used) { | ||
|  |     if ((res = mp_grow (b, a->used)) != MP_OKAY) { | ||
|  |       return res; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   oldused = b->used; | ||
|  |   b->used = a->used; | ||
|  |   { | ||
|  |     register mp_digit r, rr, *tmpa, *tmpb; | ||
|  | 
 | ||
|  |     /* source alias */ | ||
|  |     tmpa = a->dp + b->used - 1; | ||
|  | 
 | ||
|  |     /* dest alias */ | ||
|  |     tmpb = b->dp + b->used - 1; | ||
|  | 
 | ||
|  |     /* carry */ | ||
|  |     r = 0; | ||
|  |     for (x = b->used - 1; x >= 0; x--) { | ||
|  |       /* get the carry for the next iteration */ | ||
|  |       rr = *tmpa & 1; | ||
|  | 
 | ||
|  |       /* shift the current digit, add in carry and store */ | ||
|  |       *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1)); | ||
|  | 
 | ||
|  |       /* forward carry to next iteration */ | ||
|  |       r = rr; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* zero excess digits */ | ||
|  |     tmpb = b->dp + b->used; | ||
|  |     for (x = b->used; x < oldused; x++) { | ||
|  |       *tmpb++ = 0; | ||
|  |     } | ||
|  |   } | ||
|  |   b->sign = a->sign; | ||
|  |   mp_clamp (b); | ||
|  |   return MP_OKAY; | ||
|  | } | ||
|  | #endif /* LTM_NO_NEG_EXP */
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* shift left by a certain bit count */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_mul_2d (mp_int * a, int b, mp_int * c) | ||
|  | { | ||
|  |   mp_digit d; | ||
|  |   int      res; | ||
|  | 
 | ||
|  |   /* copy */ | ||
|  |   if (a != c) { | ||
|  |      if ((res = mp_copy (a, c)) != MP_OKAY) { | ||
|  |        return res; | ||
|  |      } | ||
|  |   } | ||
|  | 
 | ||
|  |   if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) { | ||
|  |      if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) { | ||
|  |        return res; | ||
|  |      } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* shift by as many digits in the bit count */ | ||
|  |   if (b >= (int)DIGIT_BIT) { | ||
|  |     if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) { | ||
|  |       return res; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* shift any bit count < DIGIT_BIT */ | ||
|  |   d = (mp_digit) (b % DIGIT_BIT); | ||
|  |   if (d != 0) { | ||
|  |     register mp_digit *tmpc, shift, mask, r, rr; | ||
|  |     register int x; | ||
|  | 
 | ||
|  |     /* bitmask for carries */ | ||
|  |     mask = (((mp_digit)1) << d) - 1; | ||
|  | 
 | ||
|  |     /* shift for msbs */ | ||
|  |     shift = DIGIT_BIT - d; | ||
|  | 
 | ||
|  |     /* alias */ | ||
|  |     tmpc = c->dp; | ||
|  | 
 | ||
|  |     /* carry */ | ||
|  |     r    = 0; | ||
|  |     for (x = 0; x < c->used; x++) { | ||
|  |       /* get the higher bits of the current word */ | ||
|  |       rr = (*tmpc >> shift) & mask; | ||
|  | 
 | ||
|  |       /* shift the current word and OR in the carry */ | ||
|  |       *tmpc = ((*tmpc << d) | r) & MP_MASK; | ||
|  |       ++tmpc; | ||
|  | 
 | ||
|  |       /* set the carry to the carry bits of the current word */ | ||
|  |       r = rr; | ||
|  |     } | ||
|  |      | ||
|  |     /* set final carry */ | ||
|  |     if (r != 0) { | ||
|  |        c->dp[(c->used)++] = r; | ||
|  |     } | ||
|  |   } | ||
|  |   mp_clamp (c); | ||
|  |   return MP_OKAY; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | #ifdef BN_MP_INIT_MULTI_C
 | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_init_multi(mp_int *mp, ...)  | ||
|  | { | ||
|  |     mp_err res = MP_OKAY;      /* Assume ok until proven otherwise */ | ||
|  |     int n = 0;                 /* Number of ok inits */ | ||
|  |     mp_int* cur_arg = mp; | ||
|  |     va_list args; | ||
|  | 
 | ||
|  |     va_start(args, mp);        /* init args to next argument from caller */ | ||
|  |     while (cur_arg != NULL) { | ||
|  |         if (mp_init(cur_arg) != MP_OKAY) { | ||
|  |             /* Oops - error! Back-track and mp_clear what we already
 | ||
|  |                succeeded in init-ing, then return error. | ||
|  |             */ | ||
|  |             va_list clean_args; | ||
|  |              | ||
|  |             /* end the current list */ | ||
|  |             va_end(args); | ||
|  |              | ||
|  |             /* now start cleaning up */             | ||
|  |             cur_arg = mp; | ||
|  |             va_start(clean_args, mp); | ||
|  |             while (n--) { | ||
|  |                 mp_clear(cur_arg); | ||
|  |                 cur_arg = va_arg(clean_args, mp_int*); | ||
|  |             } | ||
|  |             va_end(clean_args); | ||
|  |             res = MP_MEM; | ||
|  |             break; | ||
|  |         } | ||
|  |         n++; | ||
|  |         cur_arg = va_arg(args, mp_int*); | ||
|  |     } | ||
|  |     va_end(args); | ||
|  |     return res;                /* Assumed ok, if error flagged above. */ | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #ifdef BN_MP_CLEAR_MULTI_C
 | ||
|  | static void ICACHE_FLASH_ATTR | ||
|  | mp_clear_multi(mp_int *mp, ...)  | ||
|  | { | ||
|  |     mp_int* next_mp = mp; | ||
|  |     va_list args; | ||
|  |     va_start(args, mp); | ||
|  |     while (next_mp != NULL) { | ||
|  |         mp_clear(next_mp); | ||
|  |         next_mp = va_arg(args, mp_int*); | ||
|  |     } | ||
|  |     va_end(args); | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /* shift left a certain amount of digits */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_lshd (mp_int * a, int b) | ||
|  | { | ||
|  |   int     x, res; | ||
|  | 
 | ||
|  |   /* if its less than zero return */ | ||
|  |   if (b <= 0) { | ||
|  |     return MP_OKAY; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* grow to fit the new digits */ | ||
|  |   if (a->alloc < a->used + b) { | ||
|  |      if ((res = mp_grow (a, a->used + b)) != MP_OKAY) { | ||
|  |        return res; | ||
|  |      } | ||
|  |   } | ||
|  | 
 | ||
|  |   { | ||
|  |     register mp_digit *top, *bottom; | ||
|  | 
 | ||
|  |     /* increment the used by the shift amount then copy upwards */ | ||
|  |     a->used += b; | ||
|  | 
 | ||
|  |     /* top */ | ||
|  |     top = a->dp + a->used - 1; | ||
|  | 
 | ||
|  |     /* base */ | ||
|  |     bottom = a->dp + a->used - 1 - b; | ||
|  | 
 | ||
|  |     /* much like mp_rshd this is implemented using a sliding window
 | ||
|  |      * except the window goes the otherway around.  Copying from | ||
|  |      * the bottom to the top.  see bn_mp_rshd.c for more info. | ||
|  |      */ | ||
|  |     for (x = a->used - 1; x >= b; x--) { | ||
|  |       *top-- = *bottom--; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* zero the lower digits */ | ||
|  |     top = a->dp; | ||
|  |     for (x = 0; x < b; x++) { | ||
|  |       *top++ = 0; | ||
|  |     } | ||
|  |   } | ||
|  |   return MP_OKAY; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* returns the number of bits in an int */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_count_bits (mp_int * a) | ||
|  | { | ||
|  |   int     r; | ||
|  |   mp_digit q; | ||
|  | 
 | ||
|  |   /* shortcut */ | ||
|  |   if (a->used == 0) { | ||
|  |     return 0; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* get number of digits and add that */ | ||
|  |   r = (a->used - 1) * DIGIT_BIT; | ||
|  |    | ||
|  |   /* take the last digit and count the bits in it */ | ||
|  |   q = a->dp[a->used - 1]; | ||
|  |   while (q > ((mp_digit) 0)) { | ||
|  |     ++r; | ||
|  |     q >>= ((mp_digit) 1); | ||
|  |   } | ||
|  |   return r; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* calc a value mod 2**b */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_mod_2d (mp_int * a, int b, mp_int * c) | ||
|  | { | ||
|  |   int     x, res; | ||
|  | 
 | ||
|  |   /* if b is <= 0 then zero the int */ | ||
|  |   if (b <= 0) { | ||
|  |     mp_zero (c); | ||
|  |     return MP_OKAY; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* if the modulus is larger than the value than return */ | ||
|  |   if (b >= (int) (a->used * DIGIT_BIT)) { | ||
|  |     res = mp_copy (a, c); | ||
|  |     return res; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* copy */ | ||
|  |   if ((res = mp_copy (a, c)) != MP_OKAY) { | ||
|  |     return res; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* zero digits above the last digit of the modulus */ | ||
|  |   for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) { | ||
|  |     c->dp[x] = 0; | ||
|  |   } | ||
|  |   /* clear the digit that is not completely outside/inside the modulus */ | ||
|  |   c->dp[b / DIGIT_BIT] &= | ||
|  |     (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1)); | ||
|  |   mp_clamp (c); | ||
|  |   return MP_OKAY; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | #ifdef BN_MP_DIV_SMALL
 | ||
|  | 
 | ||
|  | /* slower bit-bang division... also smaller */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d) | ||
|  | { | ||
|  |    mp_int ta, tb, tq, q; | ||
|  |    int    res, n, n2; | ||
|  | 
 | ||
|  |   /* is divisor zero ? */ | ||
|  |   if (mp_iszero (b) == 1) { | ||
|  |     return MP_VAL; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* if a < b then q=0, r = a */ | ||
|  |   if (mp_cmp_mag (a, b) == MP_LT) { | ||
|  |     if (d != NULL) { | ||
|  |       res = mp_copy (a, d); | ||
|  |     } else { | ||
|  |       res = MP_OKAY; | ||
|  |     } | ||
|  |     if (c != NULL) { | ||
|  |       mp_zero (c); | ||
|  |     } | ||
|  |     return res; | ||
|  |   } | ||
|  | 	 | ||
|  |   /* init our temps */ | ||
|  |   if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) { | ||
|  |      return res; | ||
|  |   } | ||
|  | 
 | ||
|  | 
 | ||
|  |   mp_set(&tq, 1); | ||
|  |   n = mp_count_bits(a) - mp_count_bits(b); | ||
|  |   if (((res = mp_abs(a, &ta)) != MP_OKAY) || | ||
|  |       ((res = mp_abs(b, &tb)) != MP_OKAY) ||  | ||
|  |       ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) || | ||
|  |       ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) { | ||
|  |       goto LBL_ERR; | ||
|  |   } | ||
|  | 
 | ||
|  |   while (n-- >= 0) { | ||
|  |      if (mp_cmp(&tb, &ta) != MP_GT) { | ||
|  |         if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) || | ||
|  |             ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) { | ||
|  |            goto LBL_ERR; | ||
|  |         } | ||
|  |      } | ||
|  |      if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) || | ||
|  |          ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) { | ||
|  |            goto LBL_ERR; | ||
|  |      } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* now q == quotient and ta == remainder */ | ||
|  |   n  = a->sign; | ||
|  |   n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG); | ||
|  |   if (c != NULL) { | ||
|  |      mp_exch(c, &q); | ||
|  |      c->sign  = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2; | ||
|  |   } | ||
|  |   if (d != NULL) { | ||
|  |      mp_exch(d, &ta); | ||
|  |      d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n; | ||
|  |   } | ||
|  | LBL_ERR: | ||
|  |    mp_clear_multi(&ta, &tb, &tq, &q, NULL); | ||
|  |    return res; | ||
|  | } | ||
|  | 
 | ||
|  | #else
 | ||
|  | 
 | ||
|  | /* integer signed division. 
