Update tools to latest IDF

This commit is contained in:
me-no-dev
2016-11-13 17:23:44 +02:00
parent f0b7959425
commit 7e0811ec56
131 changed files with 14619 additions and 766 deletions

View File

@ -16,6 +16,7 @@
#define ESP_SPI_FLASH_H
#include <stdint.h>
#include <stddef.h>
#include "esp_err.h"
#include "sdkconfig.h"
@ -34,41 +35,126 @@ extern "C" {
*
* This function must be called exactly once, before any other
* spi_flash_* functions are called.
* Currently this function is called from startup code. There is
* no need to call it from application code.
*
*/
void spi_flash_init();
/**
* @brief Get flash chip size, as set in binary image header
*
* @note This value does not necessarily match real flash size.
*
* @return size of flash chip, in bytes
*/
size_t spi_flash_get_chip_size();
/**
* @brief Erase the Flash sector.
*
* @param uint16 sec : Sector number, the count starts at sector 0, 4KB per sector.
* @param sector Sector number, the count starts at sector 0, 4KB per sector.
*
* @return esp_err_t
*/
esp_err_t spi_flash_erase_sector(uint16_t sec);
esp_err_t spi_flash_erase_sector(size_t sector);
/**
* @brief Erase a range of flash sectors
*
* @param uint32_t start_address : Address where erase operation has to start.
* Must be 4kB-aligned
* @param uint32_t size : Size of erased range, in bytes. Must be divisible by 4kB.
*
* @return esp_err_t
*/
esp_err_t spi_flash_erase_range(size_t start_addr, size_t size);
/**
* @brief Write data to Flash.
*
* @param uint32 des_addr : destination address in Flash.
* @param uint32 *src_addr : source address of the data.
* @param uint32 size : length of data
* @note Address in flash, dest, has to be 4-byte aligned.
* This is a temporary limitation which will be removed.
*
* @param dest destination address in Flash
* @param src pointer to the source buffer
* @param size length of data, in bytes
*
* @return esp_err_t
*/
esp_err_t spi_flash_write(uint32_t des_addr, const uint32_t *src_addr, uint32_t size);
esp_err_t spi_flash_write(size_t dest, const void *src, size_t size);
/**
* @brief Read data from Flash.
*
* @param uint32 src_addr : source address of the data in Flash.
* @param uint32 *des_addr : destination address.
* @param uint32 size : length of data
* @note Both src and dest have to be 4-byte aligned.
* This is a temporary limitation which will be removed.
*
* @param src source address of the data in Flash.
* @param dest pointer to the destination buffer
* @param size length of data
*
* @return esp_err_t
*/
esp_err_t spi_flash_read(uint32_t src_addr, uint32_t *des_addr, uint32_t size);
esp_err_t spi_flash_read(size_t src, void *dest, size_t size);
/**
* @brief Enumeration which specifies memory space requested in an mmap call
*/
typedef enum {
SPI_FLASH_MMAP_DATA, /**< map to data memory (Vaddr0), allows byte-aligned access, 4 MB total */
SPI_FLASH_MMAP_INST, /**< map to instruction memory (Vaddr1-3), allows only 4-byte-aligned access, 11 MB total */
} spi_flash_mmap_memory_t;
/**
* @brief Opaque handle for memory region obtained from spi_flash_mmap.
*/
typedef uint32_t spi_flash_mmap_handle_t;
/**
* @brief Map region of flash memory into data or instruction address space
*
* This function allocates sufficient number of 64k MMU pages and configures
* them to map request region of flash memory into data address space or into
* instruction address space. It may reuse MMU pages which already provide
* required mapping. As with any allocator, there is possibility of fragmentation
* of address space if mmap/munmap are heavily used. To troubleshoot issues with
* page allocation, use spi_flash_mmap_dump function.
*
* @param src_addr Physical address in flash where requested region starts.
* This address *must* be aligned to 64kB boundary.
* @param size Size of region which has to be mapped. This size will be rounded
* up to a 64k boundary.
* @param memory Memory space where the region should be mapped
* @param out_ptr Output, pointer to the mapped memory region
* @param out_handle Output, handle which should be used for spi_flash_munmap call
*
* @return ESP_OK on success, ESP_ERR_NO_MEM if pages can not be allocated
*/
esp_err_t spi_flash_mmap(uint32_t src_addr, size_t size, spi_flash_mmap_memory_t memory,
const void** out_ptr, spi_flash_mmap_handle_t* out_handle);
/**
* @brief Release region previously obtained using spi_flash_mmap
*
* @note Calling this function will not necessarily unmap memory region.
* Region will only be unmapped when there are no other handles which
* reference this region. In case of partially overlapping regions
* it is possible that memory will be unmapped partially.
*
* @param handle Handle obtained from spi_flash_mmap
*/
void spi_flash_munmap(spi_flash_mmap_handle_t handle);
/**
* @brief Display information about mapped regions
*
* This function lists handles obtained using spi_flash_mmap, along with range
* of pages allocated to each handle. It also lists all non-zero entries of
* MMU table and corresponding reference counts.
*/
void spi_flash_mmap_dump();
#if CONFIG_SPI_FLASH_ENABLE_COUNTERS
@ -78,7 +164,7 @@ esp_err_t spi_flash_read(uint32_t src_addr, uint32_t *des_addr, uint32_t size);
typedef struct {
uint32_t count; // number of times operation was executed
uint32_t time; // total time taken, in microseconds
uint32_t bytes; // total number of bytes, for read and write operations
uint32_t bytes; // total number of bytes
} spi_flash_counter_t;
typedef struct {