Update IDF to a0468b2 (#2108)

* Update IDF to a0468b2

* add missing ld file

* Fix PIO builds and change coex policy
This commit is contained in:
Me No Dev
2018-11-26 23:22:11 +01:00
committed by GitHub
parent c3ec91f968
commit 04963009ee
988 changed files with 114643 additions and 65141 deletions

View File

@ -70,6 +70,7 @@ typedef enum {
ESP_PARTITION_SUBTYPE_DATA_PHY = 0x01, //!< PHY init data partition
ESP_PARTITION_SUBTYPE_DATA_NVS = 0x02, //!< NVS partition
ESP_PARTITION_SUBTYPE_DATA_COREDUMP = 0x03, //!< COREDUMP partition
ESP_PARTITION_SUBTYPE_DATA_NVS_KEYS = 0x04, //!< Partition for NVS keys
ESP_PARTITION_SUBTYPE_DATA_ESPHTTPD = 0x80, //!< ESPHTTPD partition
ESP_PARTITION_SUBTYPE_DATA_FAT = 0x81, //!< FAT partition

View File

@ -244,15 +244,13 @@ void spi_flash_mmap_dump();
/**
* @brief get free pages number which can be mmap
*
* This function will return free page number of the mmu table which can mmap,
* when you want to call spi_flash_mmap to mmap an ranger of flash data to Dcache or Icache
* memmory region, maybe the size of MMU table will exceed,so if you are not sure the
* size need mmap is ok, can call the interface and watch how many MMU table page can be
* mmaped.
* This function will return number of free pages available in mmu table. This could be useful
* before calling actual spi_flash_mmap (maps flash range to DCache or ICache memory) to check
* if there is sufficient space available for mapping.
*
* @param memory memmory type of MMU table free page
* @param memory memory type of MMU table free page
*
* @return number of free pages which can be mmaped
* @return number of free pages which can be mmaped
*/
uint32_t spi_flash_mmap_get_free_pages(spi_flash_mmap_memory_t memory);
@ -315,6 +313,10 @@ typedef void (*spi_flash_op_lock_func_t)(void);
* @brief SPI flash operation unlock function.
*/
typedef void (*spi_flash_op_unlock_func_t)(void);
/**
* @brief Function to protect SPI flash critical regions corruption.
*/
typedef bool (*spi_flash_is_safe_write_address_t)(size_t addr, size_t size);
/**
* Structure holding SPI flash access critical sections management functions.
@ -334,6 +336,9 @@ typedef void (*spi_flash_op_unlock_func_t)(void);
* - 'op_unlock' unlocks access to flash API internal data.
* These two functions are recursive and can be used around the outside of multiple calls to
* 'start' & 'end', in order to create atomic multi-part flash operations.
* 3) When CONFIG_SPI_FLASH_WRITING_DANGEROUS_REGIONS_ALLOWED is disabled, flash writing/erasing
* API checks for addresses provided by user to avoid corruption of critical flash regions
* (bootloader, partition table, running application etc.).
*
* Different versions of the guarding functions should be used depending on the context of
* execution (with or without functional OS). In normal conditions when flash API is called
@ -345,10 +350,13 @@ typedef void (*spi_flash_op_unlock_func_t)(void);
* For example structure can be placed in DRAM and functions in IRAM sections.
*/
typedef struct {
spi_flash_guard_start_func_t start; /**< critical section start function. */
spi_flash_guard_end_func_t end; /**< critical section end function. */
spi_flash_op_lock_func_t op_lock; /**< flash access API lock function.*/
spi_flash_op_unlock_func_t op_unlock; /**< flash access API unlock function.*/
spi_flash_guard_start_func_t start; /**< critical section start function. */
spi_flash_guard_end_func_t end; /**< critical section end function. */
spi_flash_op_lock_func_t op_lock; /**< flash access API lock function.*/
spi_flash_op_unlock_func_t op_unlock; /**< flash access API unlock function.*/
#if !CONFIG_SPI_FLASH_WRITING_DANGEROUS_REGIONS_ALLOWED
spi_flash_is_safe_write_address_t is_safe_write_address; /**< checks flash write addresses.*/
#endif
} spi_flash_guard_funcs_t;
/**
@ -361,7 +369,6 @@ typedef struct {
*/
void spi_flash_guard_set(const spi_flash_guard_funcs_t* funcs);
/**
* @brief Get the guard functions used for flash access
*