Update IDF to 1c3dd23

* Update mDNS and LEDC

* update toolchain

* Update IDF to 1c3dd23

* Advertise the board variant for Arduino OTA

* Add generic variant definition for mDNS
This commit is contained in:
Me No Dev
2018-01-18 00:56:58 +02:00
committed by GitHub
parent 70d0d46487
commit 600f4c4130
150 changed files with 7113 additions and 3766 deletions

View File

@ -37,13 +37,13 @@ extern "C" {
*/
//Keep the LEVELx values as they are here; they match up with (1<<level)
#define ESP_INTR_FLAG_LEVEL1 (1<<1) ///< Accept a Level 1 interrupt vector
#define ESP_INTR_FLAG_LEVEL1 (1<<1) ///< Accept a Level 1 interrupt vector (lowest priority)
#define ESP_INTR_FLAG_LEVEL2 (1<<2) ///< Accept a Level 2 interrupt vector
#define ESP_INTR_FLAG_LEVEL3 (1<<3) ///< Accept a Level 3 interrupt vector
#define ESP_INTR_FLAG_LEVEL4 (1<<4) ///< Accept a Level 4 interrupt vector
#define ESP_INTR_FLAG_LEVEL5 (1<<5) ///< Accept a Level 5 interrupt vector
#define ESP_INTR_FLAG_LEVEL6 (1<<6) ///< Accept a Level 6 interrupt vector
#define ESP_INTR_FLAG_NMI (1<<7) ///< Accept a Level 7 interrupt vector
#define ESP_INTR_FLAG_NMI (1<<7) ///< Accept a Level 7 interrupt vector (highest priority)
#define ESP_INTR_FLAG_SHARED (1<<8) ///< Interrupt can be shared between ISRs
#define ESP_INTR_FLAG_EDGE (1<<9) ///< Edge-triggered interrupt
#define ESP_INTR_FLAG_IRAM (1<<10) ///< ISR can be called if cache is disabled
@ -248,8 +248,8 @@ int esp_intr_get_intno(intr_handle_t handle);
esp_err_t esp_intr_disable(intr_handle_t handle);
/**
* @brief Ensable the interrupt associated with the handle
*
* @brief Enable the interrupt associated with the handle
*
* @note For local interrupts (ESP_INTERNAL_* sources), this function has to be called on the
* CPU the interrupt is allocated on. Other interrupts have no such restriction.
*
@ -260,6 +260,19 @@ esp_err_t esp_intr_disable(intr_handle_t handle);
*/
esp_err_t esp_intr_enable(intr_handle_t handle);
/**
* @brief Set the "in IRAM" status of the handler.
*
* @note Does not work on shared interrupts.
*
* @param handle The handle, as obtained by esp_intr_alloc or esp_intr_alloc_intrstatus
* @param is_in_iram Whether the handler associated with this handle resides in IRAM.
* Handlers residing in IRAM can be called when cache is disabled.
*
* @return ESP_ERR_INVALID_ARG if the combination of arguments is invalid.
* ESP_OK otherwise
*/
esp_err_t esp_intr_set_in_iram(intr_handle_t handle, bool is_in_iram);
/**
* @brief Disable interrupts that aren't specifically marked as running from IRAM