 | ||
|  |  * c*b + d == a [e.g. a/b, c=quotient, d=remainder] | ||
|  |  * HAC pp.598 Algorithm 14.20 | ||
|  |  * | ||
|  |  * Note that the description in HAC is horribly  | ||
|  |  * incomplete.  For example, it doesn't consider  | ||
|  |  * the case where digits are removed from 'x' in  | ||
|  |  * the inner loop.  It also doesn't consider the  | ||
|  |  * case that y has fewer than three digits, etc.. | ||
|  |  * | ||
|  |  * The overall algorithm is as described as  | ||
|  |  * 14.20 from HAC but fixed to treat these cases. | ||
|  | */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d) | ||
|  | { | ||
|  |   mp_int  q, x, y, t1, t2; | ||
|  |   int     res, n, t, i, norm, neg; | ||
|  | 
 | ||
|  |   /* is divisor zero ? */ | ||
|  |   if (mp_iszero (b) == 1) { | ||
|  |     return MP_VAL; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* if a < b then q=0, r = a */ | ||
|  |   if (mp_cmp_mag (a, b) == MP_LT) { | ||
|  |     if (d != NULL) { | ||
|  |       res = mp_copy (a, d); | ||
|  |     } else { | ||
|  |       res = MP_OKAY; | ||
|  |     } | ||
|  |     if (c != NULL) { | ||
|  |       mp_zero (c); | ||
|  |     } | ||
|  |     return res; | ||
|  |   } | ||
|  | 
 | ||
|  |   if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) { | ||
|  |     return res; | ||
|  |   } | ||
|  |   q.used = a->used + 2; | ||
|  | 
 | ||
|  |   if ((res = mp_init (&t1)) != MP_OKAY) { | ||
|  |     goto LBL_Q; | ||
|  |   } | ||
|  | 
 | ||
|  |   if ((res = mp_init (&t2)) != MP_OKAY) { | ||
|  |     goto LBL_T1; | ||
|  |   } | ||
|  | 
 | ||
|  |   if ((res = mp_init_copy (&x, a)) != MP_OKAY) { | ||
|  |     goto LBL_T2; | ||
|  |   } | ||
|  | 
 | ||
|  |   if ((res = mp_init_copy (&y, b)) != MP_OKAY) { | ||
|  |     goto LBL_X; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* fix the sign */ | ||
|  |   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; | ||
|  |   x.sign = y.sign = MP_ZPOS; | ||
|  | 
 | ||
|  |   /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */ | ||
|  |   norm = mp_count_bits(&y) % DIGIT_BIT; | ||
|  |   if (norm < (int)(DIGIT_BIT-1)) { | ||
|  |      norm = (DIGIT_BIT-1) - norm; | ||
|  |      if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) { | ||
|  |        goto LBL_Y; | ||
|  |      } | ||
|  |      if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) { | ||
|  |        goto LBL_Y; | ||
|  |      } | ||
|  |   } else { | ||
|  |      norm = 0; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */ | ||
|  |   n = x.used - 1; | ||
|  |   t = y.used - 1; | ||
|  | 
 | ||
|  |   /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */ | ||
|  |   if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */ | ||
|  |     goto LBL_Y; | ||
|  |   } | ||
|  | 
 | ||
|  |   while (mp_cmp (&x, &y) != MP_LT) { | ||
|  |     ++(q.dp[n - t]); | ||
|  |     if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) { | ||
|  |       goto LBL_Y; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* reset y by shifting it back down */ | ||
|  |   mp_rshd (&y, n - t); | ||
|  | 
 | ||
|  |   /* step 3. for i from n down to (t + 1) */ | ||
|  |   for (i = n; i >= (t + 1); i--) { | ||
|  |     if (i > x.used) { | ||
|  |       continue; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* step 3.1 if xi == yt then set q{i-t-1} to b-1, 
 | ||
|  |      * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ | ||
|  |     if (x.dp[i] == y.dp[t]) { | ||
|  |       q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1); | ||
|  |     } else { | ||
|  |       mp_word tmp; | ||
|  |       tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT); | ||
|  |       tmp |= ((mp_word) x.dp[i - 1]); | ||
|  |       tmp /= ((mp_word) y.dp[t]); | ||
|  |       if (tmp > (mp_word) MP_MASK) | ||
|  |         tmp = MP_MASK; | ||
|  |       q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK)); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* while (q{i-t-1} * (yt * b + y{t-1})) > 
 | ||
|  |              xi * b**2 + xi-1 * b + xi-2  | ||
|  |       | ||
|  |        do q{i-t-1} -= 1;  | ||
|  |     */ | ||
|  |     q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK; | ||
|  |     do { | ||
|  |       q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK; | ||
|  | 
 | ||
|  |       /* find left hand */ | ||
|  |       mp_zero (&t1); | ||
|  |       t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1]; | ||
|  |       t1.dp[1] = y.dp[t]; | ||
|  |       t1.used = 2; | ||
|  |       if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) { | ||
|  |         goto LBL_Y; | ||
|  |       } | ||
|  | 
 | ||
|  |       /* find right hand */ | ||
|  |       t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2]; | ||
|  |       t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1]; | ||
|  |       t2.dp[2] = x.dp[i]; | ||
|  |       t2.used = 3; | ||
|  |     } while (mp_cmp_mag(&t1, &t2) == MP_GT); | ||
|  | 
 | ||
|  |     /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ | ||
|  |     if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) { | ||
|  |       goto LBL_Y; | ||
|  |     } | ||
|  | 
 | ||
|  |     if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { | ||
|  |       goto LBL_Y; | ||
|  |     } | ||
|  | 
 | ||
|  |     if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) { | ||
|  |       goto LBL_Y; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */ | ||
|  |     if (x.sign == MP_NEG) { | ||
|  |       if ((res = mp_copy (&y, &t1)) != MP_OKAY) { | ||
|  |         goto LBL_Y; | ||
|  |       } | ||
|  |       if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { | ||
|  |         goto LBL_Y; | ||
|  |       } | ||
|  |       if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) { | ||
|  |         goto LBL_Y; | ||
|  |       } | ||
|  | 
 | ||
|  |       q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* now q is the quotient and x is the remainder 
 | ||
|  |    * [which we have to normalize]  | ||
|  |    */ | ||
|  |    | ||
|  |   /* get sign before writing to c */ | ||
|  |   x.sign = x.used == 0 ? MP_ZPOS : a->sign; | ||
|  | 
 | ||
|  |   if (c != NULL) { | ||
|  |     mp_clamp (&q); | ||
|  |     mp_exch (&q, c); | ||
|  |     c->sign = neg; | ||
|  |   } | ||
|  | 
 | ||
|  |   if (d != NULL) { | ||
|  |     mp_div_2d (&x, norm, &x, NULL); | ||
|  |     mp_exch (&x, d); | ||
|  |   } | ||
|  | 
 | ||
|  |   res = MP_OKAY; | ||
|  | 
 | ||
|  | LBL_Y:mp_clear (&y); | ||
|  | LBL_X:mp_clear (&x); | ||
|  | LBL_T2:mp_clear (&t2); | ||
|  | LBL_T1:mp_clear (&t1); | ||
|  | LBL_Q:mp_clear (&q); | ||
|  |   return res; | ||
|  | } | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #ifdef MP_LOW_MEM
 | ||
|  |    #define TAB_SIZE 32
 | ||
|  | #else
 | ||
|  |    #define TAB_SIZE 256
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) | ||
|  | { | ||
|  |   mp_int  M[TAB_SIZE], res, mu; | ||
|  |   mp_digit buf; | ||
|  |   int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; | ||
|  |   int (*redux)(mp_int*,mp_int*,mp_int*); | ||
|  | 
 | ||
|  |   /* find window size */ | ||
|  |   x = mp_count_bits (X); | ||
|  |   if (x <= 7) { | ||
|  |     winsize = 2; | ||
|  |   } else if (x <= 36) { | ||
|  |     winsize = 3; | ||
|  |   } else if (x <= 140) { | ||
|  |     winsize = 4; | ||
|  |   } else if (x <= 450) { | ||
|  |     winsize = 5; | ||
|  |   } else if (x <= 1303) { | ||
|  |     winsize = 6; | ||
|  |   } else if (x <= 3529) { | ||
|  |     winsize = 7; | ||
|  |   } else { | ||
|  |     winsize = 8; | ||
|  |   } | ||
|  | 
 | ||
|  | #ifdef MP_LOW_MEM
 | ||
|  |     if (winsize > 5) { | ||
|  |        winsize = 5; | ||
|  |     } | ||
|  | #endif
 | ||
|  | 
 | ||
|  |   /* init M array */ | ||
|  |   /* init first cell */ | ||
|  |   if ((err = mp_init(&M[1])) != MP_OKAY) { | ||
|  |      return err;  | ||
|  |   } | ||
|  | 
 | ||
|  |   /* now init the second half of the array */ | ||
|  |   for (x = 1<<(winsize-1); x < (1 << winsize); x++) { | ||
|  |     if ((err = mp_init(&M[x])) != MP_OKAY) { | ||
|  |       for (y = 1<<(winsize-1); y < x; y++) { | ||
|  |         mp_clear (&M[y]); | ||
|  |       } | ||
|  |       mp_clear(&M[1]); | ||
|  |       return err; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* create mu, used for Barrett reduction */ | ||
|  |   if ((err = mp_init (&mu)) != MP_OKAY) { | ||
|  |     goto LBL_M; | ||
|  |   } | ||
|  |    | ||
|  |   if (redmode == 0) { | ||
|  |      if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) { | ||
|  |         goto LBL_MU; | ||
|  |      } | ||
|  |      redux = mp_reduce; | ||
|  |   } else { | ||
|  |      if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) { | ||
|  |         goto LBL_MU; | ||
|  |      } | ||
|  |      redux = mp_reduce_2k_l; | ||
|  |   }     | ||
|  | 
 | ||
|  |   /* create M table
 | ||
|  |    * | ||
|  |    * The M table contains powers of the base,  | ||
|  |    * e.g. M[x] = G**x mod P | ||
|  |    * | ||
|  |    * The first half of the table is not  | ||
|  |    * computed though accept for M[0] and M[1] | ||
|  |    */ | ||
|  |   if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) { | ||
|  |     goto LBL_MU; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* compute the value at M[1<<(winsize-1)] by squaring 
 | ||
|  |    * M[1] (winsize-1) times  | ||
|  |    */ | ||
|  |   if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { | ||
|  |     goto LBL_MU; | ||
|  |   } | ||
|  | 
 | ||
|  |   for (x = 0; x < (winsize - 1); x++) { | ||
|  |     /* square it */ | ||
|  |     if ((err = mp_sqr (&M[1 << (winsize - 1)],  | ||
|  |                        &M[1 << (winsize - 1)])) != MP_OKAY) { | ||
|  |       goto LBL_MU; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* reduce modulo P */ | ||
|  |     if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) { | ||
|  |       goto LBL_MU; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
 | ||
|  |    * for x = (2**(winsize - 1) + 1) to (2**winsize - 1) | ||
|  |    */ | ||
|  |   for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { | ||
|  |     if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { | ||
|  |       goto LBL_MU; | ||
|  |     } | ||
|  |     if ((err = redux (&M[x], P, &mu)) != MP_OKAY) { | ||
|  |       goto LBL_MU; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* setup result */ | ||
|  |   if ((err = mp_init (&res)) != MP_OKAY) { | ||
|  |     goto LBL_MU; | ||
|  |   } | ||
|  |   mp_set (&res, 1); | ||
|  | 
 | ||
|  |   /* set initial mode and bit cnt */ | ||
|  |   mode   = 0; | ||
|  |   bitcnt = 1; | ||
|  |   buf    = 0; | ||
|  |   digidx = X->used - 1; | ||
|  |   bitcpy = 0; | ||
|  |   bitbuf = 0; | ||
|  | 
 | ||
|  |   for (;;) { | ||
|  |     /* grab next digit as required */ | ||
|  |     if (--bitcnt == 0) { | ||
|  |       /* if digidx == -1 we are out of digits */ | ||
|  |       if (digidx == -1) { | ||
|  |         break; | ||
|  |       } | ||
|  |       /* read next digit and reset the bitcnt */ | ||
|  |       buf    = X->dp[digidx--]; | ||
|  |       bitcnt = (int) DIGIT_BIT; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* grab the next msb from the exponent */ | ||
|  |     y     = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1; | ||
|  |     buf <<= (mp_digit)1; | ||
|  | 
 | ||
|  |     /* if the bit is zero and mode == 0 then we ignore it
 | ||
|  |      * These represent the leading zero bits before the first 1 bit | ||
|  |      * in the exponent.  Technically this opt is not required but it | ||
|  |      * does lower the # of trivial squaring/reductions used | ||
|  |      */ | ||
|  |     if (mode == 0 && y == 0) { | ||
|  |       continue; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* if the bit is zero and mode == 1 then we square */ | ||
|  |     if (mode == 1 && y == 0) { | ||
|  |       if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | ||
|  |         goto LBL_RES; | ||
|  |       } | ||
|  |       if ((err = redux (&res, P, &mu)) != MP_OKAY) { | ||
|  |         goto LBL_RES; | ||
|  |       } | ||
|  |       continue; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* else we add it to the window */ | ||
|  |     bitbuf |= (y << (winsize - ++bitcpy)); | ||
|  |     mode    = 2; | ||
|  | 
 | ||
|  |     if (bitcpy == winsize) { | ||
|  |       /* ok window is filled so square as required and multiply  */ | ||
|  |       /* square first */ | ||
|  |       for (x = 0; x < winsize; x++) { | ||
|  |         if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | ||
|  |           goto LBL_RES; | ||
|  |         } | ||
|  |         if ((err = redux (&res, P, &mu)) != MP_OKAY) { | ||
|  |           goto LBL_RES; | ||
|  |         } | ||
|  |       } | ||
|  | 
 | ||
|  |       /* then multiply */ | ||
|  |       if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { | ||
|  |         goto LBL_RES; | ||
|  |       } | ||
|  |       if ((err = redux (&res, P, &mu)) != MP_OKAY) { | ||
|  |         goto LBL_RES; | ||
|  |       } | ||
|  | 
 | ||
|  |       /* empty window and reset */ | ||
|  |       bitcpy = 0; | ||
|  |       bitbuf = 0; | ||
|  |       mode   = 1; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* if bits remain then square/multiply */ | ||
|  |   if (mode == 2 && bitcpy > 0) { | ||
|  |     /* square then multiply if the bit is set */ | ||
|  |     for (x = 0; x < bitcpy; x++) { | ||
|  |       if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | ||
|  |         goto LBL_RES; | ||
|  |       } | ||
|  |       if ((err = redux (&res, P, &mu)) != MP_OKAY) { | ||
|  |         goto LBL_RES; | ||
|  |       } | ||
|  | 
 | ||
|  |       bitbuf <<= 1; | ||
|  |       if ((bitbuf & (1 << winsize)) != 0) { | ||
|  |         /* then multiply */ | ||
|  |         if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { | ||
|  |           goto LBL_RES; | ||
|  |         } | ||
|  |         if ((err = redux (&res, P, &mu)) != MP_OKAY) { | ||
|  |           goto LBL_RES; | ||
|  |         } | ||
|  |       } | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   mp_exch (&res, Y); | ||
|  |   err = MP_OKAY; | ||
|  | LBL_RES:mp_clear (&res); | ||
|  | LBL_MU:mp_clear (&mu); | ||
|  | LBL_M: | ||
|  |   mp_clear(&M[1]); | ||
|  |   for (x = 1<<(winsize-1); x < (1 << winsize); x++) { | ||
|  |     mp_clear (&M[x]); | ||
|  |   } | ||
|  |   return err; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* computes b = a*a */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_sqr (mp_int * a, mp_int * b) | ||
|  | { | ||
|  |   int     res; | ||
|  | 
 | ||
|  | #ifdef BN_MP_TOOM_SQR_C
 | ||
|  |   /* use Toom-Cook? */ | ||
|  |   if (a->used >= TOOM_SQR_CUTOFF) { | ||
|  |     res = mp_toom_sqr(a, b); | ||
|  |   /* Karatsuba? */ | ||
|  |   } else  | ||
|  | #endif
 | ||
|  | #ifdef BN_MP_KARATSUBA_SQR_C
 | ||
|  | if (a->used >= KARATSUBA_SQR_CUTOFF) { | ||
|  |     res = mp_karatsuba_sqr (a, b); | ||
|  |   } else  | ||
|  | #endif
 | ||
|  |   { | ||
|  | #ifdef BN_FAST_S_MP_SQR_C
 | ||
|  |     /* can we use the fast comba multiplier? */ | ||
|  |     if ((a->used * 2 + 1) < MP_WARRAY &&  | ||
|  |          a->used <  | ||
|  |          (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) { | ||
|  |       res = fast_s_mp_sqr (a, b); | ||
|  |     } else | ||
|  | #endif
 | ||
|  | #ifdef BN_S_MP_SQR_C
 | ||
|  |       res = s_mp_sqr (a, b); | ||
|  | #else
 | ||
|  | #error mp_sqr could fail
 | ||
|  |       res = MP_VAL; | ||
|  | #endif
 | ||
|  |   } | ||
|  |   b->sign = MP_ZPOS; | ||
|  |   return res; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* reduces a modulo n where n is of the form 2**p - d 
 | ||
|  |    This differs from reduce_2k since "d" can be larger | ||
|  |    than a single digit. | ||
|  | */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d) | ||
|  | { | ||
|  |    mp_int q; | ||
|  |    int    p, res; | ||
|  |     | ||
|  |    if ((res = mp_init(&q)) != MP_OKAY) { | ||
|  |       return res; | ||
|  |    } | ||
|  |     | ||
|  |    p = mp_count_bits(n);     | ||
|  | top: | ||
|  |    /* q = a/2**p, a = a mod 2**p */ | ||
|  |    if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) { | ||
|  |       goto ERR; | ||
|  |    } | ||
|  |     | ||
|  |    /* q = q * d */ | ||
|  |    if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {  | ||
|  |       goto ERR; | ||
|  |    } | ||
|  |     | ||
|  |    /* a = a + q */ | ||
|  |    if ((res = s_mp_add(a, &q, a)) != MP_OKAY) { | ||
|  |       goto ERR; | ||
|  |    } | ||
|  |     | ||
|  |    if (mp_cmp_mag(a, n) != MP_LT) { | ||
|  |       s_mp_sub(a, n, a); | ||