View File

@ -20,11 +20,11 @@
#ifdef __cplusplus
extern "C" {
#endif
/** @cond */
typedef void (*esp_ipc_func_t)(void* arg);
/**
* @brief Inter-processor call APIs
/** @endcond */
/*
* Inter-processor call APIs
*
* FreeRTOS provides several APIs which can be used to communicate between
* different tasks, including tasks running on different CPUs.
@ -34,8 +34,9 @@ typedef void (*esp_ipc_func_t)(void* arg);
*/
/**
* @brief Initialize inter-processor call module.
/*
* Initialize inter-processor call module. This function is called automatically
* on CPU start and should not be called from the application.
*
* This function start two tasks, one on each CPU. These tasks are started
* with high priority. These tasks are normally inactive, waiting until one of
@ -43,51 +44,59 @@ typedef void (*esp_ipc_func_t)(void* arg);
* woken up to execute the callback provided to esp_ipc_call_nonblocking or
* esp_ipc_call_blocking.
*/
/** @cond */
void esp_ipc_init();
/** @endcond */
/**
* @brief Execute function on the given CPU
* @brief Execute a function on the given CPU
*
* This will wake a high-priority task on CPU indicated by cpu_id argument,
* and run func(arg) in the context of that task.
* This function returns as soon as the high-priority task is woken up.
* If another IPC call is already being executed, this function will also wait
* for it to complete.
* Run a given function on a particular CPU. The given function must accept a
* void* argument and return void. The given function is run in the context of
* the IPC task of the CPU specified by the cpu_id parameter. The calling task
* will be blocked until the IPC task begins executing the given function. If
* another IPC call is ongoing, the calling task will block until the other IPC
* call completes. The stack size allocated for the IPC task can be configured
* in the "Inter-Processor Call (IPC) task stack size" setting in menuconfig.
* Increase this setting if the given function requires more stack than default.
*
* In single-core mode, returns ESP_ERR_INVALID_ARG for cpu_id 1.
* @note In single-core mode, returns ESP_ERR_INVALID_ARG for cpu_id 1.
*
* For complex functions, you may need to increase the stack size of the "IPC task"
* which runs the function must be sufficient. See the "Inter-Processor Call (IPC)
* task stack size" setting in menuconfig.
* @param[in] cpu_id CPU where the given function should be executed (0 or 1)
* @param[in] func Pointer to a function of type void func(void* arg) to be executed
* @param[in] arg Arbitrary argument of type void* to be passed into the function
*
* @param cpu_id CPU where function should be executed (0 or 1)
* @param func pointer to a function which should be executed
* @param arg arbitrary argument to be passed into function
*
* @return ESP_ERR_INVALID_ARG if cpu_id is invalid
* ESP_ERR_INVALID_STATE if FreeRTOS scheduler is not running
* ESP_OK otherwise
* @return
* - ESP_ERR_INVALID_ARG if cpu_id is invalid
* - ESP_ERR_INVALID_STATE if the FreeRTOS scheduler is not running
* - ESP_OK otherwise
*/
esp_err_t esp_ipc_call(uint32_t cpu_id, esp_ipc_func_t func, void* arg);
/**
* @brief Execute function on the given CPU and wait for it to finish
* @brief Execute a function on the given CPU and blocks until it completes
*
* This will wake a high-priority task on CPU indicated by cpu_id argument,
* and run func(arg) in the context of that task.
* This function waits for func to return.
* Run a given function on a particular CPU. The given function must accept a
* void* argument and return void. The given function is run in the context of
* the IPC task of the CPU specified by the cpu_id parameter. The calling task
* will be blocked until the IPC task completes execution of the given function.
* If another IPC call is ongoing, the calling task will block until the other
* IPC call completes. The stack size allocated for the IPC task can be
* configured in the "Inter-Processor Call (IPC) task stack size" setting in
* menuconfig. Increase this setting if the given function requires more stack
* than default.
*
* In single-core mode, returns ESP_ERR_INVALID_ARG for cpu_id 1.
* @note In single-core mode, returns ESP_ERR_INVALID_ARG for cpu_id 1.
*
* @param cpu_id CPU where function should be executed (0 or 1)
* @param func pointer to a function which should be executed
* @param arg arbitrary argument to be passed into function
* @param[in] cpu_id CPU where the given function should be executed (0 or 1)
* @param[in] func Pointer to a function of type void func(void* arg) to be executed
* @param[in] arg Arbitrary argument of type void* to be passed into the function
*
* @return ESP_ERR_INVALID_ARG if cpu_id is invalid
* ESP_ERR_INVALID_STATE if FreeRTOS scheduler is not running
* ESP_OK otherwise
* @return
* - ESP_ERR_INVALID_ARG if cpu_id is invalid
* - ESP_ERR_INVALID_STATE if the FreeRTOS scheduler is not running
* - ESP_OK otherwise
*/
esp_err_t esp_ipc_call_blocking(uint32_t cpu_id, esp_ipc_func_t func, void* arg);

View File

@ -29,11 +29,11 @@
* use RTOS notification mechanisms (queues, semaphores, event groups, etc.) to
* pass information to other tasks.
*
* <to be implemented> It should be possible to request the callback to be called
* To be implemented: it should be possible to request the callback to be called
* directly from the ISR. This reduces the latency, but has potential impact on
* all other callbacks which need to be dispatched. This option should only be
* used for simple callback functions, which do not take longer than a few
* microseconds to run. </to be implemented>
* microseconds to run.
*
* Implementation note: on the ESP32, esp_timer APIs use the "legacy" FRC2
* timer. Timer callbacks are called from a task running on the PRO CPU.