|  |       goto top; | ||
|  |    } | ||
|  |     | ||
|  | ERR: | ||
|  |    mp_clear(&q); | ||
|  |    return res; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* determines the setup value */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_reduce_2k_setup_l(mp_int *a, mp_int *d) | ||
|  | { | ||
|  |    int    res; | ||
|  |    mp_int tmp; | ||
|  |     | ||
|  |    if ((res = mp_init(&tmp)) != MP_OKAY) { | ||
|  |       return res; | ||
|  |    } | ||
|  |     | ||
|  |    if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) { | ||
|  |       goto ERR; | ||
|  |    } | ||
|  |     | ||
|  |    if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) { | ||
|  |       goto ERR; | ||
|  |    } | ||
|  |     | ||
|  | ERR: | ||
|  |    mp_clear(&tmp); | ||
|  |    return res; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* computes a = 2**b 
 | ||
|  |  * | ||
|  |  * Simple algorithm which zeroes the int, grows it then just sets one bit | ||
|  |  * as required. | ||
|  |  */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_2expt (mp_int * a, int b) | ||
|  | { | ||
|  |   int     res; | ||
|  | 
 | ||
|  |   /* zero a as per default */ | ||
|  |   mp_zero (a); | ||
|  | 
 | ||
|  |   /* grow a to accommodate the single bit */ | ||
|  |   if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) { | ||
|  |     return res; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* set the used count of where the bit will go */ | ||
|  |   a->used = b / DIGIT_BIT + 1; | ||
|  | 
 | ||
|  |   /* put the single bit in its place */ | ||
|  |   a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT); | ||
|  | 
 | ||
|  |   return MP_OKAY; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* pre-calculate the value required for Barrett reduction
 | ||
|  |  * For a given modulus "b" it calulates the value required in "a" | ||
|  |  */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_reduce_setup (mp_int * a, mp_int * b) | ||
|  | { | ||
|  |   int     res; | ||
|  |    | ||
|  |   if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) { | ||
|  |     return res; | ||
|  |   } | ||
|  |   return mp_div (a, b, a, NULL); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* reduces x mod m, assumes 0 < x < m**2, mu is 
 | ||
|  |  * precomputed via mp_reduce_setup. | ||
|  |  * From HAC pp.604 Algorithm 14.42 | ||
|  |  */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_reduce (mp_int * x, mp_int * m, mp_int * mu) | ||
|  | { | ||
|  |   mp_int  q; | ||
|  |   int     res, um = m->used; | ||
|  | 
 | ||
|  |   /* q = x */ | ||
|  |   if ((res = mp_init_copy (&q, x)) != MP_OKAY) { | ||
|  |     return res; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* q1 = x / b**(k-1)  */ | ||
|  |   mp_rshd (&q, um - 1);          | ||
|  | 
 | ||
|  |   /* according to HAC this optimization is ok */ | ||
|  |   if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) { | ||
|  |     if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) { | ||
|  |       goto CLEANUP; | ||
|  |     } | ||
|  |   } else { | ||
|  | #ifdef BN_S_MP_MUL_HIGH_DIGS_C
 | ||
|  |     if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) { | ||
|  |       goto CLEANUP; | ||
|  |     } | ||
|  | #elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
 | ||
|  |     if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) { | ||
|  |       goto CLEANUP; | ||
|  |     } | ||
|  | #else 
 | ||
|  |     {  | ||
|  | #error mp_reduce would always fail
 | ||
|  |       res = MP_VAL; | ||
|  |       goto CLEANUP; | ||
|  |     } | ||
|  | #endif
 | ||
|  |   } | ||
|  | 
 | ||
|  |   /* q3 = q2 / b**(k+1) */ | ||
|  |   mp_rshd (&q, um + 1);          | ||
|  | 
 | ||
|  |   /* x = x mod b**(k+1), quick (no division) */ | ||
|  |   if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) { | ||
|  |     goto CLEANUP; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* q = q * m mod b**(k+1), quick (no division) */ | ||
|  |   if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) { | ||
|  |     goto CLEANUP; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* x = x - q */ | ||
|  |   if ((res = mp_sub (x, &q, x)) != MP_OKAY) { | ||
|  |     goto CLEANUP; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* If x < 0, add b**(k+1) to it */ | ||
|  |   if (mp_cmp_d (x, 0) == MP_LT) { | ||
|  |     mp_set (&q, 1); | ||
|  |     if ((res = mp_lshd (&q, um + 1)) != MP_OKAY) { | ||
|  |       goto CLEANUP; | ||
|  |     } | ||
|  |     if ((res = mp_add (x, &q, x)) != MP_OKAY) { | ||
|  |       goto CLEANUP; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* Back off if it's too big */ | ||
|  |   while (mp_cmp (x, m) != MP_LT) { | ||
|  |     if ((res = s_mp_sub (x, m, x)) != MP_OKAY) { | ||
|  |       goto CLEANUP; | ||
|  |     } | ||
|  |   } | ||
|  |    | ||
|  | CLEANUP: | ||
|  |   mp_clear (&q); | ||
|  | 
 | ||
|  |   return res; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* multiplies |a| * |b| and only computes up to digs digits of result
 | ||
|  |  * HAC pp. 595, Algorithm 14.12  Modified so you can control how  | ||
|  |  * many digits of output are created. | ||
|  |  */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) | ||
|  | { | ||
|  |   mp_int  t; | ||
|  |   int     res, pa, pb, ix, iy; | ||
|  |   mp_digit u; | ||
|  |   mp_word r; | ||
|  |   mp_digit tmpx, *tmpt, *tmpy; | ||
|  | 
 | ||
|  |   /* can we use the fast multiplier? */ | ||
|  |   if (((digs) < MP_WARRAY) && | ||
|  |       MIN (a->used, b->used) <  | ||
|  |           (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { | ||
|  |     return fast_s_mp_mul_digs (a, b, c, digs); | ||
|  |   } | ||
|  | 
 | ||
|  |   if ((res = mp_init_size (&t, digs)) != MP_OKAY) { | ||
|  |     return res; | ||
|  |   } | ||
|  |   t.used = digs; | ||
|  | 
 | ||
|  |   /* compute the digits of the product directly */ | ||
|  |   pa = a->used; | ||
|  |   for (ix = 0; ix < pa; ix++) { | ||
|  |     /* set the carry to zero */ | ||
|  |     u = 0; | ||
|  | 
 | ||
|  |     /* limit ourselves to making digs digits of output */ | ||
|  |     pb = MIN (b->used, digs - ix); | ||
|  | 
 | ||
|  |     /* setup some aliases */ | ||
|  |     /* copy of the digit from a used within the nested loop */ | ||
|  |     tmpx = a->dp[ix]; | ||
|  |      | ||
|  |     /* an alias for the destination shifted ix places */ | ||
|  |     tmpt = t.dp + ix; | ||
|  |      | ||
|  |     /* an alias for the digits of b */ | ||
|  |     tmpy = b->dp; | ||
|  | 
 | ||
|  |     /* compute the columns of the output and propagate the carry */ | ||
|  |     for (iy = 0; iy < pb; iy++) { | ||
|  |       /* compute the column as a mp_word */ | ||
|  |       r       = ((mp_word)*tmpt) + | ||
|  |                 ((mp_word)tmpx) * ((mp_word)*tmpy++) + | ||
|  |                 ((mp_word) u); | ||
|  | 
 | ||
|  |       /* the new column is the lower part of the result */ | ||
|  |       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); | ||
|  | 
 | ||
|  |       /* get the carry word from the result */ | ||
|  |       u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); | ||
|  |     } | ||
|  |     /* set carry if it is placed below digs */ | ||
|  |     if (ix + iy < digs) { | ||
|  |       *tmpt = u; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   mp_clamp (&t); | ||
|  |   mp_exch (&t, c); | ||
|  | 
 | ||
|  |   mp_clear (&t); | ||
|  |   return MP_OKAY; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* Fast (comba) multiplier
 | ||
|  |  * | ||
|  |  * This is the fast column-array [comba] multiplier.  It is  | ||
|  |  * designed to compute the columns of the product first  | ||
|  |  * then handle the carries afterwards.  This has the effect  | ||
|  |  * of making the nested loops that compute the columns very | ||
|  |  * simple and schedulable on super-scalar processors. | ||
|  |  * | ||
|  |  * This has been modified to produce a variable number of  | ||
|  |  * digits of output so if say only a half-product is required  | ||
|  |  * you don't have to compute the upper half (a feature  | ||
|  |  * required for fast Barrett reduction). | ||
|  |  * | ||
|  |  * Based on Algorithm 14.12 on pp.595 of HAC. | ||
|  |  * | ||
|  |  */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) | ||
|  | { | ||
|  |   int     olduse, res, pa, ix, iz; | ||
|  |   mp_digit W[MP_WARRAY]; | ||
|  |   register mp_word  _W; | ||
|  | 
 | ||
|  |   /* grow the destination as required */ | ||
|  |   if (c->alloc < digs) { | ||
|  |     if ((res = mp_grow (c, digs)) != MP_OKAY) { | ||
|  |       return res; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* number of output digits to produce */ | ||
|  |   pa = MIN(digs, a->used + b->used); | ||
|  | 
 | ||
|  |   /* clear the carry */ | ||
|  |   _W = 0; | ||
|  |   for (ix = 0; ix < pa; ix++) {  | ||
|  |       int      tx, ty; | ||
|  |       int      iy; | ||
|  |       mp_digit *tmpx, *tmpy; | ||
|  | 
 | ||
|  |       /* get offsets into the two bignums */ | ||
|  |       ty = MIN(b->used-1, ix); | ||
|  |       tx = ix - ty; | ||
|  | 
 | ||
|  |       /* setup temp aliases */ | ||
|  |       tmpx = a->dp + tx; | ||
|  |       tmpy = b->dp + ty; | ||
|  | 
 | ||
|  |       /* this is the number of times the loop will iterrate, essentially 
 | ||
|  |          while (tx++ < a->used && ty-- >= 0) { ... } | ||
|  |        */ | ||
|  |       iy = MIN(a->used-tx, ty+1); | ||
|  | 
 | ||
|  |       /* execute loop */ | ||
|  |       for (iz = 0; iz < iy; ++iz) { | ||
|  |          _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--); | ||
|  | 
 | ||
|  |       } | ||
|  | 
 | ||
|  |       /* store term */ | ||
|  |       W[ix] = ((mp_digit)_W) & MP_MASK; | ||
|  | 
 | ||
|  |       /* make next carry */ | ||
|  |       _W = _W >> ((mp_word)DIGIT_BIT); | ||
|  |  } | ||
|  | 
 | ||
|  |   /* setup dest */ | ||
|  |   olduse  = c->used; | ||
|  |   c->used = pa; | ||
|  | 
 | ||
|  |   { | ||
|  |     register mp_digit *tmpc; | ||
|  |     tmpc = c->dp; | ||
|  |     for (ix = 0; ix < pa+1; ix++) { | ||
|  |       /* now extract the previous digit [below the carry] */ | ||
|  |       *tmpc++ = W[ix]; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* clear unused digits [that existed in the old copy of c] */ | ||
|  |     for (; ix < olduse; ix++) { | ||
|  |       *tmpc++ = 0; | ||
|  |     } | ||
|  |   } | ||
|  |   mp_clamp (c); | ||
|  |   return MP_OKAY; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* init an mp_init for a given size */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_init_size (mp_int * a, int size) | ||
|  | { | ||
|  |   int x; | ||
|  | 
 | ||
|  |   /* pad size so there are always extra digits */ | ||
|  |   size += (MP_PREC * 2) - (size % MP_PREC);	 | ||
|  |    | ||
|  |   /* alloc mem */ | ||
|  |   a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size); | ||
|  |   if (a->dp == NULL) { | ||
|  |     return MP_MEM; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* set the members */ | ||
|  |   a->used  = 0; | ||
|  |   a->alloc = size; | ||
|  |   a->sign  = MP_ZPOS; | ||
|  | 
 | ||
|  |   /* zero the digits */ | ||
|  |   for (x = 0; x < size; x++) { | ||
|  |       a->dp[x] = 0; | ||
|  |   } | ||
|  | 
 | ||
|  |   return MP_OKAY; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | s_mp_sqr (mp_int * a, mp_int * b) | ||
|  | { | ||
|  |   mp_int  t; | ||
|  |   int     res, ix, iy, pa; | ||
|  |   mp_word r; | ||
|  |   mp_digit u, tmpx, *tmpt; | ||
|  | 
 | ||
|  |   pa = a->used; | ||
|  |   if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) { | ||
|  |     return res; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* default used is maximum possible size */ | ||
|  |   t.used = 2*pa + 1; | ||
|  | 
 | ||
|  |   for (ix = 0; ix < pa; ix++) { | ||
|  |     /* first calculate the digit at 2*ix */ | ||
|  |     /* calculate double precision result */ | ||
|  |     r = ((mp_word) t.dp[2*ix]) + | ||
|  |         ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]); | ||
|  | 
 | ||
|  |     /* store lower part in result */ | ||
|  |     t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK)); | ||
|  | 
 | ||
|  |     /* get the carry */ | ||
|  |     u           = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); | ||
|  | 
 | ||
|  |     /* left hand side of A[ix] * A[iy] */ | ||
|  |     tmpx        = a->dp[ix]; | ||
|  | 
 | ||
|  |     /* alias for where to store the results */ | ||
|  |     tmpt        = t.dp + (2*ix + 1); | ||
|  |      | ||
|  |     for (iy = ix + 1; iy < pa; iy++) { | ||
|  |       /* first calculate the product */ | ||
|  |       r       = ((mp_word)tmpx) * ((mp_word)a->dp[iy]); | ||
|  | 
 | ||
|  |       /* now calculate the double precision result, note we use
 | ||
|  |        * addition instead of *2 since it's easier to optimize | ||
|  |        */ | ||
|  |       r       = ((mp_word) *tmpt) + r + r + ((mp_word) u); | ||
|  | 
 | ||
|  |       /* store lower part */ | ||
|  |       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); | ||
|  | 
 | ||
|  |       /* get carry */ | ||
|  |       u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); | ||
|  |     } | ||
|  |     /* propagate upwards */ | ||
|  |     while (u != ((mp_digit) 0)) { | ||
|  |       r       = ((mp_word) *tmpt) + ((mp_word) u); | ||
|  |       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); | ||
|  |       u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   mp_clamp (&t); | ||
|  |   mp_exch (&t, b); | ||
|  |   mp_clear (&t); | ||
|  |   return MP_OKAY; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | /* multiplies |a| * |b| and does not compute the lower digs digits
 | ||
|  |  * [meant to get the higher part of the product] | ||
|  |  */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) | ||
|  | { | ||
|  |   mp_int  t; | ||
|  |   int     res, pa, pb, ix, iy; | ||
|  |   mp_digit u; | ||
|  |   mp_word r; | ||
|  |   mp_digit tmpx, *tmpt, *tmpy; | ||
|  | 
 | ||
|  |   /* can we use the fast multiplier? */ | ||
|  | #ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
 | ||
|  |   if (((a->used + b->used + 1) < MP_WARRAY) | ||
|  |       && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { | ||
|  |     return fast_s_mp_mul_high_digs (a, b, c, digs); | ||
|  |   } | ||
|  | #endif
 | ||
|  | 
 | ||
|  |   if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) { | ||
|  |     return res; | ||
|  |   } | ||
|  |   t.used = a->used + b->used + 1; | ||
|  | 
 | ||
|  |   pa = a->used; | ||
|  |   pb = b->used; | ||
|  |   for (ix = 0; ix < pa; ix++) { | ||
|  |     /* clear the carry */ | ||
|  |     u = 0; | ||
|  | 
 | ||
|  |     /* left hand side of A[ix] * B[iy] */ | ||
|  |     tmpx = a->dp[ix]; | ||
|  | 
 | ||
|  |     /* alias to the address of where the digits will be stored */ | ||
|  |     tmpt = &(t.dp[digs]); | ||
|  | 
 | ||
|  |     /* alias for where to read the right hand side from */ | ||
|  |     tmpy = b->dp + (digs - ix); | ||
|  | 
 | ||
|  |     for (iy = digs - ix; iy < pb; iy++) { | ||
|  |       /* calculate the double precision result */ | ||
|  |       r       = ((mp_word)*tmpt) + | ||
|  |                 ((mp_word)tmpx) * ((mp_word)*tmpy++) + | ||
|  |                 ((mp_word) u); | ||
|  | 
 | ||
|  |       /* get the lower part */ | ||
|  |       *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); | ||
|  | 
 | ||
|  |       /* carry the carry */ | ||
|  |       u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); | ||
|  |     } | ||
|  |     *tmpt = u; | ||
|  |   } | ||
|  |   mp_clamp (&t); | ||
|  |   mp_exch (&t, c); | ||
|  |   mp_clear (&t); | ||
|  |   return MP_OKAY; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | #ifdef BN_MP_MONTGOMERY_SETUP_C
 | ||
|  | /* setups the montgomery reduction stuff */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_montgomery_setup (mp_int * n, mp_digit * rho) | ||
|  | { | ||
|  |   mp_digit x, b; | ||
|  | 
 | ||
|  | /* fast inversion mod 2**k
 | ||
|  |  * | ||
|  |  * Based on the fact that | ||
|  |  * | ||
|  |  * XA = 1 (mod 2**n)  =>  (X(2-XA)) A = 1 (mod 2**2n) | ||
|  |  *                    =>  2*X*A - X*X*A*A = 1 | ||
|  |  *                    =>  2*(1) - (1)     = 1 | ||
|  |  */ | ||
|  |   b = n->dp[0]; | ||
|  | 
 | ||
|  |   if ((b & 1) == 0) { | ||
|  |     return MP_VAL; | ||
|  |   } | ||
|  | 
 | ||
|  |   x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */ | ||
|  |   x *= 2 - b * x;               /* here x*a==1 mod 2**8 */ | ||
|  | #if !defined(MP_8BIT)
 | ||
|  |   x *= 2 - b * x;               /* here x*a==1 mod 2**16 */ | ||
|  | #endif
 | ||
|  | #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
 | ||
|  |   x *= 2 - b * x;               /* here x*a==1 mod 2**32 */ | ||
|  | #endif
 | ||
|  | #ifdef MP_64BIT
 | ||
|  |   x *= 2 - b * x;               /* here x*a==1 mod 2**64 */ | ||
|  | #endif
 | ||
|  | 
 | ||
|  |   /* rho = -1/m mod b */ | ||
|  |   *rho = (unsigned long)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK; | ||
|  | 
 | ||
|  |   return MP_OKAY; | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
 | ||
|  | /* computes xR**-1 == x (mod N) via Montgomery Reduction
 | ||
|  |  * | ||
|  |  * This is an optimized implementation of montgomery_reduce | ||
|  |  * which uses the comba method to quickly calculate the columns of the | ||
|  |  * reduction. | ||
|  |  * | ||
|  |  * Based on Algorithm 14.32 on pp.601 of HAC. | ||
|  | */ | ||
|  | int ICACHE_FLASH_ATTR | ||
|  | fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) | ||
|  | { | ||
|  |   int     ix, res, olduse; | ||
|  |   mp_word W[MP_WARRAY]; | ||
|  | 
 | ||
|  |   /* get old used count */ | ||
|  |   olduse = x->used; | ||
|  | 
 | ||
|  |   /* grow a as required */ | ||
|  |   if (x->alloc < n->used + 1) { | ||
|  |     if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) { | ||
|  |       return res; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* first we have to get the digits of the input into
 | ||
|  |    * an array of double precision words W[...] | ||
|  |    */ | ||
|  |   { | ||
|  |     register mp_word *_W; | ||
|  |     register mp_digit *tmpx; | ||
|  | 
 | ||
|  |     /* alias for the W[] array */ | ||
|  |     _W   = W; | ||
|  | 
 | ||
|  |     /* alias for the digits of  x*/ | ||
|  |     tmpx = x->dp; | ||
|  | 
 | ||
|  |     /* copy the digits of a into W[0..a->used-1] */ | ||
|  |     for (ix = 0; ix < x->used; ix++) { | ||
|  |       *_W++ = *tmpx++; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* zero the high words of W[a->used..m->used*2] */ | ||
|  |     for (; ix < n->used * 2 + 1; ix++) { | ||
|  |       *_W++ = 0; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* now we proceed to zero successive digits
 | ||
|  |    * from the least significant upwards | ||
|  |    */ | ||
|  |   for (ix = 0; ix < n->used; ix++) { | ||
|  |     /* mu = ai * m' mod b
 | ||
|  |      * | ||
|  |      * We avoid a double precision multiplication (which isn't required) | ||
|  |      * by casting the value down to a mp_digit.  Note this requires | ||
|  |      * that W[ix-1] have  the carry cleared (see after the inner loop) | ||
|  |      */ | ||
|  |     register mp_digit mu; | ||
|  |     mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK); | ||
|  | 
 | ||
|  |     /* a = a + mu * m * b**i
 | ||
|  |      * | ||
|  |      * This is computed in place and on the fly.  The multiplication | ||
|  |      * by b**i is handled by offseting which columns the results | ||
|  |      * are added to. | ||
|  |      * | ||
|  |      * Note the comba method normally doesn't handle carries in the | ||
|  |      * inner loop In this case we fix the carry from the previous | ||
|  |      * column since the Montgomery reduction requires digits of the | ||
|  |      * result (so far) [see above] to work.  This is | ||
|  |      * handled by fixing up one carry after the inner loop.  The | ||
|  |      * carry fixups are done in order so after these loops the | ||
|  |      * first m->used words of W[] have the carries fixed | ||
|  |      */ | ||
|  |     { | ||
|  |       register int iy; | ||
|  |       register mp_digit *tmpn; | ||
|  |       register mp_word *_W; | ||
|  | 
 | ||
|  |       /* alias for the digits of the modulus */ | ||
|  |       tmpn = n->dp; | ||
|  | 
 | ||
|  |       /* Alias for the columns set by an offset of ix */ | ||
|  |       _W = W + ix; | ||
|  | 
 | ||
|  |       /* inner loop */ | ||
|  |       for (iy = 0; iy < n->used; iy++) { | ||
|  |           *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++); | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  |     /* now fix carry for next digit, W[ix+1] */ | ||
|  |     W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT); | ||
|  |   } | ||
|  | 
 | ||
|  |   /* now we have to propagate the carries and
 | ||
|  |    * shift the words downward [all those least | ||
|  |    * significant digits we zeroed]. | ||
|  |    */ | ||
|  |   { | ||
|  |     register mp_digit *tmpx; | ||
|  |     register mp_word *_W, *_W1; | ||
|  | 
 | ||
|  |     /* nox fix rest of carries */ | ||
|  | 
 | ||
|  |     /* alias for current word */ | ||
|  |     _W1 = W + ix; | ||
|  | 
 | ||
|  |     /* alias for next word, where the carry goes */ | ||
|  |     _W = W + ++ix; | ||
|  | 
 | ||
|  |     for (; ix <= n->used * 2 + 1; ix++) { | ||
|  |       *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* copy out, A = A/b**n
 | ||
|  |      * | ||
|  |      * The result is A/b**n but instead of converting from an | ||
|  |      * array of mp_word to mp_digit than calling mp_rshd | ||
|  |      * we just copy them in the right order | ||
|  |      */ | ||
|  | 
 | ||
|  |     /* alias for destination word */ | ||
|  |     tmpx = x->dp; | ||
|  | 
 | ||
|  |     /* alias for shifted double precision result */ | ||
|  |     _W = W + n->used; | ||
|  | 
 | ||
|  |     for (ix = 0; ix < n->used + 1; ix++) { | ||
|  |       *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK)); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* zero oldused digits, if the input a was larger than
 | ||
|  |      * m->used+1 we'll have to clear the digits | ||
|  |      */ | ||
|  |     for (; ix < olduse; ix++) { | ||
|  |       *tmpx++ = 0; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* set the max used and clamp */ | ||
|  |   x->used = n->used + 1; | ||
|  |   mp_clamp (x); | ||
|  | 
 | ||
|  |   /* if A >= m then A = A - m */ | ||
|  |   if (mp_cmp_mag (x, n) != MP_LT) { | ||
|  |     return s_mp_sub (x, n, x); | ||
|  |   } | ||
|  |   return MP_OKAY; | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #ifdef BN_MP_MUL_2_C
 | ||
|  | /* b = a*2 */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_mul_2(mp_int * a, mp_int * b) | ||
|  | { | ||
|  |   int     x, res, oldused; | ||
|  | 
 | ||
|  |   /* grow to accommodate result */ | ||
|  |   if (b->alloc < a->used + 1) { | ||
|  |     if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) { | ||
|  |       return res; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   oldused = b->used; | ||
|  |   b->used = a->used; | ||
|  | 
 | ||
|  |   { | ||
|  |     register mp_digit r, rr, *tmpa, *tmpb; | ||
|  | 
 | ||
|  |     /* alias for source */ | ||
|  |     tmpa = a->dp; | ||
|  |      | ||
|  |     /* alias for dest */ | ||
|  |     tmpb = b->dp; | ||
|  | 
 | ||
|  |     /* carry */ | ||
|  |     r = 0; | ||
|  |     for (x = 0; x < a->used; x++) { | ||
|  |      | ||
|  |       /* get what will be the *next* carry bit from the 
 | ||
|  |        * MSB of the current digit  | ||
|  |        */ | ||
|  |       rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1)); | ||
|  |        | ||
|  |       /* now shift up this digit, add in the carry [from the previous] */ | ||
|  |       *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK; | ||
|  |        | ||
|  |       /* copy the carry that would be from the source 
 | ||
|  |        * digit into the next iteration  | ||
|  |        */ | ||
|  |       r = rr; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* new leading digit? */ | ||
|  |     if (r != 0) { | ||
|  |       /* add a MSB which is always 1 at this point */ | ||
|  |       *tmpb = 1; | ||
|  |       ++(b->used); | ||
|  |     } | ||
|  | 
 | ||
|  |     /* now zero any excess digits on the destination 
 | ||
|  |      * that we didn't write to  | ||
|  |      */ | ||
|  |     tmpb = b->dp + b->used; | ||
|  |     for (x = b->used; x < oldused; x++) { | ||
|  |       *tmpb++ = 0; | ||
|  |     } | ||
|  |   } | ||
|  |   b->sign = a->sign; | ||
|  |   return MP_OKAY; | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
 | ||
|  | /*
 | ||
|  |  * shifts with subtractions when the result is greater than b. | ||
|  |  * | ||
|  |  * The method is slightly modified to shift B unconditionally up to just under | ||
|  |  * the leading bit of b.  This saves a lot of multiple precision shifting. | ||
|  |  */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_montgomery_calc_normalization (mp_int * a, mp_int * b) | ||
|  | { | ||
|  |   int     x, bits, res; | ||
|  | 
 | ||
|  |   /* how many bits of last digit does b use */ | ||
|  |   bits = mp_count_bits (b) % DIGIT_BIT; | ||
|  | 
 | ||
|  |   if (b->used > 1) { | ||
|  |      if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) { | ||
|  |         return res; | ||
|  |      } | ||
|  |   } else { | ||
|  |      mp_set(a, 1); | ||
|  |      bits = 1; | ||
|  |   } | ||
|  | 
 | ||
|  | 
 | ||
|  |   /* now compute C = A * B mod b */ | ||
|  |   for (x = bits - 1; x < (int)DIGIT_BIT; x++) { | ||
|  |     if ((res = mp_mul_2 (a, a)) != MP_OKAY) { | ||
|  |       return res; | ||
|  |     } | ||
|  |     if (mp_cmp_mag (a, b) != MP_LT) { | ||
|  |       if ((res = s_mp_sub (a, b, a)) != MP_OKAY) { | ||
|  |         return res; | ||
|  |       } | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   return MP_OKAY; | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #ifdef BN_MP_EXPTMOD_FAST_C
 | ||
|  | /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
 | ||
|  |  * | ||
|  |  * Uses a left-to-right k-ary sliding window to compute the modular exponentiation. | ||
|  |  * The value of k changes based on the size of the exponent. | ||
|  |  * | ||
|  |  * Uses Montgomery or Diminished Radix reduction [whichever appropriate] | ||
|  |  */ | ||
|  | 
 | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) | ||
|  | { | ||
|  |   mp_int  M[TAB_SIZE], res; | ||
|  |   mp_digit buf, mp; | ||
|  |   int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; | ||
|  | 
 | ||
|  |   /* use a pointer to the reduction algorithm.  This allows us to use
 | ||
|  |    * one of many reduction algorithms without modding the guts of | ||
|  |    * the code with if statements everywhere. | ||
|  |    */ | ||
|  |   int     (*redux)(mp_int*,mp_int*,mp_digit); | ||
|  | 
 | ||
|  |   /* find window size */ | ||
|  |   x = mp_count_bits (X); | ||
|  |   if (x <= 7) { | ||
|  |     winsize = 2; | ||
|  |   } else if (x <= 36) { | ||
|  |     winsize = 3; | ||
|  |   } else if (x <= 140) { | ||
|  |     winsize = 4; | ||
|  |   } else if (x <= 450) { | ||
|  |     winsize = 5; | ||
|  |   } else if (x <= 1303) { | ||
|  |     winsize = 6; | ||
|  |   } else if (x <= 3529) { | ||
|  |     winsize = 7; | ||
|  |   } else { | ||
|  |     winsize = 8; | ||
|  |   } | ||
|  | 
 | ||
|  | #ifdef MP_LOW_MEM
 | ||
|  |   if (winsize > 5) { | ||
|  |      winsize = 5; | ||
|  |   } | ||
|  | #endif
 | ||
|  | 
 | ||
|  |   /* init M array */ | ||
|  |   /* init first cell */ | ||
|  |   if ((err = mp_init(&M[1])) != MP_OKAY) { | ||
|  |      return err; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* now init the second half of the array */ | ||
|  |   for (x = 1<<(winsize-1); x < (1 << winsize); x++) { | ||
|  |     if ((err = mp_init(&M[x])) != MP_OKAY) { | ||
|  |       for (y = 1<<(winsize-1); y < x; y++) { | ||
|  |         mp_clear (&M[y]); | ||
|  |       } | ||
|  |       mp_clear(&M[1]); | ||
|  |       return err; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* determine and setup reduction code */ | ||
|  |   if (redmode == 0) { | ||
|  | #ifdef BN_MP_MONTGOMERY_SETUP_C     
 | ||
|  |      /* now setup montgomery  */ | ||
|  |      if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) { | ||
|  |         goto LBL_M; | ||
|  |      } | ||
|  | #else
 | ||
|  |      err = MP_VAL; | ||
|  |      goto LBL_M; | ||
|  | #endif
 | ||
|  | 
 | ||
|  |      /* automatically pick the comba one if available (saves quite a few calls/ifs) */ | ||
|  | #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
 | ||
|  |      if (((P->used * 2 + 1) < MP_WARRAY) && | ||
|  |           P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { | ||
|  |         redux = fast_mp_montgomery_reduce; | ||
|  |      } else  | ||
|  | #endif
 | ||
|  |      { | ||
|  | #ifdef BN_MP_MONTGOMERY_REDUCE_C
 | ||
|  |         /* use slower baseline Montgomery method */ | ||
|  |         redux = mp_montgomery_reduce; | ||
|  | #else
 | ||
|  |         err = MP_VAL; | ||
|  |         goto LBL_M; | ||
|  | #endif
 | ||
|  |      } | ||
|  |   } else if (redmode == 1) { | ||
|  | #if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
 | ||
|  |      /* setup DR reduction for moduli of the form B**k - b */ | ||
|  |      mp_dr_setup(P, &mp); | ||
|  |      redux = mp_dr_reduce; | ||
|  | #else
 | ||
|  |      err = MP_VAL; | ||
|  |      goto LBL_M; | ||
|  | #endif
 | ||
|  |   } else { | ||
|  | #if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
 | ||
|  |      /* setup DR reduction for moduli of the form 2**k - b */ | ||
|  |      if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) { | ||
|  |         goto LBL_M; | ||
|  |      } | ||
|  |      redux = mp_reduce_2k; | ||
|  | #else
 | ||
|  |      err = MP_VAL; | ||
|  |      goto LBL_M; | ||
|  | #endif
 | ||
|  |   } | ||
|  | 
 | ||
|  |   /* setup result */ | ||
|  |   if ((err = mp_init (&res)) != MP_OKAY) { | ||
|  |     goto LBL_M; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* create M table
 | ||
|  |    * | ||
|  | 
 | ||
|  |    * | ||
|  |    * The first half of the table is not computed though accept for M[0] and M[1] | ||
|  |    */ | ||
|  | 
 | ||
|  |   if (redmode == 0) { | ||
|  | #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
 | ||
|  |      /* now we need R mod m */ | ||
|  |      if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) { | ||
|  |        goto LBL_RES; | ||
|  |      } | ||
|  | #else 
 | ||
|  |      err = MP_VAL; | ||
|  |      goto LBL_RES; | ||
|  | #endif
 | ||
|  | 
 | ||
|  |      /* now set M[1] to G * R mod m */ | ||
|  |      if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) { | ||
|  |        goto LBL_RES; | ||
|  |      } | ||
|  |   } else { | ||
|  |      mp_set(&res, 1); | ||
|  |      if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) { | ||
|  |         goto LBL_RES; | ||
|  |      } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */ | ||
|  |   if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { | ||
|  |     goto LBL_RES; | ||
|  |   } | ||
|  | 
 | ||
|  |   for (x = 0; x < (winsize - 1); x++) { | ||
|  |     if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) { | ||
|  |       goto LBL_RES; | ||
|  |     } | ||
|  |     if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) { | ||
|  |       goto LBL_RES; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* create upper table */ | ||
|  |   for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { | ||
|  |     if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { | ||
|  |       goto LBL_RES; | ||
|  |     } | ||
|  |     if ((err = redux (&M[x], P, mp)) != MP_OKAY) { | ||
|  |       goto LBL_RES; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* set initial mode and bit cnt */ | ||
|  |   mode   = 0; | ||
|  |   bitcnt = 1; | ||
|  |   buf    = 0; | ||
|  |   digidx = X->used - 1; | ||
|  |   bitcpy = 0; | ||
|  |   bitbuf = 0; | ||
|  | 
 | ||
|  |   for (;;) { | ||
|  |     /* grab next digit as required */ | ||
|  |     if (--bitcnt == 0) { | ||
|  |       /* if digidx == -1 we are out of digits so break */ | ||
|  |       if (digidx == -1) { | ||
|  |         break; | ||
|  |       } | ||
|  |       /* read next digit and reset bitcnt */ | ||
|  |       buf    = X->dp[digidx--]; | ||
|  |       bitcnt = (int)DIGIT_BIT; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* grab the next msb from the exponent */ | ||
|  |     y     = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1; | ||
|  |     buf <<= (mp_digit)1; | ||
|  | 
 | ||
|  |     /* if the bit is zero and mode == 0 then we ignore it
 | ||
|  |      * These represent the leading zero bits before the first 1 bit | ||
|  |      * in the exponent.  Technically this opt is not required but it | ||
|  |      * does lower the # of trivial squaring/reductions used | ||
|  |      */ | ||
|  |     if (mode == 0 && y == 0) { | ||
|  |       continue; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* if the bit is zero and mode == 1 then we square */ | ||
|  |     if (mode == 1 && y == 0) { | ||
|  |       if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | ||
|  |         goto LBL_RES; | ||
|  |       } | ||
|  |       if ((err = redux (&res, P, mp)) != MP_OKAY) { | ||
|  |         goto LBL_RES; | ||
|  |       } | ||
|  |       continue; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* else we add it to the window */ | ||
|  |     bitbuf |= (y << (winsize - ++bitcpy)); | ||
|  |     mode    = 2; | ||
|  | 
 | ||
|  |     if (bitcpy == winsize) { | ||
|  |       /* ok window is filled so square as required and multiply  */ | ||
|  |       /* square first */ | ||
|  |       for (x = 0; x < winsize; x++) { | ||
|  |         if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | ||
|  |           goto LBL_RES; | ||
|  |         } | ||
|  |         if ((err = redux (&res, P, mp)) != MP_OKAY) { | ||
|  |           goto LBL_RES; | ||
|  |         } | ||
|  |       } | ||
|  | 
 | ||
|  |       /* then multiply */ | ||
|  |       if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { | ||
|  |         goto LBL_RES; | ||
|  |       } | ||
|  |       if ((err = redux (&res, P, mp)) != MP_OKAY) { | ||
|  |         goto LBL_RES; | ||
|  |       } | ||
|  | 
 | ||
|  |       /* empty window and reset */ | ||
|  |       bitcpy = 0; | ||
|  |       bitbuf = 0; | ||
|  |       mode   = 1; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* if bits remain then square/multiply */ | ||
|  |   if (mode == 2 && bitcpy > 0) { | ||
|  |     /* square then multiply if the bit is set */ | ||
|  |     for (x = 0; x < bitcpy; x++) { | ||
|  |       if ((err = mp_sqr (&res, &res)) != MP_OKAY) { | ||
|  |         goto LBL_RES; | ||
|  |       } | ||
|  |       if ((err = redux (&res, P, mp)) != MP_OKAY) { | ||
|  |         goto LBL_RES; | ||
|  |       } | ||
|  | 
 | ||
|  |       /* get next bit of the window */ | ||
|  |       bitbuf <<= 1; | ||
|  |       if ((bitbuf & (1 << winsize)) != 0) { | ||
|  |         /* then multiply */ | ||
|  |         if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { | ||
|  |           goto LBL_RES; | ||
|  |         } | ||
|  |         if ((err = redux (&res, P, mp)) != MP_OKAY) { | ||
|  |           goto LBL_RES; | ||
|  |         } | ||
|  |       } | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   if (redmode == 0) { | ||
|  |      /* fixup result if Montgomery reduction is used
 | ||
|  |       * recall that any value in a Montgomery system is | ||
|  |       * actually multiplied by R mod n.  So we have | ||
|  |       * to reduce one more time to cancel out the factor | ||
|  |       * of R. | ||
|  |       */ | ||
|  |      if ((err = redux(&res, P, mp)) != MP_OKAY) { | ||
|  |        goto LBL_RES; | ||
|  |      } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* swap res with Y */ | ||
|  |   mp_exch (&res, Y); | ||
|  |   err = MP_OKAY; | ||
|  | LBL_RES:mp_clear (&res); | ||
|  | LBL_M: | ||
|  |   mp_clear(&M[1]); | ||
|  |   for (x = 1<<(winsize-1); x < (1 << winsize); x++) { | ||
|  |     mp_clear (&M[x]); | ||
|  |   } | ||
|  |   return err; | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #ifdef BN_FAST_S_MP_SQR_C
 | ||
|  | /* the jist of squaring...
 | ||
|  |  * you do like mult except the offset of the tmpx [one that  | ||
|  |  * starts closer to zero] can't equal the offset of tmpy.   | ||
|  |  * So basically you set up iy like before then you min it with | ||
|  |  * (ty-tx) so that it never happens.  You double all those  | ||
|  |  * you add in the inner loop | ||
|  | 
 | ||
|  | After that loop you do the squares and add them in. | ||
|  | */ | ||
|  | 
 | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | fast_s_mp_sqr (mp_int * a, mp_int * b) | ||
|  | { | ||
|  |   int       olduse, res, pa, ix, iz; | ||
|  |   mp_digit   W[MP_WARRAY], *tmpx; | ||
|  |   mp_word   W1; | ||
|  | 
 | ||
|  |   /* grow the destination as required */ | ||
|  |   pa = a->used + a->used; | ||
|  |   if (b->alloc < pa) { | ||
|  |     if ((res = mp_grow (b, pa)) != MP_OKAY) { | ||
|  |       return res; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* number of output digits to produce */ | ||
|  |   W1 = 0; | ||
|  |   for (ix = 0; ix < pa; ix++) {  | ||
|  |       int      tx, ty, iy; | ||
|  |       mp_word  _W; | ||
|  |       mp_digit *tmpy; | ||
|  | 
 | ||
|  |       /* clear counter */ | ||
|  |       _W = 0; | ||
|  | 
 | ||
|  |       /* get offsets into the two bignums */ | ||
|  |       ty = MIN(a->used-1, ix); | ||
|  |       tx = ix - ty; | ||
|  | 
 | ||
|  |       /* setup temp aliases */ | ||
|  |       tmpx = a->dp + tx; | ||
|  |       tmpy = a->dp + ty; | ||
|  | 
 | ||
|  |       /* this is the number of times the loop will iterrate, essentially
 | ||
|  |          while (tx++ < a->used && ty-- >= 0) { ... } | ||
|  |        */ | ||
|  |       iy = MIN(a->used-tx, ty+1); | ||
|  | 
 | ||
|  |       /* now for squaring tx can never equal ty 
 | ||
|  |        * we halve the distance since they approach at a rate of 2x | ||
|  |        * and we have to round because odd cases need to be executed | ||
|  |        */ | ||
|  |       iy = MIN(iy, (ty-tx+1)>>1); | ||
|  | 
 | ||
|  |       /* execute loop */ | ||
|  |       for (iz = 0; iz < iy; iz++) { | ||
|  |          _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--); | ||
|  |       } | ||
|  | 
 | ||
|  |       /* double the inner product and add carry */ | ||
|  |       _W = _W + _W + W1; | ||
|  | 
 | ||
|  |       /* even columns have the square term in them */ | ||
|  |       if ((ix&1) == 0) { | ||
|  |          _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]); | ||
|  |       } | ||
|  | 
 | ||
|  |       /* store it */ | ||
|  |       W[ix] = (mp_digit)(_W & MP_MASK); | ||
|  | 
 | ||
|  |       /* make next carry */ | ||
|  |       W1 = _W >> ((mp_word)DIGIT_BIT); | ||
|  |   } | ||
|  | 
 | ||
|  |   /* setup dest */ | ||
|  |   olduse  = b->used; | ||
|  |   b->used = a->used+a->used; | ||
|  | 
 | ||
|  |   { | ||
|  |     mp_digit *tmpb; | ||
|  |     tmpb = b->dp; | ||
|  |     for (ix = 0; ix < pa; ix++) { | ||
|  |       *tmpb++ = W[ix] & MP_MASK; | ||
|  |     } | ||
|  | 
 | ||
|  |     /* clear unused digits [that existed in the old copy of c] */ | ||
|  |     for (; ix < olduse; ix++) { | ||
|  |       *tmpb++ = 0; | ||
|  |     } | ||
|  |   } | ||
|  |   mp_clamp (b); | ||
|  |   return MP_OKAY; | ||
|  | } | ||
|  | #endif
 | ||
|  | 
 | ||
|  | 
 | ||
|  | #ifdef BN_MP_MUL_D_C
 | ||
|  | /* multiply by a digit */ | ||
|  | static int ICACHE_FLASH_ATTR | ||
|  | mp_mul_d (mp_int * a, mp_digit b, mp_int * c) | ||
|  | { | ||
|  |   mp_digit u, *tmpa, *tmpc; | ||
|  |   mp_word  r; | ||
|  |   int      ix, res, olduse; | ||
|  | 
 | ||
|  |   /* make sure c is big enough to hold a*b */ | ||
|  |   if (c->alloc < a->used + 1) { | ||
|  |     if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) { | ||
|  |       return res; | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* get the original destinations used count */ | ||
|  |   olduse = c->used; | ||
|  | 
 | ||
|  |   /* set the sign */ | ||
|  |   c->sign = a->sign; | ||
|  | 
 | ||
|  |   /* alias for a->dp [source] */ | ||
|  |   tmpa = a->dp; | ||
|  | 
 | ||
|  |   /* alias for c->dp [dest] */ | ||
|  |   tmpc = c->dp; | ||
|  | 
 | ||
|  |   /* zero carry */ | ||
|  |   u = 0; | ||
|  | 
 | ||
|  |   /* compute columns */ | ||
|  |   for (ix = 0; ix < a->used; ix++) { | ||
|  |     /* compute product and carry sum for this term */ | ||
|  |     r       = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b); | ||
|  | 
 | ||
|  |     /* mask off higher bits to get a single digit */ | ||
|  |     *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK)); | ||
|  | 
 | ||
|  |     /* send carry into next iteration */ | ||
|  |     u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); | ||
|  |   } | ||
|  | 
 | ||
|  |   /* store final carry [if any] and increment ix offset  */ | ||
|  |   *tmpc++ = u; | ||
|  |   ++ix; | ||
|  | 
 | ||
|  |   /* now zero digits above the top */ | ||
|  |   while (ix++ < olduse) { | ||
|  |      *tmpc++ = 0; | ||
|  |   } | ||
|  | 
 | ||
|  |   /* set used count */ | ||
|  |   c->used = a->used + 1; | ||
|  |   mp_clamp(c); | ||
|  | 
 | ||
|  |   return MP_OKAY; | ||
|  | } | ||
|  | #endif
 